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1 Introdu
tionSuppose that you want to run some experiments on random 
odes (i.e., subsets of f0; 1gn that 
ontainK = 2
(n) strings). You a
tually take it for granted that the random 
ode will have large (i.e., linear)distan
e, be
ause you are willing to dis
ard the negligible probability that a random 
ode will not havea large distan
e. Suppose that you want to be able to keep su

in
t representations of these huge 
odesand/or that you want to generate them using few random bits. A natural idea that 
omes to mind is usingpseudorandom fun
tions [20℄ in order to eÆ
iently generate and store representations of these 
odes; thatis, using the pseudorandom fun
tion f : [K℄ ! f0; 1gn, one 
an de�ne the 
ode Cf = ff(i) : i2 [K℄g, andeÆ
iently produ
e 
odewords of Cf . But do the 
odes generated this way have a large distan
e?The point is that having a large distan
e is a global property of the 
ode, whi
h in turn is a huge (i.e.,exp(n)-sized) obje
t. This global property 
annot be de
ided by looking at polynomially many (i.e., poly(n)-many) 
odewords, and so its violation 
annot be translated to a 
ontradi
tion of the pseudorandomness ofthe fun
tion. Indeed, the substitution of a random fun
tion (or a random 
ode) by a pseudorandom one isnot guaranteed to preserve the global property. Spe
i�
ally, all pseudorandom 
odes generated as suggestedabove may have small distan
e.1So, 
an we eÆ
iently generate random-looking 
odes of large distan
e? Spe
i�
ally, 
an we provide aprobabilisti
 polynomial-time pro
edure that allows to sample 
odewords from a 
ode of large distan
e su
hthat the sampled 
odewords look as if they were taken from a random 
ode (whi
h, in parti
ular, meansthat we do not generate linear 
odes). The answer is essentially positive: see Se
tion 4. However, this ismerely an example of the type of questions that we deal with. Another illustrative example is provided bythe question of whether it is feasible to generate a random-looking 
onne
ted graph of huge size? Again,the huge graph should look random and be 
onne
ted, and we 
annot obtain this by merely using a randomfun
tion (see Example 3.5).The foregoing dis
ussion alludes to the notion of a \truthful" implementation (of a given spe
i�
ation),whi
h will be 
entral to this work. For example, if the spe
i�
ation 
alls for (random) 
odes of large distan
ethen the implementation should provide su
h 
odes and not arbitrary random-looking 
odes. However,even when dis
arding the question of truthfulness, a fundamental question arises: whi
h types of randomobje
ts 
an be eÆ
iently implemented in the sense that one 
annot distinguish the implementation from the
orresponding spe
i�
ation.We initiate a general study of the feasibility of implementing (huge) random obje
ts. The pivots of thisstudy are the notions of a spe
i�
ation and an implementation (see Se
tion 1.1), where an implementation isrelated to the spe
i�
ation by appropriate measures of indistinguishability and truthfulness (see Se
tion 1.2).After establishing the basi
 formalism (in Se
tion 2), we explore several areas in whi
h the study of randomobje
ts o

urs naturally. These areas in
lude graph theory, 
oding theory, and 
ryptography. The bulk ofthis work provides implementations of various natural random obje
ts, whi
h were 
onsidered before in theseareas (e.g., the study of random graphs [8℄).1.1 Obje
ts, spe
i�
ations, and implementationsOur fo
us is on huge obje
ts; that is, obje
ts that are of size that is exponential in the running time of theappli
ations. Thus, these (possibly randomized) appli
ations may inspe
t only small portions of the obje
t(in ea
h randomized exe
ution). The obje
t may be viewed as a fun
tion (or an ora
le), and inspe
ting asmall portion of it is viewed as re
eiving answers to a small number of adequate queries. For example, whenwe talk of huge dense graphs, we 
onsider adja
en
y queries that are vertex-pairs with answers indi
atingwhether or not the queried pair is 
onne
ted by an edge. When we talk of huge bounded-degree graphs, we
onsider in
iden
e queries that 
orrespond to verti
es with answers listing all the neighbors of the queriedvertex.1Indeed, for ea
h fun
tion fs taken from some pseudorandom ensemble ffs : [2jsj=10℄ ! f0; 1gjsjgs, it may holdthat the Hamming distan
e between fs(is) and fs(is + 1) is one, for some is that depends arbitrarily on fs. Forexample, given a pseudorandom ensemble ffsg, 
onsider the ensemble ffs;ig su
h that fs;i(i) = 0n, fs;i(i+1) = 0n�11and fs;i(x) = fs(x) for all other x's. 2



We are interested in 
lasses of obje
ts (or obje
t types), whi
h 
an be viewed as 
lasses of fun
tions.(Indeed, we are not interested in the trivial 
ase of generi
 obje
ts, whi
h is 
aptured by the 
lass of allfun
tions.) For example, when we talk of simple undire
ted graphs in the adja
en
y predi
ate representation,we only allow symmetri
 and non-re
exive Boolean fun
tions. Similarly, when we talk of su
h bounded-degreegraphs in the in
ident-lists representation, we restri
t the 
lass of fun
tions in a less trivial manner (i.e., ushould appear in the neighbor-list of v i� v appears in the neighbor-list of u). More interestingly, we may talkof the 
lass of 
onne
ted (or Hamiltonian) graphs, in whi
h 
ase the 
lass of fun
tions is even more 
omplex.This formalism allows to talk about obje
ts of 
ertain types (or of obje
ts satisfying 
ertain properties). Inaddition, it 
aptures \
omplex obje
ts" that support \
ompound queries" to more basi
 obje
ts. Indeed,these 
omplex obje
ts are de�ned in terms of the 
ompound queries that they support (akin to abstra
tdata types that are de�ned in terms of the supported queries) For example, we may 
onsider an obje
tthat answers queries regarding a global property of a Boolean fun
tion (e.g., the parity of all the fun
tion'svalues). The queries may also refer to a large number of values of the fun
tion (e.g., the parity of all valuesassigned to arguments in an interval that is spe
i�ed by the query).We study probability distributions over 
lasses of obje
ts. Su
h a distribution is 
alled a spe
i�
ation.Formally, a spe
i�
ation is presented by a 
omputationally-unbounded probabilisti
 Turing ma
hine, whereea
h setting of the ma
hine's random-tape yields a huge obje
t. The latter obje
t is de�ned as the 
orre-sponding input-output relation, and so queries to the obje
t are asso
iated with inputs to the ma
hine. We
onsider the distribution on fun
tions obtained by sele
ting the spe
i�
ation's random-tape uniformly. Forexample, a random N -vertex Hamiltonian graph is spe
i�ed by a 
omputationally-unbounded probabilisti
ma
hine that uses its random-tape to determine su
h a (random Hamiltonian) graph, and answers adja
en
yqueries a

ordingly. Another spe
i�
ation may require to answer, in addition to adja
en
y queries regardinga uniformly sele
ted N -vertex graph, also more 
omplex queries su
h as providing a 
lique of size log2N that
ontains the queried vertex. We stress that the spe
i�
ation is not required to be even remotely eÆ
ient(but for sake of simpli
ity we assume that it is re
ursive).Our ultimate goal will be to provide a probabilisti
 polynomial-time ma
hine that implements the desiredspe
i�
ation. That is, we 
onsider the probability distribution on fun
tions indu
ed by �xing the random-tape of the latter ma
hine in all possible ways. Again, ea
h possible �xing of the random-tape yields afun
tion 
orresponding to the input-output relation (of the ma
hine per this 
ontents of its random-tape).Thus, an implementation is a probabilisti
 ma
hine, just as the spe
i�
ation, and it de�nes a distribution onfun
tions in the same manner. The key di�eren
e is that the implementation is a probabilisti
 polynomial-time ma
hine, whereas the spe
i�
ation is rather arbitrary (or merely re
ursive).1.2 Indistinguishability and TruthfulnessNeedless to say, the key question is how does the implementation relate to the desired spe
i�
ation; that is,how \good" is the implementation. We 
onsider two aspe
ts of this question. The �rst (and more standard)aspe
t is whether one 
an distinguish the implementation from the spe
i�
ation when given ora
le a

ess toone of them. Variants in
lude perfe
t indistinguishability, statisti
al-indistinguishability, and 
omputational-indistinguishability.We highlight a se
ond aspe
t regarding the quality of implementation: the truthfulness of the implemen-tation with respe
t to the spe
i�
ation, where being truthful means that any possible fun
tion that appearswith non-zero probability in the implementation must also appear with non-zero probability in the spe
i�-
ation. For example, if the spe
i�
ation is of a random Hamiltonian graph then a truthful implementationmust always yield a Hamiltonian graph. Likewise, if the spe
i�
ation is of a random non-Hamiltonian graphthen a truthful implementation must always yield a non-Hamiltonian graph. Indeed, these two examplesare fundamentally di�erent, be
ause with overwhelmingly high probability a random graph is Hamiltonian.(Thus, a relaxed notion of truthfulness is easy to obtain in the �rst 
ase but not in the se
ond 
ase.)2Indeed, our presentation highlights the notion of truthfulness, and we justify below the importan
ethat we atta
h to this notion. Nevertheless, we stress that our work also initiates the study of general2Here we refer to a relaxation of the notion of truthfulness that (only) requires that all but a negligible part ofthe probability mass of the implementation is assigned to fun
tions that appear with non-zero probability in thespe
i�
ation. An implementation satisfying this relaxation will be 
alled 
alled almost-truthful.3



implementations, regardless of truthfulness. That is, we ask whi
h spe
i�
ations have implementations(whi
h are indistinguishable from them). We also stress that some of our 
onstru
tions are interestingregardless of their truthfulness.The meaning of truthfulness. Seeking a truthful implementation of random obje
ts of a givenType T, means aiming at the generation of pseudorandom obje
ts of Type T. That is, we want the generatedobje
t to always be of Type T, but we are willing to settle for Type T obje
ts that look as if they are trulyrandom Type T obje
ts (although they are not). This means that we seek Type T obje
ts that look likerandom Type T obje
ts, rather than obje
ts that look like random Type T obje
ts although they are not ofType T at all. For example, a random fun
tion is not a truthful implementation of a random permutation,although the two look alike to anybody restri
ted to resour
es that are polynomially related to the lengthof the inputs to the fun
tion. Beyond the intuitive 
on
eptual appeal of truthfulness, there are importantpra
ti
al 
onsiderations.In general, when one deals (or experiments) with an obje
t that is supposed to be of Type T, one mayassume that this obje
t has all the properties enjoyed by all Type T obje
ts. If this assumption does nothold (even if one 
annot dete
t this fa
t during initial experimentation) then an appli
ation that depends onthis assumption may fail. One reason for the failure of the appli
ation may be that it uses signi�
antly moreresour
es than those used in the initial experiments that failed to dete
t the problem. See further dis
ussionbelow. Another issue is that the probability that the appli
ation fails may indeed be negligible (as is theprobability of dete
ting the failure in the initial experiments), but due to the importan
e of the appli
ationwe are unwilling to tolerate even a negligible probability of failure.Indeed, the fa
t that truthfulness is not re
e
ted by 
omputational (or even statisti
al) indistinguisha-bility raises the question of motivation. The question is why should we 
are about a property that we 
annottest. The answer is that others may be able to test this property and/or to bene�t from its violation. Themost evident settings in whi
h this may o

ur are multi-party settings 
onsisting of parties that have vastlydi�erent 
omputational abilities (e.g., as underlying zero-knowledge intera
tive proof and perfe
tly binding
ommitment s
hemes (
f., [18, Chap. 4℄)). In su
h settings the indistinguishability requirement may referto one (
omputationally-bounded) party, whereas truthfulness is essential for preventing events that refer toa
tions of the other party (whi
h is not 
omputationally-bounded). For example, a pseudorandom fun
tionis 
omputationally indistinguishable from a random permutation, but if we fa
e an opponent that is not
omputationally bounded and 
an illegitimately bene�t from �nding an image that has multiple preimagesthen we should insist on using a truthful implementation of a random permutation. The same 
onsiderationsapply also if the opponent is 
omputationally bounded but has extra information regarding the pseudoran-dom fun
tion (e.g., the opponent may know the su

in
t des
ryption of the fun
tion, hereafter 
alled itsseed). Note that in this example, 
omputational indistinguishability may refer to one party (who does notknow the fun
tion's seed), whereas truthfulness guarantees that the implemented fun
tion is a permutationand thus that the opponent (who may know the seed) 
annot �nd an image that has multiple preimages.Truthful implementations as an extension of 
omplexity theory. Spe
ializing our notionof a truthful implementation to the 
ase of deterministi
 spe
i�
ations yields the standard notion of eÆ-
ient 
omputation; that is, a truthful implementation of a fun
tion f : f0; 1g� ! f0; 1g� is nothing but apolynomial-time algorithm for 
omputing f . Similarly, an almost-truthful implementation of f is a proba-bilisti
 polynomial-time algorithm for 
omputing f (with exponentially vanishing error probability). Thus,our notion of truthful implementations extends the standard study of polynomial-time 
omputations fromfun
tions to probability distributions over fun
tions (i.e., spe
i�
ations).1.3 OrganizationIn Se
tion 2, we present formal de�nitions of the notions dis
ussed above as well as basi
 observationsregarding these notions. These are followed by a few known examples of non-trivial implementations ofvarious random obje
ts (whi
h are retrospe
tively 
ast ni
ely in our formulation). In Se
tion 3, we state afair number of new implementations of various random obje
ts, while deferring the 
onstru
tions (and proofs)to subsequent 
orresponding se
tions (i.e., Se
tions 4 through 9). These implementations demonstrate the4



appli
ability of our notions to various domains su
h as fun
tions, graphs, and 
odes. Indeed, Se
tions 4through 9 are mutually independent and 
an be read in arbitrary order.We 
all the reader's attention to Se
tions 10 and 11, whi
h 
ontain 
on
lusions and open problems(Se
tion 10) as well as a brief review of subsequent work (Se
tion 11).2 Formal Setting and General ObservationsThroughout this work we let n denote the feasibility parameter. Spe
i�
ally, feasible-sized obje
ts have anexpli
it des
ription of length poly(n), whereas huge obje
ts have (expli
it des
ription) size exponential in n.The latter are des
ribed by fun
tions from poly(n)-bit strings to poly(n)-bit strings. Whenever we talk ofeÆ
ient pro
edures we mean algorithms running in poly(n)-time.2.1 Spe
i�
ationA huge random obje
t is spe
i�ed by a 
omputationally-unbounded probabilisti
 Turing ma
hine. For a �xed
ontents of the random-tape, su
h a ma
hine de�nes a (possibly partial) fun
tion on the set of all binarystrings. Su
h a fun
tion is 
alled an instan
e of the spe
i�
ation. We 
onsider the input-output relation ofthis ma
hine when the random-tape is uniformly distributed. Loosely speaking, this is the random obje
tspe
i�ed by the ma
hine.For sake of simpli
ity, we 
on�ne our attention to ma
hines that halt with probability 1 on every input.Furthermore, we will 
onsider the input-output relation of su
h ma
hines only on inputs of some spe
i�edlength `, where ` is always polynomially related to the feasibility parameter n. Thus, for su
h a probabilisti
ma
hine M and length parameter ` = `(n), with probability 1 over the 
hoi
e of the random-tape for M ,ma
hine M halts on every `(n)-bit long input.De�nition 2.1 (spe
i�
ation): For a �xed fun
tion ` :N!N, the instan
e spe
i�ed by a probabilisti
 ma
hineM , random-tape ! and parameter n is the fun
tion Mn;! de�ned by letting Mn;!(x) be the output of M oninput x 2 f0; 1g`(n) when using the random-tape ! 2 f0; 1g1. The random obje
t spe
i�ed by M and n isde�ned as Mn;! for a uniformly sele
ted ! 2 f0; 1g1.Note that, with probability 1 over the 
hoi
e of the random-tape, the random obje
t (spe
i�ed by M andn) depends only on a �nite pre�x of the random-tape. Let us 
larify our formalism by 
asting in it severalsimple examples, whi
h were 
onsidered before (
f. [20, 34℄).Example 2.2 (a random fun
tion): A random fun
tion from n-bit strings to n-bit strings is spe
i�ed by thema
hine M that, on input x 2 f0; 1gn (parameter n and random-tape !), returns the idxn(x)-th n-bit blo
kof !, where idxn(x) is the index of x within the set of n-bit long strings.Example 2.3 (a random permutation): Let N = 2n. A random permutation over f0; 1gn � [N ℄ 
an bespe
i�ed by uniformly sele
ting an integer i 2 [N !℄; that is, the ma
hine uses its random-tape to determinei 2 [N !℄, and uses the i-th permutation a

ording to some standard order. An alternative spe
i�
ation, whi
his easier to state (alas even more ineÆ
ient), is obtained by a ma
hine that repeatedly inspe
t the N next n-bitstrings on its random-tape, until en
ountering a run of N di�erent values, using these as the permutation.Either way, on
e a permutation � over f0; 1gn is determined, the ma
hine answers the input x 2 f0; 1gnwith the output �(x).Example 2.4 (a random permutation 
oupled with its inverse): In 
ontinuation to Example 2.3, we may
onsider a ma
hine that sele
ts � as before, and responds to input (�; x) with �(x) if � = 1 and with ��1(x)otherwise. That is, the obje
t spe
i�ed here provides a

ess to a random permutation as well as to its inverse.
5



2.2 ImplementationsDe�nition 2.1 pla
es no restri
tions on the 
omplexity of the spe
i�
ation. Our aim, however, is to implementsu
h spe
i�
ations eÆ
iently. We 
onsider several types of implementations, where in all 
ases we aimat eÆ
ient implementations (i.e., ma
hines that respond to ea
h possible input within polynomial-time).Spe
i�
ally, we 
onsider two parameters:1. The type of model used in the implementation. We will use either a polynomial-time ora
le ma
hinehaving a

ess to a random ora
le or a standard probabilisti
 polynomial-time ma
hine (viewed as adeterministi
 ma
hine having a

ess to a �nite random-tape).2. The similarity of the implementation to the spe
i�
ation; that is, the implementation may be per-fe
t, statisti
ally indistinguishable or only 
omputationally indistinguishable from the spe
i�
ation (byprobabilisti
 polynomial-time ora
le ma
hines that try to distinguish the implementation from thespe
i�
ation by querying it at inputs of their 
hoi
e).Our real goal is to derive implementations by ordinary ma
hines (having as good a quality as possible).We thus view implementations by ora
le ma
hines having a

ess to a random ora
le merely as a 
leanabstra
tion, whi
h is useful in many 
ases (as indi
ated by Theorem 2.9 below).De�nition 2.5 (implementation by ora
le ma
hines): For a �xed (length) fun
tion ` : N! N, a (deter-ministi
) polynomial-time ora
le ma
hine M and ora
le f , the instan
e implemented by Mf and parametern is the fun
tion Mf de�ned by letting Mf (x) be the output of M on input x 2 f0; 1g`(n) when using theora
le f . The random obje
t implemented by M with parameter n is de�ned as Mf for a uniformly distributedf : f0; 1g� ! f0; 1g.In fa
t, Mf (x) depends only on the value of f on inputs of length bounded by a polynomial in jxj. Similarly,an ordinary probabilisti
 polynomial-time (as in the following de�nition) only uses a poly(jxj)-bit longrandom-tape when invoked on input x. Thus, for feasibility parameter n, the ma
hine handles `(n)-bit longinputs using a random-tape of length �(n) = poly(`(n)) = poly(n), where (w.l.o.g.) � is 1-1.De�nition 2.6 (implementation by ordinary ma
hines): For �xed fun
tions `; � : N ! N, an ordinarypolynomial-time ma
hine M and a string r, the instan
e implemented by M and random-tape r is the fun
tionMr de�ned by letting Mr(x) be the output of M on input x 2 f0; 1g`(��1(jrj)) when using the random-taper. The random obje
t implemented by M with parameter n is de�ned as Mr for a uniformly distributedr 2 f0; 1g�(n).We stress that an instan
e of the implementation is fully determined by the ma
hineM and the random-taper (i.e., we disallow \implementations" that 
onstru
t the obje
t on-the-
y while depending on and keepingtra
k of all previous queries and answers).3For a ma
hine M (either a spe
i�
ation or an implementation) we identify the pair (M;n) with therandom obje
t spe
i�ed (or implemented) by ma
hine M and feasibility parameter n.De�nition 2.7 (indistinguishability of the implementation from the spe
i�
ation): Let S be a spe
i�
ationand I be an implementation, both with respe
t to the length fun
tion ` : N! N. We say that I perfe
tlyimplements S if, for every n, the random obje
t (I; n) is distributed identi
ally to the random obje
t (S; n). Wesay that I 
losely-implements S if, for every ora
le ma
hine M that on input 1n makes at most polynomially-many queries, all of length `(n), the following di�eren
ejPr[M (I;n)(1n) = 1℄ � Pr[M (S;n)(1n) = 1℄j (1)is negligible4 as a fun
tion of n. We say that I pseudo-implements S if the expression in (1) is negligible forevery probabilisti
 polynomial-time ora
le ma
hine M that makes only queries of length equal to `(n).3We mention that su
h \stateful implementations" were 
onsidered in the subsequent work of [7℄.4A fun
tion � : N! [0; 1℄ is 
alled negligible if for every positive polynomial p and all suÆ
iently large n's it holdsthat �(n) < 1=p(n). 6



We stress that the notion of a 
lose-implementation does not say that the obje
ts (i.e., (I; n) and (S; n))are statisti
ally 
lose; it merely says that they 
annot be distinguished by a (
omputationally unbounded)ma
hine that asks polynomially many queries. Indeed, the notion of pseudo-implementation refers to thenotion of 
omputational indistinguishability (
f. [24, 40℄) as applied to fun
tions (see [20℄). Clearly, anyperfe
t implementation is a 
lose-implementation, and any 
lose-implementation is a pseudo-implementation.Intuitively, the ora
le ma
hine M , whi
h is sometimes 
alled a (potential) distinguisher, represents a userthat employs (or experiments with) the implementation. It is required that su
h a user 
annot distinguish theimplementation from the spe
i�
ation, provided that the user is limited in its a

ess to the implementationor even in its 
omputational resour
es (i.e., time).Indeed, it is trivial to perfe
tly implement a random fun
tion (i.e., the spe
i�
ation given in Example 2.2)by using an ora
le ma
hine (with a

ess to a random ora
le). In 
ontrast, the main result of Goldrei
h,Goldwasser and Mi
ali [20℄ 
an be 
ast by saying that there exist a pseudo-implementation of a randomfun
tion by an ordinary ma
hine, provided that pseudorandom generators (or, equivalently, one-way fun
-tion [6, 40, 25℄) do exist. In fa
t, under the same assumption, it is easy to show that every spe
i�
ation havinga pseudo-implementation by an ora
le ma
hine also has a pseudo-implementation by an ordinary ma
hine.A stronger statement will be proven below (see Theorem 2.9).Truthful implementations. An important notion regarding (non-perfe
t) implementations refers tothe question of whether or not they satisfy properties that are enjoyed by the 
orresponding spe
i�
ation.Put in other words, the question is whether ea
h instan
e of the implementation is also an instan
e of thespe
i�
ation. Whenever this 
ondition holds, we 
all the implementation truthful. Indeed, every perfe
timplementation is truthful, but this is not ne
essarily the 
ase for 
lose-implementations. For example, arandom fun
tion is a 
lose-implementation of a random permutation (be
ause it is unlikely to �nd a 
ollisionamong polynomially-many pre-images); however, a random fun
tion is not a truthful implementation of arandom permutation.De�nition 2.8 (truthful implementations): Let S be a spe
i�
ation and I be an implementation. We saythat I is truthful to S if for every n the support of the random obje
t (I; n) is a subset of the support of therandom obje
t (S; n).Mu
h of this work is fo
used on truthful implementations. The following simple result is very useful inthe study of the latter. It asserts that we may fo
us on designing implementations by ora
le ma
hines(having a

ess to a random ora
le), and automati
ally obtain standard implementations (by ordinary prob-abilisti
 polynomial-time ma
hines). We 
omment that this result is typi
ally applied to (truthful) 
lose-implementations by ora
le ma
hines, yielding (truthful) pseudo-implementations by ordinary ma
hines.Theorem 2.9 Suppose that one-way fun
tions exist. Then any spe
i�
ation that has a pseudo-implementationby an ora
le ma
hine (having a

ess to a random ora
le) also has a pseudo-implementation by an ordinaryma
hine. Furthermore, if the former implementation is truthful then so is the latter.The suÆ
ient 
ondition is also ne
essary, be
ause the existen
e of pseudorandom fun
tions (i.e., a pseudo-implementation of a random fun
tion by an ordinary ma
hine) implies the existen
e of one-way fun
tions.In view of Theorem 2.9, whenever we seek truthful implementations (or, alternatively, whenever we do not
are about truthfulness at all), we may fo
us on implementations by ora
le ma
hines.Proof: First we repla
e the random ora
le used by the former implementation by a pseudorandom ora
le(i.e., aby a pseudorandom fun
tion that is available by the results of [20, 25℄). Thus, no probabilisti
polynomial-time distinguisher 
an dete
t the di�eren
e, ex
ept with negligible probability. Furthermore, thesupport of the pseudorandom ora
le is a subset of the support of the random ora
le, and so the truthfulproperty is inherited by the latter implementation. Finally, we use an ordinary ma
hine to emulate theora
le ma
hine that has a

ess to a pseudorandom ora
le; that is, the ordinary ma
hine sele
ts a randomseed for the pseudorandom fun
tion and emulates the 
omputation of the original ora
le ma
hine with the
orresponding ora
le. 7



Almost-Truthful implementations. Truthful implementations guarantee that ea
h instan
e of theimplementation is also an instan
e of the spe
i�
ation (and is thus \
onsistent with the spe
i�
ation").A meaningful relaxation of this guarantee refers to the 
ase that almost all the probability mass of theimplementation is assigned to instan
es that are 
onsistent with the spe
i�
ation (i.e., are in the support ofthe latter). Spe
i�
ally, we refer to the following de�nition.De�nition 2.10 (almost-truthful implementations): Let S be a spe
i�
ation and I be an implementation.We say that I is almost-truthful to S if the probability that (I; n) is not in the support of the random obje
t(S; n) is bounded by a negligible fun
tion in n.Interestingly, almost-truthfulness is not preserved by the 
onstru
tion used in the proof of Theorem 2.9. Infa
t, there exists spe
i�
ations that have almost-truthful 
lose-implementations by ora
le ma
hines but notby ordinary ma
hines (see Theorem 2.11 below). Thus, when studying almost-truthful implementations,one needs to deal dire
tly with ordinary implementations (rather than fo
us on implementations by ora
le-ma
hines). Indeed, we will present a few examples of almost-truthful implementations that are not truthful.Theorem 2.11 There exists a spe
i�
ation that has an almost-truthful 
lose-implementation by an ora
lema
hine but has no almost-truthful implementation by an ordinary ma
hine.We stress that the theorem holds regardless of whether or not the latter (almost-truthful) implementationis indistinguishable from the spe
i�
ation.Proof: Consider the spe
i�
ation of a uniformly sele
ted fun
tion f : f0; 1gn ! f0; 1g having (time-modi�ed) Kolmogorov Complexity [32, Def. 7.5.1℄5 greater than 2n�1. That is, the spe
i�
ation ma
hines
ans its random-tape, looking for a blo
k of 2n bits of (time-modi�ed) Kolmogorov Complexity greaterthan 2n�1, and on
e found uses this blo
k as a truth-table of the desired Boolean fun
tion. Sin
e all buta negligible fra
tion of the fun
tions have Kolmogorov Complexity greater than 2n�1, an almost-truthful
lose-implementation by an ora
le ma
hine may just use a random fun
tion. On the other hand, anyimplementation by an ordinary ma
hine (of randomness 
omplexity �) indu
es a fun
tion f : f0; 1gn ! f0; 1gof (time-modi�ed) Kolmogorov Complexity at most (O(1) + �(n)) + log2(poly(n) � 2n) = poly(n). Thus, anysu
h implementation yields a fun
tion that violates the spe
i�
ation, and so 
annot even be \remotely"truthful.2.3 Known non-trivial implementationsIn view of Theorem 2.9, when studying truthful implementations, we fo
us on implementations by ora
lema
hines. In these 
ases, we shorthand the phrase implementation by an ora
le ma
hine by the termimplementation. Using the notion of truthfulness, we 
an 
ast the non-trivial implementation of a randompermutation provided by Luby and Ra
ko� [34℄ as follows.Theorem 2.12 [34℄: There exists a truthful 
lose-implementation of the spe
i�
ation provided in Exam-ple 2.3. That is, there exists a truthful 
lose-implementation of the spe
i�
ation that uniformly sele
ts apermutation � over f0; 1gn and responses to the query x 2 f0; 1gn with the value �(x).Re
all that Example 2.3 has a trivial 
lose-implementation by a random fun
tion, but this trivial imple-mentation is not truthful. The point of Theorem 2.12 is that it provides a truthful 
lose-implementationof the spe
i�
ation provided in Example 2.3. On the other hand, even when ignoring the issue of truthful-ness, it is non-trivial to provide a 
lose-implementation of Example 2.4 (i.e., a random permutation alongwith its inverse).6 However, Luby and Ra
ko� [34℄ have also provided a truthful 
lose-implementation ofExample 2.4.5Loosely speaking, the (standard) Kolmogorov Complexity of a string s is the minimum length of a program �that produ
e s. The time-modi�ed Kolmogorov Complexity of a string s is the minimum, taken over programs �that produ
e s, of j�j + log2(time(�)), where time(�) is the running-time of �. We use time-modi�ed KolmogorovComplexity in order to allow for a re
ursive spe
i�
ation.6A random fun
tion will fail here, be
ause the distinguisher may distinguish it from a random permutation byasking for the inverse of a random image. 8



Theorem 2.13 [34℄: There exists a truthful 
lose-implementation of the spe
i�
ation that uniformly sele
tsa permutation � over f0; 1gn and responses to the query (�; x) 2 f�1;+1g� f0; 1gn with the value ��(x).Another known result that has the 
avor of the questions that we explore was obtained by Naor andReingold [38℄. Loosely speaking, they provided a truthful 
lose-implementation of a permutation sele
teduniformly among all permutations having a 
ertain 
y
le-stru
ture.Theorem 2.14 [38℄: For any N = 2n, t = poly(n), and C = f(
i;mi) : i = 1; :::; tg su
h that Pti=1mi
i =N , there exists a truthful 
lose-implementation of a uniformly distributed permutation that has mi 
y
lesof size 
i, for i = 1; :::; t.7 Furthermore, the implementation instan
e that uses the permutation � 
an alsosupport queries of the form (x; j) to be answered by �j(x), for any x 2 f0; 1gn and any integer j (whi
h ispresented in binary).We stress that the latter queries are served in poly(n)-time also in the 
ase that j � poly(n).2.4 A few general observationsTheorem 2.11 asserts the existen
e of spe
i�
ations that 
annot be implemented in an almost-truthful mannerby an ordinary ma
hine, regardless of the level of indistinguishability (of the implementation from thespe
i�
ation). We 
an get negative results that refer also to implementations by ora
le ma
hines, regardlessof truthfulness, by requiring the implementation to be suÆ
iently indistinguishable (from the spe
i�
ation).Spe
i�
ally:Proposition 2.15 The following refers to implementations by ora
le ma
hines and disregard the issue oftruthfulness.1. There exist spe
i�
ations that 
annot be 
losely-implemented.2. Assuming the existen
e of one-way fun
tions, there exist spe
i�
ations that 
annot be pseudo-implemented.The hypothesis in Part 2 
an be relaxed: It suÆ
es to assume the existen
e of NP-sets for whi
h it is feasibleto generate hard instan
es. For details see Appendix D.Proof: Starting with Part 2, we note that the spe
i�
ation may be a deterministi
 pro
ess that invert aone-way fun
tion f (as in the hypothesis) at images of the user's 
hoi
e (i.e., the query x is answered bythe lexi
ographi
ally �rst element in f�1(x)). Certainly, this spe
i�
ation 
annot be pseudo-implemented,be
ause su
h an implementation would yield an algorithm that violates the hypothesis (of Part 2).8 Wemay easily adapt this example su
h that the spe
i�
ation gives rise to a random obje
t. For example, thespe
i�
ation may require that, given a pair of strings, one should use a random fun
tion to sele
t one of thesetwo strings, and answer with this string's inverse under the one-way fun
tion. A pseudo-implementation ofthis spe
i�
ation 
an also be shown to 
ontradi
t the hypothesis. This establishes Part 2.Turning to Part 1, we 
onsider any �xed a fun
tion f that is 
omputable in exponential-time but 
annotbe inverted, ex
ept for with negligible probability, by any polynomial-time ma
hine that uses a randomora
le. Su
h a fun
tion 
an be shown to exist by using a 
ounting argument. The spe
i�
ation determinessu
h a fun
tion, and inverts it at inputs of the user's 
hoi
e. Observe that a 
lose-implementation of su
ha fun
tion is required to su

essfully invert the fun
tion at random images, whi
h is impossible (ex
eptfor negligible probability, be
ause the implementation is a polynomial-time ma
hine (whi
h uses a randomora
le)).7Spe
ial 
ases in
lude involutions (i.e., permutations in whi
h all 
y
les have length 2), and permutations 
onsistingof a single 
y
le (of length N). These 
ases are 
ast by C = f(2; N=2)g and C = f(N; 1)g, respe
tively. Note that thisdes
ription presumes that C is �xed, whi
h may be the 
ase only when N = 2n is �xed. Thus, a proper formulationshould either postulate that C = C(N) is eÆ
iently 
omputable from N , or seek a \universal" obje
t that answersqueries in whi
h C is given as part of the query.8Consider the performan
e of the spe
i�
ation (resp., implementation) when queried on a randomly generatedimage, and note that the 
orre
tness of the answer 
an be eÆ
iently veri�ed. Thus, sin
e the spe
i�
ation alwaysinverts f on the given image, a pseudo-implementation must do the same (ex
ept with negligible probability), yieldinga probabilisti
 polynomial-time algorithm that inverts f . 9



The randomness 
omplexity of implementations: Looking at the proof of Theorem 2.9, itis evident that as far as pseudo-implementations by ordinary ma
hines are 
on
erned (and assuming theexisten
e of one-way fun
tions), randomness 
an be redu
ed to any power of the feasibility parameter (i.e., ton� for every � > 0). The same holds with respe
t to truthful pseudo-implementations. On the other hand, theproof of Theorem 2.11 suggests that this 
ollapse in the randomness 
omplexity 
annot o

ur with respe
tto almost-truthful implementations by ordinary ma
hines (regardless of the level of indistinguishability ofthe implementation from the spe
i�
ation).Theorem 2.16 (a randomness hierar
hy): For every polynomial �, there exists a spe
i�
ation that has analmost-truthful 
lose-implementation by an ordinary ma
hine that uses a random-tape of length �(n), but hasno almost-truthful implementation by an ordinary ma
hine that uses a random-tape of length �(n)�!(logn).Proof: Let g(n) = !(logn). Consider the spe
i�
ation that sele
ts uniformly a string r 2 f0; 1g�(n) of(time-modi�ed) Kolmogorov Complexity at least �(n) � g(n), and responds to the query i 2 [2n℄ with the(1 + (i mod �(n)))-th bit of r. Sin
e all but an exp(�g(n)) = n�!(1) fra
tion of the �(n)-bit long stringshave su
h 
omplexity, this spe
i�
ation is 
losely-implemented in an almost-truthful manner by a ma
hinethat uniformly sele
ts r 2 f0; 1g�(n) (and responds as the spe
i�
ation). However, any implementation thatuses a random-tape of length �0, yields a fun
tion that assigns the �rst �(n) arguments values that yield a�(n)-bit long string of (time-modi�ed) Kolmogorov Complexity at most (O(1) + �0(n)) + log2(poly(n)) =�0(n) + O(logn). Thus, for �0(n) = �(n) � 2g(n), the implementation 
annot even be \remotely" truthful.Composing implementations: A simple observation that is used in our work is that one 
an \
omposeimplementations". That is, if we implement a random obje
t R1 by an ora
le ma
hine that uses ora
le 
allsto a random obje
t R2, whi
h in turn has an implementation by a ma
hine of type T, then we a
tually obtainan implementation of R1 by a ma
hine of type T. To state this result, we need to extend De�nition 2.5 su
hthat it applies to ora
le ma
hines that use (or rather have a

ess to) arbitrary spe
i�
ations (rather than arandom ora
le). Let us denote by (M (S;n); n) an implementation by the ora
le ma
hine M (and feasibilityparameter n) with ora
le a

ess to the spe
i�
ation (S; n), where we assume for simpli
ity that S uses thesame feasibility parameter as M .Theorem 2.17 Let Q 2 fperfe
t; 
lose; pseudog. Suppose that the spe
i�
ation (S1; n) 
an be Q-implementedby (M (S2;n); n) and that (S2; n) has a Q-implementation by an ordinary ma
hine (resp., by an ora
le ma
hinewith a random ora
le). Then, (S1; n) has a Q-implementation by an ordinary ma
hine (resp., by an ora
lema
hine with a random ora
le). Furthermore, if both the implementations in the hypothesis are truthful(resp., almost-truthful) then so is the implementation in the 
on
lusion.Proof: The idea is to simply repla
e (S2; n) by its implementation, denoted (I2; n), and thus obtain animplementation (M (I2;n); n) of (S1; n). Next, by 
ombining the ma
hines M and I2, we obtain a ma
hineI of the same type as the type of ma
hine I2, and it holds that (I; n) yields a random obje
t that isdistributed identi
ally to (M (I2;n); n). Thus, we obtain an implementation (I; n) of (S1; n), Indeed, (I; n)inherits the truthfulness (resp., almost-truthfulness) of the two given implementations (i.e., M (S2;�) and I2).Similarly, the analysis of the \quality" of the implementation (I; n) relies on the \quality" of the two givenimplementations. Details follow.If both M (I2;�) and I2 are perfe
t implementation of S1 and S2 respe
tively, then I is a perfe
t im-plementation of S1. If the former are only 
lose-implementations, then using the hypothesis that M ispolynomial-time it follows that M only makes polynomially many queries to its ora
le and thus invokingMa polynomial number of times results in a polynomial number of queries to its ora
le. Using the se
ond hy-pothesis (i.e., the \quality" of I2), it follows that M (I2;n) and M (S2;n) are indistinguishable by polynomiallymany queries. Using the �rst hypothesis (i.e., the \quality" of M (S2;n)), it follows that (I; n) � (M (I2;n); n)is a 
lose-implementation of (S1; n).Lastly, let us spell out the argument for the 
ase of pseudo-implementations, while using the term
omputationally-indistinguishable as shorthand for indistinguishable by probabilisti
 polynomial-time ora
le10



ma
hines. The �rst hypothesis asserts that (M (S2;n); n) and (S1; n) are 
omputationally-indistinguishable,and the se
ond hypothesis asserts that (I2; n) and (S2; n) are 
omputationally-indistinguishable. Our goal isto prove that (M (I2;n); n) and (S1; n) are 
omputationally-indistinguishable, whi
h (by the �rst hypothesis)redu
es to proving that (M (I2;n); n) and (M (S2;n); n) are 
omputationally-indistinguishable. Now suppose,towards the 
ontradi
tion, that some a probabilisti
 polynomial-time ma
hine D distinguishes (M (I2;n); n)from (M (S2;n); n). Then, 
ombining D and M , we obtain a ma
hine that distinguishes (I2; n) from (S2; n),whi
h 
ontradi
ts the se
ond hypothesis. The key point is that the fa
t that M is probabilisti
 polynomial-time (be
ause it is an implementation ma
hine), and so the 
ombined distinguisher is also probabilisti
polynomial-time (provided that so is D).2.5 Obje
ts of feasible sizeIn 
ontrast to the rest of this work, in the 
urrent subse
tion we (shortly) dis
uss the 
omplexity of generatingrandom obje
ts of feasible size (rather than huge random obje
ts). In other words, we are talking aboutimplementing a distribution on poly(n)-bit long strings, and doing so in poly(n)-time. This problem 
anbe 
ast in our general formulation by 
onsidering spe
i�
ations that ignore their input (i.e., have outputthat only depend on their random-tape). In other words, we may view obje
ts of feasible size as 
onstantfun
tions, and 
onsider a spe
i�
ation of su
h random obje
ts as a distribution on 
onstant fun
tions. Thus,without loss of generality, the implementation may also ignore its input, and 
onsequently in this 
ase thereis no di�eren
e between an implementation by ordinary ma
hine and an implementation by ora
le ma
hinewith a random ora
le.We note that perfe
t implementations of su
h distributions were 
onsidered before (e.g., in [1, 5, 17℄),and distributions for whi
h su
h implementations exist are 
alled sampleable. In the 
urrent 
ontext, wherethe observer sees the entire obje
t, the distin
tion between perfe
t implementation and 
lose-implementationseems quite te
hni
al. What seems fundamentally di�erent is the study of pseudo-implementations.Theorem 2.18 There exist spe
i�
ations of feasible-sized obje
ts that have no 
lose-implementation, but dohave (both truthful and non-truthful) pseudo-implementations.Proof: Any evasive pseudorandom distribution (
f. [21℄) yields su
h a spe
i�
ation. Re
all that a distributionis 
alled evasive if it is infeasible to generate an element in its support (ex
ept with negligible probability),and is 
alled pseudorandom if it is 
omputationally indistinguishable from a uniform distribution on strings ofthe same length. It is known that evasive pseudorandom distributions do exist [21℄. Note that, by de�nition,an evasive distribution has no 
lose-implementation. On the other hand, any pseudorandom distribution 
anbe pseudo-implemented by the uniform distribution (or any other pseudorandom distribution). Indeed, thelatter implementation is not even almost-truthful with respe
t to the evasive pseudorandom distribution,be
ause even a \remotely-truthful" implementation would violate the evasiveness 
ondition. To allow alsothe presentation of a truthful implementation, we modify the spe
i�
ation su
h that with exponentially-smallprobability it produ
es some sampleable pseudorandom distribution, and otherwise it produ
es the evasivepseudorandom distribution. The desired truthful pseudo-implementation will always produ
e the formerdistribution (i.e., the sampleable pseudorandom distribution), and still the 
ombined distribution has no
lose-implementation.The proof of Theorem 2.18 (or rather the existen
e of evasive distributions) also establishes the existen
eof spe
i�
ations (of feasible-sized obje
ts) that have no truthful (and even no almost-truthful) implementa-tion, regardless of the level of indistinguishability from the spe
i�
ation. Turning the table around, we askwhether there exist spe
i�
ations of feasible-sized obje
ts that have no pseudo-implementations, regardlessof the truthfulness 
ondition. A partial answer is provided by the following result, whi
h relies on a non-standard assumption. Spe
i�
ally, we assume the existen
e of a 
ollision-resistant hash fun
tion; that is, alength-de
reasing fun
tion h : f0; 1g� ! f0; 1g� su
h that it is infeasible to form 
ollisions under h (i.e., it isinfeasible to �nd suÆ
iently long strings x 6= y su
h that f(x) = f(y)).99We stress that the assumption used here (i.e., the existen
e of a single 
ollision-resistant hash fun
tion) seemssigni�
antly stronger than the standard assumption that refers to the existen
e of an ensemble of 
ollision-resistantfun
tions (
f. [12℄ and [19, Def. 6.2.5℄). 11



Proposition 2.19 Assuming the existen
e of a 
ollision-resistant hash fun
tion, there exists a spe
i�
ationof a random feasible-sized obje
t that has no pseudo-implementation.Proof: The hypothesis implies the existen
e of a 
ollision-resistant hash fun
tion h that shrinks its argumentby exa
tly one bit (i.e., jh(x)j = jxj � 1).10 Referring to this fun
tion h, 
onsider the non-empty set Sn def=f(x; y)2f0; 1gn+n : h(x)=h(y)g, and note that membership in [n2NSn is easy to de
ide, while [n2NSn isevasive. Consider the spe
i�
ation that 
onsists of the uniform distribution over the set Sn, and note thatthis spe
i�
ation 
annot be pseudo-implemented, be
ause the likely event in whi
h the implementation failsto hit Sn is easily dete
table.Open Problem 2.20 (stronger versions of Proposition 2.19): Provide a spe
i�
ation of a random feasible-sized obje
t that has no pseudo-implementation, while relying on some standard intra
tability assumption.Let us digress and 
onsider 
lose-implementations. For example, we note that Ba
h's elegant algorithm forgenerating random 
omposite numbers along with their fa
torization [4℄ 
an be 
ast as a 
lose-implementationof the said distribution.11 We stress the highly non-trivial nature of the foregoing implementation (whilere
alling that it seems infeasible to �nd the fa
torization of a uniformly distributed 
omposite number). Amore elementary set of examples refers to the generation of integers (out of a huge domain) a

ording tovarious \ni
e" distributions (e.g., the binomial distribution of N trials).12 In fa
t, Knuth [29, Se
. 3.4.1℄
onsiders the generation of several su
h distributions, and his treatment (of integer-valued distributions)
an be easily adapted to �t our formalism. This dire
tion is further pursued in Appendix A. In general,re
all that in the 
urrent 
ontext (where the observer sees the entire obje
t), a 
lose-implementation mustbe statisti
ally 
lose to the spe
i�
ation. Thus, almost-truthfulness follows \for free":Proposition 2.21 Any 
lose-implementation of a spe
i�
ation of a feasible-sized obje
t is almost-truthfulto it.Multiple samples. Our general formulation 
an be used to spe
ify an obje
t that whenever invokedreturns an independently drawn sample from the same distribution. Spe
i�
ally, the spe
i�
ation may be bya ma
hine that answers ea
h \sample-query" by using a distin
t portion of its random-tape (as 
oins usedto sample from the basi
 distribution). Using a pseudorandom fun
tion, we may pseudo-implement multiplesamples from any distribution for whi
h one 
an pseudo-implement a single sample. That is:Proposition 2.22 Suppose that one-way fun
tions exist, and let D = fDng be a probability ensemble su
hthat ea
h Dn ranges over poly(n)-bit long strings. If D 
an be pseudo-implemented then so 
an the spe
i-�
ation that answers ea
h query by an independently sele
ted sample of D. Furthermore, the latter imple-mentation is by an ordinary ma
hine and is truthful provided that the former implementation is truthful.Proof: Consider �rst an implementation by an ora
le ma
hine that merely uses the random fun
tion toassign ea
h query a random-tape to be used by the pseudo-implementation of (the single sample of thedistribution) D. Sin
e truthfulness and 
omputational-indistinguishability are preserved by multiple (inde-pendent) samples (
f. [18, Se
. 3.2.3℄ for the latter), we are done as far as implementations by ora
le ma
hinesare 
on
erned. Using Theorem 2.9, the proposition follows.10Given an arbitrary fun
tion h0 as in the hypothesis, 
onsider the fun
tion h00 de�ned by h00(x) = h0(h0(x)). Then,h00 is 
ollision-resistant and jh00(x)j � jxj � 2. Now, 
onsider the fun
tion h de�ned by h(x) = h00(x)01jxj�jh00(x)j�2,and note that jh(x)j = jxj � 1 while h is also 
ollision-resistant.11We mention that Ba
h's motivation was to generate prime numbers P along with the fa
torization of P � 1,in order to allow eÆ
ient testing of whether a given number is a primitive element modulo P . Thus, one may saythat Ba
h's paper provides a 
lose-implementation (by an ordinary probabilisti
 polynomial-time ma
hine) of thespe
i�
ation that sele
ts at random an n-bit long prime P and answers the query g by 1 if and only if g is a primitiveelement modulo P . Note that the latter spe
i�
ation refers to a huge random obje
t.12That is, for a huge N = 2n, we want to generate i with probability pi def= �Ni �=2N . Note i 2 f0; 1; :::Ng hasfeasible size, and yet the problem is not trivial (be
ause we 
annot a�ord to 
ompute all pi's).12



3 Our Main ResultsWe obtain several new implementations of random obje
ts. All our implementations are either truthful oralmost-truthful with respe
t to the 
orresponding spe
i�
ations. We present the 
orresponding results intwo 
ategories referring to whether they yield truthful or only almost-truthful implementations.3.1 Truthful ImplementationsAll implementations stated in this se
tion are by (polynomial-time) ora
le ma
hines (whi
h use a randomora
le). Corresponding pseudo-implementations by ordinary (probabilisti
 polynomial-time) ma
hines 
anbe derived using Theorem 2.9. Namely, assuming the existen
e of one-way fun
tions, ea
h of the spe
i�
ations
onsidered below 
an be pseudo-implemented in a truthful manner by an ordinary probabilisti
 polynomial-time ma
hine.The basi
 te
hnique underlying the following implementations is the embedding of additional stru
turethat enables to eÆ
iently answer the desired queries in a 
onsistent way or to for
e a desired property.That is, this additional stru
ture ensures truthfulness (with respe
t to the spe
i�
ation). The additionalstru
ture may 
ause the implementation to have a distribution that di�ers from that of the spe
i�
ation, butthis di�eren
e is infeasible to dete
t (via the polynomially-many queries). In fa
t, the additional stru
ture istypi
ally randomized in order to make it undete
table, but ea
h possible 
hoi
e of 
oins for this randomizationyields a \valid" stru
ture (whi
h in turn ensures truthfulness rather than only almost-truthfulness).3.1.1 Supporting 
omplex queries regarding Boolean fun
tionsAs mentioned above, a random Boolean fun
tion is trivially implemented (in a perfe
t way) by an ora
lema
hine. By this we mean that the spe
i�
ation and the implementationmerely serve the standard evaluationqueries that refer to the values of a random fun
tion at various positions (i.e., query x is answered by thevalue of the fun
tion at x). Here we 
onsider spe
i�
ations that supports more powerful queries.Example 3.1 (answering some parity queries regarding a random fun
tion): Suppose that, for a randomfun
tion f : [2n℄! f0; 1g, we wish to be able to provide the parity of the values of f on any desired intervalof [2n℄. That is, we 
onsider a spe
i�
ation de�ned by the ma
hine that, on input (i; j) where 1 � i � j � 2n,replies with the parity of the bits residing in lo
ations i through j of its random-tape. (Indeed, this spe
i�
ationrefers to the length fun
tion `(n) = 2n.)Clearly, the implementation 
annot a�ord to 
ompute the parity of the 
orresponding values in its randomora
le. Still, in Se
tion 5 we present a perfe
t implementation of Example 3.1, as well as truthful 
lose-implementations of more general types of random obje
ts (i.e., answering any symmetri
 \interval" query).Spe
i�
ally, we prove:Theorem 3.2 (see Theorem 5.2)13: For every polynomial-time 
omputable fun
tion g, there exists a truthful
lose-implementation of the following spe
i�
ation of a random obje
t. The spe
i�
ation ma
hine uses itsrandom-tape to de�ne a random fun
tion f : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n byg(P��s�� f(s)).3.1.2 Supporting 
omplex queries regarding length-preserving fun
tionsIn Se
tion 9 we 
onsider spe
i�
ations that, in addition to the standard evaluation queries, answer addi-tional queries regarding a random length-preserving fun
tion. Su
h obje
ts have potential appli
ations in
omputational number theory, 
ryptography, and the analysis of algorithms (
f. [15℄). Spe
i�
ally, we prove:13We mention that a related result was dis
overed before us by Naor and Reingold; see dis
ussion at the end ofSe
tion 5. We also mention that, indeed, the 
urrent formulation of Theorem 5.2 follows from the spe
ial 
ase inwhi
h g is the identity fun
tion. 13



Theorem 3.3 (see Theorem 9.2)14: There exists a truthful 
lose-implementation of the following spe
i�
a-tion. The spe
ifying ma
hine, uniformly sele
ts a fun
tion f : f0; 1gn ! f0; 1gn, and, in addition to thestandard evaluation queries, answers the inverse-query y 2 f0; 1gn with the set f�1(y).Alternatively, the implementation may answer with a uniformly distributed preimage of y under f (and witha spe
ial symbol in 
ase no su
h preimage exists). A di�erent type of queries is supported by the followingimplementation.Theorem 3.4 (see Theorem 9.1): There exists a truthful 
lose-implementation of the following spe
i�
ation.The spe
ifying ma
hine, uniformly sele
ts a fun
tion f : f0; 1gn ! f0; 1gn, and answers the query (x;m),where x 2 f0; 1gn and m 2 [2poly(n)℄, with the value fm(x) (i.e., f iterated m times on x).This result is related to questions studied in [38, 39℄; for more details, see Se
tion 9.3.1.3 Random graphs of various typesRandom graphs have been extensively studied (
f. [8℄), and in parti
ular are known to have various properties.But does it mean that we 
an provide truthful 
lose-implementations of uniformly distributed (huge) graphshaving any of these properties?Let us �rst 
onsider a spe
i�
ation for a random N -vertex graph, where N = 2n. Indeed, su
h arandom graph 
an be spe
i�ed by the ma
hine, whi
h viewing its random-tape ! as an N -by-N matrix(i.e., ! = (!i;j)i;j2[N ℄), answers the input (i; j) 2 [N ℄ � [N ℄ with the value !i;j if i < j, with the value!j;i if i > j. and with the value 0 otherwise (i.e., if i = j). Needless to say, this spe
i�
ation 
an beperfe
tly implemented (by a ma
hine that uses its random ora
le in an analogous manner). But how aboutimplementing a uniformly distributed graph that has various properties?Example 3.5 (uniformly distributed 
onne
ted graphs): Suppose that we want to implement a uniformlydistributed 
onne
ted graph (i.e., a graph uniformly sele
ted among all 
onne
ted N-vertex graph). Anadequate spe
i�
ation may s
an its random-tape, 
onsidering ea
h N2-bit long portion of it as a des
riptionof a graph, and answer adja
en
y-queries a

ording to the �rst portion that yields a 
onne
ted graph. Notethat the spe
i�
ation works in time 
(N2), whereas an implementation needs to work in poly(logN)-time. Onthe other hand, re
all that a random graph is 
onne
ted with overwhelmingly high probability. This suggeststo implement a random 
onne
ted graph by a random graph. Indeed, this yields a 
lose-implementation,but not a truthful one (be
ause o

asionally, yet quite rarely, the implementation will yield an un
onne
tedgraph).15In Se
tion 6 we present truthful 
lose-implementations of Example 3.5 as well as of other (spe
i�
ations of)uniformly distributed graphs having various additional properties. These are all spe
ial 
ases of the followinggeneral result:Theorem 3.6 (see Theorem 6.2): Let � be a monotone graph property that is satis�ed by a family ofstrongly-
onstru
tible sparse graphs. That is, for some negligible fun
tion � (and every N), there exists aperfe
t implementation of a (single) N-vertex graph with �(logN) �N2 edges that satis�es property �. Then,there exists a truthful 
lose-implementation of a uniformly distributed graph that satis�es property �.We stress that Theorem 6.2 applies also to properties that are not satis�ed (with high probability) by arandom graph (e.g., having a 
lique of size pN). The proof of Theorem 6.2 relies on the following lemma,whi
h may be of independent interest. Loosely speaking, the lemma asserts that if a monotone graphproperty � is satis�ed by some sparse graphs then a uniformly distributed graph having property � isindistinguishable from a truly random graph.14Note that in the spe
i�
ation it may happen (with negligible probability) that jf�1(y)j > poly(jyj), but this willnever happen in the implementation.15Note that failing to obtain a truthful implementation (by an ora
le ma
hine) does not allow us to derive (viaTheorem 2.9) even an almost-truthful pseudo-implementation by an ordinary ma
hine.14



Lemma 3.7 (see Lemma 6.3): Let � be a monotone graph property that is satis�ed by some N-vertexgraph having � � �N2 � edges. Then, any ma
hine that makes at most q adja
en
y queries to a graph, 
annotdistinguish a random N-vertex graph from a uniformly distributed N-vertex graph that satis�es �, ex
eptthan with probability O(q � p�) + q �N�(1�o(1)).3.1.4 Supporting 
omplex queries regarding random graphsSuppose that we want to implement a random N -vertex graph along with supporting, in addition to thestandard adja
en
y queries, also some 
omplex queries that are hard to answer by only making adja
en
yqueries. For example suppose that on query a vertex v, we need to provide a 
lique of size log2N 
ontainingv. In Se
tion 7 we present a truthful 
lose-implementations of this spe
i�
ation:Theorem 3.8 (see Theorem 7.2): There exists a truthful 
lose-implementation of the following spe
i�
ation.The spe
ifying ma
hine sele
ts uniformly an N-vertex graph and, in addition to the standard adja
en
yqueries, answers (Log-Clique) queries of the form v by providing a random dlog2Ne-vertex 
lique that 
ontainsv (and a spe
ial symbol if no su
h 
lique exists).Another result of a similar 
avor refers to implementing a random graph while supporting additional queriesthat refer to a random Hamiltonian 
y
le in that graph.Theorem 3.9 (see Theorem 7.3): There exists a truthful 
lose-implementation of the following spe
i�
ation.The spe
ifying ma
hine sele
ts uniformly an N-vertex graph G, and in 
ase G is Hamiltonian it uniformlysele
ts a (dire
ted) Hamiltonian 
y
le in G, whi
h in turn de�nes a 
y
li
 permutation � : [N ℄! [N ℄. Inaddition to the standard adja
en
y queries, the spe
i�
ation answers travel queries of the form (trav; v; t)by providing �t(v), and distan
e queries of the form (dist; v; w) by providing the smallest t � 0 su
h thatw = �t(v).3.1.5 Random bounded-degree graphs of various typesRandom bounded-degree graphs have also re
eived 
onsiderable attention. In Se
tion 8 we present truth-ful 
lose-implementations of random bounded-degree graphs G = ([N ℄; E), where the ma
hine spe
ifyingthe graph answers the query v 2 [N ℄ with the list of neighbors of vertex v. We stress that even imple-menting this spe
i�
ation is non-trivial if one insists on truthfully implementing simple random bounded-degree graphs (rather than graphs with self-loops and/or parallel edges). Furthermore, we present truthful
lose-implementations of random bounded-degree graphs having additional properties su
h as 
onne
tivity,Hamiltoni
ity, having logarithmi
 girth, et
. All these are spe
ial 
ases of the following result:Theorem 3.10 (see Theorem 8.4:) Let d > 2 be �xed and � be a graph property that satis�es the followingtwo 
onditions:1. The probability that Property � is not satis�ed by a uniformly 
hosen d-regular N-vertex graph isnegligible in logN .2. Property � is satis�ed by a family of strongly-
onstru
tible d-regular N-vertex graphs having girth!(log logN).Then, there exists a truthful 
lose-implementation of a uniformly distributed d-regular N-vertex graph thatsatis�es property �.The proof relies on the following lemma, whi
h may be of independent interest. Loosely speaking, the lemmaasserts that a random isomorphi
 
opy of a �xed d-regular graph of large girth is indistinguishable from atruly random d-regular graph.Lemma 3.11 (see Lemma 8.1): For d > 2, let G = ([N ℄; E) be any d-regular N-vertex graph having girthg. Let G0 be obtained by randomly permuting the verti
es of G (and presenting the in
iden
e lists in some
anoni
al order). Then, any ma
hine M that queries the graph for the neighborhoods of q verti
es of its
hoi
e, 
annot distinguish G0 from a random d-regular N-vertex (simple) graph, ex
ept than with probabilityO(q2=(d�1)(g�1)=2). In the 
ase that d = 2 and q < g�1, the probability bound 
an be improved to O(q2=N).15



3.2 Almost-Truthful ImplementationsAll implementations stated in this se
tion are by ordinary (probabilisti
 polynomial-time) ma
hines. Allthese results assume the existen
e of one-way fun
tions.Again, the basi
 te
hnique is to embed a desirable stru
ture, but (in 
ontrast to Se
tion 3.1) here theembedded stru
ture for
es the desired property only with very high probability. Consequently, the resultingimplementation is only almost-truthful, whi
h is the reason that we have to dire
tly present implementationsby ordinary ma
hines.A spe
i�
 te
hnique that we use is obtaining a fun
tion by taking a value-by-value 
ombination of apseudorandom fun
tion and a fun
tion of a desired 
ombinatorial stru
ture. The 
ombination is done su
hthat the 
ombined fun
tion inherits both the pseudorandomness of the �rst fun
tion and the 
ombinatorialstru
ture of the se
ond fun
tion (in analogy to a 
onstru
tion in [26℄). In some 
ases, the 
ombination is bya value-by-value XOR, but in others it is by a value-by-value OR with a se
ond fun
tion that is very sparse.3.2.1 Random 
odes of large distan
eIn 
ontinuation to the dis
ussion in the introdu
tion, we prove:Theorem 3.12 (see Theorem 4.2): For Æ = 1=6 and � = 1=9, assuming the existen
e of one-way fun
tions,there exists an almost-truthful pseudo-implementation of the following spe
i�
ation: The spe
i�
ation ma-
hine uses its random-tape to uniformly sele
t a 
ode C � f0; 1gn having 
ardinality K def= 2�n and distan
eat least Æn, and answers the query i 2 [K℄ with the i-th element in C.We 
omment that the above des
ription a
tually spe
i�es (and implements) an en
oding algorithm forthe 
orresponding 
ode. It would be very interesting if one 
an also implement a 
orresponding de
odingalgorithm; see further dis
ussion in Se
tion 4.3.2.2 Random graphs of various typesHaving failed to provide truthful pseudo-implementations to the following spe
i�
ations, we provide almost-truthful ones.Theorem 3.13 (see Theorem 6.6): Let 
(N) = (2�o(1)) log2N be the largest integer i su
h that the expe
tednumber of 
liques of size i in a random N-vertex graph is larger than one. Assuming the existen
e of one-wayfun
tions, there exist almost-truthful pseudo-implementations of the following spe
i�
ations:1. A random graph of Max-Clique 
(N)�1: The spe
i�
ation uniformly sele
ts an N-vertex graph havingmaximum 
lique size 
(N)� 1, and answers edge-queries a

ordingly.2. A random graph of Chromati
 Number (1� o(1)) �N=
(N): The spe
i�
ation uniformly sele
ts an N-vertex graph having Chromati
 Number (1�log�1=32 N)�N=
(N), and answers edge-queries a

ordingly.We mention that Theorem 6.7 provides an almost-truthful pseudo-implementation of a spe
i�
ation thatrefers to a uniformly distributed graph that satis�es both the aforementioned properties as well as severalother famous properties that are satis�ed (w.h.p.) by random graphs. Thus, this implementation not onlylooks as a random graph but rather satis�es all these properties of a random graph (although determiningwhether a huge graph satis�es any of these properties is infeasible).One property of random graphs that was left out of Theorem 6.7 is having high (global) 
onne
tivityproperty. That is, we seek an almost-truthful pseudo-implementation of a uniformly distributed graph havinga high global 
onne
tivity property (i.e., ea
h pair of verti
es is 
onne
ted by many vertex-disjoint paths).Failing to provide su
h an implementation, we provide instead an almost-truthful pseudo-implementation ofa random graph for whi
h almost all pairs of verti
es enjoy a high 
onne
tivity property.
16



Theorem 3.14 (see Theorem 6.8): For every positive polynomial p, assuming the existen
e of one-wayfun
tions, there exists an almost-truthful pseudo-implementation of the following spe
i�
ation. The spe
ifyingma
hine sele
ts a graph that is uniformly distributed among all N-vertex graphs for whi
h all but at mostan �(N) def= 1=p(log2N) fra
tion of the vertex pairs are 
onne
ted by at least (1� �(N)) �N=2 vertex-disjointpaths. Edge-queries are answered a

ordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation is indepen-dent of p, whi
h is only used for de�ning the spe
i�
ation. We note that a subsequent work by Alon and Nuss-boim [3℄ provides the implementation we failed to a
hieve (i.e., an almost-truthful pseudo-implementationof a uniformly distributed graph having a high global 
onne
tivity property).4 Implementing Random Codes of Large Distan
eFor suÆ
iently small �; Æ > 0, we 
onsider 
odes having relative rate � and relative distan
e Æ; that is,we 
onsider subsets C � f0; 1gn su
h that jCj = 2�n and every two distin
t 
odewords (i.e., �; � 2 C)disagree on at least Æn 
oordinates. Su
h a 
ode is 
alled good. A random set of K def= 2�n strings of lengthn is good with overwhelmingly high probability. Thus, for a random fun
tion f : [K℄ ! f0; 1gn, settingC = ff(i) : i 2 [K℄g yields an almost-truthful 
lose-implementation of a random 
ode that is good, wherethe spe
i�
ation is required to answer the query i with the i-th 
odeword (i.e., the i-th element in the 
ode).Re
all that it is not 
lear what happens when we repla
e f by a pseudorandom fun
tion (i.e., it may be the
ase that the resulting 
ode has very small distan
e, althoughmost pairs of 
odewords are de�nitely far apart).Thus, in order to get an almost-truthful pseudo-implementation (by ordinary probabilisti
 polynomial-timema
hines) we use a di�erent approa
h.Constru
tion 4.1 (implementing a good random 
ode): For k = �n, we sele
t a random k-by-n matrixM , and 
onsider the linear 
ode generated by M (i.e., the 
odewords are obtained by all possible linear
ombinations of the rows of M). Now, using a pseudorandom fun
tion fs : f0; 1gk ! f0; 1gn, where s 2f0; 1gn, we 
onsider the 
ode CM;s = ffs(v)�vM : v 2 f0; 1gkg. That is, our implementation uses therandom-tape (M; s), and provides the i-th 
odeword of the 
ode CM;s by returning fs(i)�iM , where i 2 [2k℄is viewed as a k-dimensional row ve
tor (or a k-bit long string).To see that Constru
tion 4.1 is a pseudo-implementation of a random 
ode, 
onsider what happens when thepseudorandom fun
tion is repla
ed by a truly random one (in whi
h 
ase we may ignore the ni
e properties ofthe random linear 
ode generated byM).16 Spe
i�
ally, for any matrixM and any fun
tion f : [K℄! f0; 1gn,we 
onsider the 
ode CfM = ff(v)�vM : v 2 f0; 1gkg. Now, for any �xed 
hoi
e of M and a trulyrandom fun
tion � : [K℄ ! f0; 1gn, the 
ode C�M is a random 
ode. Thus, the pseudorandomness of thefun
tion ensemble ffsgs2f0;1gn implies that, for a uniformly 
hosen s 2 f0; 1gn, the 
ode CM;s = CfsMis 
omputationally indistinguishable from a random 
ode. The reason being that ability to distinguishsele
ted 
odewords of CfsM (for a random s 2 f0; 1gn) from 
odewords of C�M (for a truly random fun
tion� : [K℄! f0; 1gn) yields ability to distinguish the 
orresponding fs from �.To see that Constru
tion 4.1 is almost-truthful to the good 
ode property, �x any (pseudorandom)fun
tion f and 
onsider the 
ode CM = ff(v)�vM : v 2 f0; 1gkg, when M is a random k-by-n matrix.Fixing any pair of distin
t strings v; w 2 f0; 1gk, we show that with probability at least 2�3k (over thepossible 
hoi
es of M), the 
odewords f(v)�vM and f(w)�wM are at distan
e at least Æn, and it followsthat with probability at least 1 � 2�k the 
ode CM has a distan
e at least Æn. Thus, for a random M ,we 
onsider the Hamming weight of (f(v)�vM)�(f(w)�wM), whi
h in turn equals the Hamming weightof r�uM , where r = f(v)�f(w) and u = v�w are �xed. The weight of r�uM behaves as a binomialdistribution (with su

ess probability 1/2), and thus the probability that the weight is less than Æn is upper-bounded by 2�(1�H2(Æ))�n, where H2 denotes the binary entropy fun
tion. So we need 1 �H2(Æ) � n > 3kto holds, and indeed it does hold for appropriate 
hoi
es of Æ and � (e.g, Æ = 1=6 and � = 1=9). Spe
i�
ally,re
alling that k = �n, we need 1�H2(Æ) > 3� to hold. We get:16In parti
ular, note that the resulting 
ode is unlikely to be linear. Furthermore, any n�O(1) > k 
odewords arelikely to be linearly independent (both when we use a random fun
tion or a pseudorandom one).17



Theorem 4.2 For any Æ 2 (0; 1=2) and � 2 (0; 1�H2(Æ))=3, assuming the existen
e of one-way fun
tions,there exists an almost-truthful pseudo-implementation by an ordinary ma
hine of the following spe
i�
ation:The spe
i�
ation ma
hine uses its random-tape to uniformly sele
t a 
ode C � f0; 1gn having 
ardinalityK def= 2�n and distan
e at least Æn, and answers the query i 2 [K℄ with the i-th element in C.We 
omment that Constru
tion 4.1 a
tually implements an en
oding algorithm for the 
orresponding 
ode,whi
h is a
tually what is required in the spe
i�
ation. It would be very interesting if one 
ould also implementa 
orresponding de
oding algorithm. Note that the real 
hallenge is to a
hieve \de
oding with errors" (i.e.,de
ode 
orrupted 
odewords rather than only de
ode un
orrupted 
odewords).17 Spe
i�
ally,Open Problem 4.3 (implementing en
oding and de
oding for a good random 
ode): Provide an almost-truthful pseudo-implementation, even by an ora
le ma
hine, to the following spe
i�
ation. For some Æ 2(0; 1=2) and � 2 (0;
(1�H2(Æ))), the spe
i�
ation ma
hine sele
ts a 
ode C � f0; 1gn as in Theorem 4.2,and answers queries of two types:En
oding queries: For i 2 [K℄, the query (en
; i) is answered with the i-th element in C.De
oding queries: For very w 2 f0; 1gn that is at distan
e at most Æn=3 from C, the query (de
; w) isanswered by the index of the (unique) 
odeword that is 
losest to w.Indeed, we are interested in an implementation by an ordinary ma
hine, but as stated in Se
tion 10, it maymake sense to �rst 
onsider implementations by ora
le ma
hines. Furthermore, it would be ni
e to obtaintruthful implementations, rather than almost-truthful ones. In fa
t, it will even be interesting to have atruthful pseudo-implementation of the spe
i�
ation stated in Theorem 4.2.5 Boolean Fun
tions and Interval-Sum QueriesIn this se
tion we show that the spe
i�
ation of Example 3.1 
an be perfe
tly implemented (by an ora
lema
hine). Re
all that we seek to implement a

ess to a random fun
tion f : f0; 1gn ! f0; 1g augmentedwith answers regarding the parity (or XOR) of the values of f on given intervals, where the intervalsare with respe
t to the standard lex-order of n-bit string. That is, the query q = (�; �) 2 f0; 1gn+n,where 0n � � � � � 1n, is to be answered by ���s��f(s). The spe
i�
ation 
an answer this queryin the straightforward manner, but an implementation 
annot a�ord to do so (be
ause a straightforward
omputation may take 2n = 2jqj=2 steps). Thus, the implementation will do something 
ompletely di�erent.18We present an ora
le ma
hine that uses a random fun
tion f 0 : [ni=0f0; 1gi ! f0; 1g. Using f 0, we de�nef : f0; 1gn ! f0; 1g as follows. We 
onsider a binary tree of depth n and asso
iate its ith level verti
es withstrings of length i su
h that the vertex asso
iated with the string s has a left (resp., right) 
hild asso
iatedwith the string s0 (resp., s1). As a mental experiment, going from the root to the leaves, we label the tree'sverti
es as follows:1. We label the root (i.e., the level-zero vertex, whi
h is asso
iated with �) by the value f 0(�).2. For i = 0; :::; n� 1, and ea
h internal vertex v at level i, we label its left 
hild by the value f 0(v0), andlabel its right 
hild by the XOR of the label of v and the value f 0(v0).(Thus, the label of v equals the XOR of the values of its 
hildren.)17Note that a simple modi�
ation of Constru
tion 4.1 (e.g., repla
ing the i-th 
odeword, w, by the new 
odeword(i; w)), allows trivial de
oding of un
orrupted 
odewords.18The following implementation is not the simplest one possible, but we 
hose to present it be
ause it generalizesto yield a proof of Theorem 5.2 (i.e., interval-sum rather than interval-sum-mod-2). A simpler implementation ofExample 3.1, whi
h does not seem to generalize to the 
ase of interval-sum (as in Theorem 5.2), was suggested tous by Phil Klein, Silvio Mi
ali, and Dan Spielman. The idea is to redu
e the problem of Example 3.1 to the spe
ial
ase where we only need to serve interval-queries for intervals starting at 0n; that is, we only need to serve (interval)queries of the form (0n; �). (Indeed, the answer to a query (�0; �0), where �0 6= 0n, 
an be obtained from the answersto the queries (0n; �00) and (0n; �0), where �00 is the string pre
eding �0. Next observe that the query (0n; �) 
an beserved by f 0(�), where f 0 : f0; 1gn ! f0; 1g is a random fun
tion (given as ora
le).18



3. The value of f at � 2 f0; 1gn is de�ned as the label of the leaf asso
iated with �.By using indu
tion on i = 0; :::; n, it 
an be shown that the level i verti
es are assigned uniformly andindependently distributed labels (whi
h do depend, of 
ourse, on the level i� 1 labels). Thus, f is a randomfun
tion. Furthermore, the label of ea
h internal node v equals the XOR of the values of f on all leaves inthe subtree rooted at v.Note that the random fun
tion f 0 is used to dire
tly assign (random) labels to all the left-siblings. Theother labels (i.e., of right-siblings) are determined by XORing the labels of the parent and the left-sibling.Furthermore, the label of ea
h node in the tree is determined by XORing at most n+1 values of f 0 (residingin appropriate left-siblings). Spe
i�
ally, the label of the vertex asso
iated with �1 � � ��i is determined bythe f 0-values of the strings �; 0; �10; :::; �1 � � ��i�10. A
tually, the label of the vertex asso
iated with �1j ,where � 2 f�g[f0; 1gj�j�10 and j � 0, is determined by the f 0-values of j+1 verti
es (i.e., those asso
iatedwith �; �0; �10:::; �1j�10).label(�1j) = label(�1j�1)� label(�1j�10)...= label(�)� label(�0) � � � � label(�1j�20)� label(�1j�10)= f 0(�)� f 0(�0) � � � � f 0(�1j�20)� f 0(�1j�10)Thus, we obtain the value of f at any n-bit long string by making at most n+1 queries to f 0. More generally,we 
an obtain the label assigned to ea
h vertex by making at most n + 1 queries to f 0. It follows that we
an obtain the value of ���s��f(s) by making O(n2) queries to f 0. Spe
i�
ally, the desired value is theXOR of the leaves residing in at most 2n� 1 full binary sub-trees, and so we merely need to XOR the labelsassigned to the roots of these sub-trees. A
tually, O(n) queries 
an be shown to suÆ
e, by taking advantageon the fa
t that we need not retrieve the labels assigned to O(n) arbitrary verti
es (but rather to verti
esthat 
orrespond to roots of sub-trees with 
onse
utive leaves). We get:Theorem 5.1 There exists a perfe
t implementation (by an ora
le ma
hine) of the spe
i�
ation of Exam-ple 3.1.The foregoing pro
edure 
an be generalize to handle queries regarding any (eÆ
iently 
omputable) symmetri
fun
tion of the values assigned by f to any given interval. In fa
t, it suÆ
es to answer queries regarding thesum of these values. We thus state the following result.Theorem 5.2 There exists a truthful 
lose-implementation (by an ora
le ma
hine) of the following spe
-i�
ation of a random obje
t. The spe
i�
ation ma
hine uses its random-tape to de�ne a random fun
tionf : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n by P��s�� f(s).Note that, unlike in the 
ase of Theorem 5.1, the implementation is not perfe
t, whi
h is the reason that weexpli
itly mention that it is truthful.Proof: All that is needed in order to extend the \XOR 
onstru
tion" is to make sure that the label of ea
hvertex v equals the sum (rather than the sum mod 2) of the labels of all the leaves in the sub-tree rooted at v.In parti
ular, internal nodes should be assigned random labels a

ording to the binomial distribution, whi
hmakes the implementation more 
omplex (even for assigning labels to the root and more so for assigninglabels to left-siblings after their parents was assigned a label). Let us start with an overview:1. We label the root by a value generated a

ording to the binomial distribution; that is, the root (of thedepth-n binary tree) is assigned the value j with probability �Nj �=2N , where N def= 2n. This randomassignment will be implemented using the value f 0(�), where here f 0 is a random fun
tion rangingover poly(n)-bit long strings rather than over a single bit (i.e., f 0 : [ni=0f0; 1gi ! f0; 1gpoly(n)).19



2. For i = 0; :::; n � 1, and ea
h internal vertex v at level i, we label its left 
hild as follows, by usingthe value f 0(v0). Suppose that v is assigned the value T � 2n�i. We need to sele
t a random pairof integers (l; r) su
h that l + r = T and 0 � l; r � 2n�i�1. Su
h a pair should be sele
ted withprobability that equals the probability that, 
onditioned on l+ r = T , the pair (l; r) is sele
ted when land r are distributed a

ording to the binomial distribution (of 2n�i�1 trials). That is, let M = 2n�ibe the number of leaves in the tree rooted at v. Then, for l+ r = T and 0 � l; r �M=2, the pair (l; r)should be sele
ted with probability �M=2l � � �M=2r �=�Ml+r�.3. As before, the value of f at � 2 f0; 1gn equals the label of the leaf asso
iated with �.Of 
ourse, the above two types of sampling pro
edures have to be implemented in poly(n)-time, rather thanin poly(2n)-time (and poly(n2n�i)-time, respe
tively). These implementations 
annot be perfe
t (be
ausesome of the events o

ur with probability 2�N = 2�2n), but it suÆ
es to provide implementations thatgenerates these samples with approximately the right distribution (e.g., with deviation at most 2�n or so).The details 
on
erning these implementations are provided in an Appendix A.We stress that the sample (or label) generated for the (left sibling) vertex asso
iated with � = �00 isprodu
ed based on the randomness provided by f 0(�). However, the a
tual sample (or label) generatedfor this vertex depends also on the label assigned to its parent. (Indeed, this is di�erent from the 
aseof XOR.) Thus, to determine the label assigned to any vertex in the tree, we need to obtain the labelsof all its an
estors (up-to the root). Spe
i�
ally, let S1(N; �) denote the value sampled from the binomialdistribution (on N trials), when the sampling algorithm uses 
oins �; and let S2(M;T; �) denote the valueassigned to the left-
hild, when its parent (whi
h is the root of a tree with M leaves) is assigned the valueT , and the sampling algorithm uses 
oins �. Then, the label of the vertex asso
iated with � = �1 � � ��t,denoted label(�), is obtained by 
omputing the labels of all its an
estors as follows. First, we 
omputelabel(�) S1(N; f 0(�)). Next, for i = 1; :::; t, we obtain label(�1 � � ��i) by 
omputinglabel(�1 � � ��i�10) S2(2n�(i�1); label(�1 � � ��i�1); f 0(�1 � � ��i�10));and if ne
essary (i.e., �i = 1) by 
omputinglabel(�1 � � ��i�11) label(�1 � � ��i�1)� label(�1 � � ��i�10):That is, we �rst determine the label of the root (using the value of f 0 at �); and next, going along the pathfrom the root to �, we determine the label of ea
h vertex based on the label of its parent (and the value off 0 at the left-
hild of this parent). Thus, the 
omputation of the label of �, only requires the value of f 0 onj�j + 1 strings. As in the 
ase of XOR, this allows to answer queries (regarding the sum of the f -values inintervals) based on the labels of O(n) internal nodes, where ea
h of these labels depend only on the value off 0 at O(n) points. (In fa
t, as in the 
ase of XOR, one may show that the values of these related internalnodes depend only on the value of f 0 at O(n) points.)Regarding the quality of the implementation, by the above des
ription it is 
lear that the label of ea
hinternal node equals the sum of the labels of its 
hildren, and thus the implementation is truthful. To analyzeits deviation from the spe
i�
ation, we 
onsider the mental experiment in whi
h both sampling pro
eduresare implemented perfe
tly (rather than almost so), and show that in su
h a 
ase the resulting implementationis perfe
t. Spe
i�
ally, using indu
tion on i = 0; :::; n, it 
an be shown that the level i verti
es are assignedlabels that are independently distributed, where ea
h label is distributed as the binomial distribution of2n�i trials. (Indeed, the labels assigned to the verti
es of level i do depend on the labels assigned in leveli � 1.) Thus, if the deviation of the a
tual sampling pro
edures is bounded by 2�n � �, then the a
tualimplementation is at statisti
al distan
e at most � from the spe
i�
ation.19 The latter statement is a
tuallystronger than required for establishing the theorem.Open problems: Theorem 5.2 provides a truthful implementation for any (feasibly-
omputable) sym-metri
 fun
tion of the values assigned by a random fun
tion over any interval of [N ℄ � f0; 1gn. Two naturalextensions are suggested below.19We 
an a�ord to set � = exp(�poly(n)) < 1=poly(N), be
ause the running time of the a
tual sampling pro
eduresis poly-logarithmi
 in the desired deviation. 20



Open Problem 5.3 (non-symmetri
 queries): Provide a truthful 
lose-implementation to the followingspe
i�
ation. The spe
i�
ation ma
hine de�nes a random fun
tion f : f0; 1gn ! f0; 1g, and answers queriesof the form (�; �) 2 f0; 1gn+n with the value g(f(�); :::; f(�)), where g is some simple fun
tion. For exam-ple, 
onsider g(�1; :::; �t) that returns the smallest i 2 [t℄ su
h that �i � � ��i+b1+log2 t
�1 = 11+blog2 t
 (and aspe
ial symbol if no su
h i exists). More generally, 
onsider a spe
i�
ation ma
hine that answers queries ofthe form (k; (�; �)) by returning smallest i 2 [t℄ su
h that �i � � ��i+k�1 = 1k, where �j is the j-th element inthe sequen
e (f(�); :::; f(�)).Note that the latter spe
i�
ation is interesting mostly for k 2 f!(logn); :::; n + !(logn)g. For k � ksm =O(logn) we may just make sure (in the implementation) that any 
onse
utive interval of length 2ksmn2
ontains a run of ksm ones.20 On
e this is done, queries (referring to k � ksm) may be served (by theimplementation) in a straightforward way (i.e., by s
anning at most two su
h 
onse
utive intervals, whi
h inturn 
ontain 2ksm+1n2 = poly(n) values). Similarly, for k � klg = n + !(logn), we may just make sure (inthe implementation) that no pair of 
onse
utive intervals, ea
h of length 5n, has a run of min(klg; 2n) ones.Open Problem 5.4 (beyond interval queries): Provide a truthful 
lose-implementation to the followingspe
i�
ation. The spe
i�
ation ma
hine de�nes a random fun
tion f : f0; 1gn ! f0; 1g, and answers queriesthat su

in
tly des
ribe a set S, taken from a spe
i�
 
lass of sets, with the value ��2Sf(�). In Example 3.1the 
lass of sets is all intervals of [N ℄ � f0; 1gn, represented by their pair of end-points. Another natural
ase is the 
lass of sub-
ubes of f0; 1gn; that is, a set S is spe
i�ed by an n-sequen
e over f0; 1; �g su
h thatthe set spe
i�ed by the sequen
e (�1; :::; �n) 
ontains the n-bit long string �1 � � ��n if and only if �i = �i forevery �i 2 f0; 1g.In both 
ases (i.e., Problems 5.3 and 5.4), even if we do not require truthfulness, a pseudo-implementationmay need to be \somewhat truthful" anyhow (i.e., if the implementation answers the 
ompound queries in anon-
onsistent manner then it may be distinguished from the spe
i�
ation be
ause a distinguisher may 
he
k
onsisten
y). At least, a potential implementation seems to be in trouble if it \lies bluntly" (e.g., answersea
h query by an independent random bit).An appli
ation to streaming algorithms: Motivated by a 
omputational problem regarding mas-sive data streams, Feigenbaum et. al. [14℄ 
onsidered the problem of 
onstru
ting a sequen
e of N randomvariables, X1; :::; XN , over f�1g su
h that1. The sequen
e is \range-summable" in the sense that given t 2 [N ℄ the sumPti=1Xi 
an be 
omputedin poly(logN)-time.2. The random variables are almost 4-wise independent (in a 
ertain te
hni
al sense).Using the te
hniques underlying Theorem 5.2, for any k � poly(logN) (and in parti
ular for k = 4), we 
an
onstru
t a sequen
e that satis�es the above properties. In fa
t, we get a sequen
e that is almost k-wiseindependent in a stronger sense than stated in [14℄ (i.e., we get a sequen
e that is statisti
ally 
lose to beingk-wise independent).21 This is a
hieved by using the 
onstru
tion presented in the proof of Theorem 5.2,ex
ept that f 0 is a fun
tion sele
ted uniformly from a family of k � (n+1)-wise independent fun
tions ratherthan being a truly random fun
tion, where n = log2N (as above). Spe
i�
ally, we use fun
tions that mapf0; 1gn+1 � [ni=0f0; 1gi to f0; 1gpoly(n) in a k �(n+1)-wise independent manner, and re
all that su
h fun
tions
an be spe
i�ed by poly(n) many bits and evaluated in poly(n)-time (sin
e k � poly(n)). In the analysis,we use the fa
t that the values assigned by f 0 to verti
es in ea
h of the (n+ 1) levels of the tree are k-wiseindependent. Thus, we 
an prove by indu
tion on i = 0; :::; n, that every k verti
es at level i are assignedlabels a

ording to the 
orre
t distribution (up to a small deviation). Re
all that, as stated in Footnote 19,we 
an obtain statisti
al deviation that is negligible in N (in this 
ase, with respe
t to a k-wise independentsequen
e).20That is, the random fun
tion f : [N ℄ ! f0; 1g is modi�ed su
h that, for every j 2 [N=2ksmn2℄, the interval[(j�1)2ksmn2+1; :::; j2ksmn2℄ 
ontains a run of ksm ones. This modi�
ation 
an be performed on-the-
y by s
anningthe relevant interval and setting to 1 a random blo
k of ksm lo
ations if ne
essary. Note that, with overwhelminglyhigh probability, no interval is a
tually modi�ed.21This 
onstru
tion was a
tually dis
overed before us by Naor and Reingold (
f. [16, Lem. 2℄); see further dis
ussionat the end of this se
tion. 21



A histori
al note: As noted above, the ideas underlying the proof of Theorem 5.2 were dis
overed byMoni Naor and Omer Reingold (as early as in 1999). A
tually, their 
onstru
tion was presented withinthe framework of limited independen
e (i.e., as in the former paragraph), rather than in the framework ofrandom fun
tions (used throughout this se
tion). In fa
t, Naor and Reingold 
ame-up with their 
onstru
tionin response to a question raised by the authors of [14℄ (but their solution was not in
orporated in [14℄). TheNaor{Reingold 
onstru
tion was used in the subsequent work of [16℄ (see [16, Lem. 2℄).6 Random Graphs Satisfying Global PropertiesSuppose that you want to run some simulations on huge random graphs. You a
tually take it for granted thatthe random graph is going to be Hamiltonian, be
ause you are willing to dis
ard the negligible probabilitythat a random graph is not Hamiltonian. Suppose that you want to be able to keep su

in
t representationsof these graphs and/or that you want to generate them using few random bits. A natural idea that 
omes tomind is using pseudorandom fun
tions [20℄ in order to eÆ
iently generate and store representations of thesegraphs. But are the graphs generated this way really Hamiltonian?The point is that being Hamiltonian is a global property of the graph, whi
h in turn is a huge (i.e.,exp(n)-sized) obje
t. This global property 
annot be de
ided by 
he
king the adja
en
y of polynomiallymany (i.e., poly(n)-many) vertex-pairs, and so its violation 
annot be translated to a 
ontradi
tion of thepseudorandomness of the fun
tion. Indeed, the substitution of a random fun
tion (or a random graph) by apseudorandom one is not guaranteed to preserve the global property. Spe
i�
ally, it may be the 
ase thatall pseudorandom graphs are even dis
onne
ted.22 So, 
an we eÆ
iently generate huge Hamiltonian graphs?As we show below, the answer to this question is positive.In this se
tion we 
onsider the implementation of various types of huge random graphs. We stress thatwe refer to simple and labeled graphs; that is, we 
onsider graphs without self-loops or parallel edges, andwith labeled verti
es (i.e., the 3-vertex graph 
onsisting of the edge (1; 2) is di�erent from the 3-vertex graph
onsisting of the edge (1; 3)). In this se
tion, implementing a graph means answering adja
en
y queries; thatis, the answer to the query (u; v) should indi
ate whether or not u and v are adja
ent in the graph. Re
allthat the implementation ought to work in time that is poly-logarithmi
 in the size of the graph, and thus
annot de
ide \global" properties of the graph. That is, we deal with graphs having N = 2n verti
es, andour pro
edures run in poly(n)-time.As in Se
tion 3, we present our results in two 
ategories referring to whether they yield truthful or onlyalmost-truthful implementations. In the 
ase of truthful implementations, we show 
lose-implementations by(polynomial-time) ora
le ma
hines (whi
h use a random ora
le), while bearing in mind that 
orrespondingpseudo-implementations by ordinary (probabilisti
 polynomial-time) ma
hines 
an be derived using The-orem 2.9. In 
ontrast, in the 
ase of almost-truthful implementations, we work dire
tly with ordinary(probabilisti
 polynomial-time) ma
hines.6.1 Truthful implementationsThe main result of this se
tion is Theorem 6.2, whi
h provide a wide family of monotone graph propertiessu
h that there exists a truthful 
lose-implementation of a uniformly sele
ted graph having the 
orrespondingproperty. Before stating and proving this general result, we 
onsider some 
on
rete spe
ial 
ases.We �rst re
all that a random graph (i.e., a uniformly distributed N -vertex graph) 
an be perfe
tlyimplemented via an ora
le ma
hine that, on input (u; v) 2 [N ℄� [N ℄ and a

ess to the ora
le f : [N ℄� [N ℄!f0; 1g, returns 0 if u = v, f(u; v) if u < v, and f(v; u) otherwise. (Indeed, we merely derive a symmetri
 andnon-re
exive version of f .)Turning to a less trivial example, let us 
losely-implement a random Bipartite Graph with N verti
eson ea
h side. This 
an be done by viewing the random ora
le as two fun
tions, f1 and f2, and answeringqueries as follows:22Indeed, for ea
h fun
tion fs taken from some pseudorandom ensemble ffs : [2n℄ � [2n℄ ! f0; 1ggs, it may holdthat fs(vs; u) = fs(u; vs) = 0 for all u 2 [2n℄, where vs depends arbitrarily on fs. For example, given a pseudorandomensemble ffsg 
onsider the ensemble ffs;vg su
h that fs;v(v; u) = fs;v(u; v) = 0n for all u's, and fs;v(x; y) = fs(x; y)for all other (x; y)'s. 22



� The fun
tion f1 is used to 
losely-implement a random partition of [2N ℄ into two sets of equal size.Spe
i�
ally, we use f1 to 
losely-implement a permutation � over [2N ℄, and let the �rst part beS def= fv : �(v) 2 [N ℄g. Let �S(v) def= 1 if v 2 S and �S(v) def= 0 otherwise.� The query (u; v) is answered by 0 if �S(u) = �S(v). Otherwise, the answer equals f2(u; v) if u < vand f2(v; u) otherwise.The above implementation 
an be adapted to 
losely-implement a random Bipartite Graph (see detailsin Appendix B). Viewed in di�erent terms, we have just dis
ussed the implementation of random graphssatisfying 
ertain properties (e.g., being bipartite).We now turn to Example 3.5 (whi
h spe
i�es a uniformly distributed 
onne
ted graph). In 
ontinuationto the dis
ussion in Se
tion 3, we now present a 
lose-implementation that is truthful:Constru
tion 6.1 (implementing a random 
onne
ted graph): Use the ora
le to 
losely-implement a ran-dom graph, represented by the symmetri
 and non-re
exive random fun
tion g : [N ℄�[N ℄! f0; 1g, as well asa random permutation � over [N ℄, whi
h in turn is used to de�ne a Hamiltonian path �(1)! �(2)! � � � !�(N). Along with �, implement the inverse permutation ��1, where this is done by using Theorem 2.13.23Answer the query (u; v) by 1 if and only if either g(u; v) = 1 or (u; v) is on the Hamiltonian path (i.e.,j��1(u)� ��1(v)j = 1).Clearly, the above implementation is truthful with respe
t to a spe
i�
ation in Example 3.5 (whi
h mandatesa 
onne
ted graph).24 The implementation is statisti
ally-indistinguishable from the spe
i�
ation, be
ausewhen making only poly(logN) queries it is unlikely to hit an edge of the added \Hamiltonian path" (de�nedby �). (A proof of the latter statement appears below.) A similar strategy 
an be used for any monotonegraph property that satis�es the following 
ondition:25(C) The property is satis�ed by a family of strongly-
onstru
tible sparse graphs. That is, for some negligiblefun
tion � (and every N), there exists a perfe
t implementation of a (single) N -vertex graph with�(logN) �N2 edges that satis�es the property.We have:Theorem 6.2 (Constru
tion 6.1, generalized): Let � be a monotone graph property that satis�es Condi-tion C. Then, there exists a truthful 
lose-implementation (by an ora
le ma
hine) of a uniformly distributedgraph that satis�es property �.We 
omment that Condition C implies that a random N -vertex graph is statisti
ally-indistinguishable froma random N -vertex graph having property �. This fa
t, whi
h may be of independent interest, is stated andproved �rst.Lemma 6.3 Let � be a monotone graph property that is satis�ed by some N-vertex graph having � � �N2 �edges. Then, any ma
hine that makes at most q adja
en
y queries to a graph, 
annot distinguish a randomN-vertex graph from a uniformly distributed N-vertex graph that satis�es �, ex
ept than with probabilityO(q � p�) + q �N�(1�o(1)).Proof: As in [23, Se
. 4℄, without loss of generality, we may 
on�ne ourselves to analyzing ma
hines thatinspe
t a random indu
ed subgraph. That is, sin
e both graph 
lasses are 
losed under isomorphism, itsuÆ
es to 
onsider the statisti
al di�eren
e between the following two distributions:1. The subgraph of a uniformly distributed N -vertex graph indu
ed by a uniformly sele
ted set of s def=q + 1 verti
es.23That is, we use a truthful 
lose-implementation of Example 2.4. In fa
t, we only need ��1, and so the truthful
lose-implementation of Example 2.3 (as stated in Theorem 2.12) a
tually suÆ
es.24Indeed, Constru
tion 6.1 a
tually implements a (random) Hamiltonian graph (by virtue of the \for
ed Hamilto-nian path" de�ned by �).25Here C stands for \
ondition". 23



2. The same vertex-indu
ed subgraph (i.e., indu
ed by a random set of s verti
es) of a uniformly dis-tributed N -vertex graph that satis�es property �.Clearly, distribution (1) is uniform over the set of s-vertex graphs, and so we have to show that approximatelythe same holds for Distribution (2). Let T def= �N2 � and M def= �T , and let G0 be an N -vertex graph with Medges that satis�es property �. Consider the set of all graphs that 
an be obtained from G0 by adding T�M2edges. The number of these graphs is�T �MT�M2 � = 2T�M�(pT �M) > 2T�M�O(1)� 12 �log2 TThat is, this set 
ontains at least a 2�(M+O(1)+(log2 T )=2) = 2��0�T fra
tion of all possible graphs, where�0 def= �+((log2 T )=2T ). Let X = X1 � � �XT 2 f0; 1gT be a random variable that is uniformly distributed overthe set of all graphs that satisfy property �. Then X has entropy at least T � �0T (i.e., H(X) � T � �0T ). Itfollows that 1T PTi=1H(XijXi�1 � � �X1) � 1��0, where the index i ranges over all unordered pairs of elementsof [N ℄. (Indeed, we assume some �xed order on these pairs.) Letting ej(S) denote the jth pair in the setf(u; v)2S�S : u < vg, we are interested in the expe
ted value ofP(s2)j=1H(Xej(S)jXej�1(S) � � �Xe1(S)), whereS is a uniformly sele
ted set of t verti
es. Clearly,H(Xej(S)jXej�1(S) � � �Xe1(S)) � H(Xej(S)jXej(S)�1 � � �X1)and so ES 264 (s2)Xj=1H(Xej(S)jXej�1(S) � � �Xe1(S))375 � �s2� � (1� �0)be
ause for a uniformly distributed j 2 [�s2�℄ it holds thatES;j �H(Xej(S)jXej(S)�1 � � �X1)� equalsEi [H(XijXi�1 � � �X1)℄,where i is uniformly distributed in [T ℄. Thus, for a random s-subset S, letting YS = (X(u;v))f(u;v)2S�S:u<vg,we have ES [YS ℄ � t � �00, where t def= �s2� and �00 def= t�0. It follows (see Appendix C) that the statisti-
al di�eren
e of YS from the uniform distribution over f0; 1gt is at most O(p�00), whi
h in turn equalsO(qp�+ T�(1�o(1))). The lemma follows.Proof of Theorem 6.2: Let H = ([N ℄; E) be a graph satisfying Condition C. In parti
ular, given(u; v) 2 [N ℄ � [N ℄, we 
an de
ide whether or not (u; v) 2 E in polynomial-time. Then, using the graph Hinstead of the Hamiltonian path in Constru
tion 6.1, we implement a (random) graph satisfying property�. That is, we answer the query (u; v) by 1 if and only if either g(u; v) = 1 or (u; v) is an edge in (the\for
ed" 
opy of) H (i.e., (��1(u); ��1(v)) 2 E). Sin
e � is a monotone graph property, the instan
es ofthe implementation always satisfy the property �, and thus the implementation is truthful. Furthermore,by Condition C and the fa
t that � is a 
lose-implementation of a random permutation, the probability thata ma
hine that queries the implementation for poly(logN) times hits an edge of H is negligible in logN .Thus, su
h a ma
hine 
annot distinguish the implementation from a random graph. Using Lemma 6.3 (with� = �(logN) and q = poly(logN)), the theorem follows.Examples: Indeed, monotone graph properties satisfying Condition C in
lude Conne
tivity, Hamiltoni
-ity, k-Conne
tivity (for every �xed k)26, 
ontaining any �xed-size graph (e.g., 
ontaining a triangle or a4-
lique or a K3:3 or a 5-
y
le), having a perfe
t mat
hing, having diameter at most 2, 
ontaining a 
lique ofsize at least log2N , et
. All the foregoing properties are satis�ed, with overwhelmingly high probability, bya random graph. However, Theorem 6.2 
an be applied also to (monotone) properties that are not satis�edby a random graph; a notable example is the property of 
ontaining a 
lique of size at least pN .26In fa
t, we may have k = k(N) = �(logN) �N for any negligible fun
tion �. The sparse graph may 
onsist of a
omplete bipartite graph with k(N) verti
es on one side and N � k(N) � N verti
es on the other side.24



6.2 Almost-truthful implementationsHere we 
onsider almost-truthful implementations of spe
i�
ations that refer to uniformly sele
ted graphsthat have various properties that are satis�ed by random graphs. (Needless to say, we will fo
us on propertiesthat are not 
overed by Theorem 6.2.)We start by noting that if we are willing to settle for almost-truthful implementations by ora
le ma
hinesthen all properties that hold (with suÆ
iently high probability) for random graphs 
an be handled easily.Spe
i�
ally:Proposition 6.4 Let � be any graph property that is satis�ed by all but a negligible (in logN) fra
tion ofthe N-vertex graphs. Then, there exists an almost-truthful 
lose-implementation (by an ora
le ma
hine) ofa uniformly distributed graph that satis�es property �.Indeed, the implementation is by a random graph (whi
h in turn is implemented via a random ora
le). Note,however, that it is not 
lear what happens if we repla
e the random graph by a pseudorandom one (
f.Theorem 2.11). Furthermore, the proof of Theorem 2.11 
an be extended to show that there exist graphproperties that are satis�ed by random graphs but do not have an almost-truthful implementation by anordinary ma
hine.27 In light of the above, we now fo
us on almost-truthful implementations by ordinaryma
hines. As we shall see, that the te
hnique underlying Constru
tion 6.1 
an be used also when thefollowing relaxed form of Condition (C) holds:(C') For some negligible fun
tion � (and every N), there exists an almost-truthful implementation (byordinary ma
hines) of a distribution over N -vertex graphs that satisfy the property and have at most�(logN) �N2 edges.Indeed, we may obtain a variant of Theorem 6.2 stating that, assuming the existen
e of one-way fun
-tions, for every monotone graph property that satis�es Condition C', there exists an almost-truthful pseudo-implementation (by an ordinary ma
hine) of a uniformly distributed graph that satis�es property �. However,our main fo
us in the 
urrent subse
tion will be on non-monotone graph properties (e.g., having a max-
liqueof a 
ertain size), and in this 
ase we 
annot apply Lemma 6.3. Instead, we shall use the following observa-tion, whi
h refer to properties that are satis�ed by random graphs (e.g., having a max-
lique of logarithmi
size).Proposition 6.5 Let � be any graph property that is satis�ed by all but a negligible (in logN) fra
tion of theN-vertex graphs. Let S be the spe
i�
ation that uniformly sele
ts an N-vertex graph that satis�es property� and answers edge-queries a

ordingly, and let I be any pseudo-implementation of a uniformly distributedN-vertex graph. Then I is a pseudo-implementation of S.Indeed, Proposition 6.5 holds be
ause the �rst hypothesis implies that S is 
omputationally indistinguishablefrom a truly random graph, whereas the se
ond hypothesis asserts that I is 
omputationally indistinguishablefrom a truly random graph.Max-
lique and 
hromati
 number. We 
onsider the 
onstru
tion of pseudorandom graphs thatpreserve the max-
lique and 
hromati
 number of random graphs.Theorem 6.6 Let 
(N) = (2� o(1)) log2N be the largest integer i su
h that the expe
ted number of 
liquesof size i in a random N-vertex graph is larger than one. Assuming the existen
e of one-way fun
tions, thereexist almost-truthful pseudo-implementations, by ordinary ma
hines, of the following spe
i�
ations:27The proof of Theorem 2.11 relates to the Kolmogorov Complexity of the fun
tion (or graph). In order to obtaina graph property, we 
onsider the minimum value of the Kolmogorov Complexity of any isomorphi
 
opy of the saidgraph, and 
onsider the set of graphs for whi
h this quantity is greater than N2=4. The latter property is satis�ed byall but at most 2N2=4 �(N !)� 2N2=3 graphs. On the other hand, the property 
annot be satis�ed by an instan
e of animplementation via an ordinary ma
hine. Thus, any implementation (regardless of \quality") must be non-truthful(to the spe
i�
ation) in a strong sense. 25



1. A random graph of Max-Clique 
(N)�1: The spe
i�
ation uniformly sele
ts an N-vertex graph havingmaximum 
lique size 
(N)� 1, and answers edge-queries a

ordingly.2. A random graph of Chromati
 Number (1� o(1)) �N=
(N): The spe
i�
ation uniformly sele
ts an N-vertex graph having Chromati
 Number (1�log�1=32 N)�N=
(N), and answers edge-queries a

ordingly.That is, we are required to implement random-looking graphs having 
ertain properties. Indeed, a randomN -vertex graph has the above two properties with probability at least 1�N�0:99 (
f. [8℄). Thus, a randomgraph provides an almost-truthful 
lose-implementation (by an ora
le ma
hine) of a uniformly sele
tedgraph having ea
h of these properties, but it is not 
lear what happens when we repla
e the random ora
leby a pseudorandom fun
tion. (In fa
t, one 
an easily 
onstru
t pseudorandom fun
tions for whi
h therepla
ement yields a graph with a huge 
lique or alternatively, with a very small 
hromati
 number.) Notethat Theorem 6.6 does not follow from Theorem 6.2, be
ause the properties at hand are not monotone.28Thus, a di�erent approa
h is needed.Proof: We start with Part 1. We de�ne the adja
en
y fun
tion g
lique : [N ℄ � [N ℄ ! f0; 1g of agraph by XORing a pseudorandom fun
tion f with a k-wise independent fun
tion f 0 (i.e., g
lique(v; w) =f(v; w)�f 0(v; w)), where k def= 4n2 (and n = log2N).29 Re
all that su
h k-wise independent fun
tions 
anbe 
onstru
ted based on kn random bits. The resulting fun
tion g
lique is both k-wise independent and
omputationally indistinguishable from a random graph (analogously to the 
onstru
tion in [26℄). In parti
-ular, using the pseudorandomness of g
lique and the fa
t that a random graph violates the spe
i�
ation withnegligible probability (in logN), it follows that g
lique pseudo-implements a uniformly distributed N -vertexgraph having max-
lique 
(N)� 1. (Indeed, the foregoing argument relies on Proposition 6.5.)Next, we use the k-wise independen
e of g
lique in order to show that g
lique is almost-truthful. The keyobservation is that the Bollob�as{Erd�os analysis [9℄ of the size of the max-
lique in a random graph onlyrefers to the expe
ted number of 
liques of size 
(N)� 2 and to the varian
e of this random variable. Thus,this analysis only depends on the randomness of edges within pairs of (
(N) + 2)-subsets of verti
es; that is,a total of 2 � �
(N)+22 � < (
(N) + 2)2 = (4� o(1)) � n2 vertex-pairs. Hen
e, the analysis 
ontinues to hold forg
lique (whi
h is 4n2-independent), and so with overwhelming probability g
lique has max-
lique size 
(N)�1.It follows that g
lique provides an almost-truthful pseudo-implementation of a random N -vertex graph withmax-
lique size 
(N)� 1.We now turn to Part 2. We de�ne the adja
en
y fun
tion g
olor : [N ℄ � [N ℄ ! f0; 1g of a graph bytaking the bit-wise 
onjun
tion of the graph g
lique with a fun
tion h sele
ted uniformly in a set H (de�nedbelow); that is, g
olor(v; w) = 1 i� g
lique(v; w) = h(v; w) = 1. Intuitively, ea
h fun
tion h 2 H for
es a 
overof [N ℄ by N=
(N) independent sets, ea
h of size 
(N), and so the 
hromati
 number of g
olor is at mostN=
(N). On the other hand, by symmetry (of edges and non-edges), the graph g
lique doesn't only exhibit
lique-number 
(N)� 1 (whi
h is irrelevant in this part) but also has independen
e-number 
(N)� 1 (withoverwhelming probability). We will use the latter fa
t to show that, sin
e ea
h h 2 H only has independentsets of size 
(N), taking the 
onjun
tion with g
lique is unlikely to 
reate an independent set of size 
(N)+2.Thus, the 
hromati
 number of g
olor is at least N=(
(N) + 1). Details follow.Ea
h fun
tion h 2 H partitions [N ℄ into �(N) def= dN=
(N)e for
ed independent sets, where ea
h set(ex
ept the last) is of size 
(N). We de�ne h(v; w) = 1 if and only if v and w belong to di�erent sets; Thus,su
h h 
auses ea
h of these vertex-sets to be an independent set in g
olor. The fun
tions in H di�er only inthe partitions that they use. It turns out that it suÆ
es to use \suÆ
iently random" partitions. Spe
i�
ally,we use H = fhrgr2R, where R = fr 2 [N ℄ : g
d(r;N) = 1g, and 
onsider for ea
h shift r 2 R the partitioninto for
ed independent sets (S(1)r ; :::; S(�(N))r ), where S(i)r = f(i � 
(N) + j) � r mod N : j = 1; :::; 
(N)g fori < �(N) (and S(�(N))r 
ontains the N � (�(N) � 1) � 
(N) remaining verti
es). Note that the 
onditiong
d(r;N) = 1 ensures that this is indeed a proper partition of the vertex-set [N ℄. Thus, hr(v; w) = 1 if28For the 
oloring property, Condition C does not hold either.29As in other pla
es, we a
tually mean symmetri
 and non-re
exive fun
tions that are obtained from the values ofthe basi
 fun
tions at values (u; v) su
h that u < v. 26



and only if v and w do not reside in the same for
ed independent set S(i)r (i.e., hr(v; w) = 0 implies thatjv � wj � jr (mod N) for some j 2 f1; :::; (
(N)� 1)g).To establish the pseudorandomness of the implementation, we �rst note that g
olor is 
omputationallyindistinguishable from g
lique (and 
onsequently g
olor retains g
lique's indistinguishability from a randomgraph). Indeed, it 
an be shown that no eÆ
ient observer is likely to make a query (v; w) that is a�e
ted byhr, be
ause hr(v; w) = 0 yields at most 2(
(N) � 1) = �(logN) 
andidates for r, whi
h in turn is sele
teduniformly in the set R, where jRj = N
(1). In addition, a random graph has only a negligible probability(in logN) of having 
hromati
 number di�erent from (1 � log�1=32 N) � N=
(N). Combining all this withProposition 6.5 implies the pseudorandomness of the implementation (w.r.t the spe
i�
ation).We now turn to the almost-truthfulness requirement. First note that the 
hromati
 number of g
olor isat most �(N), be
ause its vertex-set is 
overed by �(N) independent sets. On the other hand, we will showthat with overwhelming probability, the graph g
olor does not 
ontain an independent set of size 
(N) + 2.Thus, the 
hromati
 number of g
olor is at least N=(
(N) + 1) > (1 � (2=
(N)) � �(N), and so g
olor is analmost-truthful pseudo-implementation of the desired spe
i�
ation, and the entire theorem follows. Thus,it is left to show that the independen
e-number of g
olor is at most 
(N) + 1. The argument pro
eeds asfollows. We �x any h = hr 2 H (so the for
ed independent sets S(j)r are �xed) and show that deleting edgesas instru
ted by a k-wise independent fun
tion (i.e., by g
lique) is unlikely to indu
e a 
(N) + 2 independentset. Note that the various 
andidate independent sets di�er with respe
t to their interse
tion with thefor
ed independent sets S(j)r , and the analysis has to take this into a

ount. For example, if the 
andidateindependent set does not 
ontain two verti
es of the same set S(j)r , whi
h is indeed the typi
al 
ase, thenthe analysis of g
lique suÆ
es. At the other extreme, there is the 
ase that the 
andidate independent set
ontains all verti
es of some set S(j)r . In this 
ase, we only have either 2
(N) or 2
(N)+1 random events (i.e.,regarding edges between S(j)r and the other two verti
es), but the number of possibilities that 
orrespondto this 
ase is smaller than N3, and so the total probability for the 
orresponding bad event is less thanN3 � 2�2
(N) = N�1+o(1). The full analysis, given in Appendix C, 
onsists of a rather straightforward andtedious 
ase analysis.Combining properties of random graphs. So far, we 
onsidered several prominent propertiesthat are satis�ed (w.h.p.) by random graphs, and provided pseudo-implementations of uniformly distributedgraphs that satisfy ea
h of these properties separately. Next, we dis
uss a 
onstru
tion of pseudorandomgraphs that simultaneously satisfy all those properties of random graphs.Theorem 6.7 Let 
(N) = (2 � o(1)) log2N be as in Theorem 6.6. Assuming the existen
e of one-wayfun
tions, there exists an almost-truthful pseudo-implementation, by an ordinary ma
hine, of the spe
i�
ationthat uniformly sele
ts an N-vertex graph that satis�es the following four properties:1. Being Hamiltonian.2. Having Clique Number 
(N)� 1.3. Having Independen
e Number 
(N)� 1.4. Having Chromati
 Number (1� log�1=32 N) �N=
(N).The spe
i�
ation answers edge-queries a

ordingly.Re
all that being Hamiltonian implies being 
onne
ted as well has 
ontaining a Perfe
t Mat
hing.Proof: Consider the following implementation that merely adds a (
arefully 
hosen) random lookingHamiltonian 
y
le gHam to the pseudorandom graph g
olor that was de�ned in the proof of Theorem 6.6.That is, we de�ne our adja
en
y fun
tion g
ombine : [N ℄� [N ℄! f0; 1g of a graph as the bit-wise disjun
tionof g
olor with the adja
en
y fun
tion gHam (spe
i�ed below); i.e., g
ombine(v; w) = 1 if and only if eitherg
olor(v; w) = 1 or gHam(v; w) = 1. Towards de�ning gHam, re
all that in g
olor the verti
es are 
overed with�(N) def= dN=
(N)e disjoint independent sets fS(i)r g�(N)i=1 , where ea
h set (ex
ept the last) is of size 
(N) and27



where the sets are de�ned using a random shift r uniformly 
hosen in R = fr0 2 [N ℄ : g
d(r0; N) = 1g. Wenow de�ne gHam su
h that gHam does not violate any of the for
ed independent sets of g
olor, and 
onse-quently the �(N) upper-bound on the 
hromati
 number of g
olor is retained by g
ombine. Spe
i�
ally, wede�ne gHam using the same random shift r that is used to de�ne the for
ed independent sets S(i)r : usingan arbitrary integer d 2 [
(N); N � 
(N)℄ that satis�es g
d(d;N) = 1, we set gHamr (v; w) = 1 if and only ifw = (v � dr) mod N .We �rst establish the pseudorandomness of the implementation. We note that g
ombine is 
omputationallyindistinguishable from g
olor, be
ause no eÆ
ient observer is likely to make a query (v; w) that is a�e
tedby gHamr . Indeed, r is sele
ted uniformly in the set R of size jRj = N
(1), while gHamr (v; w) = 1 impliesonly two 
andidates for r (a single 
andidate for ea
h of the possible 
ases of either (w = v + dr) mod N or(w = v � dr) mod N). Consequently, the 
omputational indistinguishability of g
olor from a random graph(whi
h was established during the proof of Theorem 6.6) is preserved by g
ombine. We next re
all (
f. [8℄)that, only with negligible probability (in logN), a random graph fails to exhibit properties 1{4 listed above.Hen
e, the pseudorandomness of the implementation (w.r.t the spe
i�
ation) follows from Proposition 6.5.We now turn to establish the almost-truthfulness 
laim. Regarding Hamiltoni
ity, note that our sele
-tion of r and d (whi
h satis�es g
d(r;N) = 1 = g
d(d;N)) guarantees that the graph gHamr is indeed anHamiltonian 
y
le (be
ause dr; 2dr; 3dr; :::; Ndr are all distin
t modulo N). It follows that g
ombine is alwaysHamiltonian.We now handle the independen
e number and 
hromati
 number. Clearly, sin
e g
ombine is obtained byadding edges to g
olor, the former retains g
olor's properties of almost surely having independen
e numberat most 
(N) + 1 and 
hromati
 number at least N=(
(N) + 1). In addition, by the de�nition of the for
edindependent sets S(i)r , an arbitrary pair of verti
es (v; w) belongs to the same S(i)r only if w = (v�jr) mod Nwhere j 2 f1; :::; 
(N) � 1g. On the other hand, gHamr (v; w) = 1 implies that w = (v + dr) mod N orw = (v � dr) mod N where 
(N) � d � N � 
(N). Sin
e g
d(r;N) = 1 the above implies that the edges ofthe Hamiltonian 
y
le gHam never violate any of the for
ed independent sets of g
olor. Thus, as the for
edindependent sets are of size 
(N), and sin
e these sets for
e a 
over of [N ℄ with dN=
(N)e independent sets, itfollows that g
ombine a
hieves independen
e number at least 
(N) and 
hromati
 number at most dN=
(N)e(just as g
olor does).The last property to 
onsider is the 
lique number; that is, we now show that g
ombine has 
lique number
(N) � 1 (almost surely). The argument is based on the fa
t (taken from the proof of Theorem 6.6) thatg
lique has 
lique number 
(N) � 1 almost surely. Indeed, let 
 = 
(N). As g
olor is obtained by omittingedges from g
lique and g
ombine is (later) obtained by adding edges to g
olor, it suÆ
es to establish a 
 � 1lower bound on the 
lique number of g
olor and a 
 + 1 upper bound on the 
lique number of g
ombine. Tothis end we �x (again) the random shift r (whi
h spe
i�es both the for
ed independent sets of g
olor as wellas the Hamiltonian 
y
le gHam), and establish the desired bounds when the probabilities are taken only overthe k-wise independent graph g
lique.Towards proving the lower bound (on the 
lique number of g
olor), let X
lique and X
olor denote therandom variables that 
ount the number of (
�1)-
liques in g
lique and in g
olor, respe
tively. By Chebyshev'sinequality the probability of having no (
 � 1)-
liques in g
olor is upper bounded by var(X
olor)(E(X
olor))2 . Sin
e it isknown (see [9℄) that var(X
lique)(E(X
lique))2 is negligibly small (in logN), it suÆ
es to show thatvar(X
olor)(E(X
olor))2 = O� var(X
lique)(E(X
lique))2� : (2)We �rst argue that var(X
olor) � var(X
lique). Let T denote the 
olle
tion of all subsets of verti
es of
ardinality 
 � 1, and let T
olor � T denote only those subsets that 
ontain at most one vertex from ea
hfor
ed independent set; that is, T 
ontains exa
tly all \potential 
liques" of g
lique, while T
olor 
ontains onlythe \potential 
liques" of g
olor). For ea
h T 2 T, let X
liqueT and X
olorT denote the random variables thatindi
ate whether T indu
es a 
lique in g
lique and in g
olor, respe
tively. Sin
e, for any T; T 0 2 T
olor, it holdsthat T indu
es a 
lique in g
lique if and only if it indu
es a 
lique in g
olor, we get var(X
liqueT ) = var(X
olorT )
28



and 
ov(X
liqueT ; X
liqueT 0 ) = 
ov(X
olorT ; X
olorT 0 ). Sin
e all the terms in the expansionvar(X
olor) = XT2T
olor var(X
olorT ) + XT 6=T 02T
olor 
ov(X
olorT ; X
olorT 0 );also appear in the expansion of var(X
lique), and as all terms in in the expansion of var(X
lique) are non-negative, we get var(X
olor) � var(X
lique).Next we show that E(X
olor) = (1 � o(1)) � E(X
lique). First note that E(X
lique) = � N
�1� � 2�(
�12 ).On the other hand, the number of potential (
� 1)-
liques in g
olor is lower-bounded by L def= �bN
 

�1� � 

�1,be
ause there are bN
 
 for
ed independent sets S(i) of size 
, and a potential 
lique 
an be spe
i�ed by �rst
hoosing 
� 1 of these sets S(i), and then 
hoosing a single vertex from ea
h set. Next note that all relevantedges are determined only by the 4n2-wise independent graph g
lique, and so E(X
olor) � L � 2�(
�12 ). Sin
eL = �bN
 

�1�

�1 = (1 � o(1)) � � N
�1�, we get E(X
olor) � (1 � o(1)) � � N
�1� � 2�(
�12 ), whi
h in turn equals(1� o(1)) � E(X
lique). Having established Eq. (2), we 
on
lude that (with very high probability) the 
� 1lower bound on the 
lique number of g
olor holds.Our �nal task is to establish a 
+1 upper bound on the 
lique number of g
ombine; that is, to show thatfor 
0 def= 
(N)+2, with high probability g
ombine 
ontains no 
0-
liques. Let's �rst 
onsider g
olor. Re
all thatby [9℄, g
lique has a negligible probability (in logN) of having a 
0-
lique. As g
olor is obtained by omittingedges from g
lique the same holds for g
olor as well. Consequently, as g
ombine is obtained by adding a singleHamiltonian 
y
le gHam to g
olor, it suÆ
es to give a negligible upper-bound only on the probability thatg
ombine 
ontains a 
0-
lique that interse
ts gHam (in at least one edge). This is done by showing that theexpe
ted number of the latter 
liques is negligible (in logN).30We use the following terminology. Given a vertex-set V of size 
0 (i.e., a potential 
lique), we saythat a vertex w 2 V is a follower-vertex if its prede
essor in gHam is in V (i.e., if w � dr mod N is infv mod N : v 2 V g). Let Vk denote the 
olle
tion of all vertex-sets V of size 
0 that have exa
tly k follower-verti
es. We now bound Ek, the expe
ted number of 
liques indu
ed by vertex-sets V 2 Vk. For V 2 Vk,the number of edges of gHam that have both endpoints in V is k. Sin
e the rest of the edges of V are de
idedby the 4n2-wise independent graph g
lique, the probability that V indu
es a (
 � 1)-
lique in g
ombine is atmost 2�(
02 )+k. Next observe that jVkj � � N
0�k� � (
0 � 1)k, be
ause a set V 2 Vk is de�ned by the 
hoi
e of
0 � k non-follower and k (su

essive) 
hoi
es of followers (where the ith follower is sele
ted as following oneof the 
0 � k + (i� 1) � 
0 � 1 verti
es sele
ted so far). ThusEk � � N
0 � k� � (
0 � 1)k � 2�(
02 )+k = �N
0� � (N�1+o(1))k � 2�(
02 ) � �N
0� � 2�(
02 );where the latter expression is upper-bound by N�
(1) (see [9℄, while re
alling that 
0 = 
(N) + 2). If followsthat P
0�1k=1 Ek is negligible (in logN). This establishes the upper-bound on the 
lique-number of g
ombine,whi
h 
ompletes the proof of the entire theorem.High 
onne
tivity. One property of random graphs that was left out of Theorem 6.7 is having high(global) 
onne
tivity property: Indeed, in a random N -vertex graph, every pair of verti
es is 
onne
tedby at least (1 � o(1))N=2 vertex-disjoint paths. One interesting question is to provide an almost-truthfulpseudo-implementation of a uniformly distributed graph having this high (global) 
onne
tivity property.Unfortunately, at the time this resear
h was 
ondu
ted, we did not know how to do this.31 A se
ond bestthing may be to provide an almost-truthful pseudo-implementation of a random graph for whi
h almost allpairs of verti
es enjoy this \high 
onne
tivity" property.30Re
all that we �xed the random shift r (whi
h spe
i�es both the for
ed independent sets of g
olor as well asthe enfor
ed Hamiltonian path gHamr ), and so probabilities are taken only over the k-wise independent 
hoi
es of theedges of g
lique.31We mention that subsequent work by Alon and Nussboim [3℄ has provided the implementation we failed to a
hieve(i.e., an almost-truthful pseudo-implementation of a uniformly distributed graph having a high global 
onne
tivityproperty). 29



Theorem 6.8 For every positive polynomial p, assuming the existen
e of one-way fun
tions, there exists analmost-truthful pseudo-implementation by an ordinary ma
hine of the following spe
i�
ation. The spe
ifyingma
hine sele
ts a graph that is uniformly distributed among all N-vertex graphs for whi
h all but at mostan �(N) def= 1=p(log2N) fra
tion of the vertex pairs are 
onne
ted by at least (1� �(N)) �N=2 vertex-disjointpaths. Edge-queries are answered a

ordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation is inde-pendent of p, whi
h is only needed for the de�nition of the spe
i�
ation. In fa
t, in 
ontrast to all otherimplementations presented in this work, the implementation used in the proof of Theorem 6.8 is the straight-forward one: It uses a pseudorandom fun
tion to de�ne a graph in the obvious manner. The 
rux of the proofis in showing that this implementation is 
omputationally-indistinguishable from the foregoing spe
i�
ation.Proof: We use a pseudorandom fun
tion to de�ne a graphG = ([N ℄; E) in the straightforwardmanner, andanswer adja
en
y queries a

ordingly. This yields a pseudo-implementation of a truly random graph, whi
hin turn has the strong 
onne
tivity property (with overwhelmingly high probability). Fixing a polynomialp and � def= �(N) def= 1=p(log2N), we prove that this implementation is almost-truthful to the 
orrespondingspe
i�
ation. That is, we show that, with overwhelmingly high probability, all but at most an � fra
tion ofthe vertex pairs are 
onne
ted via (1 � �) � N=2 vertex-disjoint paths. We will show that if this is not the
ase, then we 
an distinguish a random graph (or fun
tion) from a pseudorandom one.Suppose towards the 
ontradi
tion that, with non-negligible probability, a pseudorandom graph violatesthe desired property. Fixing su
h a graph, G = ([N ℄; E), our hypothesis means that at least an � fra
tionof the vertex-pairs are 
onne
ted (in G) by fewer than (1� �) �N=2 vertex-disjoint paths. Consider su
h ageneri
 pair, denoted (u; v), and de�ne S0 def= �G(u)\�G(v), S1 def= �G(u) n�G(v), and S2 def= �G(v) n�G(u),where �G(w) def= fx2 [N ℄ : (w; x)2Eg. Note that if G were a random graph then we would expe
t to havejS0j � jS1j � jS2j � N=4. Furthermore, we would expe
t to see a large (i.e., size � N=4) mat
hing in theindu
ed bipartite graph B = ((S1; S2); E \ (S1�S2)); that is, the bipartite graph having S1 on one side andS2 on the other. So, the intuitive idea is to test that both these 
onditions are satis�ed in the pseudorandomgraph. If they do then u and v are \suÆ
iently 
onne
ted". Thus, the hypothesis that an � fra
tion of thevertex-pairs are no \suÆ
iently 
onne
ted" implies a distinguisher (by sele
ting vertex-pairs at random andtesting the above two properties). The problem with the foregoing outline is that it is not 
lear how toeÆ
iently test that the aforementioned bipartite graph B has a suÆ
iently large mat
hing.To allow an eÆ
ient test (and thus an eÆ
ient distinguisher), we 
onsider a more stringent 
ondition(whi
h would still hold in a truly random graph). We 
onsider a �xed partition of [N ℄ into T def= N=mparts, (P1; :::; PT ), su
h that jPij = m = poly(n=�), where n = log2N . (For example, we may use Pi =f(i� 1)m+ j : j = 1; :::;mg.) If G were a random graph then, with overwhelmingly high probability (i.e., atleast 1� exp(�m1=O(1)) > 1� exp(�n2)), we would have jS0 \ Pij = (m=4)�m2=3 for all the i's. Similarlyfor S1 and S2. Furthermore, with probability at least 1� exp(�n2), ea
h of the bipartite graphs Bi indu
edby (Pi\S1; Pi\S2) would have a mat
hing of size at least (m=4)�m2=3. The key point is that we 
an a�ordto test the size of the maximum mat
hing in su
h a bipartite graph, be
ause it has 2m = poly(n) verti
es.Let us wrap-up things. If a pseudorandom graph does not have the desired property then at least �fra
tion of its vertex-pairs are 
onne
ted by less than (1 � �)N=2 vertex-disjoint paths. Thus, samplingO(1=�) vertex-pairs, we hit su
h a pair with 
onstant probability. For su
h a vertex-pair, we 
onsider thesets Si;0 def= Pi \ S0, Si;1 def= Pi \ S1 and Si;2 def= Pi \ S2, for i = 1; :::; T . It must be the 
ase that either �=2fra
tion of the S0;i's are of size less than (1� (�=2)) � (m=4) or that �=2 fra
tion of the bipartite subgraphs(i.e., Bi's) indu
ed by the pairs (S1;i; S2;i) have no mat
hing of size (1�(�=2)) �(m=4), be
ause otherwise thisvertex-pair is suÆ
iently 
onne
ted merely by virtue of these S0;i's and the large mat
hings in the Bi's.32We use m > (8=�)3 so to guarantee that (m=4)�m2=3 > (1� (�=2))(m=4), whi
h implies that (for at least an�=2 fra
tion of the i's) some quantity (i.e., either jS0;ij or the maximum mat
hing in Bi) is stri
tly larger ina random graph than in a pseudorandom graph. Now, sampling O(1=�) of the i's, we de
lare the graph to be32That is, we get at least ((1 � (�=2)) � T ) � ((1� (�=2)) � (m=4)) > (1 � �)(N=4) paths going through S0, and thesame for paths that use the maximum mat
hings in the various Bi's.30



random if all the 
orresponding S0;i's have size at least (m=4)�m2=3 and if all the 
orresponding bipartitegraphs Bi's have a maximummat
hing of size at least (m=4)�m2=3. Thus, we distinguish a random fun
tionfrom a pseudorandom fun
tion, in 
ontradi
tion to the de�nition of the latter. The theorem follows.Maximum Mat
hing in most indu
ed bipartite graphs: The proof of Theorem 6.8 
an beadapted to prove the following:Theorem 6.9 For every positive polynomial p, assuming the existen
e of one-way fun
tions, there existsan almost-truthful pseudo-implementation by an ordinary ma
hine of a uniformly sele
ted N-vertex graphthat satis�es the following property: For all but at most an �(N) def= 1=p(log2N) fra
tion of the disjointset-pairs (L;R) � [N ℄ � [N ℄ it holds that the bipartite graph indu
ed by (L;R) has a mat
hing of size(1� �(N)) �min(jLj; jRj).As in Theorem 6.8, the implementation is straightforward, and the issue is analyzing it.Proof: Observe that almost all relevant set-pairs satisfy jLj � jRj � N=3, and so we fo
us on these pairs.It 
an still be shown that in a random graph, with overwhelmingly high probability, all the 
orrespondingbipartite graphs (indu
ed by pairs (L;R) as above) have a suÆ
iently large mat
hing. However, this willnot hold if we only 
onsider mat
hings that 
onform with the small bipartite graphs Bi's, where the Bi's areas in the proof of Theorem 6.8. Still, with overwhelmingly high probability, almost all the bipartite graphsindu
ed by pairs (L;R) as above will have a suÆ
iently large mat
hing that does 
onform with the smallbipartite graphs Bi's. Thus, for � = �(N), the distinguisher just sele
ts O(1=�) di�erent i's, and for ea
hsu
h i tests the size of the maximal mat
hing for O(1=�) random (L;R)'s. Needless to say, the distinguisherdoes not sele
t su
h huge sets, but rather sele
ts their proje
tion on Pi. That is, for ea
h su
h i (and ea
hattempt), the distinguisher sele
ts a random pair of disjoint sets (Li; Ri) � Pi � Pi.Digest: An interesting aspe
t regarding the proofs of Theorems 6.8 and 6.9 is that in these 
ases, withoverwhelmingly high probability, a random obje
t in the spe
i�
ation (S; n) has stronger properties thatthose of arbitrary obje
ts in (S; n). This fa
t makes it easier to distinguish a random obje
t in (S; n) froman obje
t not in (S; n) (than to distinguish an arbitrary obje
t in (S; n) from an obje
t not in (S; n)). Forexample, with overwhelmingly high probability, a random graph has larger 
onne
tivity than required inTheorem 6.8 and this 
onne
tivity is a
hieved via very short paths (rather than arbitrary ones). This fa
tenables to distinguish (S; n) from an implementation that la
ks suÆ
iently large 
onne
tivity.A di�erent perspe
tive: The proofs of Theorems 6.8 and 6.9 a
tually establish that, for the 
or-responding spe
i�
ations, the almost-truthfulness of an implementation follows from its 
omputational in-distinguishability (w.r.t the spe
i�
ation).33 An interesting resear
h proje
t is to 
hara
terize the 
lass ofspe
i�
ations for whi
h the foregoing impli
ation holds; that is, 
hara
terize the 
lass of spe
i�
ations thatsatisfy Condition 1 in the following Theorem 6.10. Clearly, any pseudo-implementation of su
h a spe
i�-
ation is almost-truthful, and Theorem 6.10 just asserts that having a pseudo-implementation by an ora
lema
hine suÆ
es (provided one-way fun
tions exist):Theorem 6.10 Suppose that S is a spe
i�
ation for whi
h the following two 
onditions hold.1. Every pseudo-implementation of S is almost-truthful to S. In fa
t, it suÆ
es that this 
ondition holdswith respe
t to implementations by an ordinary probabilisti
 polynomial-time ma
hines.2. S has an almost-truthful pseudo-implementation by an ora
le ma
hine that has a

ess to a randomora
le.33That is, these proofs establish the �rst 
ondition in the following Theorem 6.10, whereas the se
ond 
ondition isestablished by the straightforward 
onstru
tion of a random graph.31



Then, assuming the existen
e of one-way fun
tion, S has an almost-truthful pseudo-implementation by anordinary probabilisti
 polynomial-time ma
hine.Proof: Let I be the implementation guaranteed by Condition 2, and let I 0 be the implementation derivedfrom I by repla
ing the random ora
le with a pseudorandom fun
tion. Then, I 0 is a pseudo-implementationof S. Using Condition 1, it follows that I 0 is almost-truthful to S.7 Supporting Complex Queries regarding Random GraphsIn this se
tion we provide truthful implementations of random graph while supporting 
omplex queries, inaddition to the standard adja
en
y queries. Spe
i�
ally, we 
onsider three types of 
omplex but naturalqueries (see Proposition 7.1, and Theorems 7.2 and 7.3, respe
tively). The graph model is as in Se
tion 6,and as in Se
tion 6.1 we present our (truthful) implementations in terms of ora
le ma
hines. Let us startwith a simple example.Proposition 7.1 (distan
e queries and shortest path queries): There exists a truthful 
lose-implementationby an ora
le ma
hine of the following spe
i�
ation. The spe
ifying ma
hine sele
ts uniformly an N-vertexgraph and answers distan
e queries regarding any pair of verti
es. Furthermore, there exists a truthful 
lose-implementation of the related spe
i�
ation that returns a uniformly distributed path of shortest length.Proof: Consider the property of having diameter at most 2. This property satis�es Condition C (e.g., by anN -vertex star). Thus, using Theorem 6.2, we obtain a 
lose-implementation of a random graph, while ourimplementation always produ
es a graph having diameter at most 2 (or rather exa
tly 2). Now, we answerthe query (u; v) by 1 if the edge (u; v) is in the graph, and by 2 otherwise. For the furthermore-part, weadd pN su
h stars, and serve queries regarding paths of length 2 by using the 
enter of one of these stars(whi
h is sele
ted by applying an independent random fun
tion to the query pair).The foregoing example is not very impressive be
ause the user 
ould have served the distan
e-queriesin the same way (by only using adja
en
y queries to the standard implementation of a random graph).(A random shortest path 
ould have also been found by using the standard implementation.) The onlyadvantage of Proposition 7.1 is that it provides a truthful implementation of the distan
e-queries (ratherthan merely an almost-truthful one obtained via the trivial implementation). A more impressive examplefollows.Serving log-sized 
lique queries. Re
all that a random N -vertex graph is likely to have many(log2N)-vertex 
liques that in
lude ea
h of the verti
es of the graph, whereas it seems hard to �nd su
h
liques (where in hard we mean unlikely to a
hieve in time poly(logN), and not merely in time poly(N)).Below we provide an implementation of a servi
e that answers queries of the form v 2 [N ℄ with a log-sized
lique 
ontaining the vertex v.Theorem 7.2 There exists a truthful 
lose-implementation of the following spe
i�
ation. The spe
ifyingma
hine sele
ts uniformly an N-vertex graph and, in addition to the standard adja
en
y queries, answers(Log-Clique) queries of the form v by providing a random dlog2Ne-vertex 
lique that 
ontains v (and a spe
ialsymbol if no su
h 
lique exists).Proof: Let ` = dlog2Ne � 1 and 
onsider a simple partition of [N ℄ to T = dN=`e subsets, S1; :::; ST , su
hthat jSij = ` for i = 1; :::; T � 1 (e.g., Si = f(i� 1)`+ j : j = 1; :::; `g). Use the ora
le to 
losely-implementa random graph, G0 = ([N ℄; E0), as well as a random onto fun
tion34 f : [N ℄! [T ℄ and a random invertiblepermutation � : [N ℄! [N ℄ (as in Theorem 2.13). The graph we implement will 
onsist of the union of G0with N 
liques, where the i-th 
lique resides on the vertex set fig [ f�(j) : j 2 Sf(i)g. The Log-Cliquequeries are served in the obvious manner; that is, query v is answered with fvg[ f�(u) : u 2 Sf(v)g. Indeed,34Su
h a fun
tion 
an be obtained by 
ombining the identity fun
tion over [T ℄ with a random fun
tion f 0 :fT + 1; :::; Ng! [T ℄, and randomly permuting the domain of the resulting fun
tion.32



for simpli
ity, we ignore the unlikely 
ase that v 2 f�(u) : u 2 Sf(v)g; this 
an be redeemed by modifyingthe implementation as dis
ussed at the end of the proof.Implementing the adja
en
y queries is slightly more tri
ky. The query (u; v) is answered by 1 if and onlyif either (u; v) 2 E or u and v reside in one of the N 's 
liques we added. The latter 
ase may happen if andonly if one of the following sub
ases holds:1. Either u 2 f�(w) : w 2 Sf(v)g or v 2 f�(w) : w 2 Sf(u)g; that is, either ��1(u) 2 Sf(v) or ��1(v) 2Sf(u). Ea
h of these 
onditions is easy to 
he
k by invoking f and ��1.2. There exists an x su
h that u; v 2 f�(w) : w 2 Sf(x)g, whi
h means that ��1(u); ��1(v) 2 Sf(x).Equivalently, re
alling that f is onto, we may 
he
k whether there exists a y su
h that ��1(u); ��1(v) 2Sy, whi
h in turn is easy to determine using the simple stru
ture of the sets Sy's (i.e., we merely testwhether or not d��1(u)=`e = d��1(v)=`e).Thus, our implementation is truthful to the spe
i�
ation. To see that it is a 
lose-implementation of thespe
i�
ation, observe �rst that it is unlikely that two di�erent Log-Clique queries are \served" by the same
lique (be
ause this means forming a 
ollision under f). Conditioned on this rare event not o

urring, theLog-Clique queries are served by disjoint random 
liques, whi
h is what would essentially happen in a randomgraph (provided that at most poly(logN) queries are made). Finally, it is unlikely that the answers to theadja
en
y queries that are not determined by prior Log-Clique queries be a�e
ted by the sparse sub-graph(of N small 
liques) that we inserted under a random permutation.Finally, we address the problem ignored above (i.e., the rare 
ase when the query v is in the 
orrespondingset f�(u) : u 2 Sf(v)g). We modify the foregoing implementation by setting ` = dlog2Ne (rather than` = dlog2Ne � 1), and using 
orresponding sets of size `. Note that, under this modi�
ation, for mostverti
es v, the set fvg[f�(u) : u 2 Sf(v)g has size `+1 (whereas for few verti
es v this set has size `). Thus,in the modi�ed implementation, a query v is answered with a random `-subset of fvg [ f�(u) : u 2 Sf(v)gthat 
ontains v (i.e., we use another random fun
tion g : [N ℄ ! [`℄ that indi
ates whi
h element of f�(u) :u 2 Sf(v)g to drop in the 
ase that v 62 f�(u) : u 2 Sf(v)g). The theorem follows.Another example: queries regarding a �xed Hamiltonian 
y
le. We 
onsider the imple-mentation of a random graph along with answering queries regarding a �xed random Hamiltonian 
y
le init, where su
h a 
y
le exists with overwhelmingly high probability. Spe
i�
ally, we 
onsider queries of theform what is the distan
e between two verti
es on the 
y
le.Theorem 7.3 There exists a truthful 
lose-implementation of the following spe
i�
ation. The spe
ifyingma
hine sele
ts uniformly an N-vertex Hamiltonian graph G, and uniformly sele
ts a (dire
ted) Hamiltonian
y
le in G, whi
h in turn de�nes a 
y
li
 permutation � : [N ℄! [N ℄. In addition to the standard adja
en
yqueries, the spe
i�
ation answers travel queries of the form (trav; v; t) by providing �t(v), and distan
equeries of the form (dist; v; w) by providing the smallest t � 0 su
h that w = �t(v).We stress that the implementation must answer ea
h possible query in time polynomial in the vertex name(whi
h may be logarithmi
 in the distan
e t).Proof: It will be 
onvenient to use the vertex set V = f0; 1; :::; N�1g (instead of [N ℄). We use the randomora
le to 
losely-implement a random graph G0 = (V;E0) as well as a random permutation � : V !V alongwith its inverse. We de�ne a graph G = (V;E) by E def= E0 [ C, where C = f(�(i); �(i + 1 mod N)) : i2V g, and use C to answer the spe
ial (Hamiltonian) queries. That is, we answer the query (trav; v; t) by�(��1(v)+ t mod N), and the query (dist; v; w) by ��1(w)���1(v) mod N . The standard adja
en
y query(u; v) is answered by 1 if and only if either (u; v) 2 E or ��1(u) � ��1(v)�1 (mod N). (Indeed, the above
onstru
tion is reminis
ent of the \fast-forward" 
onstru
tion of [38℄ (stated in Theorem 2.14).)To see that the above truthful implementation is statisti
ally-indistinguishable from the spe
i�
ation,we use the following three observations: 33



1. If a (labeled) graph appears in the spe
i�
ation (resp., in the implementation) then all is (labeled)isomorphi
 
opies appear in it. Consequently, for any �xed Hamiltonian 
y
le, the set of Hamiltoniangraphs in whi
h this 
y
le has been sele
ted in the spe
i�
ation (resp., in the implementation) isisomorphi
 to the set of Hamiltonian graphs in whi
h any other �xed Hamiltonian 
y
le has beensele
ted. Thus, we may 
onsider the 
onditional distribution indu
ed on the spe
i�
ation (resp., onthe implementation) by �xing any su
h Hamiltonian 
y
le.2. Conditioned on any �xed Hamiltonian 
y
le being sele
ted in the implementation, the rest of the graphsele
ted by the implementation is truly random.3. Conditioned on any �xed Hamiltonian 
y
le being sele
ted in the spe
i�
ation, the rest of the graphsele
ted by the spe
i�
ation is indistinguishable from a random graph. The proof of this assertion issimilar to the proof of Lemma 6.3. The key point is proving that, 
onditioned on a spe
i�
 Hamiltonian
y
le being sele
ted, the (rest of the) graph sele
ted by the spe
i�
ation has suÆ
iently high entropy.Note that here we refer to the entropy of the remaining �N2 ��N edges, and that the vertex pairs arenot all identi
al but rather fall into 
ategories depending on their distan
e as measured on the sele
tedHamiltonian 
y
le. We need to show that a random vertex-pair in ea
h of these 
ategories has asuÆ
iently high (
onditional) entropy. Thus, this observation requires a 
areful proof to be presentednext.Indeed, the foregoing dis
ussion suggests that we may give the entire Hamiltonian 
y
le to the ma
hinethat inspe
ts the rest of the graph (in an attempt to distinguish the implementation from the spe
i�
ation).Thus, we assume, without loss of generality, that this ma
hine makes no adja
en
y queries regarding edgesthat parti
ipate in the 
y
le. The �rst observation says that we may 
onsider any �xed 
y
le, and these
ond observation says that a ma
hine that inspe
ts the rest of the implementation (i.e., the graph that is
onstru
ted by the implementation) sees truly random edges. The third observation, proved below, assertsthat making a few queries to the rest of the 
onditional spa
e of the spe
i�
ation, yields answers that alsolook random.We 
onsider the 
onditional distribution of the rest of the graph sele
ted by the spe
i�
ation, given thata spe
i�
 Hamiltonian 
y
le was sele
ted. (Indeed, we ignore the negligible (in N) probability that the graphsele
ted by the spe
i�
ation is not Hamiltonian.) Essentially, the argument pro
eeds as follows. First, wenote that (by Bayes' Law) the 
onditional probability that a spe
i�
 graph is sele
ted is inversely proportionalto the number of Hamiltonian 
y
les in that graph. Next, using known results on the 
on
entration of thelatter number in random graphs (see, e.g., [28, Thm. 4℄), we infer that in all but an N�2 fra
tion of theN -vertex graphs the number of Hamiltonian 
y
les is at least an exp(�2(lnN)1=2) > N�1 fra
tion of itsexpe
ted number. Thus, we 
on
lude that the 
onditional entropy of the sele
ted graph (
onditioned on thesele
ted 
y
le) is �N2 ��N � o(N). Details follow.For T = �N2 �, let X = X1 � � �XT denote the graph sele
ted by the spe
i�
ation, and Y (G) denote theHamiltonian 
y
le sele
ted (by the spe
i�
ation) given that the graphG was sele
ted. Let #HC(G) denote thenumber of Hamiltonian 
y
les in the graph G, where 
y
li
 shifts and transpositions of 
y
les are 
ountedas if they were di�erent 
y
les (and so the number of Hamiltonian 
y
les in an N -
lique is N !). Thus,E(#HC(X)) = 2�N � (N !). An N -vertex graph G is 
alled good if #HC(G) > 2�N � ((N � 1)!), and G denotesthe set of good N -vertex graphs. For a Hamiltonian 
y
le C, we denote by G(C) the set of graphs in G that
ontain the 
y
le C. Then, it holds thatH(X jY (X) = C) � XG2G(C)Pr[X = GjY (X) = C℄ � log2(1=Pr[X = GjY (X) = C℄)� (1�N�2) � minG2G(C)f� log2(Pr[X = GjY (X) = C℄)g= (1�N�2) � minG2G(C)8<: log2(Pr[Y (X) = C℄)� log2(Pr[Y (X) = CjX = G℄)� log2(Pr[X = G℄) 9=;= (1�N�2) � minG2G(C)�log2(1=N !) + log2(#HC(G)) +�N2��34



Using the fa
t that G is good (i.e., G 2 G(C)), it follows that log2(#HC(G)) > log2(2�N � ((N � 1)!)), whi
hin turn equals log2(N !)�N � log2N . We thus get,H(X jY (X) = C) > (1�N�2) ���N2��N � log2N� (3)Re
all that the 
ondition Y (X) = C determines N vertex-pairs in X , and so the entropy of the remainingT 0 = �N2 ��N pairs is at least T 0�log2N . Partitioning these (undetermined) pairs a

ording to their distan
esin C, we 
on
lude that the entropy of the N=2 pairs in ea
h su
h distan
e-
lass is at least (N=2) � log2N .(Indeed, the distan
e 
lass of undetermined pairs do not 
ontain distan
e 1 (or N � 1), whi
h 
orrespond tothe for
ed 
y
le-edges.) We stress that our analysis holds even if the ma
hine inspe
ting the graph is given theHamiltonian 
y
le for free. This ma
hine may sele
t the indu
ed subgraph that it wants to inspe
t, but thissele
tion is determined up to a shifting of all verti
es (i.e., a rotation of the 
y
le). This randomization suÆ
esfor 
on
luding that the expe
ted entropy of the inspe
ted subgraph (whi
h may not in
lude 
y
le edges) is atleast (1�((2 log2N)=N))��t2�, where t is the number of verti
es in the subgraph. As in the proof of Lemma 6.3,this implies that the inspe
ted subgraph is at distan
e at most O(q((log2N)=N) � �t2�) < t � N�(1�o(1))=2from a random t-vertex graph. The theorem follows.8 Random Bounded-Degree Graphs and Global PropertiesIn this se
tion we 
onsider huge bounded-degree simple graphs, where the verti
es are labeled (and there areno self-loops or parallel edges). We 
onsider spe
i�
ations of various distributions over su
h graphs, wherein all 
ases the spe
ifying ma
hine responds to neighborhood queries (i.e., the queries 
orrespond to verti
esand the answer to query v is the list of all verti
es that are adja
ent to vertex v).The �rst issue that arises is whether we 
an implement a random bounded-degree graph or alternativelya random regular graph. Things would have been quite simple if we were allowing also non-simple graphs(i.e., having self-loops and parallel edges). For example, a random d-regular N -vertex non-simple graph 
anbe implemented by pairing at random the dN possible \ports" of the N verti
es. We 
an avoid self-loops(but not parallel edges) by generating the graph as a union of d perfe
t mat
hings of the elements in [N ℄. Inboth 
ases, we would get a 
lose-implementation of a random d-regularN -vertex (simple) graph, but paralleledges will still appear with 
onstant probability (and thus this implementation is not truthful w.r.t simplegraphs). In order to obtain a random simple d-regular N -vertex graph, we need to take an alternative route.The key observation underlying this alternative is 
aptured by the following lemma:Lemma 8.1 For d > 2, let G = ([N ℄; E) be any d-regular N-vertex graph having girth g. Let G0 be obtainedby randomly permuting the verti
es of G (and presenting the in
iden
e lists in some 
anoni
al order). Then,any ma
hine M that queries the graph for the neighborhoods of q verti
es of its 
hoi
e, 
annot distinguishG0 from a random d-regular N-vertex (simple) graph, ex
ept than with probability O(q2=(d � 1)(g�1)=2). Inthe 
ase d = 2 and q < g � 1, the probability bound 
an be improved to O(q2=N).Re
all that the girth of a graph G is the length of the shortest simple 
y
le in G, and that (d�1)(g�2)=2 < Nalways holds (for a d-regular N -vertex graph of girth g).35 Note that Lemma 8.1 is quite tight: For example,in the 
ase d = 2, for g � pN , the N -vertex graph G may 
onsist of a 
olle
tion of g-
y
les, and taking awalk of length g in G0 (by making g � 1 queries) will always dete
t a 
y
le G0, whi
h allows to distinguishG0 from a random 2-regular N -vertex (in whi
h the expe
ted length of a 
y
le going through any vertex is
(N)). In the 
ase d � 3, the graph G may 
onsist of 
onne
ted 
omponents, ea
h of size (d�1)g � N , andtaking a random walk of length (d�1)g=2 in G0 is likely to visit some vertex twi
e, whi
h allows to distinguishG0 from a random d-regular N -vertex (in whi
h this event may o

ur only after pN steps). Below, we willuse Lemma 8.1 with the following setting of parameters.35The girth upper-bound (i.e., g � 2 + 2 logd�1N) follows by 
onsidering the (vertex disjoint) paths of length(g � 2)=2 starting at any �xed vertex. The existen
e of d-regular N -vertex graphs of girth logd�1N was shown(non-
onstru
tively) in [13℄. 35



Corollary 8.2 For �xed d > 2 and g(N) = !(log logN), let G = ([N ℄; E) be any d-regular N-vertex graphhaving girth g(N). Let G0 be obtained from G as in Lemma 8.1. Then, any ma
hine M that queries the graphfor the neighborhoods of poly(logN) verti
es of its 
hoi
e, 
annot distinguish G0 from a random d-regularN-vertex (simple) graph, ex
ept than with negligible in logN probability. The 
laim holds also in the 
asethat d = 2 and g(N) = (logN)!(1).For d > 2 the girth 
an be at most logarithmi
, and expli
it 
onstru
tions with logarithmi
 girth are known forall d � 3 and a dense set of N 's (whi
h is typi
ally related to the set of prime numbers; see, e.g., [35, 27, 33℄).For d = 2, we may just take the N -
y
le or any N -vertex graph 
onsisting of a 
olle
tion of suÆ
iently large
y
les.Proof of Lemma 8.1: We bound the distinguishing gap of an ora
le ma
hine (whi
h queries either arandom d-regular N -vertex graph or the random graph G0) as a fun
tion of the number of queries it makes.Re
all that G0 is a random isomorphi
 
opy of G, whereas a random d-regularN -vertex graph may be viewedas a random isomorphi
 
opy of another random d-regular N -vertex graph. Thus, intuitively, the spe
i�
labels of queried verti
es and the spe
i�
 labels of the 
orresponding answers are totally irrelevant: the onlything that matters is whether or not two labels are equal.36 Equality (between labels) 
an o

ur in two 
ases.The uninteresting 
ase is when the ma
hine queries a vertex u that is a neighbor of a previously-queriedvertex v and the answer 
ontains (of 
ourse) the label of vertex v. (This is uninteresting be
ause the ma
hine,having queried v before, already knows that v is a neighbor of u.) The interesting 
ase is that the ma
hinequeries a vertex and the answer 
ontains the label of a vertex v that was not queried before but has alreadyappeared in the answer to a di�erent query. An important observation is that, as long as no interestingevent o

urs, the ma
hine 
annot distinguish the two distributions (be
ause in both 
ases it knows the samesubgraph, whi
h is a forest). Thus, the analysis amounts to bounding the probability that an interestingevent o

urs, when we make q queries.Let us 
onsider �rst what happens when we query a random d-regular N -vertex (simple) graph. Wemay think of an imaginary pro
ess that 
onstru
ts the graph on-the-
y su
h that the neighbors of vertexv are sele
ted only in response to the query v (
f, e.g., the proof of [22, Thm. 7.1℄). This sele
tion is doneat random a

ording to the 
onditional distribution that is 
onsistent with the partial graph determinedso far. It is easy to see that the probability that an interesting event o

urs in the i-th query is at most(i� 1)d=(dN � (i� 1)d), and so the probability for su
h an event o

urring in q queries is at most q2=N .The more 
hallenging part is to analysis what happens when we query the graph G. (Re
all that wehave already redu
ed the analysis to a model in whi
h we ignore the spe
i�
 labels, but rather only 
omparethem, and analogously we 
annot query a spe
i�
 new vertex but rather only query either a random newvertex or a vertex that has appeared in some answer.)37 To illustrate the issues at hand, 
onsider �rst the
ase that d = 2 (where G 
onsists of a set of 
y
les, ea
h of length at least g). In this 
ase, we have the optionof either to pro
eed along a path that is part of a 
y
le (i.e., query for the neighbors of the an end-pointof a 
urrently known path) or to query for a random new vertex. Assuming that we make less than g � 1queries, we 
an never 
ause an interesting event by going along a path (be
ause an interesting event mayo

ur in this 
ase only if we go around the entire 
y
le, whi
h requires at least g�1 queries). The only otherpossibility to en
ounter an interesting event is by having two paths (possibly ea
h of length 1) 
ollide. Butthe probability for su
h an event is bounded by q2=N , where q is the number of queries that we make.3836Essentially, the ma
hine 
annot determine whi
h vertex it queries; all that it a
tually de
ides is whether to querya spe
i�
 vertex that has appeared in previous answers or to query a new vertex (whi
h may be viewed as randomlysele
ted). (Formally, a spe
i�
 new label indi
ated by the querying ma
hine is mapped by the random permutation toa new random vertex.) Similarly, the labels of the verti
es given as answer do not matter, all that matters is whetheror not these verti
es have appeared in the answers to previous queries (or as previous queries). (Again, formally, thenew verti
es supplied in the answer are assigned, by the random permutation, new random labels.)37Thus, we may 
onsider querying G itself (rather than querying G0).38Using a union bound over all query pairs, we bound the probability that the ith query 
ollides with the j-thquery. Ea
h of these two queries is obtained by a path of �xed length starting from a uniformly and distributedvertex (whi
h was new at the time). Thus, these two queries are almost uniformly and independently distributed (in[N ℄), and the probability that they are neighbors is at most 1=(N � q).36



We now turn to the more interesting 
ase of d > 2. As in 
ase d = 2, taking a walk of length g � 2from any vertex will not yield anything useful. However, in this 
ase, we may a�ord to take longer walks(be
ause q may be mu
h larger than g). Still, we will prove that, in this 
ase, with probability at least1� q2 � (d�1)�(g�3)=2, the un
overed subgraph is a forest. The proof relies both on the girth lower-bound ofG and on a suÆ
iently-good rapid-mixing property (whi
h follows from the girth lower-bound). We boundthe probability that a 
y
le is 
losed in the 
urrent forest by the probability that two verti
es in the forestare 
onne
ted by a non-tree edge, where the probability is taken over the possible random verti
es returnedin response to a new-vertex request and over the random order in whi
h neighbors of a query-vertex areprovided. Indeed, a key observation is that when we query a vertex that has appeared in some answer, wemay think that this vertex is sele
ted at random among the unqueried verti
es appearing in that answer.39Taking a union bound on all possible �q2� vertex pairs (i.e., those in the forest), we bound the probabilitythat either two ends of a dis
overed path (in one tree) or two verti
es in di�erent 
urrent trees are 
onne
tedby an edge. (In both 
ases, these verti
es are a
tually leaves.)We 
onsider ea
h of these two 
ases separately: In the latter 
ase (i.e., leaves in di�erent trees), the twoverti
es (whi
h are not 
onne
ted in the 
urrently un
overed subgraph) are uniformly distributed in G, andthus the probability that they are 
onne
ted is essentially d=N . The situation here is essentially as analyzedin the 
ase d = 2: we have two paths, ea
h initiated at a random (new at the time) vertex, leading to theleaves in question, and thus the latter are almost uniformly and independently distributed.Turning to the former 
ase (i.e., endpoints of a path in a tree), we use the girth hypothesis to infer thatthis path must have length at least g � 1 (or else its endpoint are de�nitely not 
onne
ted). However, thema
hine that dis
overed this path a
tually took a random walk (possibly to two dire
tions) starting fromone vertex, be
ause we may assume that this is the �rst time in whi
h two verti
es in the 
urrent forestare 
onne
ted by a 
urrent non-tree edge. We also use the hypothesis that our exploration of the path (i.e.,queries regarding verti
es that appeared in previous answers) is a
tually random (i.e., we e�e
tively extendthe 
urrent end-point of the path by a uniformly sele
ted neighbor of that end-point). Now, the end-point ofsu
h a path 
annot hit any spe
i�
 vertex with probability greater than � def= (d� 1)�(g�1)=2, be
ause after(g� 1)=2 steps the end-point must be uniformly distributed over the (d� 1)(g�1)=2 leaves of the tree rootedat the start vertex (and the max-norm of a distribution 
annot in
rease by additional random steps). Fixingthe 
losest (to the start vertex) end-point, it follows that the probability that the other end-point hits theneighbor-set of the �rst end-point is at most d � � = O((d� 1)�(g�1)=2). To summarize, the probability thatan interesting event o

urs while making q queries is O(q2 � (d� 1)�(g�1)=2). The lemma follows.Implementing random bounded-degree simple graphs: We now turn ba
k to the initial prob-lem of implementing random bounded-degree (resp., regular) simple graphs.Proposition 8.3 For every 
onstant d > 2, there exist truthful 
lose-implementations of the following twospe
i�
ations:1. A random graph of maximum degree d: For size parameter N , the spe
i�
ation sele
ts uniformly agraph G among the set of N-vertex simple graphs having maximum degree d. On query v 2 [N ℄, thema
hine answers with the list of neighbors of vertex v in G.2. A random d-regular graph: For size parameter N , the spe
i�
ation sele
ts uniformly a graph G amongthe set of N-vertex d-regular simple graphs, and answers queries as in Part 1.Proof: We start with Part 2. This part should follow by Corollary 8.2, provided that we 
an implement arandom isomorphi
 
opy of a d-regular N -vertex graph of suÆ
iently large girth. This requires an expli
it39That is, the 
orresponden
e between the new pla
e-holders in the answer and the new real neighbors of thequeried vertex is random. Formally, we may de�ne the intera
tion with the graph su
h that at ea
h point only theinternal nodes of the 
urrently revealed forest are assigned a serial number. Possible queries may be either for a newrandom vertex (assigned the next serial number and typi
ally initiating a new tree in the forest) or for a randomleaf of a spe
i�
 internal vertex (whi
h typi
ally extends the 
orresponding tree and turns one of these leaves to aninternal vertex with d� 1 new leaves). 37




onstru
tion of the latter graph as well as a 
lose-implementation of a random permutation and its inverse(as provided by Theorem 2.13). Spe
i�
ally, let GN be the �xed graph, and � the random relabeling ofits verti
es. We answer query v, by �rst determining the preimage of v in GN (i.e., ��1(v)), next �nd itsneighbors (using the expli
itness of the 
onstru
tion of GN ), and �nally return their images under �. Indeed,this pro
ess depends on the ability to provide expli
it 
onstru
tions of adequate d-regular N -vertex graphs(i.e., GN 's). This is trivial in the 
ase d = 2 (e.g., by the N -
y
le). For other values of d � 3, adequate
onstru
tions 
an be obtained from [35, 27, 33, 30℄ (possibly by dropping several (easily identi�ed) perfe
tmat
hings from the graph). These 
onstru
tion apply for a dense set of N 's (whi
h are typi
ally of the formp(p� 1)2 for any prime p), but we 
an obtain other sizes by 
ombining many su
h graphs (note that we arenot even required to give a 
onne
ted graph, let alone a good expander).We now turn to Part 1. We �rst note that most graphs of maximum degree d have (1�o(1)) �dN=2 edges.Furthermore, for T = �(pdN) and D = O(pdN), all but a negligible (in N) fra
tion of the graphs have(dN=2)� T �D edges. Thus, a random N -vertex graph of degree bound d is statisti
ally-indistinguishablefrom a random d-regular graph with N verti
es, be
ause the former may be viewed as resulting from omittinga small number (i.e., T +D = O(pN)) of edges from a random d-regular graph with N verti
es.A general result: The proof of Proposition 8.3 a
tually yields a truthful 
lose-implementation of severalother spe
i�
ations. Consider, for example, the generation of random 
onne
ted d-regular graphs, for d � 3.Sin
e the expli
it 
onstru
tions of d-regular graphs are 
onne
ted (and their modi�
ations 
an easily made
onne
ted), applying Corollary 8.2 will do. (Indeed, we also use the fa
t that, with overwhelmingly highprobability, a random d-regular graph is 
onne
ted.) More generally, we have:Theorem 8.4 Let d � 2 be �xed and � be a graph property that satis�es the following two 
onditions:1. The probability that Property � is not satis�ed by a uniformly 
hosen d-regular N-vertex graph isnegligible in logN .2. Property � is satis�ed by a family of strongly-
onstru
tible d-regular N-vertex graphs having girth!(log logN) if d > 2 and girth (logN)!(1) if d = 2.Then, there exists a truthful 
lose-implementation (by an ora
le ma
hine) of a uniformly distributed d-regularN-vertex graph that satis�es property �.We note that Condition 1 may be relaxed. It suÆ
es to require that a random d-regular graph and arandom d-regular graph having Property � are statisti
ally-indistinguishable (by a ma
hine that makes poly-logarithmi
allymany queries). In parti
ular, a random 2-regular graph and a uniformly distributed 
onne
ted2-regular graph are statisti
ally-indistinguishable, and thus we 
an provide a truthful 
lose-implementationof the latter spe
i�
ation. We mention that Theorem 8.4 yields truthful 
lose-implementations to randomd-regular graphs that are required to be Hamiltonian, Bipartite, have logarithmi
 girth, et
.9 Complex Queries regarding Length-Preserving Fun
tionsIn this se
tion we 
onsider spe
i�
ations that refer to a generi
 random fun
tion, but support 
omplexqueries regarding su
h fun
tions. That is, we 
onsider answer various queries regarding a random fun
tionf : f0; 1gn ! f0; 1gn, in addition to the standard evaluation queries. The �rst type of 
omplex queries thatwe handle are iterated-evaluation queries, where the number of iterations may be super-polynomial in thelength of the input (and thus 
annot be implemented in a straightforward manner).Theorem 9.1 (iterated-evaluation queries to a random mapping): For every positive polynomial p, thereexists a truthful 
lose-implementation of the following spe
i�
ation. The spe
ifying ma
hine, uniformly sele
tsa fun
tion f : f0; 1gn ! f0; 1gn, and answers queries of the form (x;m), where x 2 f0; 1gn and m 2 [2p(n)℄,with the value fm(x) (i.e., f iterated m times on x).38



Proof: It will be 
onvenient to asso
iate f0; 1gn with f0; 1; :::; N�1g, whereN = 2n. As a warm-up, 
onsideran implementation by a random N -
y
le; that is, using a random 1-1 mapping � : f0; :::; N � 1g ! f0; 1gn,de�ne f(x) = �(��1(x)+1 mod N), and answer the query (x;m) by fm(x) = �(��1(x)+m mod N). (Indeed,this 
onstru
tion is reminis
ent of the \fast-forward" 
onstru
tion of [38℄ (stated in Theorem 2.14).) Theonly thing that goes wrong with this 
onstru
tion is that we know the 
y
le length of f (i.e., it is always N),and thus 
an distinguish f from a random fun
tion by any query of the form (�; N). Thus, we modify the
onstru
tion so to obtain a fun
tion f with unknown 
y
le lengths. A simple way of doing this is to use two
y
les, while randomly sele
ting the length of the �rst 
y
le. That is, sele
t M uniformly in [N ℄, and letf(x) def= 8<: �(��1(x) + 1 modM) if ��1(x) 2 f0; :::;M � 1g�(��1(x) + 1) if ��1(x) 2 fM; :::; N � 2g�(M) otherwise (i.e., ��1(x) = N � 1)We 
ould have tried to sele
t f su
h that its 
y
le stru
ture is distributed as in 
ase of a random fun
tion,but we did not bother to do so. Nevertheless, we prove that any ma
hine that makes q queries 
annotdistinguish f from a random fun
tion with probability better than poly(n) � q2=2
(n). A
tually, in order tofa
ilitate the analysis, we sele
t M uniformly in f(N=3); :::; (2N=3)g.We turn to prove that the foregoing (truthful) implementation is statisti
ally-indistinguishable from thespe
i�
ation. As in the proof of Lemma 8.1, we may disregard the a
tual values of queries and answers (inthe querying pro
ess), and merely refer to whether these values are equal or not. We also assume, withoutloss of generality, that the querying ma
hine makes no redundant queries (e.g., if the ma
hine \knows" thaty = fk(x) and z = f `(y) then it refrains from making the query (x; k+ `), whi
h would have been answeredby z = fk+`(x)). Thus, at any point in time, the querying ma
hine knows of a few 
hains, ea
h havingthe form (x; fk1(x); fk2(x); :::; fkt (x)), for some known x 2 f0; 1gn and k1 < k2 < � � � < kt. Typi
ally, theelements in ea
h 
hain are distin
t, and no element appears in two 
hains. In fa
t, as long as this typi
al
ase holds, there is no di�eren
e between querying the spe
i�
ation versus querying the implementation.Thus, we have to upper bound the probability that an untypi
al event o

urs (i.e., a query is answered byan element that already appears on one of the 
hains, although the query was not redundant).Let us �rst 
onsider the 
ase that f is 
onstru
ted as in the implementation. For the i-th non-redundantquery, denoted (x; k), we 
onsider three 
ases:Case 1: x does not reside on any 
hain. The probability that fk(x) hits a known element is at most (i �1)=(N � (i� 1)), be
ause x is uniformly distributed among the N � (i� 1) unknown elements. (Sin
ef is 1-1, it follows that fk(x) is uniformly distributed over a set of N � (i� 1) elements.)Case 2: x resides on one 
hain and fk(x) hits another 
hain. We show that the probability to hit an elementof another 
hain (whi
h must belong to the same 
y
le) is (i � 1)=(N 0 � (i � 1)2), where N 0 � N=3is the number of verti
es on the 
y
le (on whi
h x reside). The reason is that 
hains residing on thesame 
y
le may be thought of as having a random relative shift (whi
h must be su
h that avoids any
ollisions of the up-to i�1 known verti
es). For i <pN=2, we obtain a probability bound of i=
(N).Case 3: x resides on some 
hain and fk(x) hits the same 
hain. Without loss of generality, suppose that fk(x) =x. For this to happen, the length N 0 of the 
y
le (on whi
h x reside) must divide k. We upper-boundthe probability that all prime fa
tors of N 0 are prime fa
tors of k.Re
all that N 0 is uniformly sele
ted in [(N=3); (2N=3)℄, and let P = Pk denote the set of primefa
tors of k. Note that for some 
onstant 
, it holds that jP j < n
�1, be
ause by the hypothesisk 2 [2poly(n)℄. We upper-bound the number of integers in [N ℄ that have all prime fa
tors in P byupper-bounding, for every t 2 [n℄, the produ
t of the number of integers in [2t℄ with all prime fa
torsin P 0 def= fp 2 P : p < n
g and the number of (n� t)-bit integers with all prime fa
tors in P 00 def= P nP 0.For t > n= logn, the size of the �rst set 
an be upper-bounded by the number of n
-smooth numbersin [2t℄, whi
h in turn is upper-bounded by 2t�(t=
)+o(t) = 2(1�(1=
))�t+o(t).40 The size of the se
ond set40An integer is 
alled y-smooth if all its prime fa
tors are smaller that y. The fra
tion of y-smooth integers in [x℄ isupper-bounded by u�u+o(u), where u = (log x)=(log y); see, [10℄. Thus, in 
ase t > n= log n, the fra
tion of n
-smoothintegers in [2t℄ is upper-bounded by 2�(1�o(1))�(t=(
 log2 n))�log2 t = 2�(1�o(1))t=
.39



is upper-bounded by jP 00j(n�t)=(
 logn) < 2(1�(1=
))�(n�t), where the inequality uses jP 00j < n
�1. Thus,we upper-bound the probability that an uniformly 
hosen integer in [(N=3); (2N=3)℄ has all primefa
tors in P by n= log nXt=1 1 � 2�(1=
)�(n�t) + nXt=(n= logn)+1 2�(1=
)�t+o(t) � 2�(1=
)�(n�t)= n= lognXt=1 2�(1=
)�(n�t) + nXt=(n= logn)+1 2�(1=
)�n+o(t)= 2�(n=
)+o(n)Hen
e, the probability of a 
ollision in the 
urrent 
ase is upper-bounded by N�1=(
+1).We 
on
lude the probability that we form a 
ollision in q queries (to the implementation) is at mostO(q2=N)+q �N�1=(
+1) < q2 �N�
(1).We now turn to the 
ase that f is a random fun
tion (as in the spe
i�
ation). Suppose that we makethe non-redundant query (x; k). We wish to upper-bound the probability that fk(x) = y, for some �xed y(whi
h is on one of the 
hains). It is well-known that the expe
ted number of an
estors of y under a randomf is �(pN); see, e.g., Theorem 33 in [8, Ch. XIV℄. Thus, Prf [j [i�1 f�i(y)j > N3=4℄ = O(N�1=4), and itfollows that Prf [fk(x) = y℄ < N�1=4+O(N�1=4), for any �xed (x; k) and y. (Indeed, it seems that this is agross over-estimate, but it suÆ
es for our purposes.) It follows that the probability that we form a 
ollisionin q queries to the spe
i�
ation is at most O(q2=N1=4).Comment: The proof of Theorem 9.1 
an be easily adapted so to provide a truthful 
lose-implementationof a random permutation with iterated-evaluation and iterated-inverse queries. That is, we refer to a spe
-ifying ma
hine that uniformly sele
ts a permutation f : f0; 1gn ! f0; 1gn, and answers queries of the form(x;m), where x 2 f0; 1gn and m 2 [�2poly(n)℄, with the value fm(x). The implementation is exa
tly the oneused in the foregoing proof of Theorem 9.1, and thus we should only analyze the a probability of 
ollisionwhen making (non-redundant) queries to a random permutation �. For any �xed (x; k) and y, the probabilitythat �k(x) = y equals the probability that x and y resides on the same 
y
le of the permutation � and thattheir distan
e on this 
y
le equals k mod `, where ` is the length of this 
y
le. In the 
ase that x 6= y, the saidevent o

urs with probability at most (N � 1)�1, be
ause we may think of �rst sele
ting a 
y
le-stru
ture(and later embedding x and y on it). In the other 
ase (i.e., x = y), we note that the probability that�k(x) = x equals the probability that ` divides k, whereas ` is distributed uniformly over [N ℄ (i.e., for everyi 2 [N ℄, the probability that ` = i equals 1=N). We mention that an alternative implementation of a randompermutation supporting iterated-evaluation (and iterated-inverse) queries was suggested independently byTsaban [39℄. Interestingly, his implementation works by sele
ting a 
y
le stru
ture with distribution thatis statisti
ally-
lose to that in a random permutation (and using a set of 
y
les of 
orresponding lengths,rather than always using two 
y
les as we do).Preimage queries to a random mapping: We turn ba
k to random length preserving fun
tions.Su
h a random fun
tion f : f0; 1gn ! f0; 1gn is highly unlikely to be 1-1, still the set of preimages of anelement under the fun
tion is well-de�ned (i.e., f�1(y) = fx : f(x) = yg). Indeed, this set may be empty,be a singleton or 
ontain more than one preimage. Furthermore, with overwhelmingly high probability, allthese sets are of size at most n. The 
orresponding \inverse" queries are thus natural to 
onsider.Theorem 9.2 There exists a truthful 
lose-implementation of the following spe
i�
ation. The spe
ifyingma
hine, uniformly sele
ts a fun
tion f : f0; 1gn ! f0; 1gn, and, in addition to the standard evaluationqueries, answers the inverse-query y 2 f0; 1gn with the value f�1(y).Proof: We start with a truthful implementation that is not statisti
ally-indistinguishable from the spe
i�-
ation, but is \
lose to being so" and does present our main idea. For ` = O(logn) (to be determined), we40




onsider an implementation that uses the ora
le in order to de�ne two permutations �1 and �2 over f0; 1gn(along with their inverses) as well as a random fun
tion g : f0; 1gn ! f0; 1g`. It is instru
tive to note thatg indu
es a 
olle
tion of random independent fun
tions g� : f0; 1g` ! f0; 1g` su
h that g�(�) = g(��), andthat ea
h g� indu
es a random fun
tion on the 
orresponding set S� def= f�� : � 2 f0; 1g`g (i.e., mapping ��to �g�(�)). Letting prefi(z) (resp., su�i(z)) denote the i-bit long pre�x of z (resp., suÆx of z), we de�nef(x) = �2 �prefn�`(�1(x))gprefn�`(�1(x))(su�`(�1(x)))� (4)= �2 �prefn�`(�1(x))g(�1(x))� :That is, the value of f(x) is obtained by �rst routing x to a random value v  �1(x), whi
h is viewed asa pair (�; �) = (prefn�`(v); su�`(v)), next 
omputing the value w � (�; g�(�)), and �nally routing w to arandom �2(w). Indeed, the fun
tions g� indu
es 
ollisions within the stru
tured sets S�, and so the resultingfun
tion f is unlikely to be 1-1.The evaluation queries are answered in a straightforward way (i.e., by evaluating �1, g and �2). Theinverse-query y is answered by �rst 
omputing �� = ��12 (y), where j�j = n � `, then 
omputing R�(�) def=f�0 : g(��0) = �g via exhaustive sear
h, and �nally setting f�1(y) = f��11 (��0) : �0 2R�(�)g. Indeed, thekey point is that, sin
e ` = O(logn), we 
an a�ord to determine the set R�(�) by going over all possible�0 2 f0; 1g` and in
luding �0 if and only if g(��0) = �. The random permutation �1 (resp., �2) guaranteesthat it is unlikely to make two evaluation queries (resp., inverse-queries) that are served via the same setS� (i.e., have the same (n� `)-bit long pre�x under the relevant permutation). It is also unlikely to have anon-obvious \intera
tion" between these two types of queries (where an obvious intera
tion is obtained byasking for a preimage of an answer to an evaluation query or vi
e versa). Thus, the answers to the evaluationqueries look random, and the answers to the inverse-queries are almost independent random subsets withsizes that 
orresponds to the statisti
s of the 
ollision of 2` elements (i.e., 2` balls thrown at random to 2`
ells).The only thing that is wrong with the foregoing implementation is that the sizes of the preimage-sets
orrespond to the 
ollision pattern of 2` balls thrown at random to 2` 
ells, rather than to that of the 
ollisionpattern of 2n balls thrown at random to 2n 
ells. Let pi(m) denote the expe
ted fra
tion of 
ells that 
ontaini balls, when we throw at random m balls into m 
ells. Then, p0(m) � 1=e, for all suÆ
iently large m,whereas pi(m) � e�1i! � iYj=1�1� j � 2m� 1� (5)We fo
us on i � n (be
ause for i > n both pi(2`) and pi(2n) are smaller than 2�2n). We may ignore the(negligible in n) dependen
e of pi(2n) on 2n, but not the (noti
eable) dependen
e of pi(2`) on 2` = poly(n).Spe
i�
ally, we have: i pi(2n) pi(n
 + 1) � (Qij=1(1� (j � 2)n�
)) � pi(2n)� e�1=(i!) � (Qij=1(1� (j � 2)n�
)) � (e�1=(i!))1 e�1 (1 + n�
) � e�12 e�1=2 (1 + n�
) � e�1=23 e�1=6 � (1� n�2
) � e�1=64 e�1=24 � (1� 1:5n�
) � e�1=24i � 4 e�1=(i!) (1��(i2n�
)) � e�1=(i!)Thus, the singleton and two-element sets are slightly over-represented in our implementation (when 
omparedto the spe
i�
ation), whereas the larger sets are under-represented. In all 
ases, the deviation is by a fa
torrelated to 1� (1=poly(n)), whi
h 
annot be tolerated in a 
lose-implementation. Thus, all that is required isto modify the fun
tion g su
h that it is slightly more probable to form larger 
ollisions (inside the sets S�'s).We stress that we 
an easily 
ompute all the relevant quantities (i.e., all pi(2n)'s and pi(2`)'s, for i = 1; :::; n),and so obtaining a 
lose-implementation is merely a question of details, whi
h are shortly outlined next.Let us just sket
h one possible approa
h. For N def= 2n and t def= 2`, we have N=t sets S�'s that areea
h partitioned at random by the g�'s to subsets (whi
h 
orrespond to the sets of ��'s that are mapped41



to the same image under g�). Now, for a random 
olle
tion of g�'s, the number of i-subsets divided by Nis pi def= pi(t) rather than qi def= pi(N) as desired. Re
all that jpi � qij � pi=(t � 1) for all i � 1, and notethat Pi pii = 1 = Pi qii. Indeed, it is instru
tive to 
onsider the fra
tional mass of elements that residesin i-subsets; that is, let p0i = pii and q0i = qii. We need to move a fra
tional mass of about 1=(t � 1)eelements from singleton subsets (resp., two-element subsets) to the larger subsets. With overwhelminglyhigh probability, ea
h S� 
ontains more than n singleton subsets (resp., n=2 two-element subsets). We aregoing to use only these subsets towards the 
orre
tion of the distribution of mass; this is more than enough,be
ause we need to relo
ate only a fra
tional mass of 1=(t � 1)e from ea
h type of subsets (i.e., less thanone element per a set S�, whi
h in turn has 
ardinality t). In parti
ular, we move a fra
tional mass ofp01 � q01 = p02 � q02 from singleton (resp., two-element) subsets into larger subsets. Spe
i�
ally, for ea
h i � 3,we move a fra
tional mass of (q0i � p0i)=2 elements residing in singletons and (q0i � p0i)=2 elements residingin two-element subsets into i-subsets.41 This (equal 
ontribution 
ondition) will automati
ally guaranteethat the mass in the remaining singleton and two-element subsets is as desired. We stress that there is noneed to make the \mass distribution 
orre
tion pro
ess" be \ni
ely distributed" among the various sets S�'s,be
ause its a�e
t is anyhow hidden by the appli
ation of the random permutation �2. The only thing weneed is to perform this 
orre
tion pro
edure eÆ
iently (i.e., for every � we should eÆ
iently de
ide how tomodify g�), and this is indeed doable.10 Con
lusions and Open ProblemsThe questions that underlie our work refer to the existen
e of good implementations of various spe
i�
ationsof random obje
ts. At the very least, we require the implementations to be 
omputationally-indistinguishablefrom the 
orresponding spe
i�
ations.42 That is, we are interested in pseudo-implementations. Our ultimategoal is to obtain su
h implementations via ordinary (probabilisti
 polynomial-time) ma
hines, and so we ask:Q1: Whi
h spe
i�
ations have truthful pseudo-implementations (by ordinary ma
hines)?Q2: Whi
h spe
i�
ations have almost-truthful pseudo-implementations (by ordinary ma
hines)?Q3: Whi
h spe
i�
ations have pseudo-implementations at all (again, by ordinary ma
hines)?In view of Theorem 2.9, as far as Questions Q1 and Q3 are 
on
erned, we may as well 
onsider implemen-tations by ora
le ma
hines (having a

ess to a random ora
le). Indeed, the key observation that started usgoing was that the following questions are the \right" ones to ask:Q1r (Q1 revised): Whi
h spe
i�
ations have truthful 
lose-implementations by ora
le ma
hines (havinga

ess to a random ora
le)?Q3r (Q3 revised): Whi
h spe
i�
ations have 
lose-implementations by su
h ora
le ma
hines?We remark that even in the 
ase of Question Q2, it may make sense to study �rst the existen
e of imple-mentations by ora
le ma
hines, bearing in mind that the latter 
annot provide a 
on
lusive positive answer(as shown in Theorem 2.11).In this work, we have initiated a 
omprehensive study of the above questions. In parti
ular, we provideda fair number of non-trivial implementations of various spe
i�
ations relating to the domains of randomfun
tions, random graphs and random 
odes. The 
hallenge of 
hara
terizing the 
lass of spe
i�
ations thathave good implementations (e.g., Questions Q1r and Q3r) remains wide open. A good start may be toanswer su
h questions when restri
ted to interesting 
lasses of spe
i�
ations (e.g., the 
lass of spe
i�
ationsof random graphs having 
ertain type of properties).41For example, we move mass into 3-subsets by either merging three singletons or merging a singleton and a two-subset into a 
orresponding 3-subset, where we do three merges of the latter type per ea
h merge of the former type.Similarly, for ea
h i � 4, we move mass into i-subsets by merging either i singletons or i=2 two-subsets, while doingan equal number of merges of ea
h type. Finally, for every j � 1, we move mass into (2j + 3)-subsets by mergingadditionally 
reated 2j-subsets and 3-subsets (where additional 2-subsets are 
reated by either using a 2-subset ormerging two singletons, in equal proportions).42Without su
h a quali�
ation, the question of implementation is either meaningless (i.e., every spe
i�
ation has a\bad" implementation) or misses the point of generating random obje
ts.42



Limited-independen
e implementations. Our de�nition of pseudo-implementation is based on thenotion of 
omputational indistinguishability (
f. [24, 40, 20℄) as a de�nition of similarity among obje
ts. Adi�erent notion of similarity underlies the 
onstru
tion of sample spa
es having limited-independen
e prop-erties (see, e.g., [2, 11℄). For example, we say that an implementation is k-wise 
lose to a given spe
i�
ationif the distribution of the answers to any k �xed queries to the implementation is statisti
ally 
lose to thedistribution of these answers in the spe
i�
ation. The study of Question Q1r is also relevant to the 
on-stru
tion of truthful k-wise 
lose implementations, for any k = poly(n). In parti
ular, one 
an show thatany spe
i�
ation that has a truthful 
lose-implementation by an ora
le ma
hine, has a truthful k-wise 
loseimplementation by an ordinary probabilisti
 polynomial-time ma
hine.43 A 
on
rete example appears at theend of Se
tion 5. Further study of this dire
tion is reported in Se
tion 11.11 Subsequent WorkIn this se
tion, we brie
y review some subsequent work that is 
losely related to the study initiated here.Limited-independen
e implementations of random graphs. In 
ontinuation of the last para-graph of Se
tion 10, we �rst mention that Alon and Nussboim [3℄ proved that a host of graph propertiesthat are satis�ed by truly random graphs are also satis�ed by poly(n)-independent random graphs (i.e.,the amount of independen
e is polylogarithmi
 in the size of the graph). These graph properties in
ludeall properties 
onsidered in our work and a
tually extend beyond them (e.g., optimal 
onne
tivity andjumbledness44, whi
h is the traditional graph theoreti
 notion of resemblan
e to a random graph). Theresults of [3℄ imply almost-truthful poly(n)-
lose implementations (by ordinary ma
hines) of a spe
i�
ationthat answers adja
en
y queries a

ording to a uniformly distributed graph that satis�es the 
orrespondinggraph properties. Furthermore, assuming the existen
e of one-way fun
tions, they obtain almost-truthfulpseudo-implementations (by ordinary ma
hines) of random graph satisfying these properties, by XORingthe foregoing poly(n)-
lose implementation with a pseudo-implementation (whi
h may not be truthful evenin a weak sense).We mention that the work of Alon and Nussboim [3℄ a
tually fo
uses on the general random graph modelG(N; p), where ea
h edge in an N -vertex graph is taken with probability p = p(N) independently of all other
hoi
es (
f., the model of Erd�os-R�enyi as in, e.g., [8℄). For any value of p (su
h that p(N) = 
((logN)=N)),they show that poly(n)-wise independent distributions preserve the most studied graph properties of therandom graph model G(N; p). This 
an be viewed as an almost-truthful \implementation of the randomgraph model G(N; p)" for any p, where the spe
i�
ation refers to answering adja
en
y queries. Indeed, forsmall values of p (i.e., p(N)� 1=poly(logN)), a 
lose-implementationmay return zero on all queries, but su
han implementation will not satisfy the various graph properties studied in [3℄. Thus, the notion of an almost-truthful implementation distinguishes the implementations provided in [3℄ from trivial implementations,whereas the standard notions of indistinguishability (as in De�nition 2.7) fails to do so.Implementations of the random graph model were also studied by Naor et al. [37℄, who 
lassify graphproperties a

ording to the quanti�er depth of the formulas that spe
ify ea
h property. Preserving high-depthproperties of random graphs is introdu
ed as an alternative measure of the quality of the implementation.Naor et al. [37℄ provide tight positive and negative results regarding the maximal D su
h that for everydepth-D property � it is possible to 
losely-implement a uniformly distributed graph having property �.These results are in
omparable with ours, sin
e they deal with di�erent graph properties.Implementations of sparse random graphs. Our study of the implementation of random bounded-degree graphs was extended by Naor and Nussboim [36℄ who 
onsidered random graphs of polylogarithmi
degree that support neighborhood queries. Clearly, eÆ
iently answering neighborhood queries (whi
h areanswered by the list of all neighbors of the given vertex) mandates a degree bound of poly(n) = poly(logN).43The 
laim follows by 
ombining an implementation (by an ora
le ma
hine) that makes at most t queries to itsrandom ora
le with a sample spa
e of k � t-wise independent fun
tions.44Loosely speaking, jumbledness means that all vertex-sets U 
ontain 12 � �jUj2 ���(pN jU j) edges.43



A
tually, the study in [36℄ refers to the aforementioned Erd�os-R�enyi model of random graphs G(N; p) forsuÆ
iently low p = p(N); that is, p(N) � poly(logN)=N .Stateful Implementations. Addressing Open Problem 5.4, Bogdanov and Wee [7℄ introdu
ed thenotion of stateful implementation, whi
h (in 
ontrast to De�nition 2.6)45 allows the implementing ma
hineto maintain a state. That is, su
h a relaxed notion of an implementation may 
onstru
t the obje
t on-the-
yin respond to the queries posed (and while keeping tra
k of all previous queries and answers). Bogdanov andWee presented a stateful implementation of the \sub-
ube spe
i�
ation" des
ribed in Open Problem 5.4, butthe problem of providing a stateless implementation remains open.A
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Appendix A: Implementing various probability distributionsOur proof of Theorem 5.2 relies on eÆ
ient pro
edures for generating elements from a �nite seta

ording to two probability distributions. In both 
ases, we need pro
edures that work in time thatis poly-logarithmi
 (rather than polynomial) in the size of the set (and the re
ipro
al of the desiredapproximation parameter). In both 
ases, we have 
lose expressions (whi
h 
an be evaluated inpoly-logarithmi
 time) for the probability mass that is to be assigned to ea
h element. Thus, inboth 
ases, it is easy to generate the desired distribution in time that is almost-linear in the sizeof the set. Our fo
us is on generating good approximations of these distributions in time that ispoly-logarithmi
 in the size of the set.Indeed, the problem 
onsidered in this appendix is a spe
ial 
ase of our general framework. Weare given a spe
i�
ation of a distribution (i.e., ea
h query should be answered by a sample drawnindependently from that distribution), and we wish to 
losely-implement it (i.e., answer ea
h queryby a sample drawn independently from approximately that distribution).A.1 Sampling the binomial distributionWe �rst 
onsider the generation of elements a

ording to the binomial distribution. For any N , weneed to output any value v 2 f0; 1; :::; Ng with probability �Nv � �2�N . An eÆ
ient pro
edure for thispurpose is des
ribed in Knuth [29, Se
. 3.4.1℄. In fa
t, Knuth des
ribes a more general pro
edurethat, for every p, outputs the value v 2 f0; 1; :::; Ng with probability bN;p(v) def= �Nv � � pv(1� p)N�v.However, his des
ription is in terms of operations with reals, and so we need to adapt it to thestandard (bit-operation) model. Knuth's des
ription pro
eeds in two steps:1. In Se
tion 3.4.1.F, it is shown how to redu
e the generation of the binomial distribution bN;pto the generation of some beta distributions, whi
h are 
ontinuous distributions over [0; 1℄ thatdepends on two parameters a and b.46 The redu
tion involves taking log2N samples from
ertain beta distributions, where the parameters of these distributions are easily determinedas a fun
tion of N . The samples of the beta distributions are pro
essed in a simple mannerinvolving only 
omparisons and basi
 arithmeti
 operations (subtra
tion and division).2. In Se
tion 3.4.1.E, it is shown how to generate any beta distribution. The generator takes a
onstant number of samples from the 
ontinuous uniform distribution over [0; 1℄, and produ
esthe desired sample with 
onstant probability (otherwise, the pro
ess is repeated). The samplesof the uniform distributions are pro
essed in a simple manner involving only 
omparisons andvarious arithmeti
 and trigonometri
 operations (in
luding 
omputing fun
tions as log andtan).The above is des
ribed in terms of real arithmeti
 and sampling uniformly in [0; 1℄, and providesa perfe
t implementation. The question is what happens when we repla
e the samples with onestaken from the set f�; 2�; :::; b1=�
 � �g, and repla
e the real arithmeti
s with approximations up toa fa
tor of 1� �.46A beta distribution with (natural) parameters a and b is de�ned in terms of the a

umulative distribution fun
tionFa;b(r) def= a ��a+ b� 1a � � Z r0 xa�1(1� x)b�1 dxand the uniform 
ontinuous distribution is a spe
ial 
ase (i.e., a = b = 1). In general, Fa;b(r) equals the probabilitythat the bth largest of a+ b� 1 independent uniformly 
hosen samples in [0; 1℄ has value at most r.47



Let us �rst 
onsider the e�e
t of repla
ing the uniform 
ontinuous distribution U(r) = r bythe 
ontinuous step-distribution S�(r) def= br=�
 � �, where we may assume that 1=� is an integer.Sin
e the variation distan
e between U and S� is O(�), the same holds for any fun
tion appliedto a 
onstant number of samples taken from these distribution. Thus, the implementation of thebeta distributions via the step-distribution S� will deviate by only O(�), and using the latter togenerate the binomial distribution bN;p only yields a deviation of O(� logN). Finally, using theaverage numeri
al stability of all fun
tions employed47 we 
on
lude that an implementation byO(log(1=�)) bits of pre
ision will only introdu
e a deviation of �.A.2 Sampling from the two-set total-sum distributionWe now turn to the generation of pairs (l; r) su
h that l + r = T and 0 � l; r � S, where T � 2S.Spe
i�
ally, we need to produ
e su
h a pair with probability proportional to �Sl � � �Sr� (i.e., thenumber of ways to sele
t l elements from one set of size S and r elements from another su
h set).(In the proof of Theorem 5.2, S = M=2.) Without loss of generality, we may assume that T � S(or else we sele
t the \
omplementary" elements). Thus, we need to sample r 2 f0; :::; Tg withprobability pr = � ST�r� � �Sr��2ST � (6)We wish to produ
e a sample with deviation at most � from the 
orre
t distribution and areallowed time poly(k), where k def= log(S=�). In 
ase T � k, we perform this task in the straightfor-ward manner; that it, 
ompute all the T + 1 probabilities pr, and sele
t r a

ordingly. Otherwise(i.e., T > k), we rely on the fa
t that pr is upper-bounded by twi
e the binomial distribution of Ttries (i.e., qr = �Tr�=2T ). This leads to the following sampling pro
ess:1. Sele
t r a

ording to the binomial distribution of T tries.2. Compute pr and qr. Output r with probability pr=2qr, and go to Step 1 otherwise.We will show (see Fa
t A.1 below) that pr � 2qr always holds. Thus, in ea
h iteration, we output rwith probability that is proportional to pr; that is, we output r with probability qr �(pr=2qr) = pr=2.It follows that ea
h iteration of the above pro
edure produ
es an output with probability 1=2, andby trun
ating the pro
edure after k iterations (and produ
ing arbitrary output in su
h a 
ase) theoutput distribution is statisti
ally 
lose to the desired one.Fa
t A.1 Suppose that T � S and T > k. For pr's and qr's as above, it holds that pr < 2qr.Proof: The 
ases r = T and r = 0 are readily veri�ed (by noting that pr = �ST�=�2ST � < 2�T andqr = 2�T ). For r 2 f1; :::; T � 1g, letting � def= (S � r)=(2S � T ) 2 (0; 1), we haveprqr = �Sr� � � ST�r�=�2ST ��Tr�=2T = 2T � �2S�TS�r ��2SS �47Ea
h of these fun
tions (i.e., rational expressions, log and tan) has a few points of instability, but we applythese fun
tions on arguments taken from either the uniform distribution or the result of prior fun
tions on thatdistribution. In parti
ular, ex
ept for what happens in an �-neighborhood of some problemati
 points, all fun
tions
an be well-approximated when their argument is given with O(log(1=�)) bits of pre
ision. Furthermore, the fun
tionslog and tan are only evaluated at the uniform distribution (or simple fun
tions of it), and the rational expressionsare evaluated on some intermediate beta distributions. Thus, in all 
ases, the problemati
 neighborhoods are onlyassigned small probability mass (e.g., � in the former 
ase and O(p�) in the latter).48



= 2T � (1 + o(1)) � (2��(1 � �) � (2S � T ))�1=2 � 2H2(�)�(2S�T )(2�(1=2)2 � 2S)�1=2 � 2H2(1=2)�2S= 1 + o(1)p2�(1 � �) � � � 2(H2(�)�1)�(2S�T )where � def= (2S � T )=S � 1 and H2 is the binary entropy fun
tion. For � 2 [(1=3); (2=3)℄, we 
anupper-bound pr=qr by (1 + o(1)) �p9=4� < 2. Otherwise (i.e., without loss of generality � < 1=3),we get that H2(�) < 0:92 and ��1(1 � �)�1 � 2S � T , where for the latter inequality we use1 � r � S� 1. Thus, pr=qr is upper-bounded by O(p2S � T ) � 2�
(2S�T ) = O(2�
(S)+log S), whi
hvanishes to zero with k (be
ause S � T > k).48A.3 A general tool for sampling strange distributionsIn 
ontinuation to Appendix A.2, we state a useful lemma (whi
h was impli
itly used above as wellas in prior works). The lemma suggests that poly(logN)-time sampling from a desired probabilitydistribution fpigNi=1 
an be redu
ed to sampling from a related probability distribution fqigNi=1,whi
h is hopefully poly(logN)-time sampleable.Lemma A.2 Let fpigNi=1 and fqigNi=1 be probability distributions satisfying the following 
onditions:1. There exists a polynomial-time algorithm that given i 2 [N ℄ outputs approximations of pi andqi up to �N�2.2. Generating an index i a

ording to the distribution fqigNi=1 is 
losely-implementable (up tonegligible in logN deviation and in poly(logN)-time).3. There exist a poly(logN)-time re
ognizable set S � [N ℄ su
h that(a) 1�Pi2S pi is negligible in logN .(b) There exists a polynomial p su
h that for every i 2 S it holds that pi � p(logN) � qi.Then generating an index i a

ording to the distribution fpigNi=1 is 
losely-implementable.Proof: Without loss of generality, S may ex
lude all i's su
h that pi < N�2. For simpli
ity, weassume below that given i we 
an exa
tly 
ompute pi and qi (rather than only approximate themwithin �N�2). Let t def= p(logN). The sampling pro
edure pro
eeds in iterations, where in ea
hiteration i is sele
ted a

ording to the distribution fqigNi=1, and is output with probability pi=tqi ifi 2 S. (Otherwise, we pro
eed to the next iteration.) Observe that, 
onditioned on produ
ing anoutput, the output of ea
h iteration is in S and equals i with probability qi � (pi=tqi) = pi=t. Thus,ea
h iteration produ
es output with probabilityPi2S pi=t > 1=2t, and so halting after O(t log(1=�))iterations we produ
e output with probability at least 1 � �. For any i 2 S, the output is i withprobability (1� �) �pi=�, where � def= Pj2S pj . Setting � to be negligible in logN , the lemma follows.A typi
al appli
ation of Lemma A.2 is to the 
ase that for ea
h i 2 [N ℄ the value of pi 
an beapproximated by one out of m = poly(logN) predetermined pj's. Spe
i�
ally:48In fa
t, it holds that pr � p2 � qr for all r's, with the extreme value obtained at r = T=2 (and T = S), where wehave � = 1=2 (and � = 1). 49



Corollary A.3 Let fpigNi=1 be a probability distribution and S � [N ℄ be a set satisfying Condi-tions (1) and (3a) of Lemma A.2. Suppose that, for m; t = poly(logN), there exists an eÆ
iently
onstru
tible sequen
e of integers 1 = i1 < i2 < � � � < im = N su
h that for every j 2 [m � 1℄and i 2 [ij ; ij+1℄ \ S it holds that pij=t < pi < t � pij . Then generating an index i a

ording to thedistribution fpigNi=1 is 
losely-implementable.Proof: For every j 2 [m� 1℄ and i 2 [ij ; ij+1℄ \ S, de�ne p0i = pij and note that p0i=t < pi < t � p0i.Let p0 =Pi2S p0i, and note that p0 < t. Now, de�ne qi = p0i=p0 for every i 2 S, and qi = 0 otherwise.Then, for every i 2 S, it holds that pi < t�p0i = t�p0 �qi < t2qi. Sin
e these qi's satisfy Conditions (1),(2) and (3b) of Lemma A.2, the 
orollary follows.Appendix B: Implementing a Random Bipartite GraphFollowing the des
ription in Se
tion 6, we present a 
lose-implementation of random bipartitegraphs. Two issues arise. Firstly, we have to sele
t the proportion of the sizes of the two parts,while noti
ing that di�erent proportions give rise to di�erent number of graphs. Se
ondly, we notethat a bipartite graph uniquely de�nes a 2-partition (up to swit
hing the two parts) only if it is
onne
ted. However, sin
e all but a negligible fra
tion of the bipartite graphs are 
onne
ted, wemay ignore the se
ond issue, and fo
us on the �rst one. (Indeed, the rest of the dis
ussion is slightlyimpre
ise be
ause the se
ond issue is ignored.)For i 2 [�N ℄, the number of 2N -vertex bipartite graphs with N + i verti
es on the �rst part is 2NN + i! � 2(N+i)�(N�i) �  2NN ! � 2N2�i2where equality holds for i = 0 and approximately holds (i.e., up to a 
onstant fa
tor) for jij = pN .Thus, all but a negligible fra
tion of the 2N -vertex bipartite graphs have N � log2N verti
es onea
h part. That is, we may fo
us on O(logN) values of i. Indeed, for ea
h i 2 [� log2N ℄, we
ompute Ti def= � 2NN+i� � 2N2�i2 , and pi = Ti=T , where T def= Plog2Nj=� log2N Tj . Next, we sele
t i withprobability pi, and 
onstru
t a random 2N -vertex bipartite graph with N + i verti
es on the �rstpart as follows:� As in Se
tion 6, we use the fun
tion f1 to implement a permutation �. We let S def= fv :�(v) 2 [N + i℄g, and �S(i) def= 1 if and only if i 2 S.� As in Se
tion 6, we answer the query (u; v) by 0 if �S(u) = �S(v) and a

ording to the valueof f2 otherwise.Appendix C: Various Cal
ulationsCal
ulations for the proof of Lemma 6.3The proof of Lemma 6.3 refers to the following known fa
t:Fa
t C.1 Let X be a random variable ranging over some domain D, and suppose that H(X) �log2 jDj� �. Then X is at statisti
al distan
e at most O(p�) from the uniform distribution over D.50



Proof: Suppose that X is at statisti
al distan
e Æ from the uniform distribution over D. Then,there exists a S � D su
h that jPr[X 2 S℄� (jSj=jDj)j = Æ, and assume without loss of generalitythat jSj � jDj=2. Note that either for ea
h e 2 S it holds that Pr[X = e℄ � 1=jDj or for ea
he 2 S it holds that Pr[X = e℄ � 1=jDj. By removing the jSj � (jDj=2) elements of smallestabsolute di�eren
e (i.e., smallest jPr[X = e℄� (1=jDj)j), we obtain a set S0 of size jDj=2 su
h thatjPr[X 2 S0℄� (jS0j=jDj)j � Æ=2. The entropy of X is maximized when it is uniform both on S0 andon D n S0. Thus:H(X) � H2(Pr[X 2 S0℄) +Pr[X 2 S0℄ �H(XjX 2 S0) +Pr[X 2 D n S0℄ �H(XjX 2 D n S0)= H2 �12 + Æ2�+ log2(jDj=2)= 1� 
(Æ2) + log2(jDj=2)We get that H(X) � log2 jDj� 
 � Æ2, for some universal 
 > 0. Combining this with the hypothesisthat H(X) � log2 jDj � �, we get that � � 
 � Æ2, and Æ � p�=
 follows.Cal
ulations for the proof of Theorem 6.6In order to 
omplete the proof of Part 2 of Theorem 6.6, we prove the following 
laim.Claim C.2 Let 
(N) = (2 � o(1)) log2N be as in Theorem 6.6, and let T def= dN=
(N)e. Considerany �xed partition (S(1); :::; S(T )) of [N ℄ su
h that jS(i)j = 
(N), for every i < T , and jS(T )j � 
(N).Consider a graph sele
ted as follows:� Ea
h S(i) is an independent set.� For k = 2�
(N)+22 �, the edges between verti
es residing in di�erent S(i)'s are determined by ak-wise independent sequen
e of unbiased bits.Then, with probability at least 1� (N��(1)), the graph has no independent set of size 
(N) + 2.Applying Claim C.2 to any partition (S(1)r ; :::; S(T )r ) �xed at the end of the proof of Theorem 6.6,it follows that the graph g
olor 
ontains no independent set of size 
(N) + 2. Part 2 of Theorem 6.6follows.Proof: We will show that the expe
ted number E of independent sets of size 
(N) + 2 is N�
(1),and the 
laim will follow. Denoting 
 def= 
(N) and 
0 def= 
+ 2, we 
onsider an arbitrary vertex-setV of size 
0 (so V is a potential independent-set). The analysis bounds the 
ontribution of variousvertex-sets V (to the entire expe
tation E) a

ording to the sizes of the interse
tions V TS(j).We shall use the following notation. For any V as above, we let n(V ) denote the number ofnon-empty interse
tions V TS(j), and let s(V ) denote the size of the largest interse
tion. Next, letAs denote the 
olle
tion of all vertex-sets V for whi
h s(V ) = s, and let Bn denote the 
olle
tionof those vertex-sets V for whi
h n(V ) = n. Finally, let pV denote the probability that V indu
esan independent-set, and let Ps def= maxV 2AsfpV g and Qn def= maxV 2BnfpV g. The following fa
tssummarize a few useful upper-bounds.Fa
t C.2.1 For any 1 � s � 
 and any 1 � n � 
0 it holds that:1. jAsj � dN
 e�
s�� N
0�s� = N (2 log2N)�s+o(logN).51



2. jBnj � �dN
 en ��
+1n�1�

0 = Nn+o(logN).Fa
t C.2.2 For any 1 � s � 
 and any 3 � n � 
0 we have1. Ps � 2�(
0�s)�s.2. Ps � N�(
0�s)+o(logN).3. Qn � 2�(
+22 )+(
�n+32 ).4. Qn � N�n(2� n2 log2N )+o(logN).(Proving Fa
ts C.2.1 and C.2.2 is deferred to the end of this subse
tion.) The desired upper-boundon the expe
ted number E of independent-sets is established via a 
ase analysis where we separatelyhandle the 
ontribution of various vertex-sets V to the expe
tation E, a

ording to the values ofs(V ) and n(V ). For the rest of the analysis, we �x an arbitrary 
onstant � 2 (0; 1=6).Case 1 { Large maximal interse
tion: s � (32 +�) log2N . By the �rst items in Fa
ts C.2.1 and C.2.2we take Es def= [dN
 e�
s�� N
0�s�℄2�s[
0�s℄ as an upper-bound on the expe
ted number of independent-sets that are indu
ed by sets V with s(V ) = s. We 
laim that for large values of s, Es ismaximized when s is maximal, namely, when s = 
. Indeed,Es+1Es = � (
� s)(s+ 1) � (
0 � s)(N � 
+ s� 1)� � 22s2�(
+1)� "No(1)No(1) � No(1)N1�o(1) # � 22( 32+�) log2N2(�2+o(1)) log2N= hN�1�o(1)iN3+2�N�2+o(1) = N2��o(1) � 1;where the �rst inequality uses the fa
t that s is large. Thus for suÆ
iently largeN the maximalterm is E
 = hdN
 e � � N
0�
�i 2�
[
0�
℄ < [N �N2℄2�2([2�o(1)℄ log2N) = N�1+o(1). Consequently, asthere are only �(logN) possible values of s, the expe
ted number of independent-sets withlarge s is bounded by N��(1).Case 2 { Large number of interse
tions: n � (1 + �) log2N . Analogously to 
ase 1, we 
ombine these
ond item in Fa
t C.2.1 with the third item in Fa
t C.2.2 to dedu
e that �En def= h�dN
 en ��
+1n�1�

0i�2�(
+22 )+(
�n+32 ) upper-bounds the expe
ted number of independent-sets that are indu
ed bysets V with n(V ) = n � 3. We show that for large values of n, �En is maximized when n ismaximal, namely, when n = 
0. Indeed,�En+1�En = "dN
 e � nn+ 1 � 
� n+ 2n # � 2n2�(
+2)� "N1�o(1)No(1) � No(1)No(1) # � 2(1+�) log2N2[�2+o(1)℄ log2N= hN1�o(1)i �N (1+�)N�2+o(1) = N��o(1) � 1:52



Thus for suÆ
iently large N the maximal term is �E
0 . To bound �E
0 we use the notation	 def= �N
0�2�(
+22 ) and note that�E
0 =  dN
 e
0 !

02�(
+22 )= 24 N
0!�1 dN
 e
0 !35 

0 �  N
0!2�(
+22 )= 24
0�1Yi=0 dN
 e � iN � i 35 

0 �	= � [1� o(1)℄

0 � 

0 �	� [1 + o(1)℄ �N�1+o(1) = N��(1);where the last inequality uses the fa
t that 	 � N�1+o(1) (taken, again from [9℄). Thus, asthere are only �(logN) possible values of n, the expe
ted number of independent-sets withlarge n is bounded by N��(1).Case 3 { Medium number of interse
tions: �log2N � n � (1 + �) log2N . We shall a
tually estab-lish the 
laim for � log2N � n � (2 ��) log2N . By the se
ond item in Fa
t C.2.1 and thelast item in Fa
t C.2.2 the expe
ted number of independent-sets that are indu
ed by sets Vwith n(V ) = n � 3 is bounded byNn+o(logN)N�n(2� n2 log2N )+o(logN)� Nn(�1+ (2��) log2N2 log2N )+o(logN)= N��n2 +o(logN) = N��(logN);where the �rst inequality employs the fa
t that n is medium and the �nal equality usesn = �(logN). Therefore, as there are only �(logN) possible values of n, the expe
tednumber of independent-sets with medium n is bounded by N��(logN).Case 4 { Small interse
tions and a small number of interse
tions: n � �log2N and s � (32 +�) log2N .We shall a
tually establish the 
laim for n � (12 � 2�) log2N (and s � (32 +�) log2N). Fixany n and s as above and let Es;n denote the expe
ted number of independent-sets that areindu
ed by vertex-sets V 2 AsTBn. By the se
ond items in Fa
ts C.2.1 and C.2.2 we getEs;n � Nn+o(logN)N�[
0�s℄+o(logN)� N ( 12�2�) log2N+o(logN)N�[2�( 32+�)℄ log2N+o(logN)= N�[�+o(1)℄ log2N = N��(logN);where the se
ond inequality uses the fa
t that s and n are both small. Thus, as there areonly �(log2N) possible pairs (s; n), the expe
ted number of independent-sets with small sand small n is bounded by N��(logN).These four 
ases handle all possible pairs (s; n), so a N�
(1) bound on the expe
ted numberof independent-sets is a
hieved, and the 
urrent 
laim (i.e., Claim C.2) follows on
e Fa
ts C.2.1and C.2.2 are proved. 53



Proving Fa
t C.2.1. To derive the upper bounds on jAsj we 
hoose a vertex-set V 2 As as follows.There are dN
 e possible 
hoi
es for the for
ed independent set S(j) that a
hieves the maximalinterse
tion with V . Then, there are at most �
s� 
hoi
es for the verti
es of V TS(j). Finally, thereare less than � N
0�s� possible 
hoi
es for the verti
es of V nS(j). Thus jAsj � dN
 e�
s�� N
0�s�. The jAsj �N [2 log2N�s℄+o(logN) bound follows from the above by observing that �
s� < 2
 = 2[2�o(1)℄ log2N =No(logN), and that � N
0�s� < N 
0�s = N [2�o(1)℄ log2N�s.To prove the upper bounds on jBnj we 
hoose a vertex-set V 2 Bn as follows. There arepre
isely �dN
 en � possible 
hoi
es for the for
ed independent sets S(i1); :::; S(in) that interse
t V .On
e these sets S(ij) are �xed, there are exa
tly �
+1n�1� possible 
hoi
es for the 
ardinalities r1 def=jV TS(i1)j; � � � ; rn def= jV TS(in)j. Finally, given these 
ardinalities, there are no more thanQni=1 �
r�i <Qni=1 
ri = 

0 
hoi
es for the verti
es themselves. This implies that jBnj � �dN
 en ��
+1n�1�

0 . ThejBnj � Nn+o(logN) bound is derived by observing that �dN
 en � < Nn, and that �
+1n�1�

0 < (
 +1)n�1+
0 = �(logN)�(logN) = N�(log logN).Proving Fa
t C.2.2. Fix an arbitrary vertex-set V 2 AsTBn and 
onsider the set I(V ) of internalrandom edges of V ; that is, I(V ) def= ffv; wg : 9i 6= j s.t. v2V \ S(i) ^w2V \ S(j)g. By the k-wiseindependen
e of our graph, the probability that V indu
es an independent-set equals 2�jI(V )j. Notethat even by 
onsidering only the edges that 
onne
t the largest interse
tion, V TS(j), to V n S(j)we get jI(V )j � s � (
0 � s), and Item 1 follows. For Item 2, note that sin
e s(V ) = s, then ea
h ofthe 
0 verti
es v 2 V 
ontributes at least (
0 � s) edges to I(V ). As ea
h edge is 
ounted twi
e, weget jI(V )j � 12 � (
0 � s)
0, so Ps � 2� 12 �(
0�s)�(2�o(1)) log2N . Item 2 follows.For Items 3{4 we will demonstrate that for any �xed n � 3, the maximal probability Qn isa
hieved by a vertex-set V where all non-empty interse
tions V TS(j) are of size 1, ex
ept the largestinterse
tion. Indeed, assume w.l.o.g. that V has de
reasing interse
tion's sizes r1 � � � � � rn > 0.Now assume that r2 � 2. Sin
e n � 3 and Pni=1 ri = 
 + 2, then r1 + 1 � 
. Thus thereexists another vertex-set V 0 with interse
tions of sizes r1 + 1; r2 � 1; r3; � � � ; rn. It's readily veri�edthe the probability that V 0 indu
es an independent-set is at least twi
e the probability that Vdoes. Therefore the maximal probability Qn is a
hieved when r2 < 2 so r2 = � � � = rn = 1 andr1 = 
+ 3� n. Then jI(V )j = �
+22 �� �r12 � = �
+22 �� �
�n+32 � and Item 3 follows. Item 4 is derivedfrom Item 3 sin
e 
+ 22 !�  
� n+ 32 ! = n�
� n2�+ 12(5n� 2
� 4)= n log2N �[2� o(1)℄ � n2 log2N �+ 12(5n� 2
� 4)= n log2N �2� n2 log2N �� o(log2N):This establishes Fa
t C.2.2.Having established Fa
ts C.2.1 and C.2.2, the entire 
laim (i.e., Claim C.2) follows.
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Appendix D: A strengthening of Proposition 2.15The hypothesis of Part 2 of Proposition 2.15 requires the existen
e of one-way fun
tions, or equiv-alently the ability to generate hard-instan
es (to NP-problems) along with 
orresponding solutions(
f. [18, Se
 2.1℄). A seemingly weaker 
ondition, whi
h is in the spirit of Levin's theory of average-
ase 
omplexity [31℄ (see also [5℄), is the ability to generate hard-instan
es to NP-problems. Spe
if-i
ally:De�nition D.1 (generating hard instan
es): A probabilisti
 polynomial-time algorithm G is 
alleda generator of hard instan
es for a set S if for every probabilisti
 polynomial-time algorithm A theprobability that A 
orre
tly de
ides whether or not G(1n) is in S is bounded away from 1. That is,there exists a polynomial p su
h that for all suÆ
iently large n's it holds thatPrx G(1n)[A(x) = �S(x)℄ < 1� 1p(n)where �S(x) = 1 if x 2 S and �S(x) = 0 otherwise.De�nition D.1 only requires that hard instan
es be generated with \noti
eable" probability. Notethat the existen
e of one-way fun
tions (even weak ones) implies the ability to generate hard in-stan
es to NP-problems. The 
onverse is not known to hold. Thus, the following result strengthensPart 2 of Proposition 2.15.Proposition D.2 Assuming the existen
e of generators of hard instan
es for NP-problems, thereexist spe
i�
ations that 
annot be pseudo-implemented.Proof: Let L be an NP-set that has a generator G of hard instan
es, let R be the 
orrespondingwitness relation (i.e., L = fx : 9y s.t. (x; y) 2 Rg), and R(x) def= fy : (x; y) 2 Rg. Consider thespe
i�
ation that answers query x with a uniformly distributed y 2 R(x) if R(x) 6= ; and with aspe
ial symbol otherwise. We will show that this spe
i�
ation 
annot be pseudo-implemented.Let I be an arbitrary implementation of the above spe
i�
ation, and 
onsider a distinguisherthat, for parameter n, makes the query x G(1n), obtains the answer y, and outputs 1 if and only if(x; y) 2 R (whi
h is polynomial-time de
idable). When this distinguisher queries the spe
i�
ation,it outputs 1 with probability that equals � def= Pr[G(1n) 2 L℄. Assume, towards the 
ontradi
tion,that when the distinguisher queries I it outputs 1 with probability that at least � � �(n), where� is a negligible fun
tion. In su
h a 
ase we obtain a probabilisti
 polynomial-time algorithm thatviolates the hypothesis that G generates hard instan
es: Spe
i�
ally, 
onsider an algorithm A su
hthat A(x) answers 1 if and only if (x; I(x)) 2 R, and note that A is always 
orre
t when it outputs 1.Thus,Prx G(1n)[A(x) = �L(x)℄ = Pr[x2L ^ A(x)=1℄ +Pr[x =2L℄ �Pr[A(x)=0jx =2L℄= Pr[x2L ^ (x; I(x))2R℄ + (1� �) �Pr[(x; I(x)) =2Rjx =2L℄� (�� �(n)) + (1� �) � 1 = 1� �(n)(whi
h violates the hypothesis). We 
on
lude that the implementation I 
annot be 
omputationallyindistinguishable from the spe
i�
ation, and the proposition follows.
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