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1 IntroductionProperty testing (cf., [10, 7]) is a natural notion of approximation for decision problems: For apredetermined property (or decision), the task is to distinguish whether a given instance has thisproperty (i.e., is a yes-instance) or is \far" from any instance having the property.This work is concerned with testing graph properties in the adjacency matrix representation(cf. [7]). A tester for a predetermined graph property � is a (randomized) algorithm that is givena size parameter N and a distance parameter � as well as oracle access to the adjacency matrix ofan N -vertex graph G; that is, query (u; v) 2 [N ] � [N ] is answered by a bit indicating whether ornot the edge (u; v) is present in the graph. The algorithm is required to accept (with probabilityat least 2/3) any graph having property �, and reject (with probability at least 2/3) any graphthat is �-far from having property �, where distance between (N -vertex) graphs is de�ned as thefraction of edges (over �N2 �) on which the graphs di�er.Our focus is on the query complexity of testing some graph properties. We consider two extremecases. In one case, the query complexity of testing depends only on the distance parameter � (andis independent of the size of the graph N). In this case, we say that testing is very easy. In theother extreme case, for some constant � > 0, any tester must make 
(N2) queries (and is thus notsigni�cantly better than a trivial tester that inspect the entire graph). In this case, we say thattesting is very hard.1.1 Our main resultsOur �rst main result (cf. Theorem 1) is that there exist monotone graph properties in NP forwhich testing is very hard (i.e., requires 
(N2) queries). This improves over an analogous resultof Goldreich, Goldwasser and Ron [7, Prop. 10.2.3.2] that established the same lower bound fornon-monotone graph properties (in NP). In fact, our result is obtained by a simple extension oftheir technique. This resolves a natural open problem (raised by several researchers, and mostrecently by Y. Dodis).Our second main result (cf. Theorem 2) refers to graph properties that can be tested very easily(i.e., using a number of queries taht only depends on the distance parameter �). We show that suchgraph properties can be so tested by uniformly selecting a set of vertices of size depending only on �and accepting if and only if the induced subgraph has some graph property (which is not necessarilythe same as the one being tested). This improves over a previous result of Alon et. al. [2], who onlyassert that a tester may just inspect a random induced subgraph but do not assert that the decisionmay depend only on a property of that subgraph (rather than also on the tester's coins). Our resultextend to any query complexity so that if the original tester had query complexity q then the newtester has query complexity that is polynomial in q. Furthermore, the transformation preservesone-sided error. It follows that the query complexity of testing graph properties is polynomiallyrelated to the query complexity of performing such testing via non-adaptive testers (and whilepreserving one-sided error). This improves over the naive transformation of adaptive testers tonon-adaptive ones (which incurs an exponential blow-up in the query complexity).Our third main result (cf. Theorem 3) refers to the framework of graph partition problemsintroduced by Goldreich, Goldwasser and Ron [7]. They showed that every problem � in thisframework can be tested very easily (i.e., by making poly(1=�) queries). Within this framework, wecharacterize the subclass of properties that can be tested very easily using a one-sided error tester(i.e., the tester must accept any graph having the property with probability 1). Details follow.A graph partition testing problem is parameterized by a sequence of corresponding pairs of lowerand upper bounds. Speci�cally, for some (implicit) parameter k, the sequence contains k pairs2



of vertex-sets densities and k + �k2� pairs of \edge-densities". A graph has the speci�ed (by thesequence) property if there exists a k-partition of its vertices such that the number of vertices ineach component of the partition as well as the number of edges within each component and betweeneach pair of components falls between the corresponding lower and upper bounds (in the sequenceof parameters). Goldreich, Goldwasser and Ron [7] showed that every graph partition property(i.e., problem in the above framework) can be tested by making poly(1=�) queries, but in generaltheir tester has two-sided error probability. They also gave one-sided error testers for k-colorability(which operate by checking whether a random induced poly(1=�)-vertex subgraph is k-colorable).We show that the class of graph partition properties that admit a one-sided error tester of querycomplexity that is independent of N consists of two subclasses:1. The main subclass: Each property in the subclass corresponds to a k-vertex graph H. AnN -vertex graph has the property if its vertices can be k-partitioned such that there are noedges among vertices residing in the same part and so that there are edges between verticesof the ith part and jth part only if (i; j) is an edge of H. (For example, k-colorability isexpressed by letting H be the k-vertex clique.)2. The non-interesting subclass consists of two graph properties: the clique property and thetrivial property. The only N -vertex graph satisfying the clique property is the N -vertexclique, whereas all (but �nitely many) graphs satisfy the trivial property.We note that each property in the above class can be tested with one-sided error by uniformlyselecting a set of poly(1=�) vertices and accepting if and only if the induced subgraph satis�es thevery same graph property being tested.1.2 PerspectiveFor a wider perspective on property testing see [6, 9]. Our results are related to the project ofcharacterizing graph properties according to the complexity of testing them. This is a naturalresearch project, alas a seemingly very di�cult one (cf., [7, 2]). Our results carry good and badnews for this project.Theorem 1 refutes the conjecture that all monotone graph properties can be tested very easily,a conjecture which could have been justi�ed by the fact that (monotone) NP-hard problems such ask-colorability and �-clique can be tested very easily (cf. [7, Sec. 6.2&7]). Theorem 1 can be viewedas bad news for the \characterization project" (because it means that yet another natural class ofproperties has both easily-testable and hard-to-test properties).Theorem 2 provides a tool for the study of graph properties that can be tested very easily. Itasserts that when conducting such a study, one may focus on canonical testers that operate in arelatively simple way. The usefulness of Theorem 2 is demonstrated in our proof of Theorem 3, aproof that repeatedly refers to the fact that the canonical tester accepts if and only if a randominduced subgraph has a certain graph property.Theorem 3 is of the type of results sought after by the \characterization project", alas it refersonly to a special class of graph properties (see above). Combined with previous results of [7, Sec. 9]and [2], this suggests that progress can be made with respect to subclasses of graph properties thatcan be expressed in some uniform structural formalism (rather than merely placed in a uniformcomplexity class such as NP).
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OrganizationThe abovementioned results are stated formally in Section 2, and their proofs appear in the subse-quent sections (i.e., in Sections 3, 4 and 5, respectively).2 Formal SettingFor any natural number n, we let [n] def= f1; :::; ng. Without loss of generality, all N -vertex graphshave [N ] as their vertex set, and their edges are unordered pairs over [N ].2.1 Graph properties and distance to themA graph property � is a predicate de�ned over graphs that is preserved under graph isomorphism(i.e., if G has property � and G0 is isomorphic to G then G0 has property �).We say that a graph G = ([N ]; E) is �-close to having property � if there exists a graphG0 = ([N ]; E0) having property � such that the symmetric di�erence between E and E0 is at most� ��N2 �. We say that a graph G is �-far from having property � if it is not �-close to having property�. A useful observation follows:Claim 2.1 If G is �-close to (resp., �-far from) having property � then so is any graph that isisomorphic to G.Proof: Suppose that G = ([N ]; E) is �-close to � andG0 = �(G) def= ([N ]; f(�(u); �(v)) : (u; v)2Eg)for some permutation � : [N ]! [N ]. Let H be a graph having property � such that the graphs Gand H di�er on at most � � �N2 � edges. Then, H 0 = �(H) also has property � and the graphs G0and H 0 di�er on at most � � �N2 � edges.2.2 Testers for graph propertiesTesters are oracle machines that are given as input a pair (N; �), where N is a size parameter and� > 0 is a distance parameter, as well as oracle access to (the adjacency matrix) of an N -vertexgraph. An oracle machine T is called a tester for property � if for every G = ([N ]; E) and every �,the following two conditions hold:1. If G has property � then Pr[TG(N; �) = 1] � 23 .2. If G is �-far from having property � then Pr[TG(N; �) = 1] � 13 .In both items, the probability space is that of the internal coin tosses of machine T , and a typicalquery (u; v) to oracle G is answered by 1 i� the edge (u; v) is in the graph G. The tester T (for �)is said to have one-sided error if it always accepts graphs having the property �; that is, for everyG = ([N ]; E) having the property � and every �, it holds that Pr[TG(N; �) = 1] = 1.The query complexity a tester T is a function q :N�[0; 1]!N such that q(N; �) is an upper boundon the number of queries made by T on input (N; �) and oracle access to the adjacency predicateof any N -vertex graph. The query complexity of a property � is the minimum query complexity oftesters for �.
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2.3 Statement of the Main ResultsExistence of hard-to-test monotone graph properties (in NP). A graph property � iscalled monotone if adding any edge to any graph that has property � results in a graph that hasproperty �. By saying that a graph property � is in NP , we mean the natural thing; that is, thatthe problem of deciding whether a given graph has property � is in NP (i.e., the set � is in NP).Theorem 1 There exists a monotone graph property � in NP such that the query complexity of�, denoted q�, satis�es q�(N; 0:1) = 
(N2).Recall that q�(N; �) is a lower bound on the number of queries made by any tester for � on input(N; �) and oracle access to (the adjacency predicate of) any N -vertex graph. Theorem 1 is provenin Section 3.Canonical forms of testers for graph properties. Let � be any graph property and T bea tester for �. We say that T is canonical if, for some function s : N� [0; 1] ! N and graphproperty �0, the tester operates as follows: on input (N; �) and oracle access to any N -vertex graphG, the tester T selects uniformly a set of s(N; �) vertices (in G), and accepts if and only if thecorresponding induced subgraph (of G) has property �0. Clearly, the query complexity of such atester is q(N; �) = �s(N;�)2 �.Theorem 2 Let � be any graph property having query complexity q�. Then � has a canonicaltester of query complexity q0�(N; �) = O(q�(N; �)4). Furthermore, if � has a one-sided error testerof query complexity q, then � has a canonical tester that has one-sided error and query complexity�2q2 �.In particular, it follows that in the context of testing graph properties, the query complexity ofnon-adaptive1 algorithms is polynomially related to the query complexity of adaptive algorithms.Theorem 2 is proven in Section 4.A characterization of graph partition properties that are easily testable with one-sidederror. We refer to graph partition properties as described in the introduction and further discussedin Appendix B. We con�ne ourselves to \non-trivial" graph properties. That is, a graph property� is non-trivial if for all in�nitely many N 's there exist an N -vertex graph satisfying property � aswell as an N -vertex graph not satisfying property �. For a k-vertex graph H and a graph G, wesay that G is H-embeddable if the vertices of G can be k-partitioned such that there are no edges(of G) among vertices residing in the same part and so that there are edges between vertices of theith part and jth part only if (i; j) is an edge of H. (For example, saying that G is Ck-embeddable,where Ck denotes the k-vertex clique, is equivalent to saying that G is k-colorable.)Theorem 3 Let � be an non-trivial graph partition property that is testable with one-sided errorand query-complexity independent of N . Then exactly one of the following two cases holds:1. There exists a k-vertex graph H such that, for every su�ciently large graph G, the graph Gsatis�es � if and only if G is H-embeddable.2. For all su�ciently large N , an N -vertex graph has property � if and only if it is an N -vertexclique.Theorem 3 is proven in Section 5.1An oracle machine is called non-adaptive if it determines its queries based merely on its input and random-coins,independently of the answers to prior queries. 5



3 Monotone Graph Properties may be Very Hard to TestThroughout this section we consider the query complexity of testing, when setting the distanceparameter to equal a constant (e.g., � = 0:1). In contrast, the size of the graph (denoted N) istreated as a parameter. Thus, when we describe a set of N -vertex graphs, it is to be understoodthat we consider the union of all these sets (i.e., over all possible N 's).3.1 MotivationGoldreich, Goldwasser and Ron showed that there exist graph properties inNP for which any testermust inspect at least a constant fraction of the vertex-pairs [7, Prop. 10.2.3.2]. Their constructionproceeds in two stages:1. First, it is shown that certain sample spaces yield a collection of Boolean functions (i.e., aproperty of Boolean functions) that is hard to test (i.e., any tester must inspect at least aconstant fraction of the function's values).On one hand, the sample space is relatively sparse (and thus a random function is far from anyfunction in the resulting collection), but on the other hand it enjoys a strong pseudorandomfeature (and so its projection on any constant fraction of the coordinates looks random).Thus, the functions in the class (which must be accepted with high probability) look randomto any tester that inspect only a small constant fraction of the function's values, whereasrandom functions are far from the class (and should be rejected with high probability). Thisyields a contradiction to the existence of a tester that inspect only a small constant fractionof the function's values.2. Next, the domain of the functions is associated with the set of unordered pairs of elementsin [N ], and the collection of functions is \closed" under graph isomorphism (i.e., if a certainfunction on �N2 � is in the collection then so is any function obtained from it by a relabelingof the elements of [N ]).The closure operation makes this collection correspond to a graph property (since it is nowpreserved under isomorphism). The parameters are such that the resulting collection (al-though likely to be N ! times bigger than the original one) is still sparse enough (and so arandom graph is far from it). On the other hand, the indistinguishability feature is main-tained.Unfortunately, the above construction does not yield a monotone property (since the second stageinherits the possible non-monotonicity of the collection constructed in the �rst stage). We redeemthe situation by adding a third stage in which the collection is \closed" under edge-additions.Clearly, this guarantees that the resulting (graph) property is monotone (and it also inherits thefeature of being in NP). However, the resulting collection is no longer sparse, and so the fact thata random graph is far from it should be argued di�erently.3.2 The actual constructionThe actual construction follows the three stages sketched in the motivation above. For every N ,we start by considering a sample space of �N2 �-bit long strings taken from an 0:1 � 2�t-biased samplespace (cf., Naor and Naor [8] or [3]), where t def= 11000N2. E�ciently constructible sample spaces ofsize O(�N2 �=0:1 � 2�t)2 = 22t+o(t) having the above feature can be found in [3]. We actually omit6



from the sample space any sample that has less than one third of one-entries. (The importance ofthis modi�cation and its e�ect will be analyzed below.) For each sample s in the (residual) space, wede�ne a graph Gs = ([N ]; Es) by letting (i; j) 2 Es if and only if the (i; j)th bit of s equals 1, wherewe consider any �xed (e�ciently computable) order of the elements in f(i; j) : 1 � i < j � Ng.We call these 22t+o(t) graphs, the basic graphs. Note that the set of basic graphs is not likely to beclosed under isomorphism, and thus this collection does not constitute a graph property. On theother hand, the set of basic graphs is in NP, because elements in the sample space can be generatedin time polynomial in N (i.e., there exists a poly(N)-time algorithm that given an (2t + o(t))-bitlong string produces an �N2 �-bit long string in the sample space).2Next, we consider the set of secondary graphs obtained by \closing" the set of basic graphsunder isomorphism. That is, for every s in the sample space (equiv., a basic graph Gs) and everypermutation � over [N ], we consider the secondary graph Gs;� = ([N ]; Es;�) that is de�ned so that(�(u); �(v)) 2 Es;� i� (u; v) 2 Es. By construction, the set of secondary graphs is closed underisomorphism, and so this collection does constitute a graph property. The latter set is also in NP(by incorporating the isomorphism � in the NP-witness).Finally, we \close" the set of secondary graphs under edge-addition, obtaining our �nal set ofgraphs (which is, by construction, monotone): That is, for every secondary graph G0 = ([N ]; E0),and every E00 � E0, we introduce the �nal graph G00 = ([N ]; E00).Comment. At the point, the reason for the modi�cation in the initial sample space may be clear:If, for example, the sample space had contained the all-zero string then the set of �nal graphs wouldhave contained all graphs, and testing membership in it would have been trivial.Analysis. Our aim is to show that, although a random graph is far from the set of �nal graphs, noalgorithm that makes o(N2) queries can distinguish a random graph from a graph selected amongthe �nal graphs (with some distribution that is not necessarily uniform). Since a tester for the setof �nal graphs must accept any �nal graph (with high probability) and reject a random graph (withhigh probability), we conclude that such tester must make 
(N2) queries. Speci�cally, throughoutthe rest of the analysis, we refer to testers of N -vertex graphs that should accept with probabilityat least 2=3 every graph that has the property, and reject with probability at least 2=3 every graphthat is 0:1-far from having the property. Thus, we omit the distance parameter �, which alwaysequals 0.1, from all notations.Claim 3.1 The probability that a random graph is 0.1-close to some �nal graph is at most 0.1.Proof: The idea is to consider the \asymmetric distance" of a random graph from the set ofsecondary graphs, where the asymmetric distance of G1 = ([N ]; E1) from G2 = ([N ]; E2) is de�nedas E2nE1 (rather than the symmetric distance between the graphs, which equals (E2nE1)[(E1nE2)).We �rst bound the \asymmetric distance" of a random graph from the set of secondary graphs(using the fact that each secondary graph has many edges), and then observe that this asymmetricdistance does not decrease when we replace the secondary graphs by �nal graphs. That is, unlikethe symmetric distance, the asymmetric distance of G1 from G2 can only increase when addingedges to G2.Fixing any secondary graph, we �rst upper bound the probability that a random graph missesless than 0:1 � �N2 � of the edges of the (�xed) secondary graph. Using the fact that the secondary2In fact, using known constructions, membership in the (original) sample space can be decided in polynomial-time.Observing that the omitting condition is also decidable in polynomial-time, we conclude that the set of basic graphsis actually in P. 7



graph contains at least 13 � �N2 � edges (see above), the expected number of edges missed by a randomgraph is at least 16 � �N2 �. Since the \missing events" (for edges) are independent, we can employCherno�'s bound and infer that the probability that less than 0:1 � �N2 � edges are missed (by arandom graph) is upper bounded byexp"�2 � �16 � 0:1�2 �  N2!# < 2�0:006N2 (1)Recall that the number of secondary graphs is 22t+o(t) � (N !). Using t = 0:001N2, this number isO(20:002N2+o(N2)). Employing the union bound, we conclude that the probability that a randomgraph misses less than 0:1 � �N2 � of the edges of some secondary graph is at mostO(20:002N2+o(N2)) � 2�0:006N2 < 0:1 (2)Since each �nal graph contains some secondary graph as a subgraph, the probability that a randomgraph misses less than 0:1 � �N2 � of the edges of some �nal graph is at most 0.1. The claim follows.Claim 3.2 Let M be a probabilistic oracle machine that makes at most t queries. Let RN denotea random graph, and BN denote a graph uniformly selected among the basic graphs. Then,jPr[MRN (N) = 1]� Pr[MBN (N) = 1]j < 0:2Proof: We identify �N2 �-bit long strings with N -vertex graphs (obtained as in the �rst stage of theconstruction). Let GN denote a graph uniformly selected among all graphs in the sample space;that is, without discarding from the space those samples having less than one third of one-entries(equiv., less than 13�N2 � edges). Thus, BN is obtained from GN by conditioning that GN has atleast 13�N2 � edges. Using the fact that a small bias sample space (as above) is almost pairwiseindependent, the probability that an element in it has less than one third of one-entries is verysmall (e.g., tends to zero when N ! 1). Thus, the probability that GN has at least 13�N2 � edgesis overwhelmingly high, and so the statistical di�erence between GN and BN is very small (e.g.,smaller than 0:1). It follows thatjPr[MGN (N) = 1]� Pr[MBN (N) = 1]j < 0:1 (3)On the other hand, since the sample space underlying the construction of GN has bias at most0:1 � 2�t, it follows that, for any �xed sequence of coins for M , any �xed sequence of t answersoccurs with probability 2�t � 0:1 � 2�t under GN (rather than with probability 2�t under RN ).3Thus, for any �xed sequence of coins for M , the observed deviation of the t answers of GN fromthe t answers of RN is at most 0.1. It follows thatjPr[MGN (N) = 1]� Pr[MRN (N) = 1]j < 0:1 (4)Combining Eq. (3) and (4), the claim follows.Combining Claims 3.1 and 3.2, we obtain:3We use the fact that �xing the internal coins of M and the oracle answers to M determines the oracle queriesthat M makes. 8



Theorem 3.3 (Theorem 1, restated): There exists a monotone graph property in NP for whichevery tester requires 
(N2) queries (even when invoked with constant distance parameter).Proof: Consider the graph property, denoted �, corresponding to the set of �nal graphs de�nedabove. Recall that this set indeed corresponds to a monotone graph property in NP . Now, supposethat M is a tester for this property and that M makes less than N2=1000 queries (when invokedwith distance parameter 0.1). Then, by Claim 3.2,jPr[MRN (N) = 1]� Pr[MBN (N) = 1]j < 0:2 (5)Now, since each graph in the support of BN (i.e., each basic graph) has property �, the tester mustaccept (i.e., output 1 on input) such graph with probability at least 2=3. It follows thatPr[MBN (N) = 1] � 23 > 0:6 (6)On the other hand, the tester may accept with probability at most 1=3 each graph that is 0.1-farfrom having property �. By Claim 3.1, the probability that RN is 0.1-far from having property �is at least 0.9. It follows thatPr[MRN (N) = 1] � 0:9 � 13 + 0:1 � 1 = 0:4 (7)Combining Eq. (5){(7), we reach a contradiction. The theorem follows.4 Canonical Forms of Graph-Property TestersWe present two \canonization" transformations that can be applied to algorithms that test graphproperties. The two \canonization" transformations are:1. Transformation to testers that inspect a random induced subgraph.2. Transformation to testers that decide according to whether the induced subgraph has some(possibly other) graph property.Both transformations incur only a polynomial increase in the query complexity, and preserve one-sided error.The �rst transformation improves over a similar transformation that appears in the work ofAlon et. al. [2]: their transformation incurrs an exponential increase in the query complexity. Weprovide a description of their transformation in Appendix A. This is done both for sake of self-containment (and because the description in [2] is quite laconic) and as a warm-up towards the ourown transformation (presented in Section 4.1).4.1 Moving to testers that inspect a random induced subgraphThe following transformation improves over the one presented in Appendix A. Rather than incur-ring an exponential incease in the query complexity, it only incurs a polynomial increase. Thetransformation proceeds in a reverse order to the one utilized in Appendix A: First we move totesters that inspect an induced subgraph, and only next do we get rid of the potential adaptivity ofthe tester. In the latter argument, we capitalized on the fact that (by de�nition) graph propertiesare preserved under isomorphism (i.e., renaming of vertex names)9



Lemma 4.1 Let � be any graph property, and T be an arbitrary tester for �. Suppose that T hasquery complexity q(N; �). Then there exists a tester for � that selects a random subset of 2q(N; �)vertices, denoted R, makes the queries f(u; v) : u; v 2 Rg, and decides based on the oracle answers(and its internal coin tosses). Thus, the new tester is non-adaptive and its query complexity is lessthan 2q(N; �)2. Furthermore, if T has one-sided error then so does the new tester.Proof: First we transform T into an algorithm T 0 that belongs to the class of vertex-uncoveringalgorithms, de�ned as follows: A vertex-uncovering algorithm operates in iterations such that, ineach iteration, depending on its coins and the answers obtained in previous iterations, the algorithmselects a new vertex, denoted v, and makes queries to all pairs (v; u), where u is a vertex selectedin some prior iteration. Clearly, T can be emulated by a vertex-uncovering algorithm, denoted T 0,that makes at most 2q(N; �) iterations, and thus at most �2q(N;�)2 � < 2q(N; �)2 queries: each queryof T is emulated by two iterations of T 0, while these iterations are not necessarily new ones.We next consider an algorithm T 00 obtained from T 0 as follows. When given oracle access to agraph G = ([N ]; E), algorithm T 00 �rst selects uniformly a permutation � over [N ], and next invokesT 0 providing it with oracle access to the graph �(G) def= ([N ]; �(E)), where �(E) def= f(�(u); �(v)) :(u; v) 2 E). That is, when T 0 makes query (u; v), algorithm T 00 makes query (�(u); �(v)) and feedsthe answer to T 0. Clearly, algorithm T 00 also operates in a vertex-uncovering manner. Below, wewill show that the set of vertices selected by T 00 is uniformly distributed, and thus that its choice ofvertices is actually oblivious of previous answers. But before doing so, we show that T 00 maintainsthe testing features of T 0 (and thus of T ):� Let G = ([N ]; E) be a graph having property �. Then, for any permutation �, it is thecase that the graph �(G) def= ([N ]; f(�(u); �(v)) : (u; v) 2 E) has property �. Thus, T 0 mustaccept the graph �(G) with probability at least 2=3. This means that (for every permutation�) conditioned on � being chosen in the onset (of T 00), algorithm of T 00 accepts the graph Gwith probability at least 2=3 (because, in this case, T 00 just emulates for T 0 an oracle access tothe graph �(G)). Since this holds for every �, it follows that T 00 accepts G with probabilityat least 2=3.� Suppose that a graphG = ([N ]; E) is �-far from having property �. Then, for any permutation�, the graph �(G) is �-far from having property �. (See Claim 2.1.) The rest of the argumentfollows analogously to the above (where here we refer to an upper bound on the acceptingprobability). It follows that T 00 accepts G with probability at most 1=3.As stated above, the tester T 00 operates in a vertex-uncovering manner. We now show that thenext vertex selected in each of its operations is uniformly distributed (among all possible choices).In fact, we prove that for any choice r of a random-tape for T 0, for any possible sequence of queriesand answers corresponding to the �rst i iterations of T 00, the next vertex selected by T 00 is uniformlydistributed among all vertices not selected so far. (Recall that a generic random-tape of T 00 is a pair(r; �), where r is a possible random-tape of T 0 and � is a permutation over [N ].) Let T 0r denote thedeterministic oracle machine derived from T 0 by �xing the random-tape of T 0 to equal r. Similarly,let us denote by T 00r the machine derived from T 00 by �xing the �rst part of the random-tape of T 00to equal r (i.e., given oracle access to G, the machine T 00r uniformly selects a permutation �, andinvokes T 0r providing it with oracle access to �(G)).Claim 1: For any integer i, random-tape r and any possible sequence of �i2� answers corresponding tothe �rst i iterations of T 00r , the next vertex selected by T 00r is uniformly distributed among all vertices10



not selected so far. Furthermore, this holds even when given values v1; :::; vi and conditioning onvj being the jth vertex uncovered by T 00r .Proof: Recall that in these i iterations T 00r only inspects the subgraph induces by the i verticesit has uncovered. Let us �x a possible sequence of answers, denoted �. That is, � is a binarysequence of �i2� answers given to T 00r (and passed to T 0r) during these i iterations. (Indeed, �encodes a binary symmetric relation over [i].) Recall that the (�rst i + 1) vertices selected by T 0r,denoted ur;�1 ; :::; ur;�i ; ur;�i+1, are determined by T 0r depending on the corresponding pre�x of �. Thecorresponding vertices that are actually uncovered by T 00r are �(ur;�1 ); :::; �(ur;�i ); �(ur;�i+1), where �is a random permutation selected at the onset of T 00r . Thus, ur;�i+1 is determined by T 0r dependingonly on (r and) �, and at this point � is conditioned only by � being the subgraph induced by�(ur;�1 ); :::; �(ur;�i ). Furthermore, if we condition on �(ur;�j ) = vj for j = 1; :::; i, then the conditionon � becomes irrelevant (because it relates to the subgraph induced by the �xed v1; :::; vi). Butconditioning on �(ur;�j ) = vj for j = 1; :::; i, the value of �(ur;�i+1) is uniformly distributed in[N ] n fvjgij=1, and the claim follows. 2Loosely speaking, Claim 1 asserts that the vertices selected by T 00 are selected with distributionthat is independent of previous answers obtained by T 00. It follows that we may select the sequenceof vertices beforehand, which means that T 00 is essentially non-adaptive. Formally, we consider analgorithm T 000 that, given oracle access to a graph G = ([N ]; E), uniformly selects a random-taper for T 0r and invokes T 0r answering its queries as follows. In the i+ 1st iteration, when T 0r selects anew vertex (denoted ui+1), algorithm T 000 uniformly selects vi+1 2 [N ] n fvjgij=1, and answers thequeries of the ith iteration accordingly (i.e., according to the edges between vi+1 and the previousvj 's).Claim 2: For any graph G, when given oracle access G, the output distribution of T 000 is indenticalto that of T 00.Proof: Fixing G and r, we show that the distribution of answers seen by T 000r is indentical to thatof T 00r , where T 000r is de�ned analogously to T 00r . We prove, by induction on i, that the ith vertexselected by each of these machines (i.e., T 00r and T 000r ) is uniformly distributed among all verticesnot selected so far, and the claim follows. The induction step is obvious in case of T 000r . UsingClaim 1, the induction step holds with respect to T 00r : �xing any selection of vertices for the �rst iiterations of T 00r , the induced subgraph seen by T 00r is �xed too, and so the next vertex selected byT 00r is uniformly distributed among all vertices not selected so far. 2Combining Claim 2 with the fact that T 00 is a tester for �, we conclude that T 000 is a tester for�. Observing that T 000 operates as claimed in the lemma, and has one-sided error in case T hasone-sided error, we are done.Perspective: The main part of the proof of Lemma 4.1 is similar to an analogous statementproven by Bar-Yossef et. al. [5] in the context of \sampling algorithms". Consider, for example,the problem of approximating the average value of a function f de�ned over a huge space, sayf : f0; 1gn! [0; 1], when given only oracle access to the function. We seek algorithms that makerelatively few oracle calls, and call them samplers. The proof of Lemma 4.1 can be easily modi�ed(and in fact simpli�ed) to prove that the query complexity of non-adaptive samplers equals the querycomplexity of adaptive ones. The key observation is that also here the relevant property (i.e., theaverage value of a function) is invariant under renaming (of the function's arguments). In fact, thisis exactly the way this statement (regarding query complexity of \sampling algorithms") is provenin Lemma 9 of [5]. 11



4.2 Moving to a decision determined by the induced subgraphThe current transformation is less generic than the previous one, since it applies only to non-adaptive (graph property) testers. For simplicity, our starting point is actually testers as resultingfrom Lemma 4.1 (i.e., that query the oracle on the edges of a random induced subgraph). Thecurrent transformation consists of three steps:1. Transformation to testers that decide based on the subgraph they see, possiblly by tossing newcoins, but independently of the coins used to select the sample set of vertices. In particular,if the tester selects t vertices, then it decides based only on the induced t-vertex subgraph inwhich the vertices are labelled by the elements of [t] according to some canonical order.2. Transformation to testers that decide as above, but do so in a way that is independent ofthe labelling of the induced subgraph. That is, the decision depends only on an unlabelledversion of the induced subgraph.3. Transformation to testers that decide according to whether or not the induced subgraph hassome �xed graph property. That is, this transformation gets rid of the coins that were possiblyused in the previous decision process.That is, the �rst transformation gets rid of the possible dependence of the decision on the identity ofthe sampled vertices; that is, the resulting decision depends only on the subgraph seen by the tester(but possibly depends on the ordering of the vertices in this subgraph). The second transformationmakes this decision identical for all isomorphic subgraphs (i.e., independent of this ordering), andthe third transformation makes this decision deterministic. The (proof of the) last transformationseems to be the most interesting one.4.2.1 Moving to a sample-independent decisionWe �rst move to testers in which the sample of vertices only determines the queries, but plays nodirect role in the �nal decision (which depends only on the answers to these queries).Claim 4.2 Let � be any graph property, and T be a non-adaptive tester for � that selects a randomsubset of t = t(N; �) vertices, makes queries to determine the induced subgraph, and decides basedon the oracle answers (and its internal coin tosses). Then, without loss of generality, the tester Tcan be decomposed into two parts.� The �rst part uniformly selects a set of vertices and queries the oracle for the induced subgraph,which it passes to the second part.� The second part makes a decision based on the subgraph obtained from the �rst part andpossibly depending on its own coins, but independent of the coins used by the �rst part.Furthermore, if T has one-sided error then no coins are tossed in the second part.Proof: Without loss of generality, we may decompose the random-tape of T into the form (S; r),where S is the vertex set selected by T (with probability pS = 1=�Nt �) and r is the residualrandomness. (This step is quite generic: the original random-tape of T induces uniform distributionover the possible vertex-sets, and each possible vertex-set induces uniform distribution over allrandom-tapes that cause T to select this set.)For each set of vertices S and each sequence of possible answers � (which is a symmetric relationover S), we denote by qS;� the probability that T accepts, having selected the vertex set S andseeing the answer sequence �. Indeed, qS;� is merely the fraction of r's that make T accept when12



its sees answers � (after selecting S). For any �xed �, let q� def= PS pSqS;� be the expected value ofqS;� (for varying S). We now derive a tester that selects S as T does, but decides only acccordingto the answers it gets (i.e., independently of S). Speci�cally, we consider an algorithm T 0 thatselects S with probability pS , and (for every �) upon obtaining the answer sequence � accepts withprobability q� .Claim: For any graph G, when given oracle access G, the probability that T 0 accepts G equals theprobability that T accepts a random isomorphic copy of G.Proof: Let � be a uniformly distributed permutation over [N ], and consider the operation of Twhen given oracle access to �(G). Note that T selects S uniformly, inspects the subgraph of �(G)induced by S (which equals the subgraph of G induced by ��1(S)), and accepts with probabilityqS;� , where � is the relation representing this subgraph. In terms of G, the situation is the same asif T would have selected uniformly and independently two sets S and S0 (since S0 corresponds to��1(S) where � is a uniformly distributed permutation) and accepts with probability qS;� , where� is the relation representing the subgraph of G induced by S0. Taking another step, it is as if Twould have selected uniformly a set S0 and, upon obtaining the answer sequence �, accepts withprobability q� = ES(qS;�) (becuase S is selected independently of S0 and is only used to determineqS;�). But this exactly what T 0 actually does when given oracle access to G. 2As in the proof of Lemma 4.1, it follows that T 0 is a tester for �. The main part of the claimfollows.Finaly we observe that if T has one-sided error then, without loss of generality, all the q� 'smay be in f0; 1g (and so no coins are needed for the �nal decision). The reason is that if any q�is strictly smaller than 1 then the answer sequence � cannot occur when accessing a graph thathas property � (or else this graph is rejected with non-zero probability), and so setting this q�to zero does not e�ect the performance on graphs having property � and may only improve theperformance on all other graphs.4.2.2 Moving to a isomorphism-oblivious decisionClaim 4.2 asserts that, without loss of generality, the �nal decision of a tester is obtained by arandomized computation that depends only on the oracle answers (which are obtained by queryingall pairs in a random set). We now show that, without loss of generality, this decision is closedunder isomorphism. In the special case of one-sided testers, this means that the �nal decision is bywhether or not the induced subgraph satis�es some �xed graph property.Claim 4.3 Let � and T be as in Claim 4.2. Then, without loss of generality, T is composed oftwo parts as in Claim 4.2, and in the second part the decision applied to the answer is closed undergraph isomorphism. That is, when seeing an induced subgraph that equals H, the second part decidesexactly as in case it sees a subgraph that it isomorphic to H. Furthermore, if T has one-sided errorthen, without loss of generality, there exists a graph property �0 such that the �nal decision of Tamounts to checking whether or not the subgraph induced by its vertex sample has property �0.Proof sketch: The proof is very similar to the proof of Claim 4.2. Denoting by q� the probabilitythat T accepts on answer sequence �, we consider an algorithm T 0 that accepts with probabilitythat depends only on the class of graphs isomorphic to �. Speci�cally, let g(�) be the set of graphsthat are isomorphic to the graph having an adjecancy matrix that corresponds to �, and let q0H bethe expected value of q� taken uniformly over all � such that g(�) 3 H. Then, T 0 selects uniformlya set of vertices S, and accepts with probability q0H , where H is the subgraph induced by S.13



As in the proof of Claim 4.2, we show that, for any graph G, the probability that T 0 accepts Gequals the probability that T accepts a random isomorphic copy of G. (Here we use the fact thatwhen T accesses a random isomorphic copy of G and obtains the answer sequence �, it decides as ifit has accessed G and obtained an answer that corresponds to a random element in g(�).) Finally,we use again the fact that if T is one-sided then, without loss of generality, each q� is either 0 or 1.The claim follows.4.2.3 Moving to a deterministic decisionHere, our aim is to make the second part of the tester guaranteed by Claim 4.3 be deterministic(i.e., be determined by whether or not the induced subgraph has some �xed graph property). Bythe furthermore parts of Claims 4.2 and 4.3, it su�ces to consider two-sided error testers (becuasefor one-sided error testers the �nal decision was already shown to be deterministic). Thus, ourfocus in this subsection is on two-sided error testers. In fact, we can directly handle testers as inClaim 4.2 (i.e., with a decision that is not closed under isomorphism of the induced subgraph), butfor sake of simplicity we prefer to use Claim 4.3 as our starting point.Lemma 4.4 Let � and T be as in Claim 4.3, and let t denote the number of vertices selected by T .Then, there exists a tester T 0 and a graph property �0 so that T 0 selects a random set of t0 = O(t2)vertices and accepts if and only if the subgraph induced by it has property �0.Proof: Let us denote by pH the probability that T accepts a graph when seeing H as the induced(t-vertex) subgraph. Consider a new algorithm T 0 that when given oracle access to a graph G,selects at random a set of t0 = 108t2 vertices, denoted S0, inspects the subgraph induced by S0 anddecides as follows:1. For every t-subset S of S0, the new test determines the subgraph of G induced by S, and addpGS to an accumulated sum, where GS denotes the subgraph of G induced by S. That is, T 0computes the sum XS�S0 s.t. jSj=t pGS (8)2. Accept the graph G if and only if the �nal sum (i.e., Eq. (8)) is greater that 12 � �t0t �.Observe that T 0 makes a �nal decision of the required form (i.e., the decision is isomorphism-oblivious and deterministic, and so it can be casted as a graph property). All that is left is toanalyze the performance of T 0. Intuitively, the expected value associated with each t-subset (ofa random t0-subset) re
ects the expected decision of T (i.e., its accepting probability), and sincethe various random values are \su�ciently independent" with high probability their sum re
ectsthe expected decision of T . Thus, the sum is very likely to exceed 12 � �t0t� (resp., be below 12 � �t0t �)if the accepting probability of T is above 2=3 (resp., below 1=3). In the actual analysis we willuse Chebyshev's inequality and the fact that two random t-subsets of a t0-set are disjoint withsu�ciently large probability. Details follows.In order to simplify the analysis, we slightly modify the presentation. The modi�ed T (resp.,T 0) operates by selecting uniformly and independently a sequence of t (resp., t0) vertices, possiblywith repetitions. Assuming that t(N; �) < N1=5, this modi�cation has negligible impact, becauserepetitions are unlikely to occur. We stress that this modi�cation is not essential to the rest of theanalysis; it just simpli�es things a little (and, in general, we may assume that t(N; �) < pN logN ,since otherwise algorithm T 0 sees the entire graph and may just decide accordingly).14



Let us denote by s = (s1; :::; st0) the sequence of vertices selected by T 0. We view T 0 as scanningall possible t-subsets I � [t0], and inspecting (for each such subset I) the subgraph induced by thevertex set fsi : i 2 Ig. For each t-subset I � [t0], consider a random variable �I = �I(s) representingthe contribution of the set I to the accumulated sum (computed by T 0), where the underlyingproability space is of all possible t0-long vertex sequences s. Clearly, E(�I) = Es(pGfsi:i2Ig ) equalsEs(pGfs1;:::;stg ), which in turn equals the probability that T accepts G. Also, for every disjoint Iand J , the random variables �I and �J are independent. Let S denote the set of all t-subsets of [t0],and recall that T 0 accepts G if and only if PI2S �I > 12 � jSj. It follows that T 0 is correct providedthat �����XI2S �I � XI2S E(�I)����� < 16 � jSj (9)Applying Chebyshev's inequality we will show that Eq. (9) holds with probability at least 2=3.Speci�cally, let �I def= �I � E(�I). ThenPr"�����XI2S �I � XI2S E(�I)����� � 16 � jSj# � Var(PI2S �I)jSj2=36= 36jSj2 � E0@ XI2S �I!21A= 36jSj2 � XI;J2S E(�I�J)< 36jSj2 � jSj2108 = 13where the last inequality uses the following facts:� For any disjoint I and J , it holds that E(�I�J) = E(�I) � E(�J) = 0.� For any (non-disjoint) I and J , it holds that E(�I�J) < 1 (because j�K j < 1 for every K).� The fraction of non-disjoint pairs of t-subsets of [t0] among all pairs of t-subsets of [t0] isbounded above by t2 � 1t0 = 1108 .It follows that T 0 decides correctly with probability at least 2=3, and the lemma follows.4.2.4 Question: Does � equal �0In general, the question does not make sense since � is a property of N -vertex graphs, whereas�0 is a property of t-vertex graphs.4 But the question does make sense if these properties can beexpressed in a uniform way that is independent of the size of the graph. Two speci�c frameworksfor such properties were presented in [7] and [2], respectively:1. The framework of graph partition problems [7, Sec. 9] is brie
y reviewed in the introduction(see also Appendix B), and is further studied in Section 5. Goldreich, Goldwasser and Ron [7]showed that every problem � in this framework can be tested by checking whether a randominduced subgraph of poly(1=�) vertices satis�es a related graph property �0. In general, �0is not equal to �, and the tester has two-sided error probability. (In fact, this is unavoidable4Formally, both � and �0 are properties of all graphs, but when we �x an N for the above discussion, we actuallycare of the properties � and �0 when restricted to N -vertex and t-vertex graphs, respectively.15



for some properties �; for example, the property of the graph consisting of two equal sizeparts one being a clique and the other being an independent set.) Con�ning ourselves toproperties � that admit a one-sided error tester of query complexity independent of N , weshow that without loss of generality �0 equals � (see Corollary 5.9). This follows fromthe characterization of properties � that admit a one-sided error tester of query complexityindependent of N (see Theorem 5.8).2. Alon et. al. [2] considered the class of graph properties that can be expressed by quanti�edboolean formula over the edge relation E. For example, the property of being triangle-free isrepresented by the formula8x; y; z [(x; y) =2E _ (y; z) =2E _ (z; x) =2E]For graph properties � expressible by formulae of the form 98, Alon et. al. [2] presented atester of query complexity that only depends on � (but grows very rapidly with 1=�).5 Theirtester checks whether a random induced subgraph of suitable size satis�es a related graphproperty �0. Actually, they showed that for every such property � can be approximated6by a \graph coloring" property �0 that can be tested by checking whether or not a randominduced subgraph of suitable size satis�es �0 itself. Thus, the class of general \graph coloring"properties can be tested by checking whether a random induced subgraph of suitable sizesatis�es the very same property.In addition, as observed by Alon [1], for any property � that is closed under taking inducedsubgraphs (i.e., if G has property � then so does every induced subgraph of G), if � is easilytestable then it is easily testable by a canonical tester (as above) that uses �0 = �. That is, ifsuch a property � is testable by q(�) queries (i.e., independent of the size of the graph) then it sotestable by inspecting a random induced subgraph of size poly(q(�)) and accepting i� the subgraphhas property �. For details, see Appendix E.4.3 Putting it togetherCombining Lemma 4.1, Claim 4.2, Claim 4.3 and Lemma 4.4, we obtain:Theorem 4.5 (Theorem 2, restated): Let � be any graph property. If there exists a tester withquery complexity q(N; �) for � then there exists a tester for � that uniformly selects a set ofO(q(N; �)2) vertices and accepts i� the induced subgraph has property �0, where �0 is some �xedgraph property. Furthermore, if the original tester has one-sided error then so does the new tester,and furthermore a sample of 2q(N; �) vertices su�ces5 On General Graph Partition Problems that are Testable withOne-Sided ErrorWe refer to the framework of graph partition problems [7, Sec. 9]. Recall that in this framework atesting problem is parameterized by a sequence of corresponding pairs of lower and upper bounds:5For properties expressible by formulae having only universal quanti�ers, the query complexity is a tower ofpoly(1=�)-many exponents. For properties expressible by formulae of the form 98, the query complexity is even worse(but still depends only on 1=�).6Loosely speaking, every graph having one of these properties is close to a graph having the other property.16



For some (implicit) parameter k, the sequence contains k pairs of vertex-sets densities and k + �k2�pairs of edge-densities, and the problem is to determine whether there exists a k-partition of thevertices so that the number of vertices in each component of the partition as well as the number ofedges within each component and between each pair of components falls between the correspondinglower and upper bounds. If such a partition exists, we call it a witness partition. For example, k-colorability falls into this framework by requiring that the density of edges within each of the kparts equals zero (and making no other requirements).7 For further details see Appendix B.Goldreich, Goldwasser and Ron [7] showed that every graph partition property (i.e., problemin the above framework) can be tested by making poly(1=�) queries, but in general the tester hastwo-sided error probability. They also gave one-sided error testers for k-colorability (which operateby checking whether a random induced poly(1=�)-vertex subgraph is k-colorable).8 Our main goalin this section is to characterize the set of graph partition properties that admit a one-sided errortester of query complexity that is independent of N .A few technicalities: Throughout the discussion, we consider only admissible sequences ofparameters (cf. [7, Def. 9.3.1]): These are sequences for which the set of graphs that have theproperty is in�nite (i.e., contains at least one N -vertex graph, for in�nitely many N 's). We avoidintegrality problems by allowing upto k� 1 vertices to be split between the k parts of the partition(see [7, Rem. 9.1]). Also, following [7], we consider vertex-densities as fractions of N , and edge-densities as fractions of N2 (rather than of �N2 �). Finally, for greater expressibility, we allow self-loops and count them as half edges: For example, using these conventions, a �N -vertex clique in anN -vertex graph has edge density �22 , which is independent of N . (Note that the latter conventionis not consistent with the exposition in the previous sections.) For further discussion of the lattertwo conventions, see Appendix B. We comment that the analysis can be carried out also under thealternative conventions mentioned above (and in Appendix B), but the exposition would be morecumbersome and the �nal result would be slightly di�erent: the second case in Theorem 5.8 wouldnot be possible.The starting point: Using Theorem 4.5, we may con�ne ourselves to canonical testers (of one-sided error) that operate by inspecting the subgraph induced by a uniformly selected set of vertices,where the size of the vertex set is independent of N . Recall that the inspection (of the subgraph)consists of determining whether or not it has some graph property �0 (not necessarily equal to theproperty � being tested).5.1 Trivial graph propertiesA graph property is called trivial if for every � > 0 and for all su�ciently large N , every N -vertexgraph is �-close to having the property. We may discard trivial graph properties from our discussion,since they have a \trivial" tester, which (provided N is big enough) accepts all N -vertex graphs.Furthermore, within the framework of graph partition problems, trivial properties are satis�ed byall but �nitely many graphs.7Formally, the k lower-bound and upper-bound pairs on vertex-set sizes are all trivial (i.e., all equal (0; 1)), and soare the �k2� pairs of bounds on of edge-densities between pairs of components. The only non-trivial pairs of boundsare those referring to edge-densities within each of the k components (i.e., all these pairs equal (0; 0)).8An improved bound on the size of the sample was later presented by Alon and Krivelevich [4]: They showed thata sample of size ~O(1=�) (rather than ~O(1=�2)) su�ces for k = 2, and size ~O(1=�2) (rather than ~O(1=�3)) su�ces forany constant k > 2. 17



Lemma 5.1 Let � be any trivial graph partition property. Then, for all su�ciently large N , everyN -vertex graph has property �.The proof can be found in Appendix C.5.2 Some graph partition properties that are trivialWe �rst identify (and discard from the rest of the discussion) a class of graph partition propertiesthat contains only trivial properties.Claim 5.2 Let � be a graph partition property that is testable by a canonical tester with one-sidederror and query-complexity independent of N . Suppose that the graph G = ([N ]; E) has property �,and let (V1; :::; Vk) be a witness partition of G. If for some i the subgraph induced by Vi is neithera clique nor an independent set, then � is trivial.Proof: Let G = ([N ]; E), (V1; :::; Vk) and i be as in the hypothesis. Then the number of edgeswith both endpoints in Vi is greater than zero and smaller than jVij22 . Suppose for a moment thatfor some integer t the said number were at least t22 and at most jVij22 � t22 . Then, for every t-vertexgraph H, there would exist a graph GH having property � such that GH would contain H as aninduced subgraph. (The graph GH is derived from G by modifying the subgraph induced by Vi sothat the number of edges is maintained and the subgraph induced by the �rst t vertices of Vi equalsH. This is certainly possible, because both the number of edges and non-edges in H is at most t22 )Now, suppose that (for some � > 0) the canonical tester selects a sample of t = t(�) vertices.Then for every t-vertex graph H there exists an N -vertex graph GH satisfying � (as above) sothat when given oracle access to GH , with positive probability, the tester sees H as the inducedsubgraph. Since GH satis�es � and the tester has one-sided error, it must accept upon seeing Has the induced subgraph. But this holds for every t-vertex graph H, and so the tester must alwaysaccept (no matter which induced subgraph it sees). It follows that, for every N 0 � t, the testeraccepts (with probability 1 > 23 ) any N 0-vertex graph, and thus every N 0-vertex graph is �-close tohaving property �. If we can repeat the above argument for every � > 0 then it will follow that� is trivial. To do so we must show that for every t, which will be set to equal the size of thevertex-sample selected by the tester on distance parameter �, there exist a graph and a k-partitionas in the claim's hypothesis so that the number of edges with both endpoints in Vi is at least t22and at most jVij22 � t22 (rather than just greater than zero and smaller than jVij22 ).Fixing t, we �rst consider a graph G = ([N ]; E) with (V1; :::; Vk) and i be as in the claim'shypothesis. Let e denote the number of edges with both endpoints in Vi (i.e., 0 < e < jVij22 ). If t22 <e < jVij22 � t22 then we are done. Otherwise, for f = t22 , we consider the graph G0 = ([f ]� [N ]; E0),where E0 = f(hi; ui; hj; vi) : (u; v) 2 E ^ i; j 2 [f ]g (10)Clearly, the graph G0 has property �, as is witnessed by the partition (V 01 ; :::; V 0k), where V 0j def=fhi; vi : v 2 Vj ^ i 2 [f ]g (which preserves the relative densities of vertices and edges with respectto the witness partition (V1; :::; Vk)). Furthermore, the number of edges in E0 with both endpointsin V 0i is at least f = t22 and at most jV 0i j22 � t22 . The claim follows.
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5.3 Non-trivial graph partition properties { the two casesBelow, we refer to the lower and upper bound parameters that appear in the speci�cation ofproperty �. Recall that there are bounds that refer to the fraction of vertices in each part, andbounds referring to the fraction of edges inside parts or between parts.Claim 5.3 Let �, G = ([N ]; E) and (V1; :::; Vk) be as in Claim 5.2.1. If for some i the subgraph induced by Vi is an independent set then no edge lower-boundparameter is positive.2. Suppose that no edge lower-bound parameter is positive. Then, if for some i the subgraphinduced by Vi is a clique then � is trivial.Proof: We start with Part (1). As in the proof of Claim 5.2, we may assume that the size of Vi isgreater than the size of the vertex-sample chosen by the tester. It follows that when given oracleG, with positive probability, the tester will see an induced subgraph that is an independent set.Because the tester has one-sided error, it must accept in this case, and thus it always accepts anoracle N -vertex graph that is an independent set. Repeating the argument for any � > 0, it followsthat, for su�ciently large N , the N -vertex independent set graph is �-close to having property �.This contradicts the possibility that some edge lower-bound parameter is positive (i.e., c > 0),because it would have meant that (for some constant c > 0) the independent set is too far (i.e.,c-far) from having property �Turning to Part (2), we �rst observe that if for some i the subgraph induced by Vi is a cliquethen (for every � > 0 and all su�ciently large N) the N -vertex clique graph is �-close to havingproperty �. (The proof is similar to the main part of the above argument.) Now, consider awitness partition, denoted (V 01 ; :::; V 0k), of a graph G0 satisfying � that is �-close to the N -vertexclique graph, and let j be such that jV 0j j � N=k. Then, the number of edges with both endpoints inV 0j must be at least jV 0j j22 � �N2 � (N=k)22 � �N2 > 1 (where the last inequality holds for � < 1=2k2and su�ciently large N). Using the hypothesis that no edge lower-bound parameter is positive,it follows that omitting edges from G0 results in a graph that also has property �. In particular,by possibly omitting a single edge residing in V 0j , we can obtain a graph G00 satisfying � so that(V 01 ; :::; V 0k) is also a witness partition of G00 and so that the subgraph of G00 induced by V 0j is neithera clique nor an independent set. Using Claim 5.2, Part (2) follows.Corollary 5.4 Let � be a graph partition property that is testable by a canonical tester with one-sided error and query-complexity independent of N , and suppose that � is not trivial. Then exactlyone of the following two cases holds:1. Every graph having property � is k-colorable, and all edge lower-bound parameters in thespeci�cation of � are zero. Furthermore, all upper-bounds referring to edges inside partsmust be zero.2. Every graph having property � can be k-partitioned so that each part is a clique.Proof: Using Claim 5.2, the parts in a witness partition of any graph G having property � mustbe either cliques or independent sets. Suppose �rst that for some G having property �, somepart of the witness partition of G is an independent set. Then, by Part 1 of Claim 5.3, all edgelower-bounds in the speci�cation of � are zero. Using Part 2 of Claim 5.3, in this case no part19



in the witness partition of any graph G0 having property � (regardless if G0 = G or not) can bea clique, and so (using Claim 5.2 again) all parts in the witness partition of every graph havingproperty � are independent sets (and so the graph is k-colorable). The only other case allowedfor (non-trivial) � is the one described in Item 2 of the corollary. The main part of the corollaryfollows.To �nish the proof we show that in the �rst case (i.e., � implying k-colorability) all the upper-bounds on the number of edges inside parts must be zero. Suppose on the contrary that the ithupper-bound referring to edges inside parts equals c > 0, and consider a witness partition (V1; :::; Vk)of a su�ciently large graph G = ([N ]; E) having property �. Speci�cally, we need (k+1)22 � c � N2and jVij � k+1, where the latter can be obtained by amplifying the graph and the witness partition(as in Eq. (10)). Indeed, each of the Vj 's is an independent set, but we can easily modify G toa graph G0 that satis�es � and yet contains a (k + 1)-clique (in contradiction to the hypothesisthat all graphs satisfying � are k-colorable). This is done by putting a (k + 1)-clique inside Vi,which does not violate the edge density upper-bound of the ith part (and thus guarantees that themodi�ed graph satis�es �). The furthermore-part of the corollary follows.Below, we consider the two cases of Corollary 5.4. We refer to the second case of Corollary 5.4 (i.e.,a graph is k-partitioned so that each part is a clique) as to a graph is covered by k cliques.5.3.1 Graph partition properties that imply k-colorabilityWe call an lower-bound (resp., upper-bound) parameter trivial if it equals 0 (resp., 1). That is, atrivial bound parameter is satis�ed by any k-partition of any graph.The notion of a relaxation. We say that property �0 is a relaxation of � if every graph satisfyingproperty � also satis�es property �0. For � > 0, we say that property �0 is an �-relaxation of � if �0is a relaxation of � and every su�ciently large graph satisfying property �0 is �-close to satisfying�. We say that �0 is a 0-relaxation of � if, for every � > 0, property �0 is an �-relaxation of �.The notion of 0-relaxation is related to the notion of indistinguishability de�ned by Alonet. al. [2]. Note that if �0 is a 0-relaxation of � then every tester for �0 is almost a tester for� in the following sense: For every value of � > 0 the �0-tester may behave improperly with respectto � on �nitely many graphs. Thus, as far as property testing is concerned, we may consider0-relaxations of a property instead the property itself.We conjecture that, within the framework of graph partition problems, all but �nitely manygraphs that satisfy a 0-relaxations of a property also satisfy property itself. This conjecture wasalready proven for the special case of trivial properties (see Lemma 5.1),9 and is established nextfor a more general special case that su�ces for our needs.Lemma 5.5 Let � and �0 be graph partition properties. Suppose that all edge lower-bound param-eters in the speci�cation of both � and �0 are zero, and that each edge upper-bound parameter inthe speci�cation of �0 is either zero or one. Further suppose that �0 is a 0-relaxation of �. Then,for every su�ciently large graph, the graph has property � if and only if it has property �0.The proof can be found in Appendix D.9The set of all graph (i.e., the property satis�ed by all graphs) is a 0-relaxation of any trivial graph property.Lemma 5.1 can be restated as saying that, for any trivial graph partition property � and all su�ciently large N , anyN -vertex graph (i.e., that is a graph and thus satis�es the 0-relaxation) satis�es property �.20



Towards a characterization. The main step towards characterizing graph partition propertiesthat imply k-colorability is the following characterization of their 0-relaxations.Lemma 5.6 Let � be as in Corollary 5.4. Suppose that every graph having property � is k-colorable. Then, there exists a graph partition property �00 that is a 0-relaxation of � so that theonly non-trivial bounds in the speci�cation of �00 are upper-bounds that equal zero.10 Furthermore,these zero upper-bounds must include the upper-bounds referring to edges inside each part.Proof: As a �rst step, consider a speci�cation of a property �0 derived from the speci�cation of� as follows: All edge upper-bounds that equal zero in the speci�cation of � are set to zero alsoin the speci�cation of �0, and all other edge bounds in �0 are trivial. (Recall that, by Part 1 ofCorollary 5.4, all edge lower-bounds in � are trivial, and so this holds also for �0.) The vertexbounds of � are maintained in �0. (We will deal with them at the second stage.)Recall that in � all the upper-bounds referring to edges inside parts must be zero. Thus, alledge bounds of property �0 are as required. Clearly, �0 is a relaxation of � and so to establishthat �0 is a 0-relaxation of � we need to show that, for every � > 0, every su�ciently large graphhaving property �0 is �-close to have property �.Fixing any � > 0, we consider a su�ciently large N so that the vertex-sample chosen by thetester on distance parameter � is smaller than the numbers implied by all positive non-trivial edgeupper-bounds of �. That is, if c > 0 be the smallest positive edge upper-bound of �, then we setN > t(�)=pc, where t(�) is the size of the sample chosen by the tester.Let G0 = ([N ]; E0) be an arbitrary N -vertex graph satisfying �0. Consider a vertex sample,denoted S, taken by the tester (for �) on distance parameter � and access to the oracle G0. We �rstshow that the (small) subgraph of G0 induced by S can be embedded in a graph G that satis�es�, where G is derived from G0 by omitting almost all edges. Speci�cally, we consider the graphG = ([N ]; E) obtained by letting E = f(u; v) 2 E0 \ (S � S)g. The only bounds of � that can beviolated by a graph having property �0 are positive (non-trivial) edge upper-bounds, because allother bounds of � equals those of �0. But these bounds cannot be violated by G, because G hasvery few edges (i.e., G has less than jSj2 edges, and N was chosen so that jSj2 < c �N2). It followsthat any induced subgraph that can be seen by the test (for �) when given access to the oracleG0, is also seen by the test with positive probability when given access to some oracle representinga graph that has property �. Using the one-sided error feature of the test (for �), it follows thatthe test accepts G0 with probability 1, and hence G0 must be �-close to having property �. Thisconcludes the proof that �0 is a 0-relaxation of �.We now turn to the next step: Starting from �0, we obtain �00 by possibly modifying the vertexbounds, and leaving all edge bounds intact. Speci�cally, we set all non-zero vertex-bounds to betrivial (i.e., 0 for lower-bounds and 1 for upper-bounds), and maintain zero vertex upper-boundsand lower-bounds (in case they are present in � and �0).11 Using an argument as in the �rst stage,it follows that �00 is a 0-relaxation of �0. Speci�cally, �00 is a relaxation of �0, and for every � > 0and su�ciently large graph satisfying �00, it is the case that the very same graph is �-close to �0.(Intuitively, looking at the witness partition w.r.t �00, observe that the only bounds of �0 that canbe violated by that partition are non-zero (vertex) bounds of �0; but this cannot be detected withone-sided error from an o(N)-size vertex-sample.) The lemma follows.10In case all vertex upper-bounds in � are positive (see Footnote 11), the only non-trivial bounds in the speci�cationof �00 are edge upper-bounds (which equal zero).11Recall that zero lower-bounds are trivial, whereas zero upper-bounds on vertex-density are non-trivial but quiteidiotic (because they merely mean that we specify a k0-partition problem, for some k0 < k, rather than a k-partitionproblem). 21



5.3.2 Graph partition properties that imply a cover by k cliquesLemma 5.7 Let � be as in Corollary 5.4. Suppose that every graph having property � can bek-partitioned so that each part is a clique. Then, for su�ciently large N , an N -vertex graph hasproperty � if and only if it is an N -vertex clique.(Recall that we consider only properties that are satis�ed by some graphs.)Proof: Let G = ([N ]; E) be an arbitrary graph having property �. As shown in the proof ofClaim 5.2 (see also below), the graph G can be assumed to be large enough so that some part inits witness partition is larger than the vertex-sample taken by the tester (on distance parameter�). Let us denote the size of that sample by t = t(�). Since the tester has one-sided error (and Gcontains a t-vertex clique), the tester must accept when the subgraph induced by the vertex-sampleis a t-vertex clique. It follows that the N -vertex clique is �-close to �. Below we shall show that noother N -vertex graph can be accepted by the tester. One consequence of this is that the N -vertexclique must have property � (because, otherwise no N -vertex graph has property �).Suppose, towards the contradiction, that G = ([N ]; E) has property � but is not the N -vertexclique. We consider an ampli�ed version of G, denoted G0 = ([t] � [N ]; E0), where E0 is as inEq. (10). Then, on one hand G0 has property � (with witness partition induced by that of G).12On the other hand, G0 contains as an induced subgraph a 2t-vertex graph consisting of a pair oft-cliques (corresponding to any missing edge in G). However, for every i = 1; :::; t�1, with positiveprobability the tester given oracle access to G0 sees an induced subgraph consisting of two cliques,one of size i and the other of size t � i (and no additional edges). Since the tester has one-sidederror (and G0 has property �), the tester must accept in each of these cases. It follows that whengiven oracle access to any N -vertex graph consisting of two cliques (and no additional edges), thetester will always accept. Thus, subject to the contradiction hypothesis,13 we have:Claim 1: For all su�ciently large N and every 1 < M < N , every graph that consists of anM -vertexclique and an (N �M)-vertex clique (and no additional edges) is �-close to having property �.Next, we consider the edge lower-bounds in the speci�cation of �; that is, let li;i (resp., li;j) denotethe lower-bound referring to edge density within the ith part (resp., between the ith and the jthparts). Speci�cally, these lower-bounds require that the number of edges within the ith part is atleast li;i �N2 (resp., between the ith and the jth parts is at least li;j �N2).Motivation: For simplicity we consider the case k = 2 (observing that the lemma is trivial in casek = 1). Furthermore, for simplicity, we �rst assume that � = 0. Using Claim 1, it follows thatthe graph consisting of two (N=2)-vertex cliques (and no additional edges) has property �. Theonly witness partition possible for this graph is the one in which each clique is in a di�erent part,and thus each part is allowed to have at least one half of the number of vertices. Furthermore,both l1;1 � 1=8 and l2;2 � 1=8 (since each part contains a (N=2)-vertex clique, and so has only(N=2)22 = N28 edges). Next, we consider the graph consisting of one (N=3)-vertex clique and one(2N=3)-vertex clique, which (by Claim 1) also has property �. Again, the witness partition of thisgraph has each clique is in a di�erent part, and it follows that either l1;1 � 1=18 or l2;2 � 1=18(since the part containing the (N=3)-vertex clique has only (N=3)22 = N218 edges). Suppose, withoutloss of generality, that l2;2 � 1=18. But now it follows that also the graph consisting of of one(N=2)-vertex clique, one (N=3)-vertex clique, and N=6 isolated vertices satis�es � (e.g., consider12Observe that the parts of the induced partition are cliques, and that the fraction of edges between the parts isexactly as in the witness partition of G.13That is, assuming that G = ([N ]; E) has property � but is not the N -vertex clique.22



the witness partition in which the (N=2)-vertex clique is in one side and the rest of the graph isin the other). This contradicts the lemma's hypothesis by which every graph having property �can be covered by k cliques, and so cannot have a large independent set. Thus, the contradictionhypothesis (by which there exists a graph G = ([N ]; E) that has property � but is not the N -vertexclique) must be false. The analysis is easily extended to small � > 0, but extending it to arbitraryk > 2 is more involved.The heart of the actual analysis (for arbitrary k � 2 and � > 0) is stated and proven next:Claim 2: Subject to the contradiction hypothesis (see Footnote 13), there must be a set C � [k]such that Xi�j2C li;j � 3k2� (11)Furthermore, for all su�ciently large N , there exists an N -vertex graph H 0 satisfying � and awitness partition (V 01 ; :::; V 0k) of H 0 such thatXi2C jV 0i j � kp�N (12)Proof: For N as in Claim 1, consider an N -vertex graph H that consists of a pair of cliques (andno additional edges), where the smaller clique is of size 2kp� �N . Since (By Claim 1) H is �-closeto having property �, we may consider a witness partition (V 01 ; :::; V 0k) of a graph H 0 that satis�es� and is �-close to H. Since each V 0i is a clique in H 0, the subgraph of H induced by V 0i misses atmost �N2 (because H is �-close to H 0). Thus, each V 0i is \dominated by one of the cliques of H"in the sense that either it contains at most p�N vertices of the small clique (of H) or it containsat most p�N vertices of the large clique (since otherwise the subgraph of H induced by V 0i missesmore than (p�N)2 edges). It follows that there exist C � [t] such that the parts with index in Ccontain at most kp�N vertices of the large clique and all but at most kp�N vertices of the smallclique (e.g., C contain the indices of all parts that each have at most p�N vertices of the largeclique, and so C def= [t] n C (which contains only parts with more than p�N vertices of the largeclique) contains parts that each have at most p�N vertices of the small clique). In particular, thenumber of vertices residing in parts with an index in C is at least 2kp� �N � kp� �N = kp� �N ,and Eq. (12) follows.Turning to Eq. (11), we observe that the number of edges (in H) having both endpoints residingin parts having an index in C is at most 12 � ((2kp� �N)2 + (kp� �N)2) = 5k2�2 �N2. It follows thatthe corresponding number in H 0 is at most 5k2�2 �N2+�N2 < 3k2�N2, where k22 > 1 is due to k � 2.Since H 0 satis�es � (and in particular its edge lower-bounds), Eq. (11) follows. 2We stress that the above two claims holds for any value of � > 0, subject to the contradictionhypothesis (see Footnote 13). Thus, for every sequence �1; �2; :::; �2k+1 of positive numbers, thereexists a set C � [k] such that for some p < q and all su�ciently large N , there exist an N -vertexgraph H 0 satisfying � and a witness partition (V 01 ; :::; V 0k) such thatXi�j2C li;j � 3k2�q (13)Xi2C jV 0i j � kp�pN (14)
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It follows that there exists i 2 C such that jV 0i j � p�pN and li;i � 3k2�q. Selecting the sequenceof �j's so that �j = (7k2)�j , we have �q � �p+1 = �p=(7k2), and sojV 0i j22 � (p�pN)22 = �pN22 � 7k2�q2 �N2 > 3k2�qN2 + (k + 1)22) jV 0i j22 > li;i �N2 + (k + 1)22 (15)Eq. (15) allows us to modify H 0 so that the resulting graph also satis�es � but has an independentset of size k+1, which contradicts the (contradiction) hypothesis that every graph having property� can be k-partitioned into cliques. Speci�cally, recall that H 0 has property � and that (V 01 ; :::; V 0k)is a witness partition. In particular, the subgraph induced by V 0i is a clique, but we can omit (k+1)22from it without violating any of the bounds of � (i.e., the only relevant bound is the lower boundon the number of edges inside V 0i , but Eq. (15) asserts that this bound will continue to hold even ifwe omit (k+1)22 edges with both endpoints in V 0i ). This allows to omit all edges among a set of k+1vertices belonging to V 0i , resulting in a graph H 00 that still satis�es � (and has an independent setof size k + 1). Thus, the graph H 00 violates the lemma's hypothesis (that graphs satisfying � canbe k-partitioned into cliques). It follows that the contradiction hypothesis (by which there exists agraph G = ([N ]; E) that has property � but is not the N -vertex clique) must be false. The lemmafollows.5.4 The characterization theorem and a corollaryCombining Corollary 5.4, and Lemmas 5.5{5.7, we obtain:Theorem 5.8 (Theorem 3, restated): Let � be a graph partition property that is testable withone-sided error and query-complexity independent of N , and suppose that � is not trivial. Thenexactly one of the following two cases holds:1. There exists a k-vertex graph H so that for all su�ciently large graphs G, the graph G satis�es� if and only if its vertices can be k-partitioned such that there are no edges among verticesresiding in the same part and so that there are edges between vertices of the ith part and jthpart only if (i; j) is an edge of H.2. For su�ciently large N , an N -vertex graph has property � if and only if it is an N -vertexclique.Proof: By Theorem 4.5, we may assume that the tester is canonical, and apply Corollary 5.4.Assuming that � is as in Case 1 of Corollary 5.4, we apply Lemma 5.6 and conclude that � has a0-relaxation �0 such that the only non-trivial bounds in the speci�cation of �0 are upper-boundsthat equal zero, and that all graphs satisfying �0 are k-colorable. Thus, we are allowed to applyLemma 5.5 to this pair (�;�0) and conclude that every su�ciently large graph having property �is k-colorable, and (without loss of generality) the only non-trivial bounds in the speci�cation of �are upper-bounds that equal zero. De�ning H so that (i; j) 2 [k]� [k] is an edge if and only if theupper-bound referring to edges between the ith and jth part is trivial, we obtain the condition ofCase 1 of the current theorem.The only other possibility is that � is as in Case 2 of Corollary 5.4. Applying Lemma 5.7, weobtain the condition of Case 2 of the current theorem.24



The property checked by the canonical tester: We are now ready to address the questionposed at Section 4.2.4. Using Theorem 5.8, we show that, in the context of graph partition problems,if a property is testable by a one-sided error tester of complexity that only depends on � then it canbe so tested by a canonical tester that accepts i� the induced subgraph has the very same property(rather than some other graph property).Corollary 5.9 Let � be a graph partition property that is testable by a canonical tester with one-sided error and query-complexity independent of N . Then � can be tested with one-sided error bychecking whether or not a random poly(1=�)-vertex induced subgraph has the property �.Proof: The conclusion holds vacuously for trivial properties. Thus, using Theorem 5.8, we need toconsider only two cases (corresponding to the two items). We observe that in the second case (i.e.,the clique property) one may simply accept if and only if the subgraph induced by a random sampleof t = O(1=�) vertices is a clique. Clearly, if the N -vertex graph is a clique then so is any inducedsubgraph. On the other hand, if G = ([N ]; E) is �-far from being an N -vertex clique, then at least�N2 edges must be missing from G. Considering some �xed matching of t=2 pairs of vertices in thesample, we conclude that the probability that the corresponding t=2 edges are present in G is atmost (1��)t < 13 (since the matched sample-pairs are independently distributed among all possiblevertex-pairs).We now turn to the more interesting case in which � is as in Case 1 of Theorem 5.8. It followsthat for any G having property �, every subgraph of G also has property �. More interestingly,following the technique of [7, Cor. 7.2], we show that if G is �-far from having � then a randompoly(1=�)-vertex induced subgraph is unlikely to have property �0. Following is a brief sketch ofthe argument.Our starting point is the general graph partition property test of [7, Sec. 9], which uses asample of t = poly(1=�) vertices, and has two-sided error that can be bounded by 1/5. Considerwhat happens when we �rst select a random poly(t)-vertex induced subgraph, and then invoke theabovementioned tester on the induced subgraph. In this case, if the induced subgraph has property�, then the tester must accept with probability at least 4/5. On the other hand, in case the testeris invoked on G itself (which is �-far from satisfying �) the tester accepts with probability at most1/5. The punch-line is that the sample viewed by the tester is distributed almost identically in thetwo cases.14 It follows that, with probability greater than 2=3, the random induced subgraph doesnot have property �. The corollary follows.AcknowledgmentsWe are grateful to Yevgeniy Dodis for raising the question addressed in Section 3, to MichaelKrivelevich for making a comment that initiated the work presented in Section 4, to Noga Alon forinsisting that a better transformation of adaptive testers to non-adaptive ones should be possiblein this context, and to Dana Ron for o�ering a simpli�cation to the proof of Lemma 4.1. We thankNoga Alon, Michael Krivelevich, Dana Ron, and two members of the FOCS'01 PC for helpfulcomments.14For su�ciently large t, the distribution obtained by �rst selecting a sample of size t3 from a huge set, and thenselecting a sample of size t in the �rst sample is very close to the distribution obtained by selecting the small sampledirectly from the huge space. (In fact, using additional ideas, one may use a �rst sample of size O(t) rather than t3;cf. [7, Cor. 7.2].) 25
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Appendix A: The transformation of Alon et. al. [2]The following transformation consists of two steps. First we transform any tester into one thatoperates in a non-adaptive manner (i.e., determines its queries independently of the answers ithas obtained to previous queries). This step is totally generic and merely uses the fact that theoracle answers are binary. Next, we transform any non-adaptive tester into one that inspects allvertex-pairs in some random set of vertices. This step is less generic and uses the fact that we aredealing with testers of graph properties.The entire transformation presented in this section has appeared before in the work of Alonet. al. [2], and is inferior to the transformation presented in Section 4.1. We include the currentdescription both for sake of self-containment (and because the description in [2] is quite laconic)and as a warm-up towards the second transformation (presented in Section 4.1).A.1 Moving to non-adaptive testersA non-adaptive oracle machine is one that determines its queries based merely on its input andrandom-coins, independently of the answers to prior queries. A straightforward (and generic)way of eliminating adaptivity in (deterministic) oracle machines is to consider all possible queriesthat can be made as determined by all possible answers to prior queries. This extends easily toprobabilistic oracle machines. Thus, for each �xed contents of the random-tape, the ith adaptivequery can be replaced by 2i�1 non-adaptive queries that correspond to the queries made per eachpossible outcome of the previous i � 1 queries. We stress that the non-adaptive machine makesthese 2i�1 queries, but its next move depends only on the single answer given to the relevant query(being the actual ith query that the adaptive machine would have asked). Thus, we obtain:Claim A.1 Let � be any graph property. If there exists a tester with query complexity q(N; �) for�, then there exists a non-adaptive tester with query complexity Pq(N;�)i=1 2i�1 < 2q(N;�) for �.A.2 Moving to testers that inspect a random induced subgraphThe next transformation is far less generic than the previous one. It capitalized on the fact that,by de�nition, graph properties are preserved under isomorphism (i.e., renaming of vertex names).Thus, when testing graph properties, the names of vertices are not important, and so we mayassume (w.l.o.g) that the tester selects random vertices.Claim A.2 Let � be any graph property. If there exists a non-adaptive tester with query complexityq(N; �) for �, then there exists such a tester that selects a random subset of 2q(N; �) vertices, denotedR, makes the queries f(u; v) : u; v 2 Rg, and decides based on the oracle answers (and its internalcoin tosses). Thus, the query complexity of the new tester is less than 2q(N; �)2.Proof: Let T be a non-adaptive tester for �, and suppose that T has query complexity q(N; �).Then, depending on its internal coin tosses r, the tester makes queries (u1r ; v1r ); :::; (utr ; vtr), wheret � q def= q(N; �). Let Vr = fuir; vir : i 2 [t]g be the set of vertices appearing in queries of T oncoins r. Augment Vr by some �xed vertices (e.g., out of the set [2q]) so that the resulting set Vrhas cardinality 2q. Then, we can transform T into a related test T 0 that, on internal coin tossesr, makes the queries f(u; v) : u; v 2 Vrg, and ignores the answers obtained for pairs not queried byT . Clearly, T 0 is also a tester for �. Consider now an oracle machine, denoted T 00, that behaves asfollows. 27



1. First, T 00 uniformly selects a permutation � over the vertex set (i.e., [N ]).2. Next, T 00 invokes T 0 and emulates the oracle of T 0 by queries to its own oracle so that when T 0makes the query (u; v), machine T 00 makes the query (�(u); �(v)) and answers T 0 accordingly.We �rst observe that T 00 makes queries to all pairs in a random set of 2q vertices. This followsbecause, for every �xed (T 0-internal coin sequence) r and random permutation �, the set f�(v) :v 2 Vrg is a random set of 2q vertices. Next we show that T 00 maintains the testing features of T 0(and thus of T ):� Let G = ([N ]; E) be a graph having property �. Then, for any permutation �, it is thecase that the graph �(G) def= ([N ]; f(�(u); �(v)) : (u; v) 2 E) has property �. Thus, T 0 mustaccept the graph �(G) with probability at least 2=3. This means that conditioned on � beingchosen in Step 1 (of T 00), algorithm of T 00 accepts the graph G with probability at least 2=3(because, in this case, T 00 just emulates for T 0 an oracle access to the graph �(G)). Since thisholds for every �, it follows that T 00 accepts G with probability at least 2=3.� Suppose that a graphG = ([N ]; E) is �-far from having property �. Then, for any permutation�, the graph �(G) is �-far from having property �. (See Claim 2.1.) The rest of the argumentfollows analogously to the above (where here we refer to an upper bound on the acceptingprobability). It follows that T 00 accepts G with probability at most 1=3.The claim follows.Appendix B: The framework of Graph Partition ProblemsA graph partition property is de�ned by a sequence of pairs of non-negative numbers. For someinteger k, we have k + k + �k2� pairs providing upper and lower bounds on the fraction of verticesin each part of the k-partition as well as on the fraction of edges within parts and between parts.Speci�cally, consider the sequence of pairs(l1; u1); :::; (lk ; uk); (l1;1; u1;1); :::; (lk;k; uk;k); ((li;j ; ui;j))1�i<j�k (16)This sequence corresponds to a graph property that is satis�ed by all graphs G = ([N ]; E) havinga k-partition (V1; ::::; Vk) such that the following two conditions hold:li �N � jVij � ui �N 8ili;j �N2 � jE \ (Vi � Vj)j � ui;j �N2 8i � jThat is, li (resp., ui) is a lower bound (resp., upper bound) on the fraction of vertices in the ithpart, li;i (resp., ui;i) is a lower bound (resp., upper bound) on the fraction of edges having bothendpoints in the ith part, and li;j (resp., ui;j) is a lower bound (resp., upper bound) on the fractionof edges crossing between the ith part and the jth part, for i < j.Certainly, some sequences of parameters give rise to graph partition properties that are notsatis�ed by any graph. We discard these cases from our discussion (calling them non-admissible;see [7, Def. 9.3.1]). In particular, we will consider only sequences as in Eq. (16) satisfying 0 � li �ui � 1 and 0 � li;j � ui;j � 1, for all i; j. 28



A technicality: integrality problems. Following [7, Rem. 9.1], we avoid integrality problemsby allowing upto k � 1 vertices to be split between the k parts of the partition (and count thesefractional vertices and edges in the natural way). Had we not followed this convention, the set ofN -vertex graphs satisfying a graph partition property could be empty for some values of N andnon-empty for others.A technicality: counting edges and self-loops. Note that the edge bounds impose boundsin terms of multiples of N2 (rather than of �N2 �, which may be more natural). This convention isadopted for greater expressibility. For example, using this convention, a full bipartite graph withN=2 vertices on each side has edge density (N=2)2N2 = 14 , which is independent of N . (In contrast, if weconsider multiples of �N2 �, then such a graph will have edge density (N=2)2(N2 ) , which is not independentof N , and consequently the the corresponding condition could not have been expressed as a graphpartition problem.) For similar reasons, we allow self-loops and count them as half edges.15 Thisway, a �N -vertex clique in an N -vertex graph has edge density (�N2 )+ �N2N2 = �22 , which is independentof N . Consequently, the property of having such a clique can be expressed as a graph partitionproblem.Indeed, using multiples of N22 rather thanN2 would be more natural, but both more cumbersomeand less in agreement with the presentation in [7, Sec. 9]. Clearly, the last choice is immaterial.Appendix C: Proof of Lemma 5.1Recall that by the lemma's hypothesis � is a trivial graph partition property. Our aim is to showthat, for all su�ciently large N , every N -vertex graph has property �. This follows by combiningthe following three claims.Claim C.1 The speci�cation of � does not contain any positive lower-bound regarding edges.Proof: Suppose on the contrary that � contains a positive lower-bound regarding edges. Then,for some c > 0, each N -vertex graph satisfying � must have at least c �N2 edges, which contradictsthe hypothesis that � is trivial (because, in this case, it cannot hold that for every � > 0 and allsu�ciently large N , the N -vertex independent set is �-close to having property �).Claim C.2 For all su�ciently large N , the N -vertex clique has property �.The proof of Claim C.2 is postponed to the end of this section.Claim C.3 Let � be a graph partition property with a speci�cation that does not contain anypositive lower-bound regarding edges. If the N -vertex clique has property �, then all N -vertexgraphs have property �.15Unfortunately, the text of [7, Sec. 9] is unclear regarding this aspect, which is essential for the claim that the�-clique problem can be expressed as a graph partition problem. Furthermore, for simplicity, in [7, Sec. 5] self-loopsare disallowed. We stress that all the results of [7] are preserved if one allows self-loops (which can be ignored by allalgorithms). Finally, we note that counting self-loops as half edges is consistent with [7], where each (non-self-loop)edge is counted twice, in correspondence to its two occurrences in the adjacency matrix of the graph. (Using thiscorrespondence justi�es counting self-loops once, which is half the count relative to edges that are not self-loops.) Inthis paper we chose to get rid of the annoying convention of counting each (non-self-loop) edge twice, and the resultis the annoying convention by which a self-loop is counted half a time.29



Proof: Consider a witness partition of the N -vertex clique, denoted CN . Then this partition is alsoa witness partition of any N -vertex subgraph of CN , because all edge lower-bounds are non-positive(i.e., zero). The claim follows.Proof of Claim C.2: We consider the sequence of bounds in the speci�cation of property �, andrefer to the notation in Eq. (16). For these bounds (i.e., li; ui; li;j ; ui;j's), consider the followingsystem of equations in variables x1; :::; xk:kXi=1 xi = 1 (17)li � xi � ui 8i (18)12 � x2i � ui;i 8i (19)xi � xj � ui;j 8i < j (20)We �rst claim that the above system has a solution. Otherwise, there exists a constant � > 0 sothat any solution satisfying Eqs. (17)&(18) violates one of the other equations by at least � (i.e.,either 12 � x2i � ui;i + � or xi � xj � ui;j + � for some i; j). We will show that this contradictsthe hypothesis that, for su�ciently large N , the N -vertex clique is (�=2)-close to having property�: Let (V1; :::; Vn) be a witness partition of a graph G having property � and being (�=2)-close tothe N -vertex clique, and set xi = jVij=N for i = 1; :::; k. Then this setting satis�es Eqs. (17)&(18).Also, for every i, we must have jVij22 � �2 �N2 � ui;i �N2 (because, on one hand, the witness partitionof G respects all bounds of �, and on the other hand G may miss at most �2 �N2 edges (because itis (�=2)-close to the N -vertex clique)). Thus, we have jVij22 < � �N2 + ui;i �N2, and 12 � x2i < ui;i + �follows. Similarly, jVij � jVj j � �2 �N2 � ui;j � N2 and xi � xj < ui;j + � follows for every i < j. Thiscontradicts the above hypothesis that any solution satisfying Eqs. (17)&(18) violates one of theother equations by at least �, and we conclude that the system of Eqs. (17){(20) has a solution.Let (x1; :::; xk) be a solution to Eqs. (17){(20). Then avoiding integrality problems (see [7,Rem. 9.1]), we consider for each N a partition (V1; :::; Vk) of the N -vertex clique so that jVij =xiN . Clearly, this partition satis�es all vertex bounds (because these correspond to Eq. (18)). ByClaim C.1, the only remaining non-trivial bounds are the edge upper-bounds (because all li;j's arezero). But these are shown to be satis�ed as follows: For every i, the number of edges with bothendpoints in Vi is jVij22 , and we have jVij22 = x2i2 �N2 � ui;i �N2, where the last inequality is due toEq. (19). Similarly, for every i < j, the number of edges crossing between Vi and Vj is jVij � jVjj,and we have jVij � jVj j = xixj � N2 � ui;i � N2, where the inequality is due to Eq. (20). The claimfollows.Appendix D: Proof of Lemma 5.5Recall the hypotheses of the lemma:1. � is a graph partition property such that all edge lower-bound parameters in the speci�cationof � are zero.2. �0 is a graph partition property such that all edge lower-bound parameters in the speci�cationof �0 are zero, and each edge upper-bound parameter in the speci�cation of �0 is either zeroor one. 30



3. �0 is a 0-relaxation of �.Our aim is to show that, for every su�ciently large graph, the graph has property � if and only ifit has property �0. (In fact, we only need to show the \if"-direction.) Our proof generalizes theproof of Lemma 5.1 (given in Appendix C). In particular, we do not need to establish an analogueof Claim C.1, because this is already guaranteed in our �rst hypothesis. The role of the N -vertexclique will be played by each member of a family of certain extremal (dense) graphs (and the typeof the upper-bounds in �0 seem important to allow us to focus on this family (and thus performthis extension)). We thus prove analogies of the two other claims of Appendix C: Analogously toClaim C.2, we �rst show that each member of the extremal family that has property �0 also hasproperty �. Then, analogously to Claim C.3, we show that this extends to each subgraph of theextremal graphs, and that the latter subgraphs are all the graphs that may have property �0. Thelemma will follows.Pivotal to the above plan, is the de�nition of extremal graphs for �0. Since the edge lower-bounds of �0 are trivial and each edge upper-bound in �0 is either zero or one, the extremal graphsare determined by the density of the vertex sets allowed by the vertex bounds (and the type of theedge upper-bounds). That is, using notations as in Eq. (16), let l0i; u0i; l0i;j; u0i;j be the bounds in thespeci�cation of �0. (Recall that all l0i;j equal zero and each u0i;j equals either zero or one.) Thena sequence of vertex-set densities, denoted � = (�1; :::; �k), is permitted by �0 if Pki=1 �i = 1 andl0i � �i � u0i for all i = 1; :::; k. For each such permitted sequence � and every N , we consider theextremal graph G(N;�) = ([N ]; E(N;�)) de�ned byV (N;�)i def= 8<:v 2 [N ] : i�1Xj=1�jN < v � iXj=1 �jN9=; (21)F (�) def= f(i; j) : 1 � i � j � k ^ u0i;j = 1g (22)E(N;�) def= [(i;j)2F (�) �V (N;�)i � V (N;�)j � (23)That is, Eq. (21) speci�es a (canonical) k-partition that satis�es the vertex bounds of �0 (i.e., isaccording to the permitted sequence �), Eq. (22) indicates the part-pairs among which edges areallowed, and Eq. (23) mandates all possible edges among each allowed pair of parts. Since alledge lower-bounds in �0 are zero (and thus trivial), they are satis�ed by the above k-partition ofG(N;�). Since each edge upper-bound in �0 is either zero or one, it is also satis�ed that partition(because there are edges between the ith and jth part i� u0i;j = 1). Thus, G(N;�) satis�es �0,and (V (N;�)1 ; :::; V (N;�)k ) is a witness partition. (Note that we do not rule out the possibility thatF (�) contains pairs of the form (i; i), although the text and notation may suggest otherwise. Wecomment that in our application of Lemma 5.5, u0i;i = 0 and so (i; i) 62 F (�) for all i.)Recall that each extremal graph G(N;�) satis�es �0 and that (V (N;�)1 ; :::; V (N;�)k ) is a witnesspartition. Next, in Claim D.1, we show that such extremal graph also satis�es �. Later (seeClaim D.2) we show that each N -vertex graph satisfying �0 is a subgraph of an N -vertex (graphthat is isomorphic to an) extremal graph, and that this subgraph also satis�es �. The latter claim(i.e., Claim D.2) is much easier.Claim D.1 Every extremal graph satis�es property �.Proof: Let G(N;�) be an extremal graph (for �0), where � = (�1; :::; �k). We consider the sequenceof bounds in the speci�cation of property �, and denote these bounds by li; ui; li;j; ui;j's. Recall31



that by our �rst hypothesis, all li;j's equal zero. (Typically, the li; ui; li;j; ui;j's are (possibly) morestringent than the corresponding l0i; u0i; l0i;j; u0i;j's. We stress that the following proof does not referat all to the bounds l0i; u0i; l0i;j ; u0i;j.)Consider the following system of equations in the variables x1;1; :::; xk;k:kXj=1xi;j = �i 8i (24)lj � kXi=1 xi;j � uj 8j (25)12 � X(i;i)2F (�) x2i;j + X(i;i0)2F (�)nf(i;i):i2[k]gxi;jxi0;j � uj;j 8j (26)X(i;i0)2F (�) xi;jxi0;j0 � uj;j0 8j < j0 (27)We �rst claim that the above system has a solution. Otherwise, there exists a constant � > 0 sothat any solution satisfying Eqs. (24)&(25) violates one of the other equations by at least �. Wewill show that this contradicts the hypothesis that, for su�ciently large N , the graph G(N;�) (whichsatis�es property �0) is (�=2)-close to having property �: Let (V1; :::; Vn) be a witness partition ofa graph G having property � and being (�=2)-close to the graph G(N;�), and let Vi;j = V (N;�)i \ Vjfor i; j 2 [k]. Now, set xi;j = jVi;jj=N for i; j 2 [k]. This setting satis�es Eq. (24), because[j(V (N;�)i \Vj) = V (N;�)i and jV (N;�)i j = �iN . It also satis�es Eq. (25), because [i(V (N;�)i \Vj) = Vjand ljN � jVj j � ujN . We next consider the number of edges in the subgraph of G induced by Vj .Since G may miss at most �2 �N2 edges of the extremal graph, the number of edges in that inducedsubgraph is at least X(i;i)2F (�) jVi;j j22 + X(i;i0)2F (�)nf(i;i):i2[k]g jVi;jj � jVi0;jj � �2 �N2But this number must be at most uj;jN2 (because the witness partition of G respects all boundsof �). Thus, for every j,12 � X(i;i)2F (�) x2i;j + X(i;i0)2F (�)nf(i;i):i2[k]gxi;jxi0;j � uj;j + �2 < uj;j + �Similarly, for j < j0, the number of edges (in G) having one endpoint in Vj and the other endpointin Vj0 is at least X(i;i0)2F (�) jVi;jj � jVi0;j0j � �2 �N2and it follows that P(i;i0)2F (�) xi;jxi0;j0 � uj;j0 + �2 . This contradicts the above hypothesis that anysolution satisfying Eqs. (24)&(25) violates one of the other equations by at least �, and we concludethat the system of Eqs. (24){(27) has a solution.Let (x1;1; :::; xk;k) be a solution to Eqs. (24){(27). Then avoiding integrality problems, weconsider for each N a partition (V1; :::; Vk) of the extremal graph G(N;�) so that Vi;j is a partition ofV (N;�)i satisfying jVi;jj = xi;jN , and Vj = [iVi;j. Clearly, this partition satis�es all vertex bounds(because these correspond to Eq. (25)). By the �rst hypothesis, the only remaining non-trivial32



bounds are the edge upper-bounds (because all li;j's are zero). But these are shown to be satis�edas follows: For every j, the number of edges with both endpoints in Vj equalsX(i;i)2F (�) jVi;j j22 + X(i;i0)2F (�)nf(i;i):i2[k]g jVi;jj � jVi0;jj= 12 X(i;i)2F (�) x2i;j �N2 + X(i;i0)2F (�)nf(i;i):i2[k]gxi;j � xi0;j �N2 � uj;j �N2where the last inequality is due to Eq. (26). Similarly, for every j < j0, the number of edges crossingfrom Vj to Vj0 equals X(i;i0)2F (�) jVi;j j � jVi0;j0 j = X(i;i0)2F (�) xi;j � xi0;j0 �N2� uj;j0 �N2where the inequality is due to Eq. (27). The claim follows.We call a graph iso-extremal for �0 if it is isomorphic to an extremal graph for �0. In the followingclaim we rely on the hypothesis that � does not contain positive lower-bound regarding edges.Claim D.2 (On subgraphs of graphs that are iso-extremal for �0)1. Every N -vertex graph that satis�es �0 is a subgraph of an N -vertex graph that is iso-extremalfor �0.2. Every N -vertex graph that is a subgraph of an N -vertex graph that is iso-extremal for �0,satis�es �.Combining the two parts of the above claim, Lemma 5.5 follows.Proof: Let G = ([N ]; E) be a graph satisfying �0, and let (V1; :::; Vn) be a witness partition. Thenthe sequence (�1; :::; �k), where �i = jVij=N is permitted by �0. Furthermore, there are edges inthe subgraph induced by Vi only if u0i;i > 0 (which holds i� u0i;i = 1). Similarly, there are edgesbetween Vi and Vj only if u0i;j = 1. Part 1 follows by using any isomorphism that maps Vi tofPi�1j=1 jVj j+ 1; :::;Pij=1 jVjjg.Turning to Part 2, we �rst observe that every graph that is iso-extremal for �0 satis�es �(because, by Claim D.1, every graph that is extremal for �0 satis�es �, and (being a graph property)� is preserved under isomorphism). Since all edge lower-bounds in � are zero, omitting edges doesnot violate �. The claim follows.Appendix E: A Result by Noga AlonIn continuation to the discussion in Section 4.2.4, we present the following result of Alon [1].De�nition E.1 A graph property � is said to be closed under taking induced subgraphs if, for everygraph G having property �, it holds that every induced subgraph of G has property �.For example, k-colorability is closed under taking induced subgraphs, whereas connectivity is not.33



Proposition E.2 Let � be a graph property that is closed under taking induced subgraphs, andsupposed that � is testable by q(�) queries, independent of the size of the graph. Then � is testableby inspecting a random induced subgraph of size poly(q(�)) and accepting if and only if the saidsubgraph has property �.We stress that the tester referred to in the second part of the hypothesis does not necessarily haveone-sided error, whereas the tester derived in the conclusion has one-sided error.Proof: By Theorem 2, � is testable by inspecting a random induced subgraph of size s(�) def=poly(q(�)) (and accepting if and only if the said subgraph has a property �0, where �0 some graphproperty). Let us denote by T the tester obtained this way, and assume16 that its error probabilityis bounded by 1=4. We claim that an algorithm, A, that inspects a random induced subgraph ofsize s(�) and accepts i� the said subgraph has a property � is a valid tester for �.Clearly, if G has property � then A accepts it with probability 1 (becuase all induced subgraphshave property �). We now turn to the case that G is �-far from �. Our aim is to prove that, withprobability at least 2=3, a random induced subgraph of size s(�) of G does not have property �.The main idea, originating in the proof of [7, Cor. 7.2], is that T cannot distinguish the case inwhich it is given oracle access to G from the case it is given oracle access to a random inducedsubgraph of size s(�) of G. It follows that the latter random subgraph (of a graph being far fromhaving property �) is unlikely to have property �, or else a contradiction is reached. Details follow.Let S be a random set of s(�) vertices in G, and let GS denote the corresponding inducedsubgraph. Consider what happens when T is invokes with oracle access to GS: If GS has property� then the tester T must accept with probability at least 3=4. Thus,PrS [TGS(�) = 1] � 34 � PrS [GS 2 �] (28)Now consider what happens when T is invoked with oracle access to G. On one hand, since G is�-far from �, the tester T must reject with probability at least 3=4. On the other hand, all that Tdoes is select a random S of size s(�) and inspect GS. But inpsecting GS (as an induced subgraphof itself), for a random S of size s(�), is exactly what T does when given oracle access to GS. Thus,PrS [TGS (�) = 1] = Pr[TG(�) = 1] � 14 (29)Combining Eqs. (28) and (29), it follows that PrS [GS 2 �] � 1=3. The claim follows.

16This assumption can be justi�ed by �rst reducing the error probability of the original tester.34


