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1 IntroductionVarious types of probabilistic proof systems have played a central role in the development of com-puter science in the last two decades. The best known ones are interactive proofs [20], zero-knowledge proofs [20], and probabilistic checkable proofs [15, 5, 14, 2], but other notions such asvarious types of computationally-sound proofs (e.g., arguments [12] and CS-proofs [23]) and multi-prover interactive proofs [11] have made a prominent appearance as well. Do we really need yetanother type of probabilistic proof systems?We believe that the answer is positive: The number of di�erent related notions that \we need"is exactly the number of di�erent notions that are natural, interesting and/or useful. Con�ningourself to usefulness, we note that the new type of computationally-sound proof systems introducedin this paper has emerged in the context of trying to improve the constructions of non-black-boxzero-knowledge arguments of Barak [6]. Furthermore, these proof system seem inherent to certaindiagonalization techniques used in [6] and (in a di�erent context) in [13].1.1 Motivation: Applying diagonalization in cryptographyA naive idea, which was discarded for decades in Cryptography, is constructing a cryptographicscheme by \diagonalization"; for example, enumerating all probabilistic polynomial-time adver-saries and making sure that each of them fails. The main reason that this idea was discarded isthat the resulting scheme will (necessary) be more complex than the class of adversaries it de-feats, while in cryptography a scheme should withstand adversaries that are (at least slightly) morecomplex than the scheme.Still, as observed by Canetti, Goldreich and Halevi [13] and Barak [6], a small twist on diag-onalization may be useful in Cryptography. The twist is using diagonalization in order to builda \trapdoor" so that the trapdoor can be used in some \imaginary setting" (e.g., by the simula-tor [6]), but not in the \real" setting (e.g., an actual execution of the proof system [6]).1 Thus, thecomplexity of the simulator is e�ected by the diagonalization, whereas the complexity of the actualexecution of the interactive proof is independent of the diagonalization. Speci�cally, the trapdoorconstructed by Barak [6] is knowledge of the (adversarial) veri�er's strategy, where this strategy(which is the locus of diagonalization) may be any polynomial-size circuit (where the polynomial isdetermined only after the proof system is speci�ed). In the actual execution, the (zero-knowledge)prover does not use this trapdoor (but rather uses an NP-witness to the real input), and so itscomplexity is independent of the complexity of the trapdoor (i.e., the cheating veri�er's strategy).However, the simulator uses the trapdoor, and so its complexity depends on the latter (and soevery polynomial-size adversary yields a related polynomial-time simulation).For the foregoing idea to make sense, the veri�er should not be able to distinguish the case inwhich the (real) prover uses an NP-witness to the real input from the case in which the (simulated)prover uses the trapdoor (i.e., the cheating veri�er's strategy). Indeed, Barak's protocol utilizesa witness indistinguishable (WI) proof for which both the NP-witness (to the real input) and thetrapdoor (i.e., veri�er's strategy) are valid witnesses. Thus, the honest veri�er strategy in the WIproof must be independent of the length of the witness used by the prover. This is because in oneof the cases the length of the witness is determined only after the proof system is speci�ed (i.e.,1In [13], the \imaginary setting" is an implementation of the random-oracle by a function ensemble (shown notto exist), whereas the \real setting" is the ideal (Random Oracle Model) setting in which the scheme uses a random-oracle. (Indeed our perspective here is opposite to the one in [13], where the random-oracle is considered \imaginary"and its implementations by function ensembles are considered \real").1



in the simulation, the length of the trapdoor is polynomial, but this polynomial is determined and�xed only after the proof system is speci�ed).We conclude that in order to use diagonalization as above, we should have a (WI) proof systemthat is capable of handling any \NP-statement" (and not merely statements in any a-priori �xedNP-set). Put in other words, we need a single proof system that can be used to provide proofs forany set S in NP such that the running time and communication needed for verifying that x 2 Sis bounded by a �xed (i.e., single) polynomial in jxj, which does not depend on the set S. Inparticular, it may be the case that S 2 Ntime(p), where p(�) is a polynomial that is larger thanthe �xed polynomial bounding the veri�er's complexity. We stress that, in contrast, typically whenthe phrase \proof systems for NP" is used, the intended meaning is that every set S 2 NP has adi�erent proof system (and the complexity of verifying that x 2 S is bounded by an S-dependentpolynomial in jxj).1.2 The notion of universal argumentsFor sake of simplicity, we de�ne and present proof systems only for the universal set SU de�nedsuch that the tuple (M;x; t) is in SU if M is a non-deterministic machine that accepts x withint steps.2 This su�ces for handling any NP-set via a single protocol, because every NP-set S islinear-time reducible to SU (e.g., via the mapping x 7! (MS ; x; 2jxj), where MS is any �xed non-deterministic polynomial-time machine that decides S). Thus, a proof system for SU allows us tohandle all \NP-statements" (in a uniform manner): for any S 2 NP , when wishing to verify theassertion \x in S", the veri�er should just use the proof system of SU on input (MS ; x; 2jxj), whereMS is as above. (In fact, SU is NE-complete, by an analogous linear-time reduction).3We consider also the natural witness-relation for SU , denoted RU : the pair ((M;x; t); w) is inRU if M (viewed here as a two-input deterministic machine) accepts (x;w) within t steps. Looselyspeaking, a universal argument system (or a universal argument system for SU ) is a two-party protocol(P; V ), for common inputs of the form (M;x; t), that satis�es the following:E�cient veri�cation: The total time spent by the (probabilistic) veri�er V is polynomial in lengthof the common input (i.e., polynomial in j(M;x; t)j = O(jM j+ jxj+ log t)). In particular, allmessages exchanged in the protocol have length that is so bounded.Completeness by a relatively-e�cient prover: For every ((M;x; t); w) inRU , on common input (M;x; t),when P is given auxiliary input w, it always convinces V . Furthermore, the total time spentby P in this case is bounded by a �xed polynomial in (jM j and) TM (x;w) � t, where TM (x;w)is the number of steps taken by M on input (x;w).Computational Soundness: For every polynomial-size circuit family fCngn2N and every (M;x; t) 2f0; 1gn n SU , the probability that, on common input (M;x; t), the (\cheating") circuit Cnsucceeds in fooling V (into accepting (M;x; t)) is negligible (as a function of n).(The actual de�nition appears in Section 2.)2One nice feature of SU is that it comes with a natural measure of complexity of instances: the complexity of(M;x; t) is the actual time it takes M to accept x (when using the best sequence of non-deterministic choices).(Similarly, the complexity of (M;x; t) coupled with the witness w is the actual time it takes M to accept x whenusing w as the sequence of non-deterministic choices.) Such a complexity measure is pivotal to the re�ned formulationof the prover complexity condition.3That is, for S 2 Ntime(e), where e(n) = 2cn for some constant c, we use the reduction x 7! (MS ; x; 2cjxj).Furthermore, every set in NEXP is polynomial-time (but not linear-time) reducible to SU .2



Relation to prior notions. Universal-arguments are related but di�erent from both CS-proofs(as de�ned by Micali [23]) and arguments (as de�ned by Brassard, Chaum and Crepeau [12]).Speci�cally:1. The e�cient-veri�cation condition is identical in all de�nitions (except that arguments aretypically de�ned only for sets in NP).2. The foregoing \completeness by a relatively-e�cient prover" condition follows the instance-based paradigm of CS-proofs (but provides the prover with an auxiliary input).3. The foregoing computational-soundness condition is exactly as in argument systems (and istypically weaker than the one in CS-proofs).Thus, in a sense, universal-arguments are a hybrid of arguments and CS-proofs. Indeed, universal-arguments are weaker than CS-proofs, but the point is that we will be able to construct a universal-argument based on a weaker assumption than the ones that seem necessary for constructing CS-proofs (see Footnote 4).We comment that computational-soundness seems unavoidable in any proof system for SUthat satis�es the e�cient-veri�cation condition (even just \uniformly for all NP"). In contrast,statistical soundness (coupled with the standard notion of e�cient-veri�cation) would have impliedthat SU (or \just" all NP) is in DSpace(p), for some �xed polynomial p. (The reason is that thetotal communication in such a protocol must be upper-bounded by a �xed polynomial, p, and thatan optimal prover strategy can be implemented in space p.)On natural applications of universal-arguments. A strange-looking aspect of universal-arguments is that, on some yes-instances, the designated prover may run more time than allowedto cheating provers (i.e., a �xed polynomial in TM (:; :) may be larger than an arbitrary polynomialin the length of the common input).4 However, in typical application (such as ours), the designatedprover will never be invoked on such inputs (i.e., requiring it to run for time that is super-polynomialin the length of the common input). Actually, we shall only use the fact that a universal-argumentsystem guarantees the following behavior with respect to any polynomial p (which may be selectedafter the system is speci�ed):1. For every (y;w) 2 RU such that y = (M;x; t) and t � p(jxj), it holds that (given y and w)the designated prover convinces the veri�er to accept y, and the total time used by the proveris poly(jM j+ t) = poly(jyj). Speci�cally, there exists a �xed polynomial q0 that is associatedwith the universal-argument system such that the running time of the designated prover onthe foregoing input is q0(jM j + t) � q0(jM j+ p(jxj)) < (q0 � p)(jyj).2. For every polynomial q and every su�ciently long y = (M;x; t) 62 SU , it holds that noq(jyj)-size circuit can convince the veri�er to accept y.4This phenomena does not occur in arguments [12] and in CS-proofs [23]: Arguments were de�ned only forindividual sets in NP, and so the issue never arises. In the case of CS-proofs, the de�nition of computational-soundness relates to cheating provers of size exponential in the security parameter, which is typically set to be linearin the length of the common input [23]. Thus, the cheating provers are always allowed more running time than thedesignated prover (since its running-time is always at most exponential in the length of the common input). However,it seems that allowing the adversaries time that is exponential in the security parameter requires using intractabilityassumptions that refer to exponential (or sub-exponential) circuits.3



Thus, the complexity bound considered in the soundness condition (of Item 2) may exceed thecomplexity of the designated prover when handling yes-inputs of the type mentioned in Item 1.Needless to say, the foregoing items cover all NP-sets (where a set S 2 NP is handled by selectingthe polynomial p such that S 2 Ntime(p) holds).1.3 The construction of universal argumentsBy adapting the construction of Kilian [21], one can show that the existence of strong collision-resistant hashing functions implies the existence of universal arguments (and even CS-proofs forSU ; cf. Micali [23]). By strong collision-resistant hashing we mean families of functions for whichcollisions are hard to �nd even by using subexponential-size circuits. The goal, achieved in thispaper, is to construct universal arguments based only on standard collision-resistant hashing; thatis, families of functions for which collisions are hard to �nd by polynomial-size circuits. That is,we obtain:Theorem 1.1 (our main result): The existence of (standard) collision-resistant hashing functionsimplies the existence of universal arguments. Furthermore, these proof systems are of the public-coin5 type and use a constant number of rounds.Our construction of universal arguments adapts Kilian's construction [21] in a quite straightforwardmanner. Our contribution is in the analysis of this construction. Unlike in previous analysis (asin [21] and [23]), when establishing computational-soundness via contradiction, we cannot a�ordto derive a collision-forming circuit of size that is polynomial in the worst-case time-complexityof the designated prover (because the designated prover may have (worst-case) complexity that issuper-polynomial (in the input length)).6 We need to derive collision-forming circuit of size thatis polynomial in the input length. Indeed, doing so allows us to use standard collision-resistanthashing (rather than strong ones).The analysis is further complicated by our desire to establish a \proof of knowledge" property,which is needed for our main application (discussed next).1.4 Application to zero-knowledge argumentsBarak's construction [6] of non-black-box zero-knowledge arguments (for any set in NP) uses awitness indistinguishable (WI) argument of knowledge for RU .7 In his protocol, the prover usesthis WI argument (of knowledge) to prove that it knows either an NP-witness for the original com-mon input or a program that �ts the veri�er functionality (as re
ected in the challenge-respondexchange that follows). Thus, as a �rst step, we need to transform our universal argument (ofknowledge) into a corresponding WI universal argument (of knowledge). The transformation es-sentially follows Barak's transformation [6], but then we encounter a second place where Barakuses a super-polynomial hardness assumption: Barak uses a collision-resistant hashing function to5A.k.a, Arthur{Merlin systems (cf. [3]).6Speci�cally, Kilian's construction [21] uses a PCP system, and the contradiction hypothesis is shown to yield acollision-forming circuit that is always bigger than the length of the corresponding PCP-oracle (which, in the caseof SU , is exponential in the input length). Instead, we show how to obtain a collision-forming circuit that is smallerthan the length of the corresponding PCP-oracle.7In fact, Barak uses a CS-proof (of knowledge) for RfU � RU , where f is any \nice" super-polynomial function (e.g.,f(n) = nlog2 n) and ((M;x; t); w) is in RfU only if t � f(jxj). He constructs such CS-proof assuming the existence ofhashing functions that are resilient with respect to f -size circuits (rather than subexponential hardness which wouldhave been required for CS-proof for RU ). 4



hash \SU -witnesses" (into �x-length strings), where the length of these witnesses is bounded bysome super-polynomial function (but not by any polynomial). Consequently, a collision on suchlong strings only yields violation of a super-polynomial collision-resistant assumption. To avoidsuper-polynomial hardness assumptions, we hash these witnesses by combining \tree-hashing" (asin Kilian's construction [21]) with an error-correcting code. Speci�cally, �rst the witness string isencoded using an error-correcting code, and then the \tree-hashing" is applied to the result. Thus,if two di�erent strings are so hashed to the same value, then we can form a collision with respectto the basic hashing function (used in the \tree-hashing") by considering a uniformly selected leaf(which is quite likely to be assigned di�erent values under an error-correction coding of di�erentstrings). Combining the foregoing, we obtain:Theorem 1.2 (our main application): The existence of (standard) collision-resistant hashing func-tions implies the existence of (non-black-box) zero-knowledge arguments for any set in NP suchthat these protocols have the following additional properties:1. The protocol has a constant number of rounds and uses only public-coins;2. The simulator runs in strict (rather than expected) probabilistic polynomial-time;3. The protocol remains zero-knowledge when, say, n2 copies are executed concurrently.Recall that, assuming NP 6� BPP , each of the three extra properties requires a non-black-boxsimulator (and that such protocols were presented for the �rst time in [6]).8 Thus, Theorem 1.2establishes the main result of Barak's work [6] under a weaker assumption: We only assume theexistence of hashing functions that are resilient with respect to polynomial-size circuits (rather thanwith respect to circuits of some super-polynomial size).1.5 OrganizationIn Section 2 we de�ne universal arguments and in Section 3 we show how to construct them (usingany collision-resistant hash functions). The application to the construction of non-black-box zero-knowledge arguments is presented in Section 4. Appendix B contains a revised treatment of thenotion of non-oblivious commitment scheme, which may be of independent interest (because itaugments the initial treatment provided in [16, x4.9.2.1] and corrected in [17, Sec. C.3.3]).2 The De�nition of Universal ArgumentsLet us start with some general notions. For an integer n, we denote the set f1; :::; ng by [n]. Wedenote by � :N! [0; 1] an unspeci�ed negligible function; that is, for every positive polynomial p andall su�ciently large n, it holds that �(n) < 1=p(n). We say that an event occurs with overwhelminglyhigh probability if it occurs with probability at least 1 � �(n), where n is the relevant securityparameter. For a pair of (interactive) strategies, denoted (P; V ), we denote by (P (w); V )(y) theoutput of V when interacting with P (w) on common input y, where P (w) denotes the functionalityof P when given auxiliary input w.In continuation to the discussion in Section 1.2, we now de�ne universal argument systems (forSU ). Recall that SU = f(M;x; t) : 9w s.t. ((M;x; t); w) 2 RUg, where ((M;x; t); w) 2 RU if M8Indeed, see [6, 7] for a discussion of various results regarding the impossibility of achieving the above via ablack-box simulator. We stress that the current discussion refers to protocols of negligible soundness error.5



accepts (x;w) within t steps. Let TM (x;w) denote the number of steps made by M on input (x;w);indeed, if ((M;x; t); w) 2 RU then TM (x;w) � t. Recall that j(M;x; t)j = O(jM j+ jxj+ log t); thatis, t is given in binary. In the following de�nition, we incorporate a (weak) \proof of knowledge"property (which was mentioned in Sections 1.3 and 1.4, but not in Section 1.2).De�nition 2.1 (universal argument): A universal-argument system is a pair of strategies, denoted(P; V ), that satis�es the following properties:E�cient Veri�cation: There exists a polynomial p such that for any y = (M;x; t), the total timespent by the (probabilistic) veri�er strategy V , on common input y, is at most p(jyj). Inparticular, all messages exchanged in the protocol have length smaller than p(jyj).Completeness via a relatively-e�cient prover: For every ((M;x; t); w) in RU ,Pr[(P (w); V )(M;x; t) = 1] = 1:Furthermore, there exists a polynomial p such that the total time spent by P (w), on commoninput (M;x; t), is at most p(jM j+ TM (x;w)) � p(jM j+ t).Computational Soundness: For every polynomial-size circuit family f ePngn2N, and every (M;x; t) 2f0; 1gn n SU , Pr[( ePn; V )(M;x; t) = 1] < �(n)where � : N! [0; 1] is a negligible function.A weak proof-of-knowledge property: For every positive polynomial p there exists a positive poly-nomial p0 and a probabilistic polynomial-time oracle machine E such that the following holds:9for every polynomial-size circuit family f ePngn2N, and every su�ciently long y = (M;x; t) 2f0; 1g� if Pr[( ePn; V )(y) = 1] > 1=p(jyj) thenPrr " 9w = w1 � � �wt2RU (y)8i2 [t] E ePnr (y; i) = wi # > 1p0(jyj)where RU (y) def= fw : (y;w) 2 RUg and E ePnr (:; :) denotes the function de�ned by �xing therandom-tape of E to equal r, and providing the resulting Er with oracle access to ePn. Theoracle machine E is called a (knowledge) extractor.A few comments regarding the weak proof-of-knowledge property are in place. First, note that thecondition \8i2 [t] it holds that E ePnr (y; i) = wi" means that E ePnr (y; :) is an implicit representationof the string w = w1 � � �wt (i.e., any speci�c bit of w is obtained by instantiating the second inputto E ePnr (y; :) accordingly). If Pr[( ePn; V )(y) = 1] > 1=p(jyj) then at least an 1=p0(jyj) fraction ofthe possible r's yield such implicit representations of some string in RU(y), but these strings arenot necessarily equal (i.e., di�erent r's may yield di�erent strings in RU (y)). Implicit (rather thanexplicit) representation is required here because we want the extractor to run in polynomial-time,whereas the length of the strings in RU (y) may not be bounded by any polynomial (in jyj). Finally,we note that the weak proof-of-knowledge property is indeed weaker than the standard de�nitionof a proof of knowledge (cf. [9], [16, Sec. 4.7] and Footnote 9), but it su�ces for the applicationsthat we have in mind.9Indeed, the polynomial p0 as well as the (polynomial) running-time of E may depend on the polynomial p (whichdetermines the noticeable threshold probability). 6



3 The Construction of Universal ArgumentsAs mentioned in Section 1.3, by adapting of the construction of Kilian [21], one can easily showthat the existence of strong collision-resistant hashing functions implies the existence of universalarguments (and even CS-proofs for SU ; cf. Micali [23]). Here we show how a similar adaptation,when using only standard collision-resistant hashing functions, yields universal arguments. Ourfocus is on demonstrating the computational soundness of this construction, which should now beestablished under a weaker assumption than the one used in [21, 23].3.1 MotivationIn order to explain the di�culty and its resolution, let us recall the basic construction of Kilian [21](used also by Micali [23]), as adapted to our setting.Our starting point is a PCP [poly;poly] system for SU 2NEXP , which is used in the universal-argument system as follows. The veri�er starts by sending the prover a hashing function. Theprover constructs a PCP-proof/oracle (corresponding to the common input and its own auxiliaryinput), places the bits of this oracle at the leaves of a polynomial-depth full binary tree, and placesin each internal node the hash-value obtained by applying the hashing function to the labels of itschildren. The prover sends the label of the root to the veri�er, which responses by sending a randomtape of the type used by the PCP-veri�er. Both parties determine the queries corresponding to thistape, and the prover responds with the values of the corresponding leaves along with the labels ofthe vertices along the paths from these leaves to the root (as well as the labels of the siblings of thesevertices). The veri�er checks that this sequence of labels matches the corresponding applicationsof the hashing function, and also emulates the PCP-veri�er. Ignoring (for a moment) the issue ofprover's complexity, the problem we consider next is that of establishing computational-soundness.The naive approach is to consider what how the prover responds to each of the possible random-tapes sent to it. If the prover answers consistently (i.e., with leaf-labels that depend only on the leaflocation), then we obtain a pcp-oracle and soundness follows by the soundness of the PCP scheme.On the other hand, inconsistent labels for the same leaf yield a (hashing) collision somewhere alongthe path to the root. However, in order to �nd such a collision, we must spend time proportionalto the size of the tree, which yields contradiction only in the case that the hashing function issupposed to withstand adversaries that use that much time. Note that the size of the tree is pickedby the (adversarial) prover, and since we wish to handle SU (or merely \only" all of NP) we do nothave an a priori polynomial bound on the size of the tree that the prover is allowed to use (becauseno such bound exists for the designated prover). But in such a case, if the tree is exponential (oreven merely super-polynomial) in the security parameter, then we derive contradiction only whenusing hashing functions of sub-exponential (respectively, super-polynomial) security.In contrast to the foregoing naive approach, the approach taken here is to consider each leafseparately rather than all leaves together. That is, the naive analysis distinguishes the case thatthe prover answers inconsistently on some leaf from the case it answer consistently on all leaves.Instead, we consider each leave separately, and distinguishes the case that the prover answersinconsistently on this leaf from the case it answer consistently on this leaf. Loosely speaking, wecall a leaf good if the prover answers consistently on it, and observe that if a big fraction of the leavesare good then soundness follows by the soundness of the PCP scheme (regardless of the contentsof other leaves). On the other hand, if su�ciently many leaves are not good, then we obtain acollision by picking a random leave (hoping that it is not good) and obtaining inconsistent labelsfor it. This requires being able to uniformly select a random-tape that makes the pcp-veri�er makethe corresponding query, a property which is fortunately enjoyed by the relevant PCP systems.7



We warn that the above is merely a rough description of the main idea in our analysis. Further-more, in order to establish the proof-of-knowledge property of our construction, we need to relyon an analogous property of the PCP system (which again happens to be satis�ed by the relevantPCP systems).3.2 The PCP system in useWe �rst recall the basic de�nition of a PCP system. Loosely speaking, a probabilistically checkableproof (PCP) system consists of a probabilistic polynomial-time veri�er having access to an oraclewhich represents a proof in redundant form. Typically, the veri�er accesses only few of the oraclebits, and these bit positions are determined by the outcome of the veri�er's coin tosses. It isrequired that if the assertion holds then the veri�er always accepts (i.e., when given access to anadequate oracle); whereas, if the assertion is false then the veri�er must reject with high probability(as speci�ed in an adequate bound), no matter which oracle is used. The basic de�nition of thePCP setting is given in Item (1) below. Typically, the complexity measures introduced in Item (2)are of key importance, but this is not the case in the current work.De�nition 3.1 (PCP { basic de�nition):1. A probabilistic checkable proof system (pcp) with error bound � : N ! [0; 1] for a set S is aprobabilistic polynomial-time oracle machine (called veri�er), denoted V , satisfying� Completeness: For every x 2 S there exists an oracle �x such that V , on input x andaccess to oracle �x, always accepts x.� Soundness: For every x 62 S and every oracle �, machine V , on input x and access tooracle �, rejects x with probability at least 1� �(jxj).2. Let r and q be integer functions. The complexity class PCP�[r(�); q(�)] consists of sets havinga pcp system with error bound � in which the veri�er, on any input of length n, makes at mostr(n) coin tosses and at most q(n) oracle queries.Note that if S has a pcp system with error bound �, then S 2 PCP�[p(�); p(�)], for some polynomialp. Here we will only care that SU 2 NE has a pcp system with an exponentially decreasing errorbound (i.e., �(n) = 2�n). Instead of caring about the re�ne complexity measures (of Item 2), wewill care about the following additional properties which are satis�ed by some pcp systems, whereonly some of these properties were explicitly considered before (see discussion below).De�nition 3.2 (PCP { auxiliary properties): Let V be a pcp veri�er with error � :N! [0; 1] for aset S 2 NEXP, and let R be a corresponding witness relation. That is, if S 2 Ntime(t(�)), thenwe refer to a polynomial-time decidable relation R satisfying x 2 S if and only if there exists w oflength at most t(jxj) such that (x;w) 2 R. We consider the following auxiliary properties:Relatively-e�cient oracle-construction: This property holds if there exists a polynomial-time algo-rithm P such that, given any (x;w) 2 R, algorithm P outputs an oracle �x that makes Valways accept (i.e., as in the completeness condition).Non-adaptive veri�er: This property holds if the veri�er's queries are determined based only on theinput and its internal coin tosses, independently of the answers given to previous queries.That is, V can be decomposed into a pair of algorithms, Q and D, such that on input x andrandom-tape r, the veri�er makes the query sequence Q(x; r; 1); Q(x; r; 2); :::; Q(x; r; p(jxj)),8



obtains the answers b1; :::; bp(jxj), and decides by according to D(x; r; b1 � � � bp(jxj)), where p issome �xed polynomial.E�cient reverse-sampling: This property holds if there exists a probabilistic polynomial-time algo-rithm S such that, given any string x and integers i and j, algorithm S outputs a uniformlydistributed r that satis�es Q(x; r; i) = j, where Q is as in the previous item.A proof-of-knowledge property: This property holds if there exists a probabilistic polynomial-timeoracle machine E such that the following holds:10 for every x and �, if Pr[V �(x) = 1] > �(jxj)then there exists w = w1 � � �wt such that (x;w) 2 R and Pr[E�(x; i) = wi] > 2=3 holds forevery i.Non-adaptive pcp veri�ers were explicitly considered in several works, and in fact in some sourcesPCP is de�ned in terms of non-adaptive veri�ers. (Needless to say, almost all pcp systems usenon-adaptive veri�ers.) The oracle-construction and proof-of-knowledge properties are implicit insome works, and are known to hold for the many pcp systems (although we are not aware of a textthat contains a proof of this fact). To the best of our knowledge, the reverse-sampling propertywas not considered before. Nevertheless, it can be veri�ed that any S 2 NEXP has a pcp systemthat satis�es all the foregoing properties.Theorem 3.3 For every S 2 NEXP and for every � : N ! [0; 1] such that �(n) > 2�poly(n),there exist a pcp system with error � for S such that this pcp satis�es the four properties listed inDe�nition 3.2.Proof sketch: For S 2 Ntime(t(�)), we consider the PCP1=2[O(log t(�));poly(�)] system presentedby Babai et. al. [5] (i.e., the starting point of Arora et. al. [2, 1]). (We stress that this pcp system,unlike the one of Feige et. al. [14], uses oracles of length polynomial in t.) This pcp system is non-adaptive and is well-known to satis�es the oracle-construction property. It is also known (alas lesswell-known) that this pcp system satis�es the proof-of-knowledge property. Finally, it is easy to seethat this pcp system (as any reasonable pcp system we know of) also satis�es the reverse-samplingproperty.11 Further details regarding the proof of all the foregoing facts can be found in Appendix A.Thus, we obtain a pcp system with error 1/2 (for S) that satis�es all the auxiliary properties listedin De�nition 3.2. To obtain the desired error of �, we apply straightforward error-reduction, whilenoting that this process does not a�ect the oracle and so the resulting (error-reduced) pcp preservesall the auxiliary properties.3.3 The actual constructionThe construction is an adaptation of Kilian's construction [21] (used also by Micali [23]). UsingTheorem 3.3, we start with a pcp system with error �(n) = 2�n for SU that satis�es the auxiliaryproperties in De�nition 3.2. Actually, the corresponding witness relation will not be RU as de�nedin Section 1.2, but rather a minor modi�cation of it, denoted R0U : the pair ((M;x; t); (w; 1t0 )) is inR0U if M accepts (x;w) in t0 � t steps. (The purpose of the modi�cation is to obtain a relation that10For negligible � (as used below), this proof-of-knowledge property is stronger than the standard proof-of-knowledgeproperty (as in [9] and [16, Sec. 4.7.1]). Indeed, the proof-of-knowledge property in De�nition 3.2 is analogous to thede�nition of a strong proof-of-knowledge (as in [16, Sec. 4.7.6]).11This property follows from the structure of the standard pcp systems. In our case, the system consists of asum-check (a la Lund et. al. [22]), and a low-degree test. In both tests, the queries are selected in a very simplemanner, and what is complex (at least in the case of low-degree tests) is the analysis of the test.9



is decidable in polynomial-time, as required in De�nition 3.2.) Let Vpcp denote the aforementionedpcp system (or rather its veri�er), and Ppcp; Qpcp;Dpcp; Spcp; Epcp denote the auxiliary algorithms(or machines) guaranteed by De�nition 3.2 (i.e., Ppcp is the oracle-constructing procedure, Qpcpdetermines the veri�er's queries, Dpcp describes the veri�er's �nal decision, Spcp provides reverse-sampling, and Epcp is the \witness extractor" guaranteed in the proof-of-knowledge property).A second ingredient used in the construction is a family of collision-resistant hashing functions.That is, a collection of (uniformly polynomial-time computable) functions fh� : f0; 1g� ! f0; 1gj�jgsuch that for every (non-uniform) family of polynomial-size circuits fCngn2NPr�2f0;1gn [Cn(�) = (x; y) s.t. x 6= y and h�(x) = h�(y)] = �(n)where � is a negligible function.Construction 3.4 (a universal argument for SU ):Common input: y = (M;x; t), supposedly in SU . Let n def= jyj.Auxiliary input to the prover: w such that supposedly (y;w) 2 RU holds.First veri�er step (V1): Uniformly select � 2 f0; 1gn, and send it to the prover.First prover step (P1): When describing the prover's actions, we assume that (y;w) 2 RU .1. Preliminary action by the prover: The prover invokes M on input (x;w), and obtainst0 = tM (x;w). Assuming that (y;w) 2 RU and letting w0 = (w; 1t0 ), the prover obtainsan R0U -witness; that is, (y;w0) 2 R0U .2. Oracle-construction: Invoking Ppcp on (y;w0), the prover obtains �y = Ppcp(y;w0).3. Construction of a hashing tree: Letting d def= dlog2 j�yje, the prover constructs a binarytree of depth d and associates its nodes with binary strings of length at most d suchthat the root is associated with the empty string, and an internal node associated with
 has children associated with 
0 and 
1. Using the oracle �y (just constructed) andthe hashing function h� (sent by the veri�er), the prover labels the nodes of this tree asfollows:� The label of a leaf associated with 
 2 f0; 1gd is the value of �y at position 
; thatis, this label, denoted `
, equals the answer of oracle �y to the query 
.� The label of an internal node associated with 
 2 [d�1i=0 f0; 1gi is the value obtainedby applying h� to the string `
0`
1. This label is denoted `
.Thus, the label of the node associated with 
 2 [di=0f0; 1gi is denoted `
.4. The actual message sent by the prover is the depth of the tree and the label of its root.That is, the prover sends the pair (d; `�) to the veri�er.Second veri�er step (V2): The veri�er selects uniformly a random-tape r for the pcp system, andsends r to the prover.Second prover step (P2): The prover provides the corresponding (pcp) answers, augmented by proofsof consistency of these answers with the label of the root as provided in Step (P1).1. Determining the queries: Invoking Qpcp, the prover determines the sequence of queriesthat the pcp system makes on random-tape r. That is, for i = 1; :::;m, it computesqi = Qpcp(y; r; i), where m def= poly(n) is the number of queries made by the system.10



2. The message sent: for i = 1; :::;m and j = 0; :::; d � 1, the prover sends the pair(`
i;j0; `
i;j1), where 
i;j is the j-bit long pre�x of qi. (Note that this message contains,for every i 2 [m], the value of `qi as well as information that enables the authenticationof this value with respect to `�.)Veri�er �nal decision { Step (V3): The veri�er checks that the answers provided by the prover wouldhave been accepted by the pcp-veri�er, and that the corresponding proofs of consistency (withthe label of the root) are valid. That is, denoting by `0
 the label provided by the prover for thenode associated with 
, the veri�er accepts if and only if all the following checks pass:1. Invoking Dpcp, the veri�er checks whether, on input y and random-tape r, the pcp-veri�er would have accepted the answer sequence `0q1 ; :::; `0qm . That is, it checks whetherDpcp(y; r; `0q1 � � � `0qm) = 1.2. Check whether the labels provided are consistent with the label of the root of the tree assent in Step P1. That is, for i = 1; :::;m and j = 0; :::; d � 1, check whether `0
i;j =h�(`0
i;j0`0
i;j1), where 
i;j is the j-bit long pre�x of qi and `0� def= `�.We denote the foregoing veri�er and prover strategies by V and P , respectively.We highlight the fact that Construction 3.4 uses a constant number of rounds and is of the public-coin type. Furthermore, Construction 3.4 satis�es the �rst two requirements of De�nition 2.1; thatis, the veri�er's strategy is implementable in probabilistic polynomial-time, and completeness holdswith respect to a prover strategy that (when given y = (M;x; t) and w as above) runs in time poly-nomial in TM (x;w). We thus focus on establishing the two last requirements of De�nition 2.1. Infact, computational soundness follows from the weak proof-of-knowledge property, because if someadversary can convince the veri�er to accept y with non-negligible probability then the extractor(given oracle access to that adversary) outputs a valid witness for membership of y in SU (whichimplies that y is indeed in SU ). Thus, it su�ces to establish the latter.3.4 Establishing the weak proof-of-knowledge propertyThis subsection contains the main technical contribution of the current section. The novel aspectin the analysis is the use of a \local de�nition of a con
ict" (i.e., considering con
icting values forindividual oracle-bit rather than con
icting values for the entire oracle), and the use of reverse-sampling for deriving (in polynomial-time) hashing-collisions when given a con
ict on any bit-position in the oracle.Lemma 3.5 Construction 3.4 satis�es the weak proof-of-knowledge property of De�nition 2.1, pro-vided that the family fh�g is indeed collision-resistant.Combining Lemma 3.5 with the foregoing discussion, we establish Theorem 1.1.Proof: Fixing any polynomial p, we present a probabilistic polynomial-time knowledge-extractorthat extracts witnesses from any feasible prover strategy that makes V accept with probabilityabove the threshold speci�ed by p. Speci�cally, for any family of (deterministic) polynomial-sizecircuits representing a possible cheating prover strategy and for all su�ciently long y's, if theprover convinces V to accept y with probability at least 1=p(jyj) then, with noticeable probability(i.e., 1=p0(jyj)), the knowledge-extractor (given oracle access to the strategy) outputs the bits of acorresponding witness. 11



We �x an arbitrary family, f ePngn2N, of (deterministic) polynomial-size circuits representing apossible cheating prover strategy, and a generic n and y 2 f0; 1gn such that Pr[( ePn; V )(y) = 1] >" def= 1=p(n). We consider a few key notions regarding the interaction of ePn and the designatedveri�er V on common input y. First we consider notions that refer to a speci�c interaction (cor-responding to a �xed sequence of veri�er coins, which consists of a pair of choices (�; r) that theveri�er takes in Steps (V1) and (V2), respectively):� The ith query in such interaction is qi = Qpcp(y; r; i), where r is the Step (V2) message.� The ith answer supplied by (the prover) ePn is the label (i.e., `0qi) that the prover has provided(in Step (P2)) for the leaf (associated with) the ith query (i.e., qi = Qpcp(y; r; i)). The corre-sponding authentication is the corresponding sequence of pairs h(`0
i;j0; `0
i;j1) : j = 0; :::; d � 1i,where 
i;j is the j-bit long pre�x of qi.Note that the various parts of the prover's message in Step (P2) are a function of � and r,and thus the notation `0
 is actually a shorthand for `0
(�; r).� The ith answer supplied by ePn is said to be proper if the corresponding authentication passesthe veri�er's test (in Step (V3)); that is, `0
i;j = h�(`0
i;j0`0
i;j1) holds, for j = 0; :::; d�1 (where
i;j is as above and `0� def= `�).Next, we consider the probability distribution induced by the veri�er's coins. Note that these coinsconsist of the pair of choices (�; r) that the veri�er takes in Steps (V1) and (V2), respectively.Fixing any � 2 f0; 1gn, we consider the conditional probability, denoted py;�, that the veri�eraccepts y when choosing � is Step (V1). Clearly, for at least a "=2 fraction of the possible �'s itholds that py;� � "=2. We �x any such � for the rest of the discussion. We now consider notionsthat refer to the residual probability space induced by a uniformly distributed r 2 f0; 1gpoly(n) (asselected by the veri�er in Step (V2)).� For a query value q 2 f0; 1gd, a query index i 2 [m], a possible answer � 2 f0; 1g, and aparameter �2 [0; 1], we say that � is �-strong for (i; q) if, conditioned on the ith query beingq, the probability that ePn properly answers the ith query with � is at least �. That is,Prr[`0qi = � is proper j qi = Q(y; r; i)] � � ;where `0qi = `0Q(y;r;i)(�; r) as well as its being proper are determined based on � and r.When i and q are understood from the context, we just say that � is a �-strong answer.� We say that a query q 2 f0; 1gd has �-con
icting answers if there exist i and j (possibly i = j)such that 0 is �-strong for (i; q) and 1 is �-strong for (j; q).We stress that throughout the rest of the analysis we consider a �xed � 2 f0; 1gn and a uniformlydistributed r 2 f0; 1gpoly(n).Our goal is to show that if py;� � "=2, then we can extract a witness for y by using ePn. We�rst show that using ePn, we can reconstruct an adequate PCP-oracle that convinces Vpcp (withprobability at least poly(")), although he strategy of ePn need not be consistent with any suchoracle. That is, although a priori the strategy of ePn may answer queries in an inconsistent fashion,we shall show that in order to be convincing the answers of ePn must be \essentially" consistent.12



As a preparation to the oracle reconstruction procedure, we �rst show (in Claim 3.5.1) thatanswers that are not adequately strong are quite rare (because they are useless for convincing V ).Indeed, the oracle reconstruction will be based on adequately strong answers (i.e., answers thatappear frequently in interactions). Next, we show (in Claim 3.5.2) that reconstructing the oraclebased on strong answers is essentially well-de�ned, because queries that have con
icting answers(which are both adequately strong) occur rarely in the interaction.Claim 3.5.1 The probability that the veri�er accepts while receiving only �-strong answers is atleast py;� �m�.(Recall thatm is the number of queries asked by the PCP veri�er Vpcp.) Thus, picking � = py;�=2m,we may focus on the case that all the prover's answers are �-strong.Proof: The key observation is that whenever the veri�er accepts, all answers are proper. Intuitively,answers that are not �-strong (i.e., are rarely proper) are unlikely to appear in such interactions.Speci�cally, we just upper-bound the probability that, for some i 2 [m], the answer `0Q(y;r;i) isproper but not �-strong for (i;Q(y; r; i)), where r is uniformly distributed. Fixing any i and anypossible value of qi, by de�nition (of being proper but not �-strong), the probability that the answer`0qi is proper but not �-strong for (i; qi) is smaller than �. Averaging over the possible values of qi(as emerging from Q(y; �; i)) and taking a union bound over all i 2 [m], the claim follows. 2Claim 3.5.2 There exist a probabilistic polynomial-time oracle machine that, for any �, given �and oracle access to ePn, �nds collisions with respect to h� with success probability that polynomiallyrelated to �=m and to the probability that the veri�er makes a query that has �-con
icting answers.That is, let �� denote the probability that (after choosing � in Step (V1)) the veri�er makes a querythat has �-con
icting answers. Then, the probability of �nding a collision (i.e., z0 6= z00 such thath�(z0) = h�(z00)) is at least ���2=m3.Thus, on a typical � (or rather on all but a negligible fraction of the �'s) and for � > 1=poly(n), thequantity �� must be negligible, because otherwise we derive a contradiction to the collision-resistanthypothesis of the family fh�g. Consequently, for � = py;�=2m > 1=poly(n), we may focus on thecase that the prover's answers are not (�=2)-con
icting.Proof: We uniformly select r 2 f0; 1gpoly(n) and i 2 [m], hoping that qi = Q(y; r; i) is �-con
icting(which is the case with probability at least ��=m). Uniformly selecting i0; i00 2 [m], and invoking thereverse-sampling algorithm Spcp on inputs (y; i0; qi) and (y; i00; qi), respectively, we obtain uniformlydistributed r0 and r00 that satisfy qi = Q(y; r0; i0) and qi = Q(y; r00; i00). We now invoke ePn twice,feeding it with � and r0 (resp. � and r00) in the �rst (resp., second) invocation. Assuming thatqi is �-con
icting, with probability at least (�=m)2, both answers to qi will be proper but withopposite values. Thus, with probability at least (��=m) � (�=m)2, we have obtained two di�erentproper answers to the same query qi. In such a case, the authentication information correspondingto these two (proper) answers yield a collision under h�, because of the following considerations:� Both answers to query qi are authenticated with respect to the same pair (d; `�) that wassent by ePn in step (P1). Thus, both these di�erent values correspond to the leaf associatedwith the string qi 2 f0; 1gd.� Each of the di�erent values for the same leaf (associated with qi) is authenticated with respectto the same value of the root (i.e., `�). This mean that a collision under h� must occursomewhere along the path from the leaf to the root. Details follow.13



Recall that when invoked with input � and r0 (resp., � and r00), the circuit ePn providesauthenticating information corresponding to the leaf qi. This information takes the formof a sequence of pairs h(`0
i;j0; `0
i;j1) : j = 0; :::; d � 1i (resp., h(`00
i;j0; `00
i;j1) : j = 0; :::; d � 1i),where 
i;j denotes the j-bit long pre�x of qi. Note that `0qi 6= `00qi (i.e., the answers to qi aredi�erent) while `0� = `� = `00� (since both sequences refer to the same root value `�). Thus,there exists a j 2 f0; :::; d � 1g such that `0
i;j = `00
i;j and `0
i;j+1 6= `00
i;j+1 . It follows thath�(`0
i;j0`0
i;j1) = `0
i;j = `00
i;j = h�(`00
i;j0`00
i;j1) but `0
i;j0`0
i;j1 6= `0
i;j0`0
i;j1.The claim follows. 2Suppose for a moment, that (for � = py;�=2m) all the prover's answers are �-strong but noneis (�=2)-con
icting. Then, we can use the prover's answers in order to construct (and not merelyclaim the existence of) an oracle for the pcp system that makes Vpcp accept with probability atleast py;�=2. Speci�cally, let the qth bit of the oracle be � if and only if there exists an i such that �is �-strong for (i; q). This setting of the oracle bits can be decided in probabilistic polynomial-timeby using the reverse-sampling algorithm Spcp to generate multiple samples of interactions in whichthese speci�c oracle bits are queried. Speci�cally, to determine the qth bit we generate, for everyi 2 [m], multiple samples of interactions in which the ith oracle query equals q, and determinethe answer by using the gap provided by the hypothesis that for some i there is an answer that is�-strong for (i; q), whereas (by the non-con
icting hypothesis) for every j the opposite answer isnot (�=2)-strong for (j; q).Recall that the foregoing outline relies on the simplifying assumption by which all the prover'sanswers are �-strong but none is (�=2)-con
icting. In general, some queries may either have nostrong answers or be con
icting (although these cases will occur rarely). In such a case, theprocedure may fail to recover the corresponding entries in the pcp-oracle, but this will not mattermuch (because with su�cient high probability the pcp veri�er will not query these badly-recoveredlocations).The oracle-recovery procedure: We present a probabilistic polynomial-time oracle machinethat, on input (y; �) and q 2 f0; 1gd and oracle access to the prover ePn, outputs a candidate for theqth bit of a pcp-oracle. The procedure operates as follows, where T def= poly(n=�) and � = "=4m:1. For i = 1; :::;m and j = 1; :::; T , invoke Spcp on input (y; i; q) and obtain ri;j.2. For i = 1; :::;m and j = 1; :::; T , invoke ePn feeding it with � and ri;j, and if the ith answer isproper then record (i; j) as supporting this answer value.3. If for some i 2 [m], there are (2�=3) � T records for the form (i; �) supporting the value� 2 f0; 1g then de�ne � as a candidate. That is, � is a candidate if there exists an i and atleast (2�=3) � T di�erent j's such that the ith answer of ePn(�; ri;j) is proper and has value �.4. If a single value of � 2 f0; 1g is de�ned as a candidate then set the qth bit accordingly.(Otherwise, do whatever you please.)We call the query q good if it does not have (�=2)-con
icting answers and there exists an i 2 [m]and a bit value that is �-strong for (i; q). For a good query, with overwhelmingly high probability,the foregoing procedure will de�ne the latter value as a unique candidate. (The expected numberof (i; �)-supports for the strong value is at least � � T , whereas for the opposite value the expectednumber of (i0; �)-supports is less than (�=2) � T , for every i0.) Let use denote the pcp-oracle inducedby the above procedure by �. 14



Claim 3.5.3 Let � = "=4m and recall that py;� � "=2. Suppose that the probability that V makesa query that has (�=2)-con
icting answers is at most py;�=4. Then, with probability at least 1�2�ntaken over the reconstruction of �, the probability that Vpcp�(y) accepts is lower bounded by py;�=4.Proof: Combining the hypothesis (regarding (�=2)-con
icting answers) with Claim 3.5.1, we con-clude that with probability at least (py;� �m�) � (py;�=4) � py;�=4 the veri�er (of the interactiveargument) accepts while making only good queries and receiving only �-strong answers. However,in this case, with probability at least 1 � 2�n, the corresponding bits of � will be set to equalthe answers provided by ePn (because, for a good query, with overwhelmingly high probability, theanswer that is �-strong will be the only candidate found by the oracle-recovery procedure). Sincethe (interactive argument) veri�er is accepting after invoking Vpcp on the answers it obtained, itfollows that in this case Vpcp� accepts too. 2Recall that by Claim 3.5.2 (and the hypothesis that the family of hashing functions is indeedcollision-resistant), it holds that with probability at least ("=2)� ("=4) over the random choices of� the hypotheses of Claim 3.5.3 hold (i.e., py;� � "=2 and the probability that V makes a query thathas ("=8m)-con
icting answers is at most py;�=4). We call such an � useful. Applying Claim 3.5.3,it follows that for any useful �, with probability at least 1 � 2�n, the foregoing oracle-recoveryprocedure de�nes an oracle � such that Vpcp�(y) accepts with probability at least "=8.The weak proof-of-knowledge property (of the interactive argument) now follows from the corre-sponding property of the pcp system. Speci�cally, we combine the pcp extractor with the foregoingoracle-recovery procedure, and obtain the desired extractor (detailed next).Extractor for the argument system: On input (y; i), where y = (M;x; t) and i 2 [t], andaccess to a prover strategy ePn, the extractor operates as follows (using � = "=4m):1. Uniformly select � 2 f0; 1gn, hoping that � is useful (which hold with probability at least"=4). Fix � for the rest of the discussion.2. Uniformly select coins ! for the oracle-recovery procedure, and �x ! for the rest of thediscussion. Note that the oracle-recovery procedure (implicitly) provides oracle access to apcp-oracle �, which is determined by ( ePn, y, �, and) !.We call ! �-good if the foregoing oracle-recovery procedure de�nes an oracle � such thatVpcp�(y) accepts with probability at least "=8. Recall that, by Claim 3.5.3, if � is good then,with probability at least 1� 2�n, a random ! is �-good.3. Invoke Epcp(y; i) providing it with oracle access to �. This means that each time Epcp(y; i)makes a query q, we invoke the oracle-recovery procedure on input (y; q) (and with � and !as �xed above), and obtain the qth bit of �, which we return as answer to Epcp(y; i). WhenEpcp(y; i) provides an answer (supposedly the ith bit of a suitable witness w for y), we justoutput this answer.Recall that if � is useful and ! is �-useful then with probability at least 2=3 (over the coins ofEpcp), the output of Epcp (and thus of our extractor) will be correct (i.e., will yield the desiredbit of a �xed witness for y). This follows by the proof-of-knowledge property of the pcp system,which refers to convincing Vpcp with probability at least 2�n, while here Vpcp is convinced withprobability at least "=8 > 2�n. Using suitable ampli�cation, we can obtain (for each bit in thewitness) the correct answer with probability at least 1 � 2�2n (over the coins of Epcp), pendingagain on � and ! being useful. Denoting the coins of the ampli�ed Epcp by �, we infer that for15



at least a fraction 1 � t � 2�2n � 1 � 2�n of the possible �'s, the ampli�ed Epcp provides correctanswers for each of the possible t bit locations. We call such �'s (�; !)-useful.Let us denote the foregoing extractor by E. The running-time of E is dominated by therunning-time of the oracle-recovery procedure, whereas the latter is dominated by the poly(n=")invocations of ePn (during the oracle-recovery procedure). Using " = 1=p(n), it follows that E runsin polynomial-time (speci�cally, the running time is polynomial in n and p(n)). The random choicesof E correspond to the above three steps; that is, they consist of �, ! and �. Whenever they areall useful (i.e., � is useful, ! is �-useful, and � is (�; !)-useful), the extractor E recovers correctlyeach of the bits of a suitable witness (for y). The event in the condition (i.e., �, ! and � beingadequately useful) occurs with probability at least ("=4) � (1 � 2�n) � (1 � 2�n) > "=5 = 1=5p(n).Letting p0(n) = 5p(n), the lemma follows.4 Application to Zero-Knowledge ArgumentsUsing Theorem 1.1, we prove Theorem 1.2 in two steps:1. Using any constant-round public-coin universal-argument, we derive one that is witness-indistinguishable. Here we follow the paradigm of \encrypted interactions" (introduced in [10]and also used in Barak's paper [6]). The construction and its analysis, which appear in Sec-tion 4.1, di�er from prior versions that appeared (or were outlined) in [8, 7, 17].2. Using the result of the �rst step, we modify Barak's main construction [6] of a zero-knowledgeargument (for any S 2 NP) such that it can be analyzed based on standard collision-resistanthashing. Speci�cally, rather than using any collision-resistant hashing (for the very �rstmessage in his protocol), we use tree-hashing (as in Step (P1) of Construction 3.4) composedwith an error-correcting code. The construction and its analysis appear in Section 4.2.The reasons for the various modi�cations will be discussed in the corresponding subsections. Butbefore turning to the constructions, we stress that the notion of witness-indistinguishability (whichis typically applied to proofs/argument systems for speci�c sets in NP) needs to be rede�nedwhen applied to universal-arguments. Speci�cally, this property should apply to any \fragment"of RU that can be recognized in time that is polynomial in the length of the common input (wherethe polynomial is �xed after the universal-argument system is speci�ed). That is, we refer to thefollowing de�nition.De�nition 4.1 (witness-indistinguishable universal argument): A universal-argument system, (P; V ),is called witness-indistinguishable if, for every polynomial p, every polynomial-size circuit familyfV �n gn2N, and every three sequences hyn = (Mn; xn; tn) : n 2 Ni, hw1n : n 2 Ni and hw2n : n 2 Ni suchthat jynj = n, tn � p(jxnj), and (yn; w1n); (yn; w2n) 2 RU , the probability ensembles fhP (w1n); V �i(yn)gn2Nand fhP (w2n); V �i(yn)gn2N are computationally indistinguishable, where hP (w); V �i(y) denotes theoutput of V � when interacting with P (w) on common input y.Note the analogy to the discussion at the end of Section 1.2 (regarding \natural applications ofuniversal-arguments").4.1 Constructing witness-indistinguishable universal-argumentsOur starting point is any constant-round, public-coin universal-argument (for SU ), denoted (Pua; Vua).For sake of simplicity, we assume (without loss of generality) that, on any n-bit long common in-put, each message sent by either parties has length m = poly(n). Using the public-coin clause this16



means that the protocol proceeds in rounds, where in each round the veri�er selects uniformly anm-bit string, and the prover responds with an m-bit string determined based on its inputs and themessages it has received so far. We denote by c the (constant) number of such rounds; in case ofConstruction 3.4, c = 2.A second ingredient used in the construction is a (constant-round, public-coin) non-obliviousstatistically-binding commitment scheme. Loosely speaking, such a scheme allows a sender to \com-mit" to a value such that the value remains hidden from the receiver and still the sender is \com-mitted" to this value. Furthermore, \statistically-binding" means that, with high probability, if thecommitment phase is concluded successfully then there exists at most one value that can be laterrevealed as a proper decommitment, whereas \non-oblivious" means that the sender actually knowsa proper decommitment of the committed value. For further discussion see Appendix B, where wealso show that such a scheme can be constructed based on the existence of one-way functions.We denote this commitment scheme by C, and the corresponding decommitment veri�cation by D.Furthermore, we denote by (s; c)  C(v) an execution of C in which the sender enters the value v,the receiver obtains the commitment value c, and the sender obtains corresponding decommitmentinformation d satisfying D((v; d); c) = 1. Recall that statistically-binding means that, with over-whelmingly high probability, the protocol yields a commitment c such that if for any v; d; v0; d0 itholds that D((v; d); c) = 1 and D((v0; d0); c) = 1 then it must be that v = v0.A third (and last) ingredient used in the construction is a (constant-round, public-coin) zero-knowledge proof of constant soundness error for some NP-complete set. Such proof system can beconstructed based on the existence of one-way functions (see, e.g., [16, Chap. 4, Exec. 20]).12 Letus denote such a system by (Pzk; Vzk).The construction presented next is based on an \encrypted" emulation of the execution of theuniversal-argument system (Pua; Vua). That is, the prover in our protocol responds to the veri�er'smessages by sending commitments to the messages that Pua would have sent. This \encrypted" formof the prover's message does not impair the new veri�er which merely emulates Vua, because Vua isof the public-coin type. At the end of the emulation phase, the prover provides a zero-knowledgeproof that the committed values correspond to a transcript that Vua would have accepted. Thezero-knowledge property of the foregoing protocol is quite intuitive, and so we focus on its weakproof-of-knowledge property. Indeed, the fact that the commitment scheme is non-oblivious is usedfor extracting the corresponding transcript, but the acceptability of this transcript is only guaran-teed when the new prover convinces the new veri�er with constant probability (which originatesin the constant soundness error of the zero-knowledge proof). To handle any non-negligible accep-tance probability, we repeat the foregoing protocol for a super-logarithmic number of times, wherethese repetitions are performed in parallel (so to maintain a constant number of rounds). Theserepetitions do not necessarily preserve the zero-knowledge property of the basic protocol, but theypreserve its witness indistinguishability property. The resulting protocol is described next.Construction 4.2 (a witness-indistinguishable universal-argument):Common input: y = (M;x; t), supposedly in SU . Let n def= jyj.Auxiliary input to the prover: w such that supposedly (y;w) 2 RU holds.12This construct replaces the strong witness-indistinguishable proof system of negligible soundness error assumedin [8]. Unfortunately, in contrary to prior misconceptions (cf. [16, Sec. 4.6]), such protocols are not known to exist [17,Apdx. C.3]. In fact, in our construction, we may use a strong witness-indistinguishable proof system of constantsoundness error (for some NP-complete set), but we do not know of such a protocol that is not zero-knowledge aswell. 17



Part 1: encrypted emulations of (Pua; Vua). The parties perform n parallel emulations of the (Pua; Vua)protocol, where each emulation is performed in a partially encrypted manner. Speci�cally, theveri�er generates random messages exactly as Vua, but the prover answers with commitmentsto the corresponding responses of Pua. That is, for i = 1; :::; c, the parties emulate in paralleln copies of the ith round of (Pua; Vua) as follows:1. The veri�er selects uniformly at random r1i ; :::; rni 2 f0; 1gm, and sends these strings tothe prover.2. The prover determines Pua's answers, and responds with commitment to them. That is,for j = 1; :::; n, the prover �rst determines aji  Pua(y;w; rj1; :::; rji ). Next, the partiesinvoke n parallel executions of C, where the prover plays the sender and the veri�er playsthe receiver, such that the jth copy yields the output pair (sji ; eji ) C(aji ). If the veri�erdetects improper termination in any of these executions then it halts and rejects.Part 2: proving that Vua accepts in the encrypted emulations. The parties invoke the proof system(Pzk; Vzk), where the prover's goal is proving that the transcripts (rj1; ej1; :::; rjc ; ejc) generatedin Part 1 corresponds to encryptions of accepting (Pua; Vua) transcripts. That is, the partiesrun n parallel copies of (Pzk; Vzk) such that, in the jth copy, the NP-statement being provedrefers to the input (y; r1; e1; :::; rc; ec) and asserts that there exists ((aj1; sj1); :::; (ajc; sjc)) suchthat1. for i = 1; :::; c, it holds that D((aji ; sji ); eji ) = 1.2. Vua(y; rj1; aj1; :::; rjc ; ajc) = 1.Needless to say, the prover executes this copy of Pzk using the NP-witness ((aj1; sj1); :::; (ajc ; sjc)),where this sequence of pairs is as determined by it in Part 1.Note that the length of the NP-statement being proven (as well as the length of the correspond-ing NP-witness) is bounded by a �xed polynomial in n +m (and thus by a �xed polynomialin n).We denote the above veri�er and prover strategies by V and P , respectively.Clearly, Construction 4.2 is constant-round, public-coin, and satis�es the �rst two requirements ofDe�nition 2.1; that is, the veri�er's strategy is implementable in probabilistic polynomial-time, andcompleteness holds with respect to a prover strategy that (given y = (M;x; t) and w as above) runsin time polynomial in TM (x;w). To establish that Construction 4.2 is a witness-indistinguishableuniversal-argument (as per De�nition 4.1), it remains to prove the following two properties ofConstruction 4.2:1. The weak proof-of-knowledge property, which in turn implies also the computational sound-ness property.2. The witness-indistinguishability property.We mention that (unlike in [8, Lem. 4.2]) the following proofs do not take advantage of the fact thatthe basic ingredients are constant-round protocols. We start with the witness-indistinguishabilityproperty, because its proof is signi�cantly simpler.Lemma 4.3 Construction 4.2 is witness-indistinguishable (as per De�nition 4.1), provided that(Pzk; Vzk) is zero-knowledge and that C is computationally-hiding.18



Proof: We view Construction 4.2 as the result of n parallel executions of a basic protocol, whichconsists of performing a single \encrypted" execution of (Pua; Vua) followed by a zero-knowledgeproof that the corresponding \encrypted" transcript encodes an accepting transcript of (Pua; Vua).Intuitively, this basic protocol is zero-knowledge, because it can be simulated by generating dummycommitments and invoking the simulator of (Pzk; Vzk) on these commitments. The computationalindistinguishability of this simulation from the real execution is argued as follows:� As a mental experiment, we consider a hybrid distribution in which the simulator of (Pzk; Vzk)is invoked on an \encrypted" transcript of (Pua; Vua).� The computationally-hiding property of the commitment scheme implies that the output ofour simulator (which invokes the simulator of (Pzk; Vzk) on dummy commitments) is compu-tationally indistinguishable from the foregoing hybrid distribution.� The hybrid distribution is computationally indistinguishable from the real execution of thebasic protocol (by our hypothesis regarding the simulator of (Pzk; Vzk)).Having established the zero-knowledge property of the basic protocol, we conclude that the basicprotocol is witness-indistinguishable (in the sense of De�nition 4.1). Furthermore, when con�ningour attention to common and auxiliary inputs that are admissible as per De�nition 4.1, it is thecase that P runs in polynomial time (when given adequate auxiliary inputs). Thus, the witness-indistinguishability of P (on such inputs) is preserved under parallel composition (cf., e.g., [16,Sec. 4.6.2])). The lemma follows.Lemma 4.4 Construction 4.2 satis�es the weak proof-of-knowledge property of De�nition 2.1, pro-vided that so does (Pua; Vua) and that C is statistically-binding and non-oblivious.Proof: Here we decompose Construction 4.2 in a di�erent way, considering �rst Part 1 as a wholeand then Part 2 as a whole. We start with an overview of the proof. Loosely speaking, the non-oblivious property of the commitment scheme guarantees that we can extract the cleartext versionof all encrypted transcripts (of (Pua; Vua)), but at this point it is unclear whether any of thesetranscripts is accepting. Using the statistically-binding property of the commitment scheme wedistinguish the case that some of these transcripts are accepting from the case that none of them isaccepting. Using the (constant error) soundness of (Pzk; Vzk), we infer that the second case (whichrefers to multiple failures) happens with negligible probability, and so we may ignore it. Thus,either V detects an improper execution of the commitment scheme or we are able to extract anaccepting transcript of (Pua; Vua). It follows that if V is convinced with some noticeable probabilityp, then for some j 2 [n], with probability at least p=n (or so), the jth transcript is accepting andextractable. At this point the lemma follows by invoking the weak proof-of-knowledge property of(Pua; Vua). We now turn to the actual proof.Fixing an arbitrary prover strategy for Construction 4.2 we shall derive a related strategyfor the underlying universal-argument system such that the circuit complexity (resp., the successprobability) of the resulting strategy will be related to the circuit complexity (resp., the successprobability) of the original strategy. Speci�cally, let us consider an arbitrary family, f ePngn2N, of(deterministic) polynomial-size circuits representing a possible prover strategy in the system (P; V ).Fixing a generic n and y 2 f0; 1gn, we let py def= Pr[( ePn; V )(y) = 1]. Using ePn, we shall constructa corresponding prover strategy gPua that makes Vua accept y with probability 
((py � �(n))=n).Thus, once we are done constructing gPua, the weak proof-of-knowledge property of Construction 4.2will follow from the weak proof-of-knowledge property of the underlying universal-argument system.19



We thus turn to constructing gPua, which starts by selecting uniformly j 2 [n] and trying toextract the transcript of the jth encrypted interaction performed by ePn in Part 1. Speci�cally, afterselecting j, the strategy gPua operates in c iterations, where in each iteration it obtains from ePn asequence of encrypted message and extracts from it a message that it sends to Vua. That is, fori = 1; :::; c:1. gPua obtains from the (real) veri�er Vua a (uniformly distributed) string, denoted ri 2 f0; 1gm.2. gPua selects uniformly r1i ; :::; rj�1i ; rj+1i ; :::; rni 2 f0; 1gm and feeds r1i ; :::; rj�1i ; ri; rj+1i ; :::; rnito ePn, obtaining a residual sender for the current round of executions of the non-obliviouscommitment scheme. Using this residual sender and the knowledge extractor guaranteed forthe non-oblivious commitment scheme, gPua extracts the cleartext answer that corresponds tothe jth copy of the current executions of the non-oblivious commitment scheme. (Note thatthe non-oblivious/proof-of-knowledge property is preserved when the protocol is executedmultiple times in parallel.)3. gPua sends the aforementioned answer to the (real) veri�er Vua.We now turn to the analysis of the size of gPua and its success probability. These quantities aredetermined by the size of ePn and its success probability, denoted py. We may indeed focus on thecase that py is a noticeable function of n = jyj (i.e., py > 1=poly(n)). Recall that ePn executes c+1sub-protocols, where the �rst c protocols are n parallel executions of the non-oblivious commitmentscheme and the last protocol consists of n parallel executions of the (constant-error) zero-knowledgeproof system. We �rst prove that, with probability at least py=2, the entire execution produces atranscript such that for every i 2 f0; 1; :::; cg given the partial transcript of the i previous executionsthe next execution is successful with probability at least py=2c. This follows from the followinggeneral claim.Claim 4.4.1 Let G � 
m and let � = jSj=j
jm. For i 2 [m], a sequence (e1; :::; em) 2 
m iscalled i-good if Pre2
[(e1; :::; ei�1; e) 2 Gi] � �2(m�1) , where (e01; :::; e0i) 2 Gi if and only if there existe0i+1; :::; e0m 2 
 such that (e01; :::; e0m) 2 G. Then, at least half of the sequences in G are i-good forevery i 2 [m].Needless to say, the foregoing sequences correspond to the executions of the di�erent c+1 protocols,and i-good sequences correspond to transcripts in which the given the partial transcript of thei � 1 previous (successful) executions the next execution is successful with probability at leastpy=2c. Actually, we gave-up on execution transcripts that are not fully successful and yet for everyi 2 [c+1] given the partial transcript of the i�1 previous executions the next execution is successfulwith probability at least py=2c.Proof: Let Bi def= f(e1; :::; ei�1) 2 
i�1 : Pre2
[(e1; :::; ei�1; e) 2 Gi] < �=2(m � 1)g be the set ofall (i � 1)-long pre�xes of sequences that are not i-good. Note that B1 = ;, because Pre2
[e 2G1] � Pre2
m [e 2 G] = �. Now, on one hand, every sequence in G that has no pre�x in [mi=1Bi, isi-good for every i. On the other hand, the number of sequences in G that have a pre�x in Bi is lessthan �2(m�1) � j
jm, because each such sequence has an i-long pre�x (e1; :::; ei�1; ei) 2 Gi whereasPre2
[(e1; :::; ei�1; e) 2 Gi] < �=2(m � 1). The claim follows. 2By Claim 4.4.1, a py=2 fraction of all executions are fully successful and furthermore each partialtranscript of these executions leads to success in the next execution with probability at least py=2c.Thus, in these executions each of the c rounds of non-oblivious commitments is successful with20



probability at least py=2c, and the same holds for the interactive proofs that take place in Part 2.The �rst fact implies that we can extract all values that were committed to in Part 1, by invokingePn for poly(n)=(py=2c) times. Thus, we can bound the size of gPua by poly(n)=py times the sizeof ePn. Combining the second fact, which refers to Part 2, with the constant soundness-error ofeach execution of the proof system, it follows that at least one of the n committed (and recovered)(Pua; Vua)-transcripts must be accepting (because otherwise the probability that all these execu-tions of the interactive proof are successful is at most sn � py=2c, where s < 1 denotes the constantsoundness-error of the proof system). Thus, with probability at least (py=2) � �(n) > py=3, thestrategy gPua recovered all the corresponding (Pua; Vua)-transcripts and at least one of these tran-scripts is accepting. Conditioned on the foregoing, with probability at least 1=n, the strategy gPuaselects j such that the jth (Pua; Vua)-transcript is accepting. We conclude that gPua convinces Vuawith probability at least py=2cn, and the lemma follows.Remarks: We stress again that Construction 4.2 is di�erent from the corresponding constructionpresented in [8]. It is also di�erent from the patch described in [7, Apdx. A.4] and the one outlinedin [17, Apdx. C.3.3]. An important di�erence is that the current proof of Lemma 4.4 does notrely on the fact that the protocols employed have a constant number of rounds. We also mentionthat the main analysis of Construction 4.2, which is provided in the proofs of Lemmas 4.3 and 4.4,proceeds by decomposing the construction in two di�erent ways. A similar strategy is employed inAppendix B (see the proof of Claims B.2.1 and B.2.2).4.2 Modifying Barak's zero-knowledge argumentHere our starting point is any (constant-round, public-coin) strong witness-indistinguishable universal-argument (for SU ), denoted (Pwi-ua; Vwi-ua).A second ingredient used in the construction is a tree-hashing scheme, denoted TH, as used inConstruction 3.4. Loosely speaking, such a scheme can be applied to arbitrary long strings andallows for the veri�cation of the value of a particular bit in the string within time polynomialin the hash-value (and possibly polylogarithmic in the length of the string). We stress that theveri�cation does not require presenting the entire string to which hashing was applied (but ratheronly auxiliary authentication information that is speci�c to that bit position). Recall that tree-hashing is constructed based on some \basic" hashing function (which maps 2n-bit strings to n-bitstrings), and that con
icting values assigned to any bit position in the tree-hashing yield a collisionin the basic hashing. Speci�cally, when using a basic hashing function indexed by �, and applyingthe tree-hashing procedure to anm-bit long string z that is placed at the leaves of the (log2m-deep)tree, we denote the resulting label of the root by TH�(z) and denote the corresponding sequence ofm authenticators by auth�(z).13In addition, we use a standard statistically-binding commitment scheme, denoted C, and abinary error-correcting code of constant relative distance and polynomial-time encoding algorithm,denoted ECC. (Note that so called \good" codes have this property and are known to exist, but wecan actually use even weaker codes than postulated in the foregoing.) As in Construction B.2, welet Cs(z) denote the receiver's view of the commitment phase when the sender inputs the value zand uses randomness s.13That is, TH�(z) = `�, where `i is the ith bit of z, and `
 = h�(`
0`
1). Actually, here it is more natural to letTH�(z) = `0;0, where `d;i is the ith bit of z 2 f0; 1g2d , and `j;i = h�(`j+1;2i`j+1;2i+1). Similarly, the ith sequence inauth�(z) is (`d;2bi=2c; `d;2bi=2c+1; `d�1;2bi=4c; `d�1;2bi=4c+1; :::; `1;2bi=2dc; `1;2bi=2dc+1).21



The key idea in our modi�cation of Barak's construction [6] is replacing an arbitrary hashingof strings by the following two-step (hashing) process:1. Apply the error-correcting code to the input string.2. Apply the tree-hashing to the resulting codeword.The advantage of this two-step (hashing) process over standard hashing is that if two di�erentstrings are hashed to the same value then we can quickly obtain a collision in the basic hashingfunction (underlying the tree-hashing). We stress that this collision is found in time that is poly-nomial in the hash-value (which may be polylogarithmic in the length of the strings being hashed).The reason is that, with (positive) constant probability, a uniformly selected bit-position in thecodeword will have di�erent values in the two codewords, and in this case we obtain from the cor-responding authentications a collision in the basic hashing. (The foregoing motivational discussionwill be clari�ed by the proof of Lemma 4.6.)Construction 4.5 (a zero-knowledge argument for S 2 NP (with a corresponding witness rela-tion RS)):Common input: x, supposedly in S. Let n def= jxj.Auxiliary input to the prover: w such that supposedly (x;w) 2 RS holds.Part 1: introducing a trapdoor for the simulation. The prover commits to a dummy value that al-lows cheating in the case that this value equals a random value that is sent by the veri�erafter getting the said commitment. This is done as follows:1. The veri�er uniformly selects � 2 f0; 1gn (i.e., a basic hash function), and sends it tothe prover.2. The prover sends a dummy commitment (i.e., a commitment to the value 02n); that is,it sends c def= Cs(02n) to the veri�er, where s denotes the sender's randomness in thisexecution of the commitment scheme.3. The veri�er uniformly selects r 2 f0; 1gn, and sends it to the prover.Cheating in Part 2 will become possible if and only if r to agree with c in the sense that onemay present a circuit � such that �(c) = r and c = Cs(jECC(�)j; TH�(ECC(�))).Part 2: e�ectively proving that x 2 S. Speci�cally, the prover will prove that he knows either awitness w for x 2 S (i.e., (x;w) 2 RS) or a circuit � such that �(c) = r and c =Cs(jECC(�)j; TH�(ECC(�))). This is done as follows:Loosely speaking, the parties invoke the proof system (Pwi-ua; Vwi-ua) on common input (x; �; c; r),where the prover intends to prove that it knows a tuple (w;m; �; 
; s) such that either (x;w) 2RS or (�; 
; s) encodes authentication and decommitment information for a circuit � suchthat �(c) = r, where the encoding clause means that it holds that � = ECC(�) 2 f0; 1gm,
 = auth�(�) and c = Cs(j�j; TH�(�)).14 Actually, the parties reduce the above instance(x; �; c; r) to the triplet y = (M 0S ; (x; �; c; r); 2n), where y 2 f0; 1gpoly(n) is supposedly in SU ,and M 0S is such that M 0S((x; �; c; r); (w;m; �; 
; s)) def= 1 if and only if at least one of thefollowing two conditions holds:14The reason that we include (in the witness) the authentication information (i.e., auth(ECC(�))) rather than �itself will become clear in the proof of Lemma 4.6. Furthermore, for simplicity and clarity, we explicitly include inthe witness both ECC(�) and its length. 22



1. (x;w) 2 RS.2. m = j�j, c = Cs(m; TH�(�)), 
 = auth�(�), and �(c) = r, where �  ECC�1(�) is adescription of a circuit.When invoking Pwi-ua, the prover provides it with the witness (w;m0; �0; 
0; s0), where m0 = nand �0 = 
0 = s0 def= 0n are (short) dummy values.Note that the �rst condition can be evaluated in (�xed) polynomial-time (in jxj), whereas thecomplexity of evaluating the second condition is dominated by the running-time of � on inputc. Furthermore, if (x;w) 2 RS then (y; (w;m0; �0; 
0; s0)) 2 RU and the running-time ofPwi-ua on (y; (w;m0; �0; 
0; s0)) is a �xed polynomial in jxj. We stress that, in any case, thelength of the statement being proven is bounded by a �xed polynomial in jxj.We denote the above veri�er and prover strategies by V and P , respectively.Clearly, Construction 4.5 is constant-round, public-coin, and employs a probabilistic polynomial-time veri�er strategy. Furthermore, the designated prover satis�es the completeness property whilerunning in polynomial-time, given x and w as above. Demonstrating that Construction 4.5 is zero-knowledge is done by following the ideas of [6]. We start with a rough sketch of this proof, andthen turn to establish the computational-soundness property of Construction 4.5.Construction 4.5 is zero-knowledge: We present a non-black-box simulator that, given thecode of any feasible cheating veri�er (represented by a polynomial-size circuit family f eVngn2N), sim-ulates the interaction of P with that veri�er. Speci�cally, given eVn, the simulator emulates Part 1 ofthe protocol, except that it sets c Cs(jECC( eVn)j; TH�(ECC( eVn))) instead of c Cs(02n). Next, thesimulator emulates Part 2 of the protocol by using the witness (w0; jECC( eVn)j; ECC( eVn); auth�(ECC( eVn)); s),where w0 = 0n is a (short) dummy value, s was selected by the simulator when emulating Part 1,and eVn was given to it as (auxiliary) input.Needless to say, given eVn, the simulator computes �  ECC( eVn) as well as the tree-hash valueTH�(�) and the corresponding sequence of authenticators auth�(�) in polynomial-time. It followsthat, for every polynomial bounding the size of the veri�er's strategy (i.e., eVn), the simulatorrun in poly(n)-time. It is thus left to show that, for every polynomial bounding the size of theveri�er's strategy (i.e., eVn), the simulator's output (produced when given eVn as auxiliary input)is computationally indistinguishable from a real execution (as in Construction 4.5). The proofproceeds as follows:� As a mental experiment, we consider a hybrid distribution in which Part 1 is performed asin the simulation (i.e., by committing to the tree-hashing of the encoding of eVn) but Part 2is performed as in the real execution (i.e., by using a witness w to the common input x).� Combining the computationally-hiding property of the commitment scheme and the fact thatP (when given w) runs in poly(n)-time, it follows that the hybrid distribution is computa-tionally indistinguishable from the real execution of the protocol.� The witness indistinguishability property of Pwi-ua implies that the simulator's output (inwhich the witness eVn is used) is computationally indistinguishable from the hybrid distribution(in which the witness w is used). We stress that, when using the witness indistinguishabilityproperty of Pwi-ua, we refer to witnesses that are veri�able in �xed polynomial (in n) time(because the polynomial bounding the size of eVn has been �xed for the current discussion).Thus, the zero-knowledge feature follows. 23



Construction 4.5 is computational-sound: We show that any feasible cheating strategy forthe prover yields a feasible algorithm that form collisions with respect to the basic hashing familyfh� :f0; 1g2j�j!f0; 1gj�jg�2f0;1g� . The main idea is using the (weak) proof-of-knowledge propertyof Vwi-ua in order to implicitly reconstruct an error-correcting codeword that encodes (di�erent)valid witnesses that corresponding to di�erent executions of Part 1. We stress that since there is noa-priori polynomial bound on the length of such witnesses, we cannot a�ord to explicitly reconstructthem (as done in [6], where only a contradiction to super-polynomial hardness is derived). However,implicit reconstruction of valid codewords will su�ce, because di�erent witnesses will be encodedby codewords that di�er on a constant fraction of the bit-locations.Lemma 4.6 Construction 4.5 is computationally-sound (w.r.t S), provided that the family fh�gis indeed collision-resistant.Proof: Suppose towards the contradiction that there exists a feasible prover strategy that foolsV with non-negligible probability (to accept inputs not in S). Speci�cally, let f ePngn2N be such afamily, and p be a polynomial such that for in�nitely many x 62S it holds that px def= Pr[( ePn; V )(x) =1] > 1=p(jxj). Let us �x a generic n and x 2 f0; 1gn n S such that px > 1=p(n). For simplicity, weincorporate this x in ePn. Using f ePngn2N, we present a family of circuits fCngn2N that try to formcollisions. On input � 2 f0; 1gn, the circuit Cn proceeds as follows:1. Invoking ePn, on input �, the circuit Cn obtains c ePn(�). This is supposedly a commitmentproduced by the cheating prover (in the second step of Part 1 of the protocol).2. Uniformly selecting r 2 f0; 1gn and feeding it to ePn yields a random residual prover ePn(�; r)for Part 2 of the protocol. That is, gPwi-ua def= ePn(�; r) is a prover strategy for the (witness-indistinguishable) universal-argument system (Pwi-ua; Vwi-ua).We shall focus on the case that gPwi-ua convinces Vwi-ua to accept (x; �; c; r) with probabilityat least px=4 > 1=4p(n). In this case, the (weak) proof-of-knowledge property guaranteesthat we can implicitly reconstruct a witness (w;m; �; 
; s) that satis�es the second conditionin Part 2 (because x 62 S makes it impossible to satisfy the �rst condition (i.e., the condition(x;w) 2 RS)). Recall that the second condition implies that, for some circuit � such that�(c) = r, it holds that m = j�j, c = Cs(m; TH�(�)), and 
 = auth�(�). In the following twosteps, we shall �rst use the foregoing (implicit) reconstruction procedure to obtain m, andnext use it to obtain the ith bit of � as well as the corresponding (authentication) segment of
, for a uniformly selected i 2 [m].3. Invoking the knowledge-extractor guaranteed for the system (Pwi-ua; Vwi-ua), while providingit with oracle access to gPwi-ua, we reconstruct the values at bit-locations n+ 1; :::; 2n in thewitness (i.e., the integer m that indicates the length of a codeword).Recall that the values at bit-locations 2n+ 1; :::; 2n +m are an error-correcting encoding of�, and the subsequent m strings consist of authentication information for the correspondingbits.4. The circuit Cn uniformly selects i 2 [m]. Invoking the knowledge-extractor again with oracleaccess to gPwi-ua, it reconstructs the value of the ith bit of the codeword as well as the valuesin the bit-locations that correspond to its authenticator.5. We repeat Steps 2 and 4 with a new uniformly selected r0 2 f0; 1gn but with the same value ofi as selected in Step 4. That is, analogously to Step 2, we �rst obtain a corresponding prover24



strategy gP 0wi-ua def= ePn(�; r0) (for the (witness-indistinguishable) universal-argument system(Pwi-ua; Vwi-ua)). We need not repeat Step 3 because the statistically-binding property of Cguarantees the uniqueness of m (obtained in Step 3). Analogously to Step 4, we invoke theknowledge-extractor with oracle access to gP 0wi-ua, and obtain the value of the ith bit of thiscodeword as well as the values in the bit-locations that correspond to its authenticator.the values in the bit-locations that correspond to the authenticator of the ith bit in thecodeword.Recall that since x =2 S, the witness used by gP 0wi-ua must encode a program �0 such that�0(c) = r0. Since (with probability 1 � 2�n it holds that) r 6= r0 (and �(c) = r), it mustbe the case that �0 6= � (whereas jECC(�)j = m = jECC(�0)j). We hope that ECC(�) andECC(�0) di�er on the ith bit (which happens with constant probability), in which case weobtain authenticators to con
icting values (with respect to the same label of the root of thetree (where the uniqueness of this label is due to the statistically-binding property of C)).6. The circuit Cn examines the authenticators obtained in Steps 4 and 5. If they authenticatecon
icting values, then the circuit derives a collision under h� (as in the proof of Claim 3.5.2).The foregoing circuit family has polynomial-size (because each Cn is implementable by the sameprobabilistic polynomial-time oracle machine, which in turn is given access to the polynomial-sizeePn). We now turn to analyze the success probability of Cn.Claim 4.6.1 Given a uniformly distributed � 2 f0; 1gn, with probability at least 1=poly(n), thecircuit Cn outputs a collision with respect to h�.Proof: Recall that ePn makes V accept x with probability px > 1=p(n), where the probability istaken over V 's random choices in the two parts of Construction 4.5. Moreover, V 's choices in Part 1are (�; r), where � (resp., r) is uniformly selected in f0; 1gn.We call � good if the probability that ePn makes V accept x, conditioned on V selecting � inthe �rst step of Part 1, is at least px=2. Clearly, at least a px=2 fraction of the �'s are good, andwe focus on any such good �.Similarly, we say that r is �-good if the probability that ePn makes V accept x, conditioned onV selecting � and r in Part 1, is at least px=4. We denote by G = G� the set of �-good strings, andnote that jGj > (px=4) � 2n (since � is good). That is, for every r 2 G, the residual prover ePn(�; r)convinces Vwi-ua with probability at least px=4 > 1=4p(n), and therefore the knowledge-extractor(given oracle access to ePn(�; r)) implicitly extracts the corresponding witness with probability atleast qn def= 1=poly(n), where the polynomial depends on the polynomial p.Observe that, with probability at least (px=4)2, both r and r0 selected in Steps 2 and 5 re-spectively reside in G. Conditioned on this event, we (implicitly) extract both the correspondingwitnesses with probability at least q2n. We stress that the two witnesses must be of the same lengthby the virtue of their length being committed to in c (sent by the prover in the second step ofPart 1). Finally, with constant probability, these witnesses di�er in bit position i (selected inStep 4), in which case Cn succeeds in forming a collision under h�.We conclude that, for any good �, the circuit Cn succeeds in forming a collision under h� withprobability at least (px=4)2 � q2n �
(1) = 1=poly(n). Recalling that at least px=2 = 1=poly(n) of the�'s are good, the claim follows. 2Using Claim 4.6.1, we derive a contradiction to the hypothesis that fh�g is collision-resistant. Thelemma follows. 25



Achieving bounded concurrent zero-knowledge. We have shown that Construction 4.5 sat-is�es the �rst two extra properties asserted in Theorem 1.2. To establish the third extra property,we slightly modify the construction (analogously to the way this is done in [6]). Speci�cally, for asuitably chosen polynomial `, in Part 1 we select r uniformly in f0; 1g`(n)+n (rather than in f0; 1gn),and in Part 2 we relax the second condition (or case) such that now we require that there exists astring z 2 f0; 1g`(n) such that �(c; z) = r (rather than requiring that �(c) = r). The extra stringz allows to encode information from n2 concurrent executions of the protocol (see details in [6]),and so enables the simulator strategy to insert a \trapdoor" to the second step of Part 1 of thecurrent execution (and thus proceed in an \execution-by-execution" manner). When demonstrat-ing computational-soundness, we merely observe that, for a uniformly distributed r0 2 f0; 1g`(n)+n(chosen in Step 5), it is unlikely that �, which is (implicitly) recovered (in Step 4) obliviously ofr0, will satisfy �(c; z0) = r0 for some z0 2 f0; 1g`(n).
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Appendix A: auxiliary properties of popular PCP systemsWe claim that the pcp system of Babai et. al. [5] satis�es all the auxiliary properties listed inDe�nition 3.2. As stated in the main text, it is clear that this pcp system is non-adaptive and thuswe turn to establish the following remaining properties:15Relatively-e�cient oracle-construction: The oracle in this system consists of two parts: (1) a low-degree extension of a multi-variate function that encodes the original witness, and (2) variouspartial sums of the values of this polynomial. The low-degree polynomial can be constructedin time that is polynomial in the length of the explicit description of the aforementionedfunction, and the same holds with respect to each of the partial sums.E�cient reverse-sampling: The queries in this pcp system are either evaluations of the aforemen-tioned polynomial at various points or queries regarding some partial sums of such values.Speci�cally, the queries belong either to the low-degree test or to the sum-check, respectively.The queries of the low-degree test are points along a random line, while the queries of thesum-check are pre�xes of a random point. Thus, given the location of the i-th query, it iseasy to select uniformly a random tape that is consistent with this query.A proof-of-knowledge property: The standard analysis of this pcp system actually establishes that ifthe veri�er rejects with small probability then part of the oracle is close to a low-degree poly-nomial that extends a multi-variate function that encodes a valid witness. Thus, by standardself-correction, we may (probabilistically) recover each bit in this witness in polynomial-time.Repeating the process su�ciently many times (i.e., applying error-reduction to the foregoingrecovery procedure), we obtain a polynomial-time oracle machine E such that for every xand � that satisfy Pr[V �(x) = 1] > 1=2 it follows that there exists w = w1 � � �wt such that(x;w) 2 R and Pr[E�(x; i) = wi] > 2=3 holds for every i.(As stated in the main text, to obtain the desired error of �, we apply straightforward error-reduction, while noting that this process does not a�ect the oracle and so the resulting (error-reduced) pcp preserves all the auxiliary properties.) This completes the proof of Theorem 3.3.We comment that the foregoing considerations are not speci�c to the pcp system of [5], butrather hold also with respect to many other pcp systems.Appendix B: non-oblivious commitment schemesWe �rst recall the de�nition of non-oblivious commitment schemes, following [16, x4.9.2.1] and [17,Sec. C.3.3]. This de�nition augments the de�nition of a standard commitment scheme as pre-sented in [16, x4.4.1.1]. The latter de�nition (i.e., [16, Def. 4.4.1]) refers to a scheme that iscomputationally-hiding and statistically-binding. Loosely speaking, such a commitment scheme isan e�cient two-phase two-party protocol through which one party, called the sender, can commititself to a value so the following two con
icting requirements are satis�ed.Hiding: At the end of the �rst phase, the other party, called the receiver, does not gain any knowl-edge of the sender's value. This requirement has to be satis�ed even if the receiver tries tocheat. The computational version asserts that the receiver's view of interactions regardingany two values used by the sender are computational indistinguishable.15Needless to say, we assume some familiarity with the work of Babai et. al. [5]. In particular, the high-leveloverview provided in [18, x9.3.2.2] su�ces. 29



Binding: Given the transcript of the interaction in the �rst phase, there exists at most one valuethat the receiver may later (i.e., in the second phase) accept as a legal \opening" of thecommitment. This requirement has to be satis�ed even if the sender tries to cheat. Thestatistical version asserts that this property holds with overwhelmingly high probability, wherethe probability is taken solely over the receiver's randomness.In addition, one should require that the protocol is viable in the sense that if both parties follow itthen, at the end of the second phase, the receiver gets the value committed to by the sender. Note,however, that it may be the case that the sender cheats and the �rst phase is completed such thatit is infeasible to present any legal \opening" of the commitment. Furthermore, this event mayoccur without the receiver detecting it. The de�nition of non-oblivious commitments is intendedto address this concern. Moreover, it guarantees that the sender knows such an opening, unless itis detected cheating.It is indeed time to de�ne formally the notion of a proper opening of a commitment, which isalso known as proper decommitment. Typically, one considers a canonical decommitment, whichconsist of all randomness used by the sender in the commit phase. In this case, the value v andthe sender's randomness s may be considered a proper decommitment to the receiver's view of thecommitment phase if it is consistent with that view (i.e., using these values along with the receiver'srandomness yields the transcript of messages seen by the receiver). However, a more general notionof proper decommitment may be bene�cial. Speci�cally, we refer to an arbitrary algorithm D thatsatis�es the following two conditions:1. If the commitment phase is performed properly using the sender's value v and the outcome isa pair (s; c), where s is given to the sender and c is given to the receiver, then D((v; s); c) = 1.This means that (v; s) is accepted as a proper decommitment to c.2. If the receiver follows the commitment phase properly then, with overwhelmingly high prob-ability, the receiver output c is such that there exists at most one value of v such that the setfs : D((v; s); c) = 1g is non-empty.Needless to say, the aforementioned canonical decommitment gives rise to such an algorithm D. Inthe sequel, we shall assume (without loss of generality) that the commitment c is contained in theinformation s given to the sender.De�nition B.1 (non-oblivious commitment schemes): A commitment scheme is called non-obliviousif the commit phase consists of two sub-phases such that the �rst sub-phase is an ordinary com-mitment phase and the second sub-phase is a proof-of-knowledge of the input and decommitmentinformation that is consistent with the receiver's view of the �rst sub-phase. That is, the commit-ment scheme (S;R) decomposes into S = (S1; S2) and R = (R1; R2) such that (S2; R2) is a proof ofknowledge system (see [16, Sec. 4.7.1]) for the relation f(c; (v; s)) : D((v; s); c) = 1g and this proofsystem is invoked on common input c and prover's auxiliary input (v; s), where (s; c) is the resultof applying (S1; R1) to the value v.Constructing non-oblivious commitment schemes. Our construction follows the outlineprovided in [17, Sec. C.3.3].16 The basic idea is augmenting a standard commitment scheme withan adequate zero-knowledge proof-of-knowledge, but the problem is that such a proof-of-knowledge16We comment that the description in [17, Sec. C.3.3] only provides a relaxed version of the notion of non-obliviouscommitment scheme. While this relaxed version su�ces for our application (as well as for the applications in [17,Sec. C.3.3]), we consider it of interest to satisfy the non-relaxed version.30



that is also constant-round and public-coin is not known. As observed in [16, x4.9.2.1], it su�cesto use a strong-WI proof-of-knowledge, but again (see [17, Sec. C.3]) such a protocol is not knowneither. We stress that in both cases we have referred to protocols with negligible soundness error,and that corresponding protocols with constant soundness-error do exist. The solution suggestedin [17, Sec. C.3.3] is using multiple commitments (via the standard scheme) and applying a strong-WI proof-of-knowledge of constant soundness-error to each of the di�erent commitments. In thissetting (of statistically independent inputs), the strong-WI property is preserved under parallelexecutions (cf. [17, Lem. C.3.1]). The following construction adapts this suggestion modulo aminor twist, which allows satisfying De�nition B.1 (rather than a relaxed form of it).Construction B.2 (a non-oblivious commitment scheme): Let C be a standard statistically-bindingcommitment scheme, and let Cs(x) denote the receiver's view of the commitment phase when thesender inputs the value x and uses randomness s. The following description refers to committingto the value v under the security parameter n, where jvj � poly(n).First commit sub-phase: The parties invoke C, in parallel, for 2n� 1 times. In all invocations thesender enters the value v, and in the ith invocation the receiver obtains the value ci = Csi(v),where si denotes the sender's randomness.These 2n�1 invocations yield a standard commitment scheme with a decommitment algorithmD that accepts the value v if it is supported by at least n proper decommitments with respectto the basic commitment scheme; that is, D((v; s0); c) = 1 if c = (c1; :::; c2n�1) and s0 =(s01; :::; s02n�1) such that jfi : D((v; s0i); ci)gj � n.Second commit sub-phase: The parties perform, in parallel, 2n� 1 copies of the following protocol.In the ith copy, the sender proves in zero-knowledge that it knows the values v and si thatwere used in the corresponding copy of the �rst sub-phase. That is, the sender proves that itknows (v; si) such that ci = Csi(v). Each of these proofs of knowledge has constant soundnesserror. If the receiver detects cheating in any of these executions then it aborts indicating thatthe sender is cheating. Otherwise, the receiver accepts the commitment (c1; :::; c2n�1).A proper decommitment to the value v with respect to a transcript c = (c1; :::; c2n�1) of the �rstsub-phase consists of a sequence of 2n� 1 strings (s01; :::; s02n�1) such that jfi : D((v; s0i); ci)gj � n.Construction B.2 inherits the statistical-binding property of the standard commitment C (since aproper decommitment in Construction B.2 requires a strict majority of proper decommitments of Cto the same value). We �rst show that, although the zero-knowledge property may not be preservedin the parallel executions that take place in the second commit sub-phase, this sub-phase preservesthe computational-hiding property of the standard commitment C.Claim B.2.1 Construction B.2 is computationally-hiding.Proof: We view Construction B.2 as consisting of 2n � 1 parallel executions of a basic proto-col in which the sender �rst commits to v and then proves (in zero-knowledge) that it knows aproper decommitment. This basic protocol is computationally-hiding, because it consists of pro-ducing a computationally-hiding commitment and running a zero-knowledge proof regarding thiscommitment.17 Thus, it su�ces to prove that any computationally-hiding commitment scheme17Indeed, it is instructive to note that the zero-knowledge property implies the strong-WI property (see [16,x4.6.1.1]), whereas the latter property preserves the computational indistinguishability of C-commitments (to dif-ferent values). 31



preserves this property under parallel executions. Indeed, the proof proceeds by a hybrid argumentand is very similar to the proof of Lemma C.3.1 in [17]. 2In order to simplify the proof of the non-oblivious property of Construction B.2, we assume thatthe proof-of-knowledge employed is such that the veri�er tosses a single coin.18 We note that suchprotocols (of constant soundness error) exist; see, e.g., [16, Chap.4, Exer. 28.1].Claim B.2.2 Construction B.2, when implemented using a proof-of-knowledge in which the veri�ertosses a single coin, is non-oblivious.Proof: We �x an arbitrary execution of the �rst (commit) sub-phase, and consider a randomexecution of the second (commit) sub-phase, which amounts to 2n � 1 parallel executions of theproof-of-knowledge protocol. Fixing an arbitrary (deterministic) sender strategy, the underlyingprobability space consists of the 2n�1 random (bit) choices made in the corresponding executions.We denote by p the probability that the receiver is convinced by all these proofs, where here theprobability is taken uniformly over all the receiver's 2n� 1 choices. We call the ith copy good if foreach choice of the veri�er bit in this copy, the receiver is convinced (in this copy) with probabilityat least p=2n, where the probability is taken over the receiver's choices in all the other (2n� 1)� 1copies. The current claim follows by combining two facts:1. If p > 2�(n�1) then at least n of the indices are good.Otherwise, we reach a contraction by upper-bounding the number of points in the probabilityspace that cause the receiver to be convinced. Speci�cally, let B � [2n � 1] be the set ofnon-good indices, and let C � f0; 1g2n�1 denote the sub-space of all points (in the probabilityspace) that cause the receiver to be convinced. Then, for every i 2 B there exists a bit �i suchthat the number of convincing points in which the ith bit equals 1��i is at most (p=2n)�22n�2.Observing thatC = f�1 � � ��2n�12C : 9i2B s.t. �i = 1� �ig [ f�1 � � ��2n�12C : (8i2B) �i = �ig;it follows that jCj � jBj�(p=2n)�22n�2+22n�1�jBj. Thus, if jBj � n then p = jCj22n�1 � p2+2�n,which contradicts the hypothesis p > 2�(n�1).2. If i is good then the corresponding knowledge (i.e., the pair (v; si)) can be extracted inpoly(n)=p steps.By making O(n=p) trials, we can generate a convincing transcript for an execution of the ithcopy for each of the (two) possible choices of the veri�er's random bit. This implies extraction(by de�nition of a proof-of-knowledge).Thus, we can extract the relevant decommitment information (i.e., v as well as at least n out of the2n� 1 corresponding si's) in time that is inversely proportional to the probability that the receiveris convinced in the second commit sub-phase. The claim follows. 2Recalling that all ingredients used in Construction B.2 can be implemented based on any one-wayfunction, we get.Theorem B.3 The existence of one-way functions implies the existence of non-oblivious commit-ment schemes.18We believe that the argument can be extended to the general case (or at least to all standard proof-of-knowledgeprotocols). See related discussion in [9, Apdx. C.2]. 32



We also mention that the properties of non-oblivious commitment schemes are preserved when manycopies of the scheme are executed in parallel (or even concurrently under arbitrary scheduling). Thepreservation of the standard properties of a commitment scheme follows by a hybrid argument (asemployed in the proof of Claim B.2.1). The preservation of the non-oblivious (or rather the proof-of-knowledge) property follows by focusing on each individual copy and considering an auxiliarysender that emulates all the other copies. (We stress that we do not claim here a reduction inthe soundness error of the proof-of-knowledge property, but rather a preservation of the proof-of-knowledge property at the same level of soundness error.)
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