Three XOR-Lemmas — An Exposition

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, Israel

First version July 1991
revised November 27, 1995

Abstract

We provide an exposition of three Lemmas which relate general properties of distributions
with the exclusive-or of certain bit locations.

The first XOR-Lemma, commonly attributed to U.V. Vazirani, relates the statistical
distance of a distribution from uniform to the maximum bias of the xor of certain bit posi-
tions. The second XOR-Lemma, due to U.V. Vazirani and V.V. Vazirani, is a computational
analogue of the first. It relates the pseudorandomness of a distribution with the difficulty
of predicting the xor of bits in particular or random positions. The third Lemma, due to
Goldreich and Levin, relates the difficulty of retrieving a string and the unpredictability of
the xor of random bit positions. The most notable XOR Lemma — that is the so-called Yao
XOR Lemma is not discussed here.

The proofs presented here differ from the proofs presented in the original works. Fur-
thermore, these proofs are believed to be simpler, of wider applicability and yield somewhat
better results. Credits for these improved proofs and their presentation are only partially
due to author, and are mainly due to several other researchers.

Preface

The existence of ECCC motivated me to revise this five-year old survey and make it widely
accesssible. The first two chapters are taken from my old survey (TR-681 of the C.S. Dept. of
the Technion, Israel, 1991). For the third chapter, I've used a revision of parts from my
book on “Foundations of Cryptography” (fragements of this book are available from ECCC).
As stated in the abstract, Yao’s XOR-Lemma is not one of the XOR Lemmas surveyed
here. T would like to call the reader’s attention to a survey of Yao’s XOR-Lemma which has
appeared as ECCC TR95-050 (co-authored by Noam Nisan, Avi Wigderson and myself).

Contents

1.1

Introduction

The Information Theoretic XOR-Lemma

1.2 Preliminaries: the XOR-Lemma and vector spaces
1.3 Proof of the XOR-Lemma

1.4

2.1

3.1
3.2
3.3
3.4

Discussion

The Computational XOR-Lemma
Introduction

2.1.1 The Computational XOR-Proposition
2.1.2 The Computational XOR-Lemma
2.2 Proof of the Computational XOR-Proposition
2.3 Application to pseudorandom generators for bounded space

2.3.1 A construction for a specific expansion constant

2.3.2 Construction for any expansion constant

Introduction
Definition

A Hard-Core Predicate for all One-Way Functions

The main result and its proof L.

Hard-Core Functions

U = W W

o -1 D

10
12

14
14
15
16
19

Chapter 1

The Information Theoretic

XOR-Lemma

The Information Theoretic XOR-Lemma, commonly attributed to U.V. Vazirani relates two
measures of the “randomness” of distributions over n-bit long strings.

o The statistical difference from uniform; namely, the statistical difference (variation
difference) between the “target” distribution and the uniform distribution.

¢ The maximum bias of the xor of certain bit positions; namely, the bias of a 0-1 random
variable obtained by taking the exclusive-or of certain bits in the “target” distribution.

It is well known that the statistical difference from uniform is bounded above by 2" times
the maximum bias of the xor’s. Several researchers have noticed that the factor in the
bound can be improved to v/2". We provide a four line proof of this fact. We also explain
the reason for the popularity of the worse bound.

The proof presented here has appeared as an appendix in [2].

1.1 Introduction

Let 7 be a an arbitrary probability distribution over {0,1}"” and let p denote the uniform

distribution over {0,1}" (i.e., u(x) = 27" for every x € {0,1}"). Let 2 = 2;---2, and

N ¥ 97 The XOR-Lemma relates two “measures of closeness” of 7 and L

o The statistical difference (“variation difference”) between 7 and p; namely,

stat(m) £ Y |w (@) — p(z)|

e The “maximum bias” of the exclusive-or of certain bit positions in strings chosen
according to the distribution 7; namely,

maxbias(7) = Igl;%(h({ﬂv D Bieswi = 0}) = 7({z : Biesw; = 1})]

The XOR-Lemma, commonly attributed to U.V. Vazirani [16]', states that stat(r) < N -
maxbias(m). The proof is based on viewing distributions as elements in an N-dimensional

!The special case where the maxbias is zero appears in Chor et. al. [5]

vector space and observing that the two measures considered by the lemma are merely two
norms taken with respect to two different orthogonal bases. Hence, the XOR-Lemma follows
from a (more general and quite straightforward) technical lemma which relates norms taken
with respect to different orthonormal bases. It turns out that stat(r) < /N - maxbias(7).
It seems that the previously inferior bound was due to a less careful way of using the same
underlying ideas.

As motivation to the XOR-Lemma, we point out that it has been used in numerous
works (e.g., Vazirani [16], Naor and Naor [12]). In a typical application, first a upper
bound is proved on the maxbias of the constructed distribution and then the XOR-Lemma
is applied to derive a bound on the statistical difference from the uniform distribution.

1.2 Preliminaries: the XOR-Lemma and vector spaces

Probability distributions over {0, 1}" are functions from {0, 1}" to the reals. Such functions
form a N-dimensional vector space. The standard basis, denoted K, for this space is
the orthonormal basis defined by the ”Kroniker functions” (i.e., the Boolean functions
{ko : @ € {0,1}"} where k,(2) = 1 if 2 = «). The statistical difference between two
distributions equals the norm L-1 of their difference taken in the above K basis. On the
other hand, the maxbias of a distribution equals the maximum ”Fourier coefficient” of the
distribution, which in turn corresponds to the max-norm (norm L-o00) of the distribution
taken in a different basis. The basis is defined by the functions {bs : S C {1,2,...,n}} where
bs(z) = (—1)¥es7i, Note that bg(x) = 1 if the exclusive-or of the bits {z; : ¢ € S} is 0

and bg(z) = —1 otherwise. The new basis is orthogonal but not orthonormal. We hence
consider the normalized basis, denoted F, consisting of the functions fg = \/Lﬁbg.

Notation: Let B be an orthonormal basis and r an integer. We denote by NZ(v) the norm
L-r of v with respect to the basis B. Namely, NZ(v) = (3,.cp(e, v)")1"), where (e, v) is
the absolute value of the inner product of the vectors e and v. We denote by NZ (v) the
limit of NZ(v) when r — oo (i.e., NZ (v) is max.cp(e, v)).

Clearly, stat(r) = N¥ (7 —) whereas maxbias(7) = v/N - NZ (7 — u). Following is a
proof of the second equality. Let 6(z) = m(2) — p(2). Clearly, maxbias(y) = 0 and hence
maxbias(7m) = maxbias(d). Also _, 6(z) = 0. We get

maxbias(§) = Igl%dé({x the(z)=1}) — 6({a : bs(z)=—1})]
= rggglzx:bs(w)-é(w)l
VF -max| Y fs(a) - 6(2)

VN -NE(8)

1.3 Proof of the XOR-Lemma

The XOR-Lemma follows from the following technical lemma

Technical Lemma: For every two orthogonal bases A and B and every vector v

N (v) < N -NZ(v)

This technical lemma has a three line proof

EQ (1): For every orthogonal basis A,
Nf(v) < VF - NA(0)
EQ (2): For every pair of orthonormal bases A and B,
N#(0) = N2 (o)
EQ (3): For every orthogonal basis B,

NE(v) < VNV - NE (v)

Hence we get,
XOR-Lemma (Revised): stat(r) < +/N - maxbias(7).

Proof: By the above
stat(r) = N& (7 —) < N - NZ (7 — i) = V/N - maxbias(r)

1.4 Discussion

The inferior bound, stat(w) < N-maxbias(7), has been derived by using one of the following
two bounds instead of our Technical Lemma

o N{(v) < VNNP(v) < V/N . NNE(v). The first inequality is proved similarly to the
proof of our Technical Lemma (using N¥(v) < N¥(v) instead of EQ (3)). The second
inequality is trivial. Fach of the two inequalities is tight, but their conjunction is
wasteful.

e N{(v) < N-N4(v) < N-vNNZ(v). The second inequality is proved similarly to
the proof of our Technical Lemma (using N4 (v) < N4'(v) instead of EQ (1)). The
first inequality is trivial. Again, each of the inequalities is tight, but their conjunction
is wasteful.

Chapter 2

The Computational XOR-Lemma

We provide an exposition of the computational XOR-Lemma. By computational XOR-
Lemma we refer to the assertion that a distribution on “short” strings is pseudorandom
if and only if the xor of any of its bits is unpredictable. This Lemma was first proved by
U.V. Vazirani and V.V. Vazirani. The proof we present here is taken from the paper of
Goldreich and Levin. We demonstrate the applicability of the computational XOR-Lemma
by using it to construct pseudorandom generators with linear expansion factor which are
secure against small (yet linear) bounded space.

2.1 Introduction

This chapter is concerned the relation between two types of computationally restricted
tests of randomness. To be more precise, we are concerned with the pseudorandomness
of a random variable Y given some partial information represented by an related random
variable X. For sake of simplicity we write X = f(R) and Y = ¢g(R) where f and ¢ are
fixed functions and R is a random variable uniformly distributed on strings of some length.

Tests of the first type are algorithms which, on input a pair (,y), output a single bit.
We consider the probability that the test outputs 1 given that # = f(r) and y = ¢(r) where
r is selected uniformly and compare it to the probability that the test outputs 1 given that
x = f(r) as before and y is selected (independently and) uniformly among the strings of
length |g(7)|. We call the absolute value of the difference between these two probabilities,
the distinguishing gap of the test.

Tests of the second type are algorithms which, on input a string f(r), output a single bit.
The output is supposed to be the inner-product (mod 2) of the string ¢g(r) with some fixed
string 3 (which is not all-zero). We consider the probability that the algorithm outputs the
correct value given that r is selected uniformly. We call the absolute value of the difference
between the success probability and the failure probability, the advantage of the algorithm.
Note that the inner-product (mod 2) of g(r) and /5 equals the exclusive-or of the bits in g(r)
which are located in positions corresponding to the 1 bits of 3. Hence, tests of the second
type try to predict the xor of bits in g(r) which are in specified bit locations.

Vazirani and Vazirani [18] proved that if the tests are restricted to run in probabilistic
polynomial-time and the length of ¢(r) is logarithmic in the length of f(r) then the two
types of tests are equivalent in the following sense: (for every polynomial-time computable
functions f and g¢) there exists a test of the first type with a non-negligible distinguishing

gap if and only if there exists a test of the second type with a non-negligible advantage®.
A different proof has appeared in Goldreich and Levin [8]. The interesting direction is, of
course, the assertion that if there exists a test of the first type with a non-negligible distin-
guishing gap then there exists a test of the second type with a non-negligible advantage?.
This assertion is hereafter referred to as the computational zor-lemma.

The purpose of this chapter is to present a clear proof of the computational xor-lemma
and to point out its applicability to other resource bounded machines. Qur presentation
follows the proof presented in [8], where all obvious details are omitted. Hence, the only
advantage of our presentation is in its redundancy.

2.1.1 The Computational XOR-Proposition

To prove the computational xor-lemma, we present a particular algorithm, denoted G,
which (given f(r)) tries to predict a specified xor of the bits of ¢g(r). The predictor G uses
as subroutine a test, 7', which (on input f(r) and y) distinguishes a random y from y = ¢(r).
In particular, the predictor, on input z and a subset 5, selects y at random, runs the test
on inputs z and y, and output P;esy; if T(x,y) = 1 and the complement bit otherwise.
The following proposition, lower bounds the advantage of the predictor ' in terms of the
distinguishing gap of the test 7.

Computational XOR-Proposition: Let f and g be arbitrary functions each mapping
strings of the same length to strings of the same length. Let T be an algorithm (of the first

type). Denote
def

p = Pr{T(f(r), g(r)) = 1]

and
def

q = Pr[T(f(r),y)=1]
where the probability is taken over all possible choices of 7 € {0,1}™ and y € {0,1}90)]
with uniform probability distribution. Let G be an algorithm that on input § and x, selects
y uniformly in {0, 1}°l and outputs T(z,y)D1DB(y, 3)s, where (y,[3)s is the inner product
modulo 2 of y and 3. Then,

PG S(1) = (9(r). 8] = 3+ 2L

where the probability is taken over all possible choices of r € {0,1}™ and 3 € {0, 1} —
0l with uniform probability distribution.

A full proof of the proposition is presented in Section 2.

Remarks

o Algorithm G has almost the same complexities as T, with the exception that G must
toss few more coins (to select 3). Hence, G is randomized even in case T'is determin-
istic.

!A function g : N — R is non-negligible if there exists a polynomial p such that for all sufficiently large
n we have u(n) > 1/p(n).

2The opposite direction follows by noting that a test of a second type can be easily converted into a
test of the first type: just run the predicting algorithm and compare its outcome with the actual xor of the
corresponding bits.

o Clearly, there exists a non-zero string § for which Pr[G(5, f(r))=(g(r),5):] = : +
3tar—, Where the probability is taken over all possible choices of r € {0,1}™ with
uniform probability distribution. A string with approximately such a performance
can be found by sampling a string § and evaluating the performance of algorithm
G with § as its first input. This requires ability to compute the functions f and g¢
on many randomly selected instances (and collect the statistics). One should verify
that this added complexity can be afforded. On the other hand, one should note that
finding an appropriate 3 (i.e. on which G has almost the average advantage) may not
be required (see remark below).

2.1.2 The Computational XOR-Lemma
As corollary to the Computational XOR-Proposition, we get

Computational XOR-Lemma:let C be a class of randomized (or non-uniform) algo-
rithms, such that C is closed under sequential application of algorithms and contains an
algorithm for computing |g(r)| from f(r). Suppose that every algorithm in the class C,
given f(r), can predict the zor of a (given) random subset of the bits of g(r) with (average)
success probability bounded above by % + €. Then, for every algorithm, T, in the class C

IPL[T(f(r),g(r)) = 1] = Pr[T(f(r),y) = 1]| < 290 ¢

where 1 is selected uniformly in {0,1}™, the string y is selected uniformly and independently
in {0, 111901,

Remarks

¢ As motivation to the Computational XOR-Lemma, we point out that it has been used
in numerous works (e.g., Vazirani and Vazirani [18], Goldreich and Levin [8]). Another
application of the Computational XOR-Lemma is presented in Section 3. In a typical
application, the pseudorandomness of a short string is proven by showing that every
xor of its bits is unpredictable (and using the Computational XOR-Lemma to argue
that this suffices). As it follows that the xor of a (given) random non-empty subset
of the bits is unpredictable, the Computational XOR-Lemma can be used directly
without finding an appropriate § (as suggested by the previous remark).

e In case there are no computational restrictions on the tests, a stronger statement
known as the XOR-Lemma can be proved: the statistical difference from uniform
does not exceed V2190l times the maximum bias of a non-empty subset (see previous
chapter).

2.2 Proof of the Computational XOR-Proposition

All that is required is to evaluate the success probability of algorithm G. In the following
analysis we denote Pr.[P(x,y)] the probability that P(z,y) where z is taken according to
a distribution to be understood from the context, and ¥ is fixed. In case the predicate P
depends on the test T', the probability will be taken also over the internal coin tosses of T'.
Hence, the coin tosses of T are implicit in the notation. The additional coin tosses of G,
namely the string y, is explicit in the notation.

Hence, we rewrite

def

p = Pr[T(f(r),g(r))=1]

¢ = Pr,[T(f(r),y) = 1]

Recall that 7 is taken uniformly from {0,1}™, whereas y is taken uniformly from {0, 1}19)1,

In the following analysis 3 is selected uniformly from B ! {0, 11901 —0ls™I Our aim is to

evaluate Pr, 5, [G(S, f(r)) = (g(r),8)2]. We start by fixing an r € {0,1}™ and evaluating
Prs ,[G(B, f(r)) = (g(r),3)z). We define =5 (resp., #5) so that y=gz hold iff (y,5), =
(2,8)2 (vesp., y#57 iff (y,5)2 # (. 5)2). Welet n < [g(r).

By the definition of G (i.e., G(8, f(r) = T(z,y)D1B(y, 3)s, where y € {0, 1}1#! is uniformly

selected by () and elementary manipulations, we get

sp = Prgy[G(0, f(r) = (9(r), 8):]
> 7 PG (7)) = (alr).)
_ ﬁ ﬁ;g (% P T, y) = y=s0(r)] 4 5 - PrT((r),y) = OIyiag(r)])
_ % ﬁ@; (Pr,[T(f(r),y) = y=5g(r)] — Pr,[T(f(r),y) = 1yZs9(r)])
_ %Jr ﬁ . 2:_1 : (ﬁ;yg}m Pr[T(f(r),y) = 1] - %y;%;m Pr[T(f(r).y) = 1])

_ %+2n.1|3|'(2 > PT(fr)y=1-3 X PiT(f(r).y)

Y BEBs.t.y=gy(r) Y BEBs.t.yZgy(r)

Recall B = {0,1}* — 0". If y # ¢(r) then the number of 8 € B for which y#£sg(r)is 2"~}
(and the number of § € B for which y=;¢(r) is 2*~! — 1). If, on the other hand, y = g(r)
then all 3 € B satisfy y=gg(r). Hence, we get

. % _ 2n|13| .y;g(:r) (27" = 1) - PT(f(r),y) = 1] = 2"~ Pr{T(f(r),y) = 1))
n 2n|13| | Bl - Pr[T(f(r),g(r)) = 1]
- 575 2 PIEU =11+ g 1B P, 9(r) = 1)
_ ﬁZ} T(f(r)y) =1] + ﬁ (Bl +1) - PrT(f(r), g(r) = 1]
_ ﬁ Py [T, y) = 1] + ﬁ PrT(f(r).g(r) = 1]
_ ﬁ (Pr[T(f(r),g(r)) = 1] = Pr,[T(f(r),y) = 1])

Hence, for every r

Pry, [G(B, (1) = (9(r).)] = -+ B

and so we have for uniformly chosen r

Pros, (GG, f(r) = (9(r). B)=] = 5+ | B]

and the Proposition follows.

2.3 Application to pseudorandom generators for bounded
space

We apply the Computational XOR-Lemma to construct a pseudorandom generator with
linear stretching which withstands tests with linearly bounded space. Namely, the gen-
erator on input a random string of length n outputs a pseudorandom string of length en
withstanding tests of space en (e > 0 is a constant depending on the constant ¢ > 1). An
alternative construction is immediate from the techniques presented by Nisan in [13] (hint:
use a constant number of hash functions). A third alternative construction was suggested
by Noam Nisan (private communication) based on the ideas in [3].

The tests (or predictors) we consider are non-uniform bounded-space machines with
one-way access to the input (i.e., the string they consider). Hence, these machines can
be represented by finite automata. By an s(n)-space bounded machine we mean a finite
automata with 2°") states given an input of length n. For sake of simplicity, we some-
times discuss randomized automata. Clearly, randomness can be eliminated by introducing
“more” non-uniformity.

Following is an overview of our construction. We begin by presenting a generator which
extends seeds of length n into strings of length en withstanding tests of space en, for a
specific value of ¢ > 1 (and e > 0). This generator is based on three observations:

e The unpredictability of the inner-product mod 2 of two vectors with respect to tests
with space smaller than the length of these vectors.

e The unpredictability, with respect to such machines, of the exclusive-or of bits re-
sulting from the inner-product mod 2 of one vector and non-cyclic shifts of a second
vector. A machine predicting this exclusive-or can be transformed into a machine
predicting the inner product [8].

o Using the computational XOR-Lemma to argue that the bits resulting from the various
inner-products are indistinguishable from random by space bounded machines.

Next, we use this generator to construct, for every k > 1, a generator extending seeds of
length n into strings of length ¢*n withstanding tests of space (e/3)*n.

2.3.1 A construction for a specific expansion constant

The constants ¢y, €1, ¢g, €9 in the following construction and analysis will be determined in
course of the analysis. In particular, ¢y = i, € = %, ci =1+ 2, and ¢ = ¢, will do.

10

Construction 1: Let p;(ri7y---72,) = 75741710y and b(z,s) = >/ ;8 mod 2.
Consider the function g:{0,1}?"—{0,1}°" defined by g(x,r) = b(a,pi(r)) bz, peyu(r)).

We consider the generator

def) def
1

gi(z,r) = (z,r,g(z,7))

This generator expands seeds of length 3n into strings of length 3n 4+ ¢on = ¢; - 3n.
Clearly, the function g can be computed by an n-space machine. The robustness of the
generator against eyn-space machines follows from the following three claims.

Claim 1: Let A be an automaton with ¢ states, and «,y be uniformly and independently
selected in {0,1}"”. Then

1 2q
Prx,y(A(xv y) = b($, y)) < 5 + 2_n
proof (adapted from [3]): By Lindsey Lemma (see [6] , p. 88),

L e

reEX yeY
Consider a partition of the set of all possible 2’s according to the state in which the au-
tomaton is after reading « (i.e. the first half of its input), resulting in sets X;, X», ..., X,.
Note that for every z,,z, € X; and every y, we have A(z,,y) = A(z,,y). For each X, let
Y,” denote the sets of y’s for which A(z,y) = o given that 2 € X,. It follows that

2n

1 q
[Proy (A, y) = b y) = 5l <2 D, Proy(w € Xony €¥7) -y fremmomy

i=1 s€{0,1}
The claim follows. O

Claim 2: Let S C {1,2,...,m}, where m < n. Suppose that automaton Ag has ¢ states

and let
def

p = Pro (As(z, 1) = Biesb(a, pi(r)))
where the probability is taken over all random choices of € {0,1}" and r € {0,1}**. Then,

there exists an automaton A with ¢ -2*™ states satisfying

Pr, ,(A(z,y) = b(z,y)) > p

where the probability is taken over all random choices of x,y € {0, 1}".

proof (adapted from [8]): Following is a construction of a randomized automaton A (ran-
domization can be eliminated via non-uniformity). On input z,y, the predictor A produces a
random string r € {0, 1}?1¥! satisfying y; = > jes Tivj—1 mod 2, for every ¢ < n. This is done

by setting the bits of r in increasing order so that rj is randomly selected if £ < ¢ o max(5),

Ty is set to yp_1q1 — Z]’ES—{t} Th—ty; mod 2 for k =1,t+1,...,t+n—1, and 7 is randomly
selected for k > t+n. Hence, @;c5p;(r) = y, where @, 5v; denotes the bit-by-bit exclusive
or of the vectors v; (7 € §). The predictor A runs Ag(z,r) and obtains a prediction for
Bjesb(z,pj(r)) = bz, Bjesp;(r)) = b(z,y). The predictor uses at most 2m more space than
Gs, and the claim follows. O

11

Claim 3: For every automaton, T', with ¢ states

2q . 220071

|Pr(T(z,7,g(x,7)) = 1) = Pr(T(x,7,y) = 1) < 210 -

where z7r is selected uniformly in {0, 1}3", the string y is selected uniformly in {0, 1}l9(=")l,
proof: Immediate by combining Claims 1 and 2, and the Computational XOR-Lemma. O

Setting ¢y = i and €; = %, we conclude that any €;n-space bounded machine can distinguish
gi(z,r) (zr € {0,1}") from a uniformly chosen string of length (34 ¢o)n with gap bounded
by 274", Hence, for constants ¢; = 1+ 11—2 and e; = 11—8, we have a generator extending strings
of length n to strings of length ¢;n so that no €;n-space bounded machine can distinguish
gi(x,r) (zr € {0,1}") from a uniformly chosen string of length ¢;n with gap > 279", We

say that ¢g; has expansion factor ¢, and security constant e;.

2.3.2 Construction for any expansion constant

To achieve greater expansion we apply the generator again on small blocks of its output.
This idea is taken from [7], but its usage in our context is restricted since in lower level
the generator will be applied to shorter strings (and not to strings of the same length as
done in [7]). The fact that in lower levels the generator is applied to shorter strings plays
a key role in the proof that the resulting generator is indeed pseudorandom with respect to
appropriate space-bounded machines.

In the sequel we show how to convert generators with expansion factor ¢ into generators
with expansion factor ¢?. Larger expansion factors are obtained by repeated application of
the construction.

Construction 2: Let g be a generator with expansion factor ¢ and security constant e.
We construct a generator g, with expansion factor ¢? and security constant 63—2 as follows:
g2(s) = g(r1)---g(ry), where 7y -- -1y = g(s), [r;| = £ - |s] (for all 1<j<t), and t = 2¢/e.
To prove that the generator g, has security % we consider a hybrid distribution H which
results by selecting at random a string of length ¢n, partitioning it into ¢ blocks (each of
length £n), and applying the generator g to each of them. First we show that H is hard to
distinguish from random strings of length ¢*n. Next, we show that H is hard to distinguish

from the strings that ¢, generates on input a random seed of length n.

Claim 4 (indistinguishability of H and random): Suppose that automaton 7" has ¢ states
and let py < Pry, o (T(g(s1)---g(s)) = 1) and pg = P,y (T(ry---7;) = 1), where the
probability is taken over all random choices of s, ..., s, € {0,1}3" and ry,...,r; € {0,1} 5.
Then, there exists an automaton T” with ¢ states satisfying

[Pro(T'(9(s)) = 1) = Pr(T"(r) = D] = ——
where the probability is taken over all random choices of s € {0,1}3" and r € {0,1}%".
Hence, if ¢ < %n then [pr — pg| <t-277" < $2757,
proof: Define, for every 0<¢<t, p; défPrh...mlJrl...st(T(m o1 g(8ip1) - -g(s,)) = 1), where
the probability is taken over all random choices of ry,...,r; € {0,1}%" and s;41,...,8, €

{0,1}3". Namely, p; is the probability that 7" outputs 1 on input taken from a hybrid
distribution consisting of ¢« “random” blocks and ¢ — ¢ “pseudorandom” blocks. Clearly,

12

Po = pg whereas p, = pg, and there exists 0<i¢<t — 1 such that |p; — p;11| > M. The

test T’ is obtained from T as follows. Fix a sequence ry,....,7; € {0,1}%" and 8;49,...,8, €
{0,1}%" maximizing the distinguishing gap between the i"" and ¢+ 1°° hybrids. The starting
state of test 1" is the state to which 7" arrives on input ry,...,7;. The accepting states (i.e.

states with output 1) of test 7" are the state from which 7" reaches its accepting state when
reading the string s; 45, ..., s;. Clearly, T’ has at most ¢ states and distinguishes r € {0,1}%"
from g(s) (for s € {0,1}5") with gap > M. Using the security hypothesis for g, the
rest of the claim follows. O

Claim 5 (indistinguishability of H and the output of g5): Suppose that automaton 7" has ¢
states and let pg < Pry(T(gs(s)) = 1) and py = Proyr (T(g(r1) - - - g(r)) = 1), where the
probability is taken over all random choices of s € {0,1}" and r,...,r; € {0,1}%". Then,
there exists an automaton 7"’ with ¢ - 25" states satisfying |Pr,(7"(g(s)) = 1) — Pr,.(T"(r) =
1)] > pe — pu, where the probability is taken over all random choices of s € {0,1}" and
r € {0,1}". Hence, if ¢ < In then [pg — py| < 27" < %2_§”.

proof: The test 7" is obtained from 7" as follows. On input o € {0,1}** (either random or
pseudorandom), the test 7" breaks a into ¢ blocks, ay, ..., ay, each of length £n. Then T’
computes 5 = 3 --- 3, so that §; = g(«;), and applies T" to the string 5. (17" accepts a iff T’
accepts 3.) If a is taken from the uniform distribution, then the resulting 3 is distributed
according to H. On the other hand, if a is taken as the output of ¢ on random seed s,
then 5 = ¢2(s). The test 7" distinguishes the above cases with gap > |py — pg|, and can be
implemented using ¢ - 25" states. Using the security hypothesis for g, the rest of the claim
follows. O

Note that the test constructed in the proof of Claim 5, evaluates g on strings of length £n.

Combining Claims 4 and 5, we conclude that the generator g, has security constant %

13

Chapter 3

A Hard-Core Predicate for all
One-Way Functions

A theorem of Goldreich and Levin relates two computational tasks. The first task is invert-
ing a function f; namely given y find an « so that f(z) = y. The second task is predicting,
with non-negligible advatage, the exclusive-or of a subset of the bits of x when only given
f(2). More precisely, it has been proved that if f cannot be efficiently inverted then given
f(2) and r it is infeasible to predict the inner-product mod 2 of & and r better than obvious.

We present an alternative proof to the original proof as appeared in [8]. The new proof,
due to Charlie Rackoff, has two main advantages over the original one: it is simpler to
explain and it provides better security (i.e., a more efficient reduction of inverting f to
predicting the inner-product). The new proof was inspired by the proof in [1].

3.1 Introduction
The following text has been reproduced from [8].

One-way functions are fundamental to many aspects of theory of computation. Loosely
speaking, one-way are those functions which are easy to evaluate but hard to invert.
However, many applications such as pseudorandom generators (see [Blum Micali 82,
Yao 82]) and secure probabilistic encryption (see [Goldwasser Micali 82]) require that
the function has a “hard-core” predicate b. This b(x) should be easy to evaluate on input
z, but hard to guess (with a noticeable correlation) when given only the value of f(z).
Intuitively, the hard-core predicate “concentrates” the one-wayness of the function in a
strong sense.

Clearly, only one-way functions may have hard-core predicates. A natural question of
practical and theoretical importance is whether every one-way function has one. So far
only partial answers have been given:

1. In [Blum Micali 82] it is proved that if the discrete exponentiation function is one-
way then it has a hard-core predicate.! Analogous results for the RSA and Rabin
functions (i.e. raising to a power and squaring modulo an integer, respectively)

have been shown in [Alexi Chor Goldreich Schnorr 84].

2. In [Yao 82] it is proved that any one-way function f can be used to construct
another one-way function f* which has a hard-core predicate. The function f*
partitions its input into many shorter inputs and applies f to each of them in

!This result has been generalized to all Abelian groups in [Kaliski 88].

14

parallel (i.e. f*(x1...252) = f(x1)... f(zx2), ||@i]] = k). (For a more refined
analysis see [Levin 87].)

The drawback of the first set of results is that they are based on a particular intractabil-
ity assumption (e.g. the hardness of the discrete logarithm problem). The second result
constructs a predicate with security not bounded by a constant power of the security
of f.

In this paper we resolve the above question by providing every one-way function with
a hard-core predicate. More specifically, for any time limit s (e.g. s(n) = n, or s(n) =
Qﬁ), the following tasks are equivalent for probabilistic algorithms running in time

([)

1. Given f(z) find # for at least a fraction S(Hl‘H)_O(l) of the z’s.

2. Given f(z) and p, ||p||=|#||, guess the Boolean inner-product B(z,p) of z and p
with a correlation (i.e. the difference between the success and failure probabilities)

of s([Jax||)).

For any polynomial time computable f, b, there is always the smallest (within a polyno-
mial) such s called the security of f and b, respectively. The security is a constructible
function, can be computed by trying all small guessing algorithms, and is assumed to
grow very fast (at least n'/°(D).

3.2 Definition

A polynomial-time function f is called one-way if any eflicient algorithm can invert it only
with negligible success probability. A polynomial-time predicate b is called a hard-core of a
function f if all efficient algorithm, given f(z), can guess b(2) only with success probability
which is negligibly better than half. To simplify our exposition, we associate efficiency with
polynomial-time and negligible functions as such decreasing smaller than 1/poly(n). By U,
we denote a random variable uniformly distributed over {0, 1}". For simplicity we consider
only length preserving functions.

Definition 1 (one-way fiunction): A one-way function, f, is a polynomial-time computable

function such that for every probabilistic polynomial-time algorithm A’, every polynomial
p(+), and all sufficiently large n’s

Pr(f(A(Ya))=Y,) <

where Y, = f(U,).

Definition 2 (hard-core predicate): A polynomial-time computable predicate b: {0,1}* —
{0, 1} is called a hard-core of a function f if for every probabilistic polynomial-time algorithm
A', every polynomial p(-), and all sufficiently large n’s

PR =00, < 5+~

15

3.3 The main result and its proof

Theorem 3 Let f be an arbitrary (strong) one-way function, and let g be defined by

def

g(z,r) = (f(x),r), where |x| = |r|. Let b(x,r) denote the inner-product mod 2 of the
binary vectors x and r. Then the predicate b is a hard-core of the function g.

In other words, the theorem states that if f is strongly one-way then it is infeasible to
guess the exclusive-or of a random subset of the bits of 2 when given f(2) and the subset
itself. We point out that g maintains properties of f such as being length-preserving and
being one-to-one. Furthermore, an analogous statement holds for collections of one-way
functions with/without trapdoor etc.

Proof: The proof uses a “reducibility argument”. This time inverting the function f
is reduced to predicting b(x,r) from (f(z),r). Hence, we assume (for contradiction) the
existence of an efficient algorithm predicting the inner-product with advantage which is not
negligible, and derive an algorithm that inverts f with related (i.e. not negligible) success
probability. This contradicts the hypothesis that f is a one-way function.

Let G be a (probabilistic polynomial-time) algorithm that on input f(z) and r tries to
predict the inner-product (mod 2) of # and r. Denote by £5(n) the (overall) advantage of
algorithm G in predicting b(z,r) from f(x) and r, where z and r are uniformly chosen in
{0,1}". Namely,

coln) S Pr(GU(X,), R) = (X,)~
where here and in the sequel X,, and R, denote two independent random variables, each
uniformly distributed over {0,1}". Assuming, to the contradiction, that b is not a hard-core
of ¢ means that exists an efficient algorithm G, a polynomial p(-) and an infinite set N so
that for every n€ N it holds that eq(n) > ﬁ. We restrict our attention to this algorithm
G and to »’s in this set N. In the sequel we shorthand 4 by €.
Our first observation is that, on at least an ﬂzﬂ fraction of the z’s of length n, algorithm

G has an U advantage in predicting b(z, R,,) from f(z) and R,. Namely,

2

Claim 3.1: there exists a set 5, C {0, 1}" of cardinality at least 5(2—") - 2™ such that for every
x €5, it holds that

This time the probability is taken over all possible values of R,, and all internal coin tosses
of algorithm (7, whereas z is fixed.
Proof: The observation follows by an averaging argument. Namely, write Exp(s(X,)) =

+ +¢(n), and apply Markov Inequality.O
In the sequel we restrict our attention to x’s in 5,,. We will show an efficient algorithm
that on every input y, with y = f(2) and 2 € 5, finds = with very high probability.
e(n)

Contradiction to the (strong) one-wayness of f will follow by noting that Pr(U, €5,) > =-.

A motivating discussion

Consider a fixed z € 5,,. By definition s(z) > %—I— a;) > %—I— 2p1n). Suppose, for a moment,

that s(z) > 24 2p1n)' In this case (i.e., of s(z) > 2 4 m) retrieving @ from f(z) is

quite easy. To retrieve the ™ bit of x, denoted z;, we randomly select r € {0,1}", and

16

compute G(f(z),r) and G(f(z),rDe’), where €' is an n-dimensional binary vector with 1
in the i*" component and 0 in all the others, and v@u denotes the addition mod 2 of the
binary vectors v and u. Clearly, if both G(f(z),r) = b(z,r)and G(f(z), r@e') = b(z,rde’),
then

G(f(2),r)BG(f(2),rde’) = bla,r)Db(x, rde’)
= b(w,ei)

since b(x,r)Bb(x,s) = S0 wiri + Yo 8 = Yoi xi(ry + 8) = b(a,r®s) mod 2. The
probability that both equalities hold (i.e., both G(f(z),r)=b(z,r) and G(f(z),rde') =
b(z,rde’)) is at least 1 —2-(i—poly1(|x|)) >1- m. Hence, repeating the above procedure
sufficiently many times and ruling by majority we retrieve z; with very high probability.
Similarly, we can retrieve all the bits of 2, and hence invert f on f(z). However, the entire

analysis was conducted under (the unjustifiable) assumption that s(z) > 34 5——, whereas

DK
we only know that s(z) > %—I—m. o

The problem with the above procedure is that it doubles the original error probability of
algorithm G on inputs of form (z,-). Under the unrealistic assumption, that the G’s error
on such inputs is significantly smaller than i, the “error-doubling” phenomenon raises no
problems. However, in general (and even in the special case where G’s error is exactly i)
the above procedure is unlikely to invert f. Note that the error probability of G' can not
be decreased by repeating G several times (e.g., G may always answer correctly on three
quarters of the inputs, and always err on the remaining quarter). What is required is an
alternative way of using the algorithm G, a way which does not double the original error
probability of G. The key idea is to generate the r’s in a way which requires applying
algorithm G only once per each r (and z;), instead of twice. The good news are that the
error probability is no longer doubled. since we only need to use GG to get an “estimate” of
b(z,rde’). The bad news are that we still need to know b(z,7), and it is not clear how we
can know b(z,r) without applying . The answer is that we can guess b(z,r) by ourselves.
This is fine if we only need to guess b(z,r) for one r (or logarithmically in |z| many 7’s),
but the problem is that we need to know (and hence guess) b(x,r) for polynomially many
r’s. An obvious way of guessing these b(x,r)’s yields an exponentially vanishing success
probability. The solution is to generate these polynomially many r’s so that, on one hand
they are “sufficiently random” whereas on the other hand we can guess all the b(z,r)’s with
non-negligible success probability. Specifically, generating the r’s in a particular pairwise
independent manner will satisfy both (seemingly contradictory) requirements. We stress
that in case we are successful (in our guesses for the b(x,r)’s), we can retrieve 2 with high
probability. Hence, we retrieve z with non-negligible probability.

A word about the way in which the pairwise independent 7’s are generated (and the

corresponding b(x,7)’s are guessed) is indeed in place. To generate m = poly(n) many

r’s, we uniformly (and independently) select [! log,(m + 1) strings in {0,1}". Let us
denote these strings by s',...,s. We then guess b(z,s') through b(z,s'). Let use denote
these guesses, which are uniformly (and independently) chosen in {0,1}, by o' through o'.
Hence, the probability that all our guesses for the b(z,s')’s are correct is 27/ = poli(n).
The different r’s correspond to the different non-empty subsets of {1,2,...,{}. We compute

J M®jess’. The reader can easily verify that the r/’s are pairwise independent and each

is uniformly distributed in {0, 1}". The key observation is that
b($,7"]) = b(wv@jEJ‘Sj) = ®jEJb($78j)

17

Hence, our guess for the b(z,r”)’s is P;es07, and with non-negligible probability all our
guesses are correct.

Back to the formal argument

Following is a formal description of the inverting algorithm, denoted A. We assume, for
simplicity that f is length preserving (yet this assumption is not essential). On input y
(supposedly in the range of f), algorithm A sets n Lt ly|, and { ! [log,(2n-p(n)?+1)], where
p(-) is the polynomial guaranteed above (i.e., e(n) > p(ln) for the infinitely many n’s in V).
Algorithm A uniformly and independently select s*,...,s' € {0,1}", and o!,...,0' € {0,1}.
It then computes, for every non-empty set J C {1,2,...,l}, a string r/ — P;¢;¢’ and a
bit p? — @;es07. For every i € {1,....,n} and every non-empty J C {1,..,1}, algorithm A
computes z7 — p/BG(y, r’Pe’). Finally, algorithm A sets z; to be the majority of the z/

values, and outputs z = z; ---z,. (Remark: in an alternative implementation of the ideas,
the inverting algorithm, denoted A’, tries all possible values for ¢, ..., o', and outputs only
one of resulting strings z, with an obvious preference to a string z satisfying f(z) = y.)

Following is a detailed analysis of the success probability of algorithm A on inputs of
the form f(z), for x € S,,, where n € N. We start by showing that, in case the o/’s are
correct, then the with constant probability, z; = a; for all i€ {1,...,n}. This is proven by
bounding from below the probability that the majority of the z7’s equals ;.

Claim 3.2: For every z € 5,, and every 1<i<mn,

Pr <|{J b, P RGf(r), B = 2} > 2 (2 - 1)) Sl

where 7 & @jess’ and the s'’s are independently and uniformly chosen in {0, 1}".

Proof: For every .J, define a 0-1 random variable ¢/, so that ¢’ equals 1 if and only
if o(z, 7" BG(f(z),r’@®e’) = x;. The reader can easily verify that each r’ is uniformly
distributed in {0,1}". It follows that each (’ equals 1 with probability s(z), which by
x€S,,is at least %—I—m. We show that the (/’s are pairwise independent by showing that
the r’’s are pairwise independent. For every J # K we have, without loss of generality,
j€Jand k€ K — J. Hence, for every a, 3 € {0,1}", we have

Pr(r®=p|r"=a) = Pr(s"=p|s=a)
~ Pr(sh=p)
= Pr (TK =)
and pairwise independence of the r/’s follows. Let m Lot 1. Using Chebyshev’s Inequal-
ity, we get
Pr ZCJ<1-m < Pr |ZCJ—(1—|— !)-m| > ! m
T T2 5 2 2p(n) ~ 2p(n)
. Var(¢))
(o7 - (20 p(n))
1
< 4
(277 (20 p(n))

18

The claim now follows. O

Recall that if o/ = b(x, s?), for all j’s, then p’ = b(x,r’) for all non-empty J’s. In this case

z output by algorithm A equals z, with probability at least half. However, the first event
happens with probability 27! = Zn.pl(n)Q independently of the events analyzed in Claim 3.2.
Hence, in case z € 5, algorithm A inverts f on f(a) with probability at least m (whereas,

the modified algorithm, A’, succeeds with probability > %) Recalling that |5,| > m 2",
we conclude that, for every n € N, algorithm A inverts f on f(U,) with probability at least
ﬁ. Noting that A is polynomial-time (i.e., it merely invokes G for 2n - p(n)?* = poly(n)
times in addition to making a polynomial amount of other computations), a contradiction,

to our hypothesis that f is strongly one-way, follows. Il

Improving the Efficiency of the Inverting Algorithm

In continuation to the proof of Theorem 3, we present guidelines for a more efficient inverting
algorithm. In the sequel it will be more convenient to use arithmetic of reals instead of that
of Boolean. Hence, we denote b'(z,r) = (=1)""*) and G'(y,r) = (=1)¢W").

1. Prove that for every a it holds that Exp(d'(z,r)- G'(f(z),r + €')) = §'(x) - (=1)™,

where s'(z) & 2. (s(z) — 3).

2. Let v be an [-dimensional Boolean vector, and let R be a uniformly chosen [-by-n
Boolean matrix. Prove that for every v # u € {0,1}" it holds that vR and uR are
pairwise independent and uniformly distributed in {0, 1}".

3. Prove that o/(z,vR) = b'(zR”,v), for every z € {0,1}" and v € {0,1}'.

4. Prove that, with probability at least %, there exists ¢ € {0,1}' so that for every
1 << n the sign of 30, ¢4 (0, 0)G'(f(x),vR 4 €')) equals the sign of (—1)".

(Hint: o & 2R7.)

5. Let B be an 2'-by-2' matrix with the (o, v)-entry being b'(c,v), and let g be an 2'-
dimensional vector with the v"" entry equal G’(f(z),vR+¢€'). The inverting algorithm
computes Z; «— Bg, for all ¢’s, and forms a matrix Z in which the columns are the
Z;’s. The output is a row that when applying f to it yields f(z). Evaluate the success
probability of the algorithm. Using the special structure of matrix B, show that the
product Bg’ can be computed in time /- 2'.

Hint: B is the Sylvester matrix, which can be written recursively as

Sk-19%-1
S, =
=5

where S5 = +1 and M means flipping the +1 entries of M to —1 and vice versa.

3.4 Hard-Core Functions

We have just seen that every one-way function can be easily modified to have a hard-core
predicate. In other words, the result establishes one bit of information about the preimage
which is hard to approximate from the value of the function. A stronger result may say
that several bits of information about the preimage are hard to approximate. For example,

19

we may want to say that a specific pair of bits is hard to approximate, in the sense that
it is infeasible to guess this pair with probability significantly larger than i. In general, a
polynomial-time function, h, is called a hard-core of a function f if no efflicient algorithm

can distinguish (f(z),h(z)) from (f(z),r), where 7 is a random string of length |h(z)|. We

assume for simplicity that i is length regular (see below).

Definition 4 (hard-core function): Let h : {0,1}* — {0,1}* be a polynomial-time com-
putable function, satisfying |h(z)| = |h(y)| for all || = |y|, and let I(n) = |h(1™)]. The
function h : {0,1}* — {0,1}* is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm D', every polynomial p(-), and all sufficiently large n’s

1Pt (D'(f(X,), (X)) =1) = Pr (D'(f(X,), Riny) =1) | <]ﬁ

where X,, and Ry, are two independent random variables the first uniformly distributed
over {0,1}", and the second uniformly distributed over {0,1}'"),

Theorem 5 Let f be an arbitrary strong one-way function, and let g, be defined by g-(z, s) Lt

(f(x),s), where |s|=2|z|. Let ¢ > 0 be a constant, and I(n) = [clog, n]. Let b;(x,s) denote

the inner-product mod 2 of the binary vectors x and (11, ..., Sitn), Where s = (51, ..., S2,).

Then the function h(x,s) Lt bi(z,s)-biap(2,s) is a hard-core of the function g,.

The proof of the theorem follows by combining a proposition concerning the structure
of the specific function h with a general lemma concerning hard-core functions. Loosely
speaking, the proposition “reduces” the problem of approximating b(x,r) given g(x,r) to
the problem of approximating the exclusive-or of any non-empty set of the bits of h(z,s)
given gs(z,s), where b and ¢ are the hard-core and the one-way function presented in the
previous section. Since we know that the predicate b(z,r) cannot be approximated from
g(z,r), we conclude that no exclusive-or of the bits of h(z,s) can be approximated from
g2(x,s). The general lemma states that, for every “logarithmically shrinking” function A’/
(i.e., W/ satisfying |h'(z)| = O(log|z|)), the function A’ is a hard-core of a function f’ if and
only if the exclusive-or of any non-empty subset of the bits of A’ cannot be approximated
from the value of f.

Proposition 6 Let f, g, and b;’s be as above. Let I(n) C {1,2,....,I1(n)}, n € N, be an
arbitrary sequence of non-empty subsets, and let by, (z, s) Lt Dicr(epbi(z,s). Then, for
every probabilistic polynomial-time algorithm A’, every polynomial p(-), and all sufficiently
large n’s .

Pr (A'(g2(Uan)) = bio(Usn) < 5+ 2o

N | —

Proof: The proof is by a “reducibility” argument. It is shown that the problem of ap-
proximating b(X,, R,) given (f(X,), R,) is reducible to the problem of approximating
briny(Xy, S2n) given (f(X,),Ss,), where X, R, and S5, are independent random vari-
able and the last is uniformly distributed over {0,1}**. The underlying observation is that,
for every |s| = 2 - ||,

b[($, 8) = @ielbi(xv 8) = b($, @iefsubi(s)

20

where sub; (s, ..., S2,) def (Siq1y-ees Siyn). Furthermore, the reader can verify that for every

non-empty I C {1,...,n}, the random variable &;¢;sub;(53,) is uniformly distributed over
{0,1}", and that given a string r € {0,1}" and such a set I one can efficiently select a
string uniformly in the set {s: @;ersub;(s) = r}. (Verification of both claims is left as an
exercise.)

Now, assume to the contradiction, that there exists an efficient algorithm A’, a polyno-
mial p(-), and an infinite sequence of sets (i.e., I(n)’s) and n’s so that

Pr (A" (g2(Usn)) = brimy(Usn)) > = + —

1 1
2" p(n)
We first observe that for n’s satisfying the above inequality we can find in probabilistic
polynomial time (in n) a set [satisfying
1
2p(n)

(i.e., by going over all possible I’s and experimenting with algorithm A’ on each of them).
Of course we may be wrong here, but the error probability can be made exponentially small.

I

N | —

Pr(A'(92(Usn)) = b1(Usn)) >

We now present an algorithm for approximating b(z, r), from y déff(x) and r. On input
y and 7, the algorithm first finds a set [as described above (this stage depends only on
|z| which equals |r|). Once I is found, the algorithm uniformly select a string s so that
@Biersub;(s) = r, and return A’(y, s). Evaluation of the success probability of this algorithm
is left as an exercise. Il

Lemma 7 (Computational XOR Lemma): Let f and h be arbitrary length regular func-
tions, and let [(n) = |h(1™)|. Let D be an algorithm. Denote

p = Pr(D(f(Xa). h(X,) = 1) and g = Pr(D(f(X,), Ri) = 1)

where X, and R, are as above. Let G be an algorithm that on input y, S (andl(n)), selectsr
uniformly in {0, 1} and outputs D(y, r)B1D(Diesrs), where r =1y -+ -1y and r; € {0,1}.
Then,

L p—q

Pr(G(f(Xn), D l(n) = Bien (X)) = 5 + 55—

where I; is a randomly chosen non-empty subset of {1,...,1(n)} and h;(z) denotes the i™ bit

of h(z).

Proof: see previous chapter. Il

It follows that, for logarithmically shrinking h’s, the existence of an efficient algorithm that
distinguishes (with a gap which is not negligible in n) the random variables (f(X,), h(X,))
and (f(X,), Rin)) implies the existence of an efficient algorithm that approximates the
exclusive-or of a random non-empty subset of the bits of h(X,) from the value of f(X,)
with an advantage that is not negligible.

21

Bibliography

[1] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr, “RSA and Rabin Functions: Certain
Parts Are As Hard As the Whole”, FOCS (1984) and SIAM Journ. on Computing, Vol.
17, 1988, pp. 194-209.

[2] N. Alon, O. Goldreich, J. Hastad and R. Peralta, “Simple Construction of Almost k-
wise Indepedent Random Variables”, Random Structures and Algorithms, Vol. 3, No.
3, 1992,

[3] Babai, L., N. Nisan, and M. Szegedy, “Multiparty protocols and logspace-hard pseu-
dorandom sequences”, 21st STOC, 1989, pp. 1-11.

[4] Blum, M., and Micali, S., “How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits”, FOCS (1982); SIAM Journ. on Computing, Vol. 13, 1984, pp.
850-864.

[5] B. Chor, J. Friedmann, O. Goldreich, J. Hastad, S. Rudich and R. Smolansky, “The
Bit Extraction Problem or ¢-Resilient Functions”, Proc. of the 26th IFEE Symp. on
Foundation Of Computer Science (FOCS), 1985, pp. 396-407.

[6] Erdos, P., and J. Spenser, Probabilistic Methods in Combinatorics, Academic Press,
New York, 1974.

[7] Goldreich, O., S. Goldwasser, and S. Micali, “How to Construct Random Functions”,
Journ. of ACM, Vol. 33, No. 4, 1986, pp. 792-807.

[8] Goldreich O., and L.A. Levin, “Hard-core Predicates for any One-Way Function”, 21th
STOC, pp. 25-32, 1989.

[9] Goldwasser, S., and S. Micali, “Probabilistic Encryption”, STOC (1982); JCSS, Vol.
98, No. 2, 1984, pp. 270-299.

[10] B.S. Kaliski, Jr., "Elliptic Curves and Cryptography: A Pseudorandom Bit Generator
and Other Tools”, Ph.D. Thesis, LCS, MIT, 1988.

[11] L.A. Levin, “One-Way Function and Pseudorandom Generators”, Combinatorica, Vol.
7, No. 4, 1987, pp. 357-363. A preliminary version in STOC-85.

[12] J. Naor and M. Naor, “Small-bias Probability Spaces: Efficient Constructions and
Applications”, 22nd STOC, 1990, pp. 213-223.

[13] N. Nisan, “Pseudorandom Generators for Space-Bounded Computations”, 22nd STOC,
1990, pp. 204-212.

22

[14] M.O. Rabin, “Digitalized Signatures and Public Key Functions as Intractable as Fac-
toring”, MIT/LCS/TR-212, 1979.

[15] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems”, Comm. ACM, Vol. 21, Feb. 1978, pp 120-126

[16] U.V. Vazirani, “Randomness, Adversaries and Computation”, Ph.D. Thesis, EECS,
UC Berkeley, 1986.

[17] U.V. Vazirani, “Efficiency Considerations in Using Semi-random Sources”, Proc. 19th
ACM Symp. on Theory of Computing, 1987, pp. 160-168.

[18] U.V. Vazirani, and V.V. Vazirani, “Efficient and Secure Pseudo-Random Number Gen-
eration”, Proc. 25th IFEF Symp. on Foundation of Computer Science, 1984, pp. 458-
463.

[19] Yao, A.C., “Theory and Applications of Trapdoor Functions”, Proc. of the 23rd IEEE
Symp. on Foundation of Computer Science, 1982, pp. 80-91.

23

