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1 IntroductionA fundamental Lemma of Yao states that computational weak-unpredictability of pred-icates gets ampli�ed if the results of several independent instances are XOR together,analogously to the information theoretic wire-tape channel Theorem (cf., Wyner). Byweak-unpredictability we mean that any e�cient algorithm will fail to predict the predi-cate with probability beyond a stated bound, where the probability is taken over all pos-sible inputs (say with uniform probability distribution). In particular, the lemma knownas Yao's XOR Lemma asserts that if the predicate f is weakly-unpredictable (within somecomplexity bound) then F (x1; :::; xt) def= �ti=1f(xi), for su�ciently large t, is almost unpre-dictable within a related complexity bound (i.e., algorithms of this complexity cannot dosubstantially better than ip a coin for the answer).Yao stated the XOR Lemma in the context of one-way functions, where the predicate fis the composition of an easy to compute Boolean predicate and the inverse of the one-wayfunction (i.e., f(x) = b(g�1(x)), where g is a 1-1 one-way function and b is an easy tocompute predicate). Clearly, this is a special case of the setting described above. Yet, theXOR Lemma is sometimes used within the more general setting described above (under thefalse assumption that proofs for this setting have appeared in the literature). Furthermore,in contrary to common beliefs, the lemma itself has not appeared in Yao's original paper\Theory and Applications of Trapdoor Functions" [9] (but rather in oral presentations ofhis work).A proof of Yao's XOR Lemma has �rst appeared in Levin's paper [6]. Levin's proof is forthe context of one-way functions and is carried through in a uniform model of complexity.The presentation of this proof in [6] is very succinct and does not decouple the basicapproach from di�culties arising from the uniform-complexity model. In Section 3, weshow that Levin's basic approach su�ces for the general case (mentioned above) providedit is stated in terms of non-uniform complexity. The proof also extends to a uniform-complexity setting, provided that some sampling condition (which is satis�ed in the contextof one-way functions) holds. We do not know whether the XOR Lemma holds in theuniform-complexity model in case this sampling condition is not satis�ed.Recently, Impagliazzo has shown that, in the non-uniformmodel, any weakly-unpredictablepredicate has a \hard-core"1 on which it is almost unpredictable [5]. Using this result, Im-pagliazzo has presented an alternative proof for the general case of the XOR-Lemma withinthe non-uniform model. We present this proof in Section 4.A third proof for the general case of the XOR-Lemma is presented in Section 5. Thisproof proceeds by �rst proving that a function constructed by concatenating the values ofthe predicate on several independent instances is much more unpredictable, with respectto speci�ed complexity bounds, than the original predicate. Loosely speaking, it is hard1 Here the term `hard-core' means a subset of the predicate's domain. This meaning is certainlydi�erent from the usage of the term `hard-core' in [3], where it means a strongly-unpredicatable predicateassociated with a one-way function. 1



to predict the value of the function with probability substantially higher than �t, where �is a bound on the probability of predicting the predicate and t is the number of instancesconcatenated. Not surprisingly, this statement turns out to be easier to prove than theXOR-Lemma. Using a result of Goldreich and Levin [3] and some elementary observation,we derive the XOR-Lemma.We remark that Levin's proof yields a stronger quantitative statement of the XORLemma than the other two proofs. In fact, the quantitative statement provided by Levin'sproof is almost optimal. Both Levin's proof and ours can be transformed to the uniform-complexity provided some natural sampling condition holds. We do not know how totransform Impagliazzo's proof to the uniform-complexity setting, even under this condition.A di�erent perspective on the concatenating problem considered above is presented inSection 6 where we consider the conditional entropy of the function's value given the resultof a computation (rather than the probability that the two agree).2 Formal SettingThe basic framework consists of a Boolean predicate f :f0; 1g� 7!f0; 1g and a non-uniformcomplexity class such as P=poly. Speci�cally, we consider all families of polynomial-sizecircuits and for each family, fCng, we consider the probability that it correctly computes f ,where the probability is taken over all n-bit inputs with uniform probability distribution.Alternatively, one may consider the most successful n-bit input circuit among all circuitsof a given size. This way we obtain a bound on unpredictability of f with respect to aspeci�c complexity class.In the sequel, it will be more convenient to rede�ne f as mapping bit string into f�1gand to consider the correlation of a circuit (outputting a value in f�1g) with the function(i.e., rede�ne f(x) def= (�1)f(x)). 2 Also, we generalize the treatment to arbitrary distribu-tions over the set of n-bit long inputs (rather than uniform ones) and to \probabilistic"predicates (or processes) that on input x return some distribution on f�1g (i.e., for a �xedx, f(x) is a random variable distributed over f�1g rather than a �xed value). One moti-vation for this generalization is that it allows us to treat as a special case `hard predicates'of one-way functions, when the functions are not necessarily 1-1.De�nition 1 (algorithmic correlation): Let P be a randomized process/algorithm thatmaps bit strings into values in f�1g and let X def= fXng be a probability ensemble so that,for each n, the random variable Xn is distributed over f0; 1gn. The correlation of a circuitfamily C = fCng with P over X is de�ned as c : IN 7! IR so thatc(n) def= E[Cn(Xn) � P (Xn)]2This suggestion, of replacing the standard f0; 1g by f�1g and using correlations rather than prob-abilities, is due to Levin. It is indeed amazing how this simple change of notation simpli�es both thestatements and the proofs. 2



where the expectation is taken over the random variable Xn ( and the process P ). We saythat a complexity class (i.e., set of circuit families) has correlation at most c(�) with P overX if, for every circuit family C in this class, the correlation of C with P over X is boundedby c(�).The above de�nition may be used to discuss both uniform and non-uniform complexityclasses. In the next subsection we relate the above de�nition to the standard treatment ofunpredictability within the context of one-way functions.The context of one-way functionsFor sake of simplicity, we consider only length-preserving functions (i.e., functions f :f0; 1g� 7!f0; 1g� satisfying jf(x)j = jxj for all x). A one-way function f :f0; 1g� 7!f0; 1g�is a function that is easy to compute but hard to invert. Namely, there exists a polynomial-time algorithm for computing f , but for any probabilistic polynomial-time3 algorithm A,the probability that A(f(x)) is a preimage of f(x) is negligible (i.e., smaller than 1=p(jxj)for any positive polynomial p), where the probability is taken uniformly over all x 2 f0; 1gnand all possible internal coin tosses of algorithm A.Let � : IN 7! IR. The predicate b :f0; 1g� 7!f�1g is said to be at most �-correlated to f inpolynomial-time if b is easy to compute (i.e., there exists a polynomial-time algorithm forcomputing b), but b(x) is hard to predict from the value of the function (i.e., from f(x)).Namely, for any probabilistic polynomial-time algorithm G, the expected correlation ofG(f(x)) and b(x), is at most �(n) (for all but �nitely many n's). (Again, the probabilityspace is uniform over all x 2 f0; 1gn and all possible internal coin tosses of the algorithm.)Suppose, �rst, that f is 1-1 and that b is an easy to compute predicate. Then, sayingthat b is at most �-correlated to f in polynomial-time is equivalent to saying that theclass of (probabilistic) polynomial-time algorithms has correlation at most �(�) with thepredicate P (x) def= b(f�1(x)), over the uniform distribution. Note that in this case, althoughP is assumed not to be polynomial-time computable, it is easy to generate randomly pairs(y; P (y)) for randomly distributed y's. This is done, by uniformly selecting r 2 f0; 1gnand outputting the pair (f(r); b(r)) = (f(r); P (f(r))).The treatment is extended to one-way functions which are not necessarily 1-1 as follows.Let f be such a function and b a predicate which is at most �-correlated to f (by polynomial-time algorithms). De�ne the probability ensemble X = fXng by letting Xn = f(r), wherer is uniformly selected in f0; 1gn and de�ne the randomized process P (x) by uniformlyselecting r 2 f�1(x) and outputting b(r). Now, it follows that the class of (probabilistic)polynomial-time algorithms has correlation at most �(�) with the predicate P over X.Again, although P is not polynomial-time computable, it is easy to generate randomlypairs (x; P (x)), with distribution identical to (Xn; P (Xn)), where n = jxj.3Here we adopt the standard de�nition of one-way function; however, our treatment applies also tothe general de�nition where inverting is infeasible with respect to a speci�ed time bound and successprobability. 3



Getting random examplesAn important issue regarding the general setting, is whether it is possible to get randomexamples of the distribution (Xn; P (Xn)). As mentioned in the previous subsection, in thecontext of one-way functions such random examples can be generated by a (uniform) proba-bilistic polynomial-time algorithm. On the other hand, the e�ect of such random examplescan be easily simulated by non-uniform polynomial-size circuits (i.e., random/typical ex-amples can be hard-wired into the circuit). Random examples are needed in all knownproofs of the XOR Lemma (i.e., they are used in the algorithms deriving a contradiction tothe di�culty of correlating the basic predicate). Thus, we can prove the XOR Lemma bothin the general non-uniform complexity setting and in the (uniform-complexity) context ofone-way functions.Three (non-uniform) forms of the XOR LemmaFollowing the description in the introduction (and Yao's expositions), the basic form of theXOR Lemma states that the tractable correlation of the XOR-predicate P (t)(x1; :::; xt) def=Qti=1 P (xi) decays exponentially with t (upto a negligible fraction). Namely,Lemma 1 (XOR Lemma { Yao's version): Let P and X = fXng be as in De�nition 1,s : IN 7! IN be a size function, and � : IN 7! [�1;+1] be a function that is bounded-away-from-1 (i.e., j�(n)j < 1 � 1p(n) , for some polynomial p and all su�ciently large n's). For everyfunction t : IN 7! IN, de�ne the predicateP (t)(x1; :::; xt(n)) def= t(n)Yi=1 P (xi) ;where x1; :::; xt(n) 2 f0; 1gn, and let X(t) def= fX(t)n g be a probability ensemble such that X(t)nconsists of t(n) independent copies of Xn.(hypothesis) Suppose that � is a bound on the correlation of families of s(�)-size circuitswith P over X.(conclusion) Then, there exists a bounded-away-from-1 function �0 and a polynomial psuch that, for every function � : IN 7! [0;+1], the function�(t)(n) def= p(n) � �0(n)t(n) + �(n)is a bound on the correlation of families of s0(�)-size circuits with P (t) over X(t),where s0(t(n) � n) def= poly �(n)n ! � s(n)� poly(n � t(n))
4



All three proofs presented below establish Lemma 1. The latter two proofs do so for variousvalues of �0 and p (i.e., in Impagliazzo's proof �0(n) = 1+�(n)2 + o(1 � �(n)) and p(n) = 2,whereas in our proof �0(n) = 3q1+�(n)2 and p(n) = o(n)). Levin's proof does even better; itestablishes the followingLemma 2 (XOR Lemma { Levin's version): Yao's version holds with �0 = � and p = 1.Lemma 2 still contains some slackness; speci�cally, the closest one wants to get to the\obvious" bound of �(t)(n) = �0(n)t(n), the more one losses in terms of the complexitybounds (i.e., bounds on circuit size). In particular, if one insists on having s0(t(n) � n) =s(n)poly(n) then one only gets a result only for �(n) = 1=poly(n) (i.e., �(t)(n) = �0(n)t(n)+1=p(n),for any polynomial p). We do not know how to remove this slackness. We even do notknow if it can be weaken \a little" as follows.Lemma 3 (XOR Lemma { dream version { a conjecture): For some �xed negligible func-tion � (e.g., �(n) def= 2�n or even �(n) def= 2�(log2 n)2), Yao's version holds with �(t)(n) =�0(n)t(n) + �(n), and s0(t(n) � n) = s(n)poly(n) .Steven Rudich has observed that the Dream Version does not hold in a relativized world.Speci�cally, his argument proceeds as follows. Fix � as in the Dream Version and set t sothat �(t) < �(n). Consider an oracle that for every (x1; :::; xt(n)) 2 (f0; 1gn)t(n) and for a2�(n) fraction of the r's in f0; 1gn, answers the query (x1; :::; xt(n); r) with (P (x1); :::; P (xt)),otherwise the oracle answers with a special symbol. These r's may be selected at random(thus constructing a random oracle). The hypothesis of the lemma may hold relativeto this oracle, but the conclusion cannot possibly hold. Put di�erently, one can arguethat a (polynomial-time) \black-box" reduction of the task of correlating P (by � �)to the task of correlating P (t) (by � 2�) cannot possibly work. The reason being thatthe polynomial-time machine (e�ecting this reduction) cannot distinguish a black-box ofnegligible correlation (i.e., correlation 2�) from a black-box of zero correlation.Uniform forms of the XOR LemmaAbove, we have stated three forms of the XOR Lemma in terms of non-uniform complex-ity. Analogous statements in terms of uniform complexity can be made as well. Thesestatements relate to the time required to construct the circuits in the hypothesis and thosein the conclusion. For example, one may refer to circuit families, fCng, for which, givenn, the circuit Cn can be constructed in poly(jCnj)-time. In addition, all functions referredto in the statement of the lemma (i.e., s; t : IN 7! IN, � : IN 7! [�1;+1] and � : IN 7! [�1;+1])need to be computable within corresponding time bounds. Analogues of the two �rstversions can be proven, provided that one can construct random examples of the distri-bution (Xn; P (Xn)) within the stated (uniform) complexity bounds (and in particular inpolynomial-time). See comments in the subsequent sections.5



3 Levin's ProofThe key ingredient in Levin's proof is the following lemma which provides an accurateaccount of the decrease of the computational correlation in case two predicates are xor-edtogether. It should be stressed that the statement of the lemma is not symmetric withrespect to the two predicates.Lemma 4 (Isolation Lemma): Let P1 and P2 be two predicates, l : IN 7! IN be a lengthfunction, and P (x) def= P1(y) � P2(z) where x = yz and jyj = l(jxj). Let X = fXng bea probability ensemble so that the �rst l(n) bits of Xn are statistically independent of therest, and let Y = fYl(n)g (resp., Z = fZn�l(n)g) denote the projection of X on the �rst l(�)bits (resp., last n� l(n) bits).(hypothesis) Suppose that �1(�) is a bound on the correlation of families of s1(�)-sizecircuits with P1 over Y, and that �2(�) is a bound on the correlation of families ofs2(�)-size circuits with P2 over Z.(conclusion) Then, for every function � : IN 7! IR, the function�(n) def= �1(l(n)) � �2(n� l(n)) + �(n)is a bound on the correlation of families of s(�)-size circuits with P over X, wheres(n) def= min( s1(l(n))poly(n=�(n)) ; s2(n� l(n))� n)The lemma is asymmetric with respect to the dependency of s(�) on the si's. The fact thats(�) maybe almost equal to s2(�) plays a central role in deriving the XOR Lemma from theIsolation Lemma.Proof: Assume to the contradiction that a circuit family C (of size s(�)) has correlationgreater than �(�) with P over X. Thus, denoting by Yl (resp., Zm) the projection of Xnon the �rst l def= l(n) bits (resp., last m def= n� l(n) bits), we get�(n) < E[Cn(Xn) � P (Xn)]= E[Cn(Yl; Zm) � P1(Yl) � P2(Zm)]= E[P1(Yl) � E[Cn(Yl; Zm) � P2(Zm)]]where, in the last expression, the outer expectation is over Yl and the inner one is over Zm.For every �xed y 2 f0; 1gl, letT (y) def= E[Cn(y; Zm) � P2(Zm)]Then, by the above, E[T (Yl) � P1(Yl)] > �(n) (1)6



We shall see that Eq. (1) either contradicts the hypothesis concerning P2 (see Claim 4.1)or contradicts the hypothesis concerning P1 (by a slightly more involved argument).claim 4.1: For all but �nitely many n's and every y 2 f0; 1gljT (y)j � �2(m)proof: Otherwise, �xing a y contradicting the claim, we get a circuit C 0m(z) def= Cn(y; z) ofsize s(n)+ l < s2(m), having greater correlation with P2 than that allowed by the Lemma'shypothesis. 2By Claim 4.1, the value T (y)=�2(m) lies in the interval [�1;+1]; and, on the other hand(by Eq. (1)), it has good correlation with P1. In the rest of the argument we \transform"the function T into a circuit which contradicts the hypothesis concerning P1. Suppose fora moment, that one could compute T (y), on input y. Then, one would get an algorithmwith output in [�1;+1] that has correlation �(n)=�2(m) > �1(l) with P1 over Yl, whichis almost4 in contradiction to the hypothesis of the lemma. The same holds if one canapproximate T (y) \well enough" using circuits of size s1(l). Indeed, the lemma follows byobserving that such an approximation is possible. Namely,claim 4.2: For every n, l = l(n), m = n� l, q = poly(n=�(n)) and y 2 f0; 1gl, let~T (y) def= 1q qXi=1Cn(y; zi) � �iwhere (z1; �1); :::; (zq; �q) is a sequence of q independent samples from the distribution(Zm; P2(Zm)). Then, Prob[jT (y)� ~T (y)j > �(n)] < 2�l(n)proof: immediate by the de�nition of T (y) and application of Cherno� bound. 2The above claim suggests an approximation algorithm (for the function T ), which is givenas auxiliary input a sequence of samples from the distribution (Zm; P2(Zm)). (The algo-rithmmerely computes the average of Cn(y; zi)��i over the sample sequence (z1; �1); :::; (zq; �q).)If such a sample sequence can be generated e�ciently, by a uniform algorithm (as in thecontext of one-way functions), then we are done. Otherwise, we use non-uniformity toobtain a �xed sequence which is good for all possible y's. (Such a sequence does exist sincewith positive probability, a randomly selected sequence, from the above distribution, isgood for all 2l(n) possible y's.) Thus, there exists a circuit of size poly(n=�(n)) � s(n) that,on input y 2 f0; 1gl(n), outputs (T (y)� �(n))=�2(m). We note that this output is at least�(n)�2(m) � �(n)�2(m) = �1(l) correlated with P1 which almost contradicts the hypothesis of theLemma. The only problem is that the resulting circuit has output in the interval [�1;+1]4See discussion below; what is \wrong" is that the output is in the [�1;+1] interval rather than beinga binary value in f�1g. 7



instead of a binary output in f�1g. This problem is easily corrected by modifying thecircuit so that on output r 2 [�1;+1] it outputs +1 with probability (1 + r)=2 and �1otherwise. Noting that this modi�cation preserves the correlation of the circuit, we derivea contradiction to the hypothesis concerning P1.The stronger version of the XOR Lemma (i.e., Lemma 2) follows by a (careful) succes-sive application of the Isolation Lemma. Loosely speaking, we write P (t)(x1; x2; :::; xt(n)) =P (x1) � P (t�1)(x2; :::; xt(n)), assume that P (t�1) is hard to correlate as claimed, and applythe Isolation Lemma to P � P (t�1). This way, the lower bound on circuits correlating P (t)is related to the lower bound assumed for circuits correlating the original P and is almostthe bound derived for P (t�1) (losing only an additive term!).Remarks concerning the uniform complexity settingA uniform-complexity analogue of Lemma 2 can be proven provided that one can constructrandom examples of the distribution (Xn; P (Xn)) within the stated (uniform) complexitybounds. To this end, one should state and prove a uniform-complexity version of the Iso-lation Lemma which also assumes that example from both distributions (i.e., (Yl; P1(Yl))and (Zm; P2(Zm))) 5 can be generated within the relevant time complexity; certainly, sam-pleability in probabilistic polynomial-time su�ces. Furthermore, in order to derive theXOR Lemma it is important to prove a strong statement regarding the relationship be-tween the time required to construct the circuits referred to in the lemma. Namely,Lemma 5 (Isolation Lemma { uniform complexity version): Let P1; P2; l; P;X;Y and Zbe as in Lemma 4.(hypothesis) Suppose that �1(�) (resp., �2) is a bound on the correlation of t1(�)-time-constructible families of s1(�)-size (resp., t2(�)-time-constructible families of s2(�)-size) circuits with P1 over Y (resp., P2 over Z). Furthermore, suppose that one cangenerate in polynomial-time a random sample from the distribution (Yl; Zm; P2(Zm)).(conclusion) Then, for every function � : IN 7! IR, the function�(n) def= �1(l(n)) � �2(n� l(n)) + �(n)is a bound on the correlation of t(�)-time-constructible families of s(�)-size circuitswith P over X, wheres(n) def= min( s1(l(n))poly(n=�(n)) ; s2(n� l(n))� n)andt(n) def= min ft1(l(n)) ; t2(n� l(n))g � poly(n=�(n)) � s(n)5Actually, it su�ces to be able to sample the distributions Yl and (Zm; P2(Zm)).8



The uniform-complexity version of the Isolation Lemma is proven by adapting the aboveproof as follows. First, a weaker version of Claim 4.1 is stated, asserting that (for all but�nitely many n's) Prob[jT (Yl)j > �2(m) + �0(n)] < �0(n)where �0(n) def= �(n)=3. The new claim is valid, since otherwise, one can �nd in poly(n=�(n))-time a y violating it; to this end we need to sample Yl and, for each sample y, approximatethe value of T (y) (by using poly(n=�(n)) samples of (Zm; P2(Zm))). Once a good y is found,we incorporate it in the construction of Cn, resulting in a circuit which contradicts thehypothesis concerning P2. (We stress that we have presented an e�cient algorithm for con-structing a circuit for P2, given an algorithm that constructs the circuit Cn. Furthermore,the running time of our algorithm is the sum of the time required to construct Cn and thetime required for sampling (Zm; P2(Zm)) su�ciently many times and for evaluating Cn onsu�ciently many instances.)Clearly, Claim 4.2 remains unchanged (except for the replacing �(n) by �0). Using thehypothesis that samples from (Zm; P2(Zm)) can be e�ciently generated, we can construct acircuit for correlating P1 within time t(n)+poly(n=�(n))�(n+s(n)). This circuit is merely anapproximater of the function T which operates by averaging (as in Claim 4.2); this circuitis constructed by �rst constructing Cn, generating poly(n=�(n)) samples of (Zm; P2(Zm))and incorporating them in corresponding copies of Cn { thus justifying the above time andsize bounds. However, unlike in the non-uniform case, we are not guaranteed that jT (y)jis bounded above (by �2(m)+ �0(n)) for all y's. Yet, if we modify our circuit to do nothingwhenever its estimate violates the bound, we loss at most �0(n) of the correlation and wecan proceed as in the non-uniform case.As in the non-uniform case, the (strong form of the) XOR Lemma follows by a (careful)successive application of the Isolation Lemma. Again, we write P (�)(x1; x2; :::; x�(n)) =P (x1) �P (��1)(x1; :::; x�(n)�1), assume that P (��1) is hard to correlate as claimed, and applythe Isolation Lemma to P �P (��1). This way, the lower bounds on circuits correlating P (�)is related to the lower bound assumed for circuits correlating the original P and is almostthe bound derived for P (��1) (losing only an additive terms!). This almost concludes theproof, except that we have implicitly assumed that we know the value of � for which theXOR Lemma �rst fails; this value is needed in order to construct the circuit violating thehypothesis for the original P . In the non-uniform case this value of � can be incorporatedinto the circuit, but in the uniform-complexity case we need to �nd it. This is not a bigproblem as they are only polynomially many possible values and we can test each of themwithin the allowed time complexity.4 Impagliazzo's ProofThe key ingredient in Impagliazzo's proof is the notion of a hard-core of a weakly-unpredictablepredicate and a lemma that asserts that every weakly-unpredictable predicate has a hard-9



core of substantial size.De�nition 2 (hard-core of a predicate): Let f : f0; 1g� 7! f0; 1g be a Boolean predicate,s : IN 7! IN be a size function, and � : IN 7! [0; 1] be a function.� We say that a sequence of sets, S = fSn � f0; 1gng, is a hard-core of f with respectto s(�)-size circuits families and advantage �(�) if for every n and every circuit Cn ofsize at most s(n), Prob[Cn(Xn)=f(Xn)] � 12 + �(n)where Xn is a random variable uniformly distributed on Sn.� We say that f has a hard-core of density �(�) with respect to s(�)-size circuits familiesand advantage �(�) if there exists a sequence of sets S = fSn � f0; 1gng so that S isa hard-core of f with respect to the above and jSnj � �(n) � 2n.We stress that the usage of the term `hard-core' in the above de�nition (and in therest of this section) is di�erent from the usage of this term in [3]. Observe that everystrongly-unpredictable predicate has a hard-core of density 1 (i.e., the entire domain itself).Impagliazzo proves that also weakly-unpredicatabe predicates have hard-core sets, butthese have density related to the amount of unpredictability. Namely,Lemma 6 (existence of hard-core for unpredictable predicates): Let f : f0; 1g� 7! f0; 1gbe a Boolean predicate, s : IN 7! IN be a size function, and � : IN 7! [0; 1] be a non-negligiblefunction (i.e., �(n) > 1=poly(n)), so that for every n and every circuit Cn of size at mosts(n) { Prob[Cn(Un)=f(Un)] � 1� �(n)where Un is a random variable uniformly distributed on f0; 1gn. Then, for every function� : IN 7! [0; 1], the function f has a hard-core of density �0(�) with respect to s0(�)-size circuitsfamilies and advantage �(�), where �0(n) def= (1�o(1)) ��(n) and s0(n) def= s(n)=poly(n=�(n)).The proof of Lemma 6 is given in the Appendix. Using Lemma 6, we derive a proof ofthe XOR-Lemma, for the special case of uniform distribution, as follows {Suppose that �(�) is a bound on the correlation of s(�)-circuits with f over the uniformdistribution. Then, it follows that such circuits cannot guess the value of f better than withprobability p(n) def= 1+�(n)2 and the existence of a hard-core S = fSng (w.r.t. s0(n)-circuitsand �(n)-advantage) with density �0(n) def= (1� o(1)) � (1� p(n)) follows. Clearly,�0(n) = (1� o(1)) � 1� �(n)2 > 13 � (1� �(n))Now, suppose that in contradiction to the XOR Lemma, the predicate F (t)(x1; :::; xt) def=�if(xi) can be correlated by \small" circuits with correlation greater than c0(n) def= 2 �10



(2+�(n)3 )t + �(n). In other words, such circuits can guess F (t) with success probability� 12 + 12 � c0(n). With probability at most (1� �0(n))t none of the t arguments to F (t) fallsin the hard-core. Thus, conditioned on the event that at least one argument falls in thehard-core S, the circuit guess F (t) correctly with probability at least12 + 12 � c0(n)� (1� �0(n))t > 12 + �(n)2For every non-empty I � f1; :::; tg, we consider the event, denoted EI , that the argu-ments to F (t) which fall in the hard-core are eaxctly those with index in I. We have justshown that, conditioned on the union of these events, the circuit guesses the predicateF (t) correctly with probability at least 12 + �(n)2 . Thus, there exists an (non-empty) I sothat, conditioned on EI , the circuit guesses F (t) correctly with probability at least 12 + �(n)2 .Let i 2 I be arbitrary. By another averaging argument, we �x all inputs to the circuitexcept the ith input and obtain a circuit which guesses f correctly with probability at least12 + �(n)2 . (For these �xed xj's, j 6= i, the circuit incorporates also the value of �j 6=if(xj).)This contradicts the hypothesis that S is a hard-core.We have just established the validity of the Lemma 1 for the case of the uniform probabilityensemble and parameters p(n) = 2 and �0(n) = 2+�(n)3 . The bound for �0 can be improvedto �0(n) = 1+�(n)2 + o(1� �(n)). The argument extends to arbitrary probability ensembles.To this end one needs to properly generalize De�nition 2 and prove a generalization ofLemma 6 as done in the Appendix.5 Going through the direct product problemThe third proof of the XOR Lemma proceeds in two steps. First it is shown that thesuccess probability, of feasible algorithms which try to predict the values of a predicateon several unrelated arguments, decreases exponentially with the number of arguments.This statement is a generalization of another theorem due to Yao [9], hereafter called theConcatenation Lemma. Invoking a result of Goldreich and Levin [3], the XOR-Lemmafollows.The Concatenation LemmaLemma 7 (concatenation lemma): Let P , X = fXng, s : IN 7! IN, and � : IN 7! [�1;+1] beas in Lemma 1. For every function t : IN 7! IN, de�ne the function F (t)(x1; :::; xt(n)) def=(P (x1); :::; P (xt(n))), where x1; :::; xt(n) 2 f0; 1gn, and the probability ensemble X(t) =fX(t)n g, where X(t)n consists of t(n) independent copies of Xn.(hypothesis) Suppose that � is a bound on the correlation of families of s(�)-size circuitswith P over X. Namely, suppose that for every n and for every s(n)-size circuit C:Prob[C(Xn)=P (Xn)] � p(n) def= 1 + �(n)211



(conclusion) Then, for every function � : IN 7! [0;+1], for every n and for every poly( �(n)n )�s(n)-size circuit C 0: Prob[C 0(X(t)n )=F (t)(X(t)n )] � p(n)t(n) + �(n)Remark: Nisan et. al. [8] have used the XOR-Lemma in order to derive the ConcatenationLemma. Our feeling is that the Concatenation Lemma is more \basic" than the XORLemma, and thus that their strategy is not very natural. In fact, this feeling was ourmotivation for trying to �nd a \direct" proof for the Concatenation Lemma. Extrapolatingfrom the situation regarding the two original lemmata of Yao (i.e., the XOR Lemma andthe Concatenation Lemma w.r.t. one-way functions)6, we believed that such a proof (forthe Concatenation Lemma) should be easy to �nd. Indeed, we consider the following proofof Concatenation Lemma much simpler than the proofs of the XOR Lemma (given inprevious sections).Lemma 7 is derived from Lemma 8 (below) analogously to the way Lemma 2 was derivedfrom Lemma 4; that is, we write F (t)(x1; x2; :::; xt(n)) = (P (x1); F (t�1)(x2; :::; xt(n))), assumethat F (t�1) is hard to guess as claimed, and apply the Concatenation Lemma to (P; F (t�1)).This way, the lower bound on circuits guessing F (t) is related to the lower bound assumedfor circuits guessing the original P and is almost the bound derived for F (t�1) (losing onlyan additive term!). It is thus left to prove the following:Lemma 8 (two argument version of concatenation lemma): Let F1 and F2 be two func-tions, l : IN 7! IN be a length function, and F (x) def= (F1(y); F2(z)) where x = yz andjyj = l(jxj). Let X = fXng, Y = fYl(n)g and Z = fZn�l(n)g be probability ensembles as inLemma 4 (i.e., Xn = (Yl(n); Zn�l(n))).(hypothesis) Suppose that p1(�) is a bound on the probability that families of s1(�)-sizecircuits guess F1 over Y. Namely, for every such circuit family C = fClgProb[Cl(Yl)=F1(Yl)] � p1(l)Likewise, suppose that p2(�) is a bound on the probability that families of s2(�)-sizecircuits guess F2 over Z.6Yao's original XOR Lemma (resp., Concatenation Lemma) refers to the setting of one-way functions.In this setting, the basic predicate P is a composition of an easy to compute predicate b and the inverseof a 1-1 one-way function f ; i.e., P (x) def= b(f�1(x)). For years, the �rst author has considered the proofof the XOR Lemma (even for this setting) too complicated to be presented in class; whereas, a proof ofthe Concatenation Lemma (for this setting) has appeared in his classnotes [1] (see also [2]).
12



(conclusion) Then, for every function � : IN 7! IR, the function p(n) def= p1(l(n)) � p2(n �l(n)) + �(n) is a bound on the probability that families of s(�)-size circuits guess Fover X, where s(n) def= min( s1(l(n))poly(n=�(n)) ; s2(n� l(n))� n)Proof: Let C = fCng be a family of s(�)-size circuits. Fix an arbitrary n, and writeC = Cn, � = �(n), l = l(n), m = n � l(n), Y = Yl and Z = Zm. Abusing notation, welet C1(x; y) denote the �rst component of C(x; y) (i.e., the guess for F1(x)) and likewiseC2(x; y) is C's guess for F2(y). It is instructive to write the success probability of C asfollows: Prob[C(Y; Z)=F (Y; Z)] = Prob[C2(Y; Z)=F2(Z)] (2)� Prob[C1(Y; Z)=F1(Y ) jC2(Y; Z)=F2(Z)] (3)The basic idea is that using the hypothesis regarding F2 allows to bound the �rst factorby p2(m), whereas the hypothesis regarding F1 allows to bound the second factor by ap-proximately p1(l). The basic idea for the latter step is that a su�ciently large sample of(Z; F2(Z)), which may be hard-wired into the circuit, allows to use the conditional probabil-ity space (in such a circuit), provided the condition holds with noticeable probability. Thelast caveat motivates a separate treatment for y's with noticeable Prob[C2(y; Z)=F2(Z)]and for the rest.We call y good if Prob[C2(y; Z)=F2(Z)] � �=2 and bad otherwise. Let G be the set ofgood y's. Then, we bound the success probability of C as followsProb[C(Y; Z)=F (Y; Z)] = Prob[C(Y; Z)=F (Y; Z) & Y 2G] (4)+ Prob[C(Y; Z)=F (Y; Z) & Y 62G] (5)< Prob[C(Y; Z)=F (Y; Z) & Y 2G] + �2 (6)where the inequality follows by observing that for any y 62 G:Prob[C(Y; Z)=F (Y; Z)] � Prob[C2(Y; Z)=F2(Z)] < �2 :Thus, using p(n) = p1(l)p2(m) + �, it remains to prove thatProb[C(Y; Z)=F (Y; Z) & Y 2G] � p1(l) � p2(m) + �=2 (7)We proceed according to the above outline. We �rst show that Prob[C2(Y; Z)=F2(Z)]cannot be too large, as otherwise the hypothesis concerning F2 is violate. Actually, weprove 13



claim 8.1: For every y, Prob[C2(y; Z)=F2(Z)] � p2(m)proof: Otherwise, using any y 2 f0; 1gl so that Prob[C2(y; Z)=F2(Z)] > p2(m), we get acircuit C 0(z) def= C2(y; z) that contradicts the lemma's hypothesis concerning F2. 2Next, we use claim 8.1 in order to relate the success probability of C to the successprobability of small circuits for F1.claim 8.2: There exists a circuit C 0 of size s1(l) so thatProb[C 0(Y )=F1(Y )] � Prob[C(Y; Z)=F (Y; Z) & Y 2G]p2(m) � �2proof: The circuit C 0 is constructed as suggested in the outline above. Speci�cally, we takea poly(n=�)-large sample, denoted S, from the distribution (Z; F2(Z)) and let C 0(y) def=C1(y; z), where (z; �) is a uniformly selected among the elements of S for which C2(y; z) = �holds. Details follow.Let S be a sequence of t def= poly(n=�) pairs, generated by taking t independent samplesfrom the distribution (Z; F2(Z)). We stress that we do not assume here that such asample can be produced by an e�cient (uniform) algorithm (but, jumping ahead, weremark that such a sequence can be �xed non-uniformly). For each y 2 G � f0; 1gl,we denote by Sy the set of pairs (z; �) 2 S for which C2(y; z) = �. Note that Sy is arandom sample for the residual probability space de�ned by (Z; F2(Z)) conditioned onC2(y; Z) = F2(Z). Also, with overwhelmingly high probability, jSyj = 
(l=em2) (sincey 2 G implies Prob[C2(y; Z)=F2(Z)] � �=2). Thus, with overwhelming probability (i.e.,probability greater than 1 � 2�l), taken over the choices of S, the sample Sy provides agood approximation to the conditional probability space, and in particularjf(z; �) 2 Sy : C1(y; z)=F1(y)gjjSyj � Prob[C1(y; Z)=F1(y) jC2(y; Z)=F2(Z)]� �2 (8)Thus, with positive probability, Eq. (8) holds for all y 2 G � f0; 1gl. The circuit C 0guessing F1 is now de�ned as follows. A set S = fzi; �ig satisfying Eq. (8) for all good y'sis \hard-wired" into the circuit C 0. (In particular, Sy is not empty for any good y.) Oninput y, the circuit C 0 �rst determines the set Sy, by running C for t times and checking,for each i = 1; :::; t, whether C2(y; zi) = �i. In case Sy is empty, the circuit returns anarbitrary value. Otherwise, the circuit selects uniformly a pair (z; �) 2 Sy and outputsC1(y; z). (This latter random choice can be eliminated by a standard averaging argument.)Using the de�nition of C 0, Eq. (8), claim 8.1, and some trivialities, we have:Prob[C 0(Y )=F1(Y )] � Xy2GProb[Y =y] � Prob[C 0(y)=F1(y)]= Xy2GProb[Y =y] � jf(z; �) 2 Sy : C1(y; z)=F1(y)gjjSyj14



� Xy2GProb[Y =y] � �Prob[C1(y; Z)=F1(y) jC2(y; Z)=F2(Z)] � �2�� 0@Xy2GProb[Y =y] � Prob[C1(y; Z)=F1(y) & C2(y; Z)=F2(Z)]Prob[C2(y; Z)=F2(Z)] 1A � �2� 0@Xy2GProb[Y =y] � Prob[C(y; Z)=F (y; Z)]p2(m) 1A � �2where the last inequality is due to claim 8.1. The claim follows. 2Now, by the lemma's hypothesis concerning F1, we have Prob[C 0(Y )=F1(Y )] � p1(l),and so using claim 8.2 we getProb[Y 2 G & C(Y; Z)=F (Y; Z)] � (p1(l) + �=2) � p2(m)� p1(l) � p2(m) + �=2This proves Eq. (7) and the lemma follows.Deriving the XOR Lemma from the Concatenation LemmaUsing the techniques of [3], we obtain the followingLemma 9 (Goldreich and Levin): Let F : f0; 1g� 7! f0; 1g�, p : IN 7! [0; 1], and s : IN 7! IN,and let X = fXng be as in Lemma 1. For �; � 2 f0; 1g`, we denote by IP2(�; �) theinner-product mod 2 of � and � viewed as binary vectors of length `.(hypothesis) Suppose that for every n and for every s(n)-size circuit C:Prob[C(Xn)=F (Xn)] � p(n)(conclusion) Then, for some constant c > 0, for every n and for every poly(p(n)n ) � s(n)-size circuit C 0:Prob[C 0(Xn; U`)=IP2(F (Xn); U`)] � 12 + c � 3qn2 � p(n)where U` denotes the uniform distribution over f0; 1g`, with ` def= jF (Xn)j.(That is, C 0 has correlation at most 2c 3qn2p(n) with IP2 over (F (Xn); U`).)Proof Sketch: Let q(n) def= c 3qn2 p(n). Suppose that C 0 contradicts the conclusion ofthe lemma. Then, there exists a set S so that Prob[Xn 2 S] � q(n) and for every x 2 Sthe probability that C 0(x; U`) = IP2(F (x); U`) is at least 12 + q(n)2 , where the probability15



is taken over U` (while x is �xed). Employing the techniques of [3], we obtain a circuitC (of size at most a poly(n=p(n)) factor larger than C 0) which, for every x 2 S, outputsF (x) with probability at least c0 � (q(n)=n)2 (where the constant c0 > 0 is determined inthe proof of [3] according to Chebishev's Inequality).7 Thus, C satis�esProb[C(Xn)=F (Xn)] � Prob[C(Xn)=F (Xn) ^Xn2S]= Prob[Xn2S] � Prob[C(Xn)=F (Xn)jXn2S]� q(n) � �c0 � (q(n)=n)2� = p(n)in contradiction to the hypothesis. The lemma follows.Combining the Concatenation Lemma (Lemma 7) with Lemma 9 we establish the validityof Lemma 1 for the third time; this time with respect to the parameters p(n) = cn2=3 = o(n)and �0(n) = 3q1+�(n)2 . Details follow.Starting with a predicate for which � is a correlation bound and using Lemma 7, weget a function that is hard to guess with probability substantially higher than (1+�(n)2 )t(n).Applying Lemma 9 establishes that given (x1; :::; xt(n)) and a uniformly chosen subsetS � f1; 2; :::; t(n)g it is hard to correlate �i2SP (xi) better than with correlationO0B@ 3vuutn2 �  1 + �(n)2 !t(n)1CA = o(n) �0@ 3s1 + �(n)2 1At(n)This is almost what we need, but not quite (what we need is a statement concerningS = f1; :::; t(n)g). The gap is easily bridged by some standard \padding" trick. Forexample, by using a sequence of �xed pairs (zi; �i), such that �i = P (zi), we reduce thecomputation of �i2SP (xi) to the computation of �t(n)i=1P (yi) (by setting yi = xi if i 2 Sand yi = zi otherwise). Thus, Lemma 1 follows (with the stated parameters).Remarks concerning the uniform complexity settingA uniform-complexity analogue of the above proof can be carried out provided that one canconstruct random examples of the distribution (Xn; P (Xn)) within the stated (uniform)complexity bounds (and in particular in polynomial-time). Actually, this condition isrequired only for the proof of the Concatenation Lemma. Thus we con�ne ourselves topresenting a uniform-complexity version of the Concatenation Lemma.Lemma 10 (Concatenation Lemma { uniform complexity version): Let P;X; s; �; t andF (t) be as in Lemma 7.7The algorithm in [3] will actually retrieve all values � 2 f0; 1g` for which the correlation of C 0(x; U`)and IP2(�;U`) is at least q(n). With overwhelming probability it outputs a list of O((n=q(n))2) stringscontaining all the values just mentioned and thus uniformly selecting one of the values in the list yieldsF (x) with probability at least 1=O((n=q(n))2). 16



(hypothesis) Suppose that �(�) is a bound on the correlation of T (�)-time-constructiblefamilies of s(�)-size circuits with P over X. Furthermore, suppose that one cangenerate in polynomial-time a random sample from the distribution (Xn; P (Xn)).(conclusion) Then, for every function � : IN 7! [0;+1], the function q(n) def= p(n)t(n) +�(n) is a bound on the correlation of T 0(�)-time-constructible families of s0(�)-sizecircuits with F over X(t), where T 0(t(n) � n) = poly(�(n)=n) � T (n) and s0(t(n) � n) =poly(�(n)=n) � s(n).The uniform-complexity version of the Concatenation Lemma is proven by adapting theabove proof as follows. Firstly, we observe that it su�ces to prove an appropriate (uniform-complexity) version of Lemma 8. This is done by �rst proving a weaker version of Claim 8.1which asserts that for all but at most an �(n)=8 measure of the y's (under Y ),Prob[C2(y; Z)=F2(Z)] � p2(m) + �(n)=8This holds since otherwise one may sample Y to �nd a y for which Prob[C2(y; Z)=F2(Z)] >p2(m) holds, and then use this y to construct (uniformly!) a circuit that contradicts thehypothesis concerning F2. Next, we prove a weaker version of Claim 8.2 by observing that,for a uniformly selected pair sequence S, with overwhelmingly high probability (and notonly with positive probability), Eq. (8) holds for all good y 2 f0; 1gl. Thus, if we generateS by taking random samples from the distribution (Zm; F2(Zm)), then with overwhelminglyhigh probability we end-up with a circuit as required by the modi�ed claim. (The modi�edclaim has p2(m)+ �=8 in the denominator (rather than p2(m)) as well as an extra additiveterm of �=8.) Using the hypothesis concerning F1, we are done as in the non-uniform case.6 A Di�erent Perspective: the Entropy AngleThe XOR Lemma and the Concatenation Lemma are special cases of the so-called \directsum conjecture" asserting that computational di�culty increases when many independentinstances of the problem are to be solved. In both cases the \direct sum conjecture" ispostulated by considering insu�cient resources and bounding the probability that thesetasks can be performed within these resources, as a function of the number of instances.In this section we suggest an analogous analysis based on entropy rather than probability.Speci�cally, we consider the amount of information remaining in the task (e.g., of comput-ing f(x)) when given the result of a computation (e.g., C(x)). This analysis turns out tobe much easier.Proposition 11 Let f be a predicate, X be a random variable and C be a class of circuitsso that for every circuit C 2 C H(f(X)jC(X)) � �17



Furthermore, suppose that, for every circuit C 2 C, �xing any of the inputs of C yields acircuit also in C. Then, for every circuit C 2 CH(f(X(1)); :::; f(X(t))jC(X(1); :::; X(t))) � t � �where the X(i)'s are independently distributed copies of X.We stress that the class C in the above Proposition may contain circuits with severalBoolean outputs. Furthermore, for a meaningful conclusion, the class C must contain cir-cuits with t outputs (otherwise, for a circuit C with much fewer outputs, the conditionalentropy H(f(x1); :::; f(xt)jC(x1; :::; xt)) is large merely due to information theoretical rea-sons). On the other hand, the more outputs the circuits in C have, the stronger thehypothesis of the Proposition is. In particular, the number of outputs must be smallerthat jXj otherwise the circuit C(x) = x determines f(x) (i.e., H(f(x)jx) = 0). Thus, anatural instantiation of the Proposition is for a family of small (e.g., poly-size) circuitseach having t outputs.Proof: By de�nition of conditional entropy, we have for every C 2 C,H(f(X(1)); :::; f(X(t))jC(X(1); :::; X(t))) = tXi=1H(f(X(i))jC(X(1); :::; X(t)); f(X(1)); :::; f(X(i�1)))� tXi=1H(f(X(i))jC(X(1); :::; X(t)); X(1); :::; X(i�1))Now, for each i, we show thatH(f(X(i))jC(X(1); :::; X(t)); X(1); :::; X(i�1)) � �We consider all possible settings of all variables, except X(i), and bound the conditionalentropy under this setting (which does not e�ect X(i)). The �xed X(j) = xj can beeliminated from the entropy condition and incorporated into the circuit. However, �xingsome of the inputs in the circuit C yields a circuit also in C and so we can apply theproposition's hypothesis and getH(f(X(i))jC(x1; :::; xi�1; X(i); xi+1; :::; xt)) � �The proposition follows.Additional Comments: Let C be a family of small (e.g., poly(n)-size) circuits eachhaving t outputs and X be distributed over f0; 1gn.� For t = O(logn), the hypothesis in the Proposition is related to the hypotheses usedin all Lemmas above (and in particular in the Concatenation Lemma). Clearly, anentropy lower bound (on a single bit) translates to some unpredictability bound on18



this bit. (This does not hold for many bits as can be seen below.) The other direction(i.e., unpredictability implies a lower bound on the conditional entropy) is obvious fort = 1, but we need to consider the conditional entropy with respect to circuits whichhave t > 1 outputs. However, for each possible value of the circuit, there exists avalue for f which is more likely. These 2t values can be incorporated into the circuit,since t = O(logn), and so a small circuit o�ering small conditional entropy can betranslated into a small circuit which predicts the value of f better than postulated.� As for the conclusion of the Proposition, it is signi�cantly weaker than the conclusionof Concatenation Lemma. In particular, it is possible that C(x1; :::; xt) determines allthe f values correctly with probability 1� �, and yields no information (e.g., outputsa special fail symbol) otherwise. Thus, although C may predict f simultaneously onmany instances with probability 1� �, the conditional entropy is (1� �) � 0 + � � t.AcknowledgementWe wish to thank Mike Saks for useful discussions regarding Levin's proof of the XORLemma. We also thank Salil Vadhan and Ronen Shaltied for pointing out errors in previousversions, and for suggesting ways to �x these errors.
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A Proof of a Generalization of Lemma 6We �rst generalize Impagliazzo's treatment to the case of non-uniform distributions; Im-pagliazzo's treatment is regained by letting X be the uniform probability ensemble.De�nition 3 (hard-core of a predicate relative to a distribution): Let f :f0; 1g� 7!f0; 1gbe a Boolean predicate, s : IN 7! IN be a size function, � : IN 7! [0; 1] be a function, andX = fXng be a probability ensemble.� We say that a sequence of sets, S = fSn � f0; 1gng, is a hard-core of f relative to Xwith respect to s(�)-size circuits families and advantage �(�) if for every n and everycircuit Cn of size at most s(n),Prob[Cn(Xn)=f(Xn)jXn2Sn] � 12 + �(n)� We say that f has a hard-core of density �(�) relative to X with respect to s(�)-sizecircuits families and advantage �(�) if there exists a sequence of sets S = fSn �f0; 1gng so that S is a hard-core of f relative to X with respect to the above andProb[Xn2Sn] � �(n).Lemma 12 (generalization of Lemma 6): Let f : f0; 1g� 7! f0; 1g be a Boolean predicate,s : IN 7! IN be a size function, X = fXng be a probability ensemble, and � : IN 7! [0; 1] be anon-negligible function, so that for every n and every circuit Cn of size at most s(n),Prob[Cn(Xn)=f(Xn)] � 1� �(n)Then, for every function � : IN 7! [0; 1], the function f has a hard-core of density �0(�)relative to X with respect to s0(�)-size circuits families and advantage �(�), where �0(n) def=(1� o(1)) � �(n) and s0(n) def= s(n)=poly(n=�(n)).proof: We start by proving a weaker statement; namely, that X \dominates" an ensem-ble Y under which the function f is strongly unpredictable. Our notion of dominationoriginates in a di�erent work of Levin [7]. Fixing the function � we de�ne dominationas assigning probability mass which is at least a � fraction of the mass assigned by thedominated ensemble; namelyde�nition: We say that the ensemble X = fXng dominates the ensemble Y = fYng if forevery string �, Prob[Xn=�] � �(j�j) � Prob[Yn=�]In this case we also say that Y is dominated by X. We say that Y is critically dominated byX if for every string � either Prob[Yn=�] = (1=�(j�j)) �Prob[Xn=�] or Prob[Yn=�] = 0.21



(Actually, we allow at most one string � 2 f0; 1gn to satisfy 0 < Prob[Yn=�] < (1=�(j�j)) �Prob[Xn=�].)The notion of domination and critical domination play a central role in the proof whichconsists of two parts. In the �rst part (cf., claim 12.1), we prove the existence of a ensembledominated by X so that f is strongly unpredictable under this ensemble. In the secondpart (cf., claims 12.2 and 12.3), we essentially prove that the existence of such a dominatedensemble implies the existence of an ensemble which is critically dominated by X so thatf is strongly unpredictable under this ensemble. However, such a critically dominatedensemble de�nes a hard-core of f relative to X and the lemma follows. Before starting, wemake the following simplifying assumptions (used in claim 12.3).simplifying assumptions: Without loss of generality� Prob[Xn=x] < poly(n)=s(n), for all x's.(Since x's violating this condition cannot contribute to the hardness of f with respectto Xn { as one can incorporate all these s(n)=poly(n) many violating x's with theircorresponding f(x)'s into the circuit).� poly(�(n)) > poly(n)=s(n).(Since otherwise the claim of the lemma holds vacuasly { as s0(n) = s(n)poly(n=�(n)) < 1).claim 12.1: Let T (n) = 1=�(n). Under the hypothesis of the lemma it holds that thereexists a probability ensemble Y = fYng so that Y is dominated by X and so that, forevery s0(n)-circuit Cn, it holdsProb[Cn(Yn)=f(Yn)] � 12 + �(n) (9)motivation: Suppose that for every Y dominated by X, Eq. (9) does not hold (i.e., forevery such Yn there exists a small circuit Cn so that Prob[Cn(Yn)=f(Yn)] > 12 + �(n)).Suppose that we could have applied the min-max principle (which we can't since we donot have a bound on the behaviour of Cn's under all distributions { we only have a boundfor X-dominated distributions). We would have inferred that there is a randomized cir-cuit Rn so that Prob[Rn(x)=f(x)] > 12 + �(n), for every x 2 f0; 1gn. By amplifying theadvantage of the circuit Rn (using repeated trials) we would have obtained a circuit thatfor every x 2 f0; 1gn, guesses correctly f(x), with overwhelmingly high probability. Thisstands in contradiction to the hypothesis of the lemma. However, we cannot apply themin-max principle directly to X-dominated distributions; instead, we consider an arbi-trary superposition of X-dominated distributions and apply the min-max principle in thatcontext.proof: Consider the (�nite) set, denoted D, of all distributions that are critically dominatedby Xn. Recall, that Y is critically dominated by Xn if for every � either Prob[Y =�] =T (n) � Prob[Xn=�] or Prob[Y =�] = 0. (Actually, this is inaccurate and we should allow22



a single string � for which 0 < Prob[Y =�] < T (n) �Prob[Xn=�].) Let Y1; Y2; :::; Yk be anenumeration of all the elements in D (i.e., enumeration of all the critically X-dominateddistributions) and let p = (pi : i2D) be an arbitrary probability distribution on the setD. Let C be an arbitrary deterministic circuit. For every critically dominated distributionYi, denote by ci the probability that C guesses f correctly on input Yi. We now considerthe expected value of ci when i is selected according to the probability space p. That is,we consider the averageXi pi � ci = Xi pi � Prob[C(Yi)=f(Yi)] (10)= Xi pi �Xy Prob[Yi=y] � �(C(y)=f(y)) (11)where �(B) is the indicator function of the Boolean expression B (i.e., �(B) = 1 if B holdsand �(B) = 0 otherwise). Now, consider the r.h.s. of Eq. (11). Each y appears in the sumwith weight Pi pi �Prob[Yi=y]. Now, since all Yi's are critically dominated by X it followsthat, for each y and Yi, the probability Prob[Yi=y] is either T (n) � Prob[Xn=�] or zero.Denoting by Dy the subset of critically dominated distributions in which y appears withnon-zero probability, we infer that each y appears in the sum with weightXi pi � Prob[Yi=y] = Xi2Dy pi � T (n) � Prob[Xn=y]= T (n) � Prob[Xn=y] � Xi2Dy pi� T (n) � Prob[Xn=y]Thus, any probability distribution on the set of critically X-dominated distributions in-duces an X-dominated distribution. Therefore, assuming to the contrary of the claimthat for every X-dominated distribution there exists a s0-size circuit family fCng violatingEq. (9), it follows that for every distribution p on D there exists a circuit C so thatXi pi � Prob[C(Yi)=f(Yi)] > 12 + �(n) (12)Now, we can apply the min-max principle (to Eq. (12)) and obtain a \randomized circuit"R (actually a distribution of circuits) which satis�esProb[R(Y )=f(Y )] > 12 + �(n) (13)for every critically dominated distribution Y . We will use the \randomized circuit" R toderive a contradiction to the hypothesis of the lemma. We �rst denote by B the set ofinstances on which R performs badly; namelyB def= �x : Prob[R(x)=f(x)]� 12 + �(n)�23



Now, Prob[Xn2B] < 1T (n) since otherwise we can de�ne a critically dominated distributionY for which Eq. (13) does not hold; suppose for simplicity that Prob[Xn2B] = 1T (n) thenY is de�ned by letting Prob[Y =x] = T (n) � Prob[Xn=x] if x 2 B and Prob[Y =x] = 0otherwise. Now, using standard ampli�cation techniques we derive a \randomized circuit"R0 (actually a distribution over larger circuits) satisfying for each x 62 BProb[R0(x)=f(x)] > 1� 2�n(Here we need to increase the size of the circuit by a factor of poly(n=�(n)).) Thus, withpositive probability, a circuit selected by the distribution de�ning R0 is correct on all x's inf0; 1gn�B, and so there exists such a circuit, denoted C 0. This contradicts the hypothesisof the lemma sinceProb[C 0(Xn)=f(Xn)] � Prob[Xn 62B] � Prob[C 0(Xn)=f(Xn)jXn 62B]>  1� 1T (n)!Thus, the claim follows. 2In the rest of the proof, we �x an arbitrary ensemble, denoted Y = fYng satisfyingClaim 12.1. Using this ensemble, which is dominated by X, we prove the validity of thelemma by a probabilistic argument. Speci�cally, we consider the following probabilisticconstruction.probabilistic construction: We de�ne a random set Rn � f0; 1gn by selecting each stringx 2 f0; 1gn to be in Rn with probabilityp(x) def= �(n) � Prob[Yn=x]Prob[Xn=x] � 1 (14)independently of the choices made for all other strings. The inequality is due to thedomination condition.First we show that Rn is likely to be hit by Xn with the desired probability (i.e.,Prob[Xn2Rn] � �(n)).claim 12.2: Let � > 0 and suppose that Prob[Xn=x] � �(n) � �2=poly(n), for every x.Then, jProb[Xn2Rn]� �(n)j < � � �(n)for all but a 2�poly(n) measure of the choices of Rn.proof: Let wx def= Prob[Xn=x], for every x 2 f0; 1gn. We de�ne random variables �x =�x(Rn), over the probability space de�ned by the random choices of Rn, so that �x indicatewhether x 2 Rn. Namely, the �x's are independent of one another, Prob[�x=1] = p(x) and�x = 0 otherwise. Thus, for every choice of Rn we haveProb[Xn2Rn] =Xx �x(Rn) � wx24



and consequently we are interested in the behaviour of the sum Pxwx�x as a randomvariable (over the probability space of all possible choices of Rn). Taking expactation overthe possible choices of Rn, we getE[Xx wx�x] = Xx p(x) � wx= Xx �(n) � Prob[Yn=x]Prob[Xn=x] � Prob[Xn=x]= �(n)Now, using Cherno� bound, we getProb "�����Xx wx�x � �(n)����� > � � �(n)# < exp �
 �2�(n)maxxfwxg!!Now, using the claim's hypotheses wx � �2 ��(n)=poly(n) (for all x's), the latter expressionis bounded by exp(�poly(n)) and the claim follows. 2Next we show that Rn is likely to be a hard-core of f realtive to X (w.r.t. su�cientlysmall circuits).claim 12.3: Let Cn be a circuit of size s0(n). Then,Prob[Cn(Xn)=f(Xn)jXn2Rn] < 12 + 2�for all but a 2�(s0(n)2+1) measure of the choices of Rn.proof: We de�ne the same random variables �x = �x(Rn) as in the proof of the previousclaim; �x(Rn) = 1 if x2Rn and �x(Rn) = 0 otherwise. Also, as before, wx def= Prob[Xn=x],for every x 2 f0; 1gn. Let C be the set of inputs on which Cn correctly computes f ; namely,C def= fx : Cn(x)=f(x)gFor every choice of Rn, we are interested in the probabilityProb[Xn2CjXn2Rn] = Prob[Xn2C ^Xn2Rn]Prob[Xn2Rn] (15)We �rst determine the expected value of the numerator of Eq. (15), where the expactationis taken over the possible choices of Rn. We rewrite the numerator as Px2C �x(Rn) � wx,and bound it as followsE[Xx2C �x � wx] = Xx2C p(x) � wx= Xx2C �(n) � Prob[Yn=x]Prob[Xn=x] � Prob[Xn=x]= �(n) � Prob[Yn2C]� �(n) � �12 + ��25



where the last inequality is due to the hypothesis regarding Yn. Next, we use Cherno�bound and getProb[Xx2C wx�x > (12 + 4�3 ) � �(n)] < exp �
 �2�(n)maxxfwxg!!Now, using the simplifying assumptions regarding the wx's and �, the latter expression isbounded by exp(�qs(n)=poly(n)). Thus, for all but a exp(�s0(n)2+2) measure of the Rn'sthe numerator of Eq. (15) is bounded above by (12 + 4�3 ) � �(n). Using the previous claim,we conclude that for a similar measure of Rn's the denumerator of Eq. (15) is boundedbelow by (1� �3) � �(n). The claim follows. 2The lemma now follows by combining the above three claims. Claim 12.1 provides uswith a suitable Y for which we apply the probabilistic construction, whereas Claims 12.2and 12.3 establish the existence of a set Rn such that bothProb[Xn2Rn] > (1� o(1)) � �(n)and Prob[Cn(Xn)=f(Xn)jXn2Rn] < 12 + 2�for all 2s0(n)2 possible circuits, Cn, of size s0(n). The lemma follows.
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