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Abstract

In the setting of multi-party computation, sets of two or more parties with private inputs wish
to jointly compute some (predetermined) function of their inputs. This computation should be
such that the outputs received by the parties are correctly distributed, and none of the parties
learn anything beyond their prescribed output. This encompasses any distributed computing task
and includes computations as simple as coin-tossing and broadcast, and as complex as electronic
voting, electronic auctions, electronic cash schemes and anonymous transactions. The feasibility
(and infeasibility) of multi-party computation has been extensively studied, resulting in a seemingly
comprehensive understanding of what can and cannot be securely computed, and under what
assumptions. However, most of this research relates only to the stand-alone setting, in which a
single set of parties execute a single protocol in isolation. In contrast, in modern network settings,
it is usually the case that many parties run many protocol executions. In this thesis, we study the
feasibility of secure multi-party computation under this more realistic setting of general composition
of protocols and executions. The main results presented are as follows:

1. We show that the basic task of achieving secure broadcast is strictly harder under composition.
Specifically, in the stand-alone model, it is known that digital signatures can be used in order
to obtain broadcast that is secure for any number of corrupted parties. In contrast, we
show that it is ¢mpossible to obtain a secure broadcast protocol that composes in parallel or
concurrently (even assuming digital signatures), unless one assumes that strictly less than
one third of the parties are corrupted.

2. The above impossibility result has a serious impact on the composition of secure multi-party
protocols (when a third or more of the parties may be corrupted). This is because all known
protocols for secure multi-party computation assume a broadcast channel, and implement this
channel in a point-to-point network using a protocol for secure broadcast. Therefore, these
multi-party protocols do not compose. We bypass this problem as follows. First, we provide
a new definition of secure multi-party computation that is a mild relaxation of previous
definitions. Next, we show that under this definition, secure computation of any function can
be achieved without broadcast by adapting known protocols. As a corollary we obtain secure
multi-party protocols that compose (concurrently, when an honest majority is assumed, and
in parallel when any number of parties may be corrupted).

3. Finally, we study the feasibility of obtaining “universally composable” secure multi-party
computation. The composition operation considered in the framework of universal compos-
ability is very general. In particular, it guarantees that a secure protocol remains secure
even when run concurrently with other arbitrary protocols. This captures the security re-
quirements of protocols in real settings (like that of the Internet). Previously, it has been
shown that when a majority of the parties are assumed to be honest, universally composable
protocols can be constructed for any functionality (in the standard model). It has also been
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shown that when only a minority of the parties are honest, there are important functionali-
ties that cannot be securely realized in a universally composable way in the standard model.
Thus, an important open question is whether or not there exists a reasonable model in which
universally composable multi-party computation of general functionalities can be achieved,
for an honest minority. We show that in the common reference string model, universally
composable protocols exist for any two-party and multi-party functionality and for any num-
ber of corrupted parties. This result establishes the feasibility of obtaining secure two-party
and multi-party computation (without an honest majority) under the most stringent security
definition currently known.
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Chapter 1

Introduction

1.1 Secure Computation

In a secure multi-party computation, a set of n parties with private inputs wish to jointly and
securely perform a computation based on their individual inputs. This computation should be such
that each party receives its correct output (correctness), and none of the parties learn anything
beyond their prescribed output (privacy). For example, in an election protocol, correctness ensures
that no coalition of parties can influence the outcome of the election beyond just voting for their
preferred candidate, whereas privacy ensures that no parties learn anything about the individual
votes of other parties. Secure multi-party computation can be viewed as the task of carrying out
a distributed computation, while protecting honest parties from the malicious intents of dishonest
(or corrupted) parties. Specifically, a protocol execution involves the n participating parties and an
adversary who has control over a subset of ¢ of these parties. The adversary is therefore an active,
inside attacker who attempts to somehow “harm” the honest participants (e.g., in an election, the
adversary may attempt to sway the outcome or learn the honest parties’ private votes).

Security in multi-party computation. A number of different definitions have been proposed
for secure multi-party computation. These definitions aim to ensure a number of important security
properties. The most central of these are:

e Privacy: No party should learn anything more than its prescribed output. In particular, the
only information that should be learned about other parties’ inputs is what can be derived from
the output itself.

e Correctness: Each party is guaranteed that the output that it receives is correct.

e Independence of Inputs: Corrupted parties must choose their inputs independently of the honest
parties’ inputs.

e Guaranteed Output Delivery: Corrupted parties should not be able to prevent honest parties
from receiving their output. In other words, the adversary should not be able to carry out a
denial of service attack.

e Fuairness: Corrupted parties should receive their outputs if and only if the honest parties also
receive their outputs. The scenario where a corrupted party obtains output and an honest party
does not should not be allowed to occur.
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The standard definition today (cf. [13] following [53, 4, 69]) formalizes the above requirements (and
others) in the following general way. Consider an ideal world in which an external trusted party is
willing to help the parties carry out their computation. An ideal computation takes place in the
ideal world by having the parties simply send their inputs to the trusted party who computes the
desired function and passes each party its prescribed output. Notice that all of the above security
properties (and more) are ensured in this ideal computation. The security of a real protocol is
established by comparing the outcome of the protocol to the outcome of an ideal computation.
Specifically, a real protocol that is run by the parties (in a world where no trusted party exists)
is said to be secure, if no adversary controlling a coalition of corrupted parties can do more harm
in a real execution that in the above ideal computation. This is stated more formally as follows:
for any adversary attacking a real protocol execution there exists an adversary attacking an ideal
execution such that the input/output distributions of the parties in the real and ideal executions
are essentially the same. Since the adversary is unable to cause any harm in an ideal execution,
this means that security is also guaranteed in a real protocol execution.

We remark that the above informal description is “overly ideal” in the following sense. It is a
known fact that unless an honest majority is assumed, it is impossible to obtain general protocols
for secure multi-party computation that guarantee output delivery and fairness (e.g. [58, 23]).
These requirements are therefore relaxed when no honest majority is assumed. In particular, under
certain circumstances, honest parties may not receive their prescribed output, and fairness is not
always guaranteed. In fact, a number of different levels of fairness have been considered. On one
extreme, complete fairness states that corrupted parties receive their outputs if and only if honest
parties receive their outputs (this is the notion of fairness described above). On the other extreme,
no fairness states that corrupted parties may receive their outputs even if honest parties do not.
An intermediate notion called partial fairness has the following property. There exists a specified
party (say Pp) such that if P; is honest then complete fairness is achieved. However, if P is corrupt
then no fairness is achieved. That is, sometimes fairness is obtained and sometimes it is not (and
the fairness is thus partial).

Feasibility of secure multi-party computation. Wide reaching feasibility results regarding
secure multi-party computation were presented in the mid to late 1980’s. The most central of these
are as follows (recall that ¢ equals the number of corrupted parties):

1. For t < n/3, secure multi-party protocols (with complete fairness and guaranteed output
delivery) can be achieved for any function in a point-to-point network and without any setup
assumptions. This can be achieved both in the computational setting [52] (assuming the
existence of trapdoor permutations), and in the information theoretic (private channel) setting
10, 22].t

2. For t < mn/2, secure multi-party protocols (with complete fairness and guaranteed output
delivery) can be achieved for any function assuming that the parties have access to a broadcast

Tn the information theoretic setting of secure computation, the adversary is not bound to any complexity class (and
in particular, is not assumed to be polynomial-time). Results in this model require no complexity or cryptographic
assumptions and hold unconditionally. The only assumption used is that parties are connected via ideally private
channels (i.e., it is assumed that the adversary cannot eavesdrop on the communication between honest parties).

In contrast, in the computational setting the adversary is assumed to be a probabilistic polynomial-time machine
(or a polynomial-size family of circuits). Results in this model typically assume cryptographic assumptions like the
existence of trapdoor permutations. We note that in this model, it is not necessary to assume that the parties have
access to ideally private channels (because such channels can be implemented using public-key encryption).
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channel. This can be achieved in the computational setting [52] (with the same assumptions
as above), and in the information theoretic setting [76].

3. For t > n/2, secure multi-party protocols with partial fairness (and without guaranteeing
output delivery) can be achieved assuming that the parties have access to a broadcast channel
and in addition assuming the existence of trapdoor permutations [81, 52, 44]. Some works
attempting to provide higher levels of fairness have also appeared [81, 42, 53, §|.

We stress that all of the above results have been proven in the stand-alone model of computation
only. However, the fact that a protocol is secure in the stand-alone model does not (necessarily)
mean that it remains secure when run in a multi-execution setting. This leads us to ask the following
fundamental question: Do analogous feasibility results hold in more general multi-execution settings
(i.e., under composition)?

1.2 Protocol Composition

In general, the notion of “protocol composition” refers to a setting where the participating parties
are involved in many protocol executions. Furthermore, the honest parties participate in each
execution as if it is running in isolation (and therefore obliviously of the other executions taking
place). In particular, this means that honest parties are not required to coordinate between different
executions or remember the history of past executions. Requiring parties to coordinate between
executions is highly undesirable and sometimes may even be impossible (e.g., it is hard to imagine
successful coordination between protocols that are designed independently of each other). We note
that in contrast to the honest parties, we assume that the adversary may coordinate its actions
between the protocol executions. This asymmetry is due to the fact that some level of coordination
is clearly possible. Thus, although it is undesirable to rely on it in the construction of protocols, it
would be careless to assume that the adversary cannot utilize it to some extent.

1.2.1 Types of Protocol Composition

As we have described, the notion of protocol composition relates to settings in which many protocol
executions take place. However, there are actually many ways to interpret this notion. We describe
two important interpretations here:

1. Self-composition: In the stand-alone model, a single set of parties carry out a single protocol
execution. Furthermore, these parties are assumed to be the only parties in the network. In
contrast, a protocol is said to self-compose (or compose with respect to itself) if it remains
secure when a single set of parties carry out many protocol executions. We stress that the
honest parties run each protocol execution obliviously of the other executions. In summary,
in self-composition, the same set of parties run many independent copies of the same protocol
(and it is assumed that they are the only parties in the network).?

2. General-composition: In this type of composition, many sets of parties carry out many ex-
ecutions of arbitrary protocols. Thus, general-composition differs from self-composition in
the following two ways. First, different sets of (possibly overlapping) parties interact in the

2 Another type of self-composition considers a scenario where many sets of parties carry out executions of the same
protocol. The model studied in work on non-malleability [32] falls under this category. In particular, they consider
two pairs of parties running the same protocol concurrently and an adversary who controls the 2nd party in the 1st
execution and the 1st party in the 2nd execution.
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network. Second, the parties run arbitrary protocols that may be designed independently of
each other. A protocol is said to maintain security under general-composition if its security
(as defined by comparing it to an ideal execution) is maintained even when it is run in such
a scenario.

In both of the above notions of composition, many protocol executions take place. However the
scheduling of these executions is also an important factor when considering composition. We now
describe the three main types of scheduling that appear in the literature:

1. Sequential: a new execution begins strictly after the previous one terminates.

2. Parallel: all executions begin at the same time and proceed at the same rate (i.e., in a
synchronous fashion).

3. Concurrent: the scheduling of the protocol executions, including when they start and the rate
at which they proceed, is maliciously determined by the adversary. That is, the adversary
has full control over when messages sent by the parties are delivered (as is typical in an
asynchronous network).

Another type of scheduling, called concurrent with timing [33], lies somewhere between parallel
and concurrent scheduling. Here, the adversary can determine when protocols begin but is limited
in its ability to vary the rate at which the protocols proceed. (In particular, the adversary cannot
delay the delivery of messages for an arbitrary long period of time.)

1.2.2 Feasibility of Protocol Composition

Most of the research on protocol composition considers the question of obtaining security under
self-composition. Much of this research has been focused on zero-knowledge. Specifically, it has
been shown that sequential composition of (auxiliary input) zero-knowledge always holds [51],
whereas parallel composition does not necessarily hold [48]. In contrast, zero-knowledge protocols
that do compose in parallel have been demonstrated [47, 46]. The question of zero-knowledge that
composes concurrently was initiated by [33] who considered the above-mentioned timing model. The
feasibility of concurrent zero-knowledge with arbitrary scheduling was later demonstrated by [77].
In general, the issue of concurrent zero-knowledge has received much attention, culminating in a
rather exact characterization of the round complexity of black-box concurrent zero-knowledge [61,
79, 17, 60, 74] (work on non black-box concurrent zero-knowledge appears in [1]). Another specific
problem that has been studied in the context of concurrent self-composition is that of oblivious
transfer [43]. We stress that all of the above work deals with self-composition only.

In addition to the above work on specific protocol problems, research has been carried out
regarding the composition of protocols for (general) secure multi-party computation. This research
is typically more definitional in nature. That is, papers present a definition, show that protocols
compose under this definition, and then (hopefully) proceed to present protocols that achieve
the definition.> The sequential composition of secure multi-party protocols was considered both
regarding self-composition [5], and generalcomposition [69, 13]. It seems safe to say that we have
a good understanding of the sequential composition of protocols. For example, it is known that
any multi-party functionality can be securely computed under sequential general-composition, and
for any number of corrupted parties [52, 13].

3This is in contrast to the work on the composition of zero-knowledge, for example, where the definition is generally
accepted and the challenge is in finding protocols that meet the definition.
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Recently, a robust notion of security, called universal composability, was put forward in [14].
This definition follows the standard paradigm of comparing a real protocol execution to an ideal
model involving a trusted party. However, it also differs in a very important way. The traditional
model considered for secure computation includes the parties running the protocol, plus an adver-
sary A that controls a set of corrupted parties. However, in the universally composable framework,
an additional adversarial entity called the environment Z is introduced. This environment gener-
ates the inputs to all parties, reads all outputs, and in addition interacts with the adversary in an
arbitrary way throughout the computation. (As is hinted by its name, Z represents the external
environment that consists of arbitrary protocol executions that may be running concurrently with
the given protocol.) A protocol is said to securely realize a given functionality f if for any real-model
adversary A that interacts with the protocol, there exists an ideal-model adversary A’, such that
no environment Z can tell whether it is interacting with A and parties running the protocol, or
with A" and parties that are running in the ideal model for f. Such a protocol is called universally
composable. (In a sense, Z serves as an “interactive distinguisher” between a run of the protocol
and an ideal execution involving a trusted party.) The importance of this new definition is due to a
“composition theorem” that states that any universally composable protocol remains secure under
concurrent general-composition [14]. An important advantage of universally composable security is
that it enables the modular design of protocols. In particular, it is not necessary to design an entire
“secure system”. Rather, protocols are designed independently and once proven secure (under this
definition), can be safely run in any system.

It has been shown that in the case of an honest majority, universally composable protocols
exist for any multi-party functionality [14] (building on [10, 76]). However, prior to our work,
very little was known of the honest minority and two-party cases. Additional work on parallel and
concurrent general-composition in more limited settings appears in [30] who deal specifically with
the information theoretic setting and assume ideally private channels, and in [73] who relate to
a setting where a single protocol execution takes place concurrently to another arbitrary protocol
(that is, the “amount” of concurrency is strictly limited).

We conclude that the question of general and self composition of multi-party protocols when
an honest majority is not assumed was largely unanswered. In particular, it was not known how
to achieve concurrent general-composition, or even concurrent self-composition. The parallel case
has also received almost no attention. Specifically, nothing was known regarding parallel general-
composition and there is no protocol for which security under parallel self-composition has been
proved.? In this thesis, we solve some of these questions.

1.3 Our Results

This thesis studies the feasibility of protocols under different types of composition. We present
lower bounds regarding the fault tolerance of broadcast protocols that remain secure under parallel
self-composition. This result has a significant impact on the composability of secure multi-party
protocols as they typically rely extensively on the use of a broadcast primitive. Nevertheless, we
show that the lower bound can be bypassed in the context of secure multi-party computation
such that concurrent and parallel self-composition can be achieved. Finally, we present universally
composable protocols for securely realizing any multi-party functionality in the common reference

*We conjecture that the protocol of [52] self composes in parallel when the zero-knowledge proofs and proofs of
knowledge used are such that simulation and knowledge extraction can be executed under parallel composition. We
have not verified this conjecture.
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string model.> (Recall that such protocols achieve concurrent general-composition.) Each chapter
of this thesis is preceded by a detailed introduction. Here, we briefly state the results and explain
how they relate to each other.

1.3.1 The Composition of Authenticated Byzantine Agreement

We begin by studying the specific and basic problem of achieving secure broadcast in a point-to-
point network. This problem is known as Byzantine Agreement (or Generals) and has been the focus
of much research. Pease et al. [71, 62] showed that Byzantine Agreement can be achieved in the
standard model if and only if strictly less than 1/3 of the parties may be corrupted. They further
showed that by augmenting the network with a public-key infrastructure for digital signatures, it is
possible to obtain secure protocols for any number of corrupted parties. This augmented problem
is called “authenticated Byzantine Agreement”.

We ask whether protocols for authenticated Byzantine Agreement self-compose in parallel or
concurrently. This question is answered in the negative. In fact, we prove an impossibility result
stating that authenticated Byzantine Agreement cannot be self-composed in parallel (even twice),
if 1/3 or more of the parties are corrupted. In contrast, it is easily shown that any protocol for
Byzantine Agreement in the standard model self-composes concurrently. Thus, on the one hand,
if less than 1/3 of the parties are corrupted, protocols for Byzantine Agreement in the standard
(i.e., “non-authenticated”) model can be used, and composition is achieved. On the other hand, if
1/3 or more of the parties are corrupted (and parallel or concurrent composition is required), then
even authenticated Byzantine Agreement cannot be used. We conclude that the augmentation of
the standard model with a public-key infrastructure is of no benefit when parallel or concurrent
composition is needed.

Conceptually, this result demonstrates that achieving security under composition (even a rel-
atively weak type of composition such as two execution parallel self-composition) can be strictly
harder than achieving security in the stand-alone model. It also shows that any protocol that
achieves composition will have to necessarily do so without the help of authenticated Byzantine
Agreement. This conclusion is bothersome because all known protocols for secure multi-party
computation in the case that a third or more of the parties may be corrupted (e.g., [52, 76, 9])
rely extensively on broadcast, and indeed implement it using authenticated Byzantine Agreement.
Thus, none of these protocols compose in the point-to-point model.

1.3.2 Secure Computation Without Agreement

As we have mentioned, an immediate concern that arises out of the previous result relates to the
feasibility of obtaining composition of secure multi-party protocols in a point-to-point network.
This concern motivates the following question: Is it possible to obtain secure multi-party compu-
tation without relying on a broadcast channel (and thus without using authenticated Byzantine
Agreement) when a third or more of the parties are corrupted?

We answer this question in the affirmative. Specifically, we mildly relax the definition of secure
computation allowing abort (i.e., when output delivery is not guaranteed), and show how this
definition can be achieved without the use of a broadcast channel, and for any number of corrupted
parties. The novelty of our definition is in decoupling the issue of agreement from the central
security issues of privacy and correctness in secure computation. The only difference between our
definition and previous ones is as follows. Previously, it was required that if one honest party

°In the common reference string model, all parties are given a comimon, public reference string that is ideally
chosen from a given distribution.
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aborted then all other honest parties also abort. Thus, the parties agree on whether or not the
protocol execution terminated successfully or not. In our new definition, it is possible that some
honest parties abort while others receive output. Thus, there is no agreement regarding the success
of the protocol execution. We stress that in all other aspects, our definition remains the same (in
particular, the properties of privacy, correctness and independence of inputs are all preserved). An
important corollary of this result is the existence of multi-party protocols that self-compose for the
case that a third or more of the parties may be corrupted.

1.3.3 Universally Composable Multi-Party Computation

The broadest type of composition described above is that of concurrent general-composition. As we
have mentioned, universally composable protocols remain secure under this type of composition.
The feasibility of obtaining universally composable secure multi-party computation is therefore of
great interest. The following results are known regarding universal composability in the standard
model (where no setup phase is assumed). On the one hand, it has been shown that in the case of
an honest majority, universally composable protocols exist for any multi-party functionality [14].
On the other hand, it has also been shown that universally composable protocols for the basic two-
party functionalities of commitment, zero-knowledge and coin-tossing cannot be obtained [16, 14].
These impossibility results can actually be extended to include a very large class of natural func-
tionalities [19]. (We note that two-party computation is a special case of multi-party computation
when there is no honest majority, and thus these results also rule out the possibility of obtaining
universally composable multi-party computation for an honest minority.) Thus, a natural and im-
portant question to ask is whether or not there exists a reasonable model in which it is possible to
obtain general universally composable secure computation for the two-party and honest-minority
multi-party cases?

Universally composable protocols for the specific two-party functionalities of commitment and
zero-knowledge have been constructed in the common reference string model [16, 25]. In this model,
all parties are given access to some string that is ideally chosen from a given distribution. The string
must be chosen in a trusted manner, and therefore this setup assumption is definitely undesirable.
However, due to the impossibility results of the standard model mentioned above, some setup
assumption is required, and that of a common reference string seems rather minimal. We note that
there are some scenarios where the use of a common reference string is very reasonable. Take for
example the case of a large organization that wishes to have its employees use secure protocols for
a number of different tasks. Then, in this context, the organization itself is trusted to properly
choose a common reference string.

We ask whether or not there exist universally composable protocols for general functionalities
in the common reference string model, in the two-party case, and in the multi-party case when no
honest majority is assumed. We answer this question in the affirmative and prove the following
feasibility result:

There exist universally composable protocols in the common reference string model for
securely computing any multi-party functionality and that tolerate any number of cor-
rupted parties.

An important corollary of this result is the feasibility of obtaining universally composable two-party
computation for any functionality. We stress that previous feasibility results for secure computation
(in the case of an honest minority) related to the stand-alone model only. Thus, our result is the first
general construction to guarantee security under concurrent general-composition, without assuming
an honest majority.
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Remark: Another important feature of our construction relates to the specific adversarial model
used. We differentiate between two types of adversaries: static and adaptive. A static adversary
controls a set of corrupted parties that is fixed at the onset of the computation (but whose identities
are of course unknown to the honest parties). In contrast, an adaptive adversary actively corrupts
parties throughout the computation. We stress that an adaptive adversary has full power to choose
who to corrupt and when, and can base this choice on its view of the computation so far. We present
universally composable protocols for both the static and adaptive adversarial models. Our protocols
are actually the first general constructions to guarantee security against adaptive adversaries in the
case of an honest minority. (All previous protocols for the adaptive adversarial model [15, 6, 24],
even in the stand-alone model, assumed an honest majority.)

1.3.4 An Apparent Contradiction

We conclude with a remark regarding the connection between the results described in Sections 1.3.1
and 1.3.3. On the one hand, in Section 1.3.1 we claim that it is impossible to construct a protocol
for the broadcast functionality (i.e., Byzantine Agreement) that self-composes in parallel, when
1/3 or more of the parties are corrupted. (This impossibility result holds also in the common
reference string model, see Section 2.2.2.) On the other hand, in Section 1.3.3 we claim that for
any functionality (and, in particular, for the broadcast functionality), there exists a protocol in the
common reference string model that remains secure under concurrent general-composition and for
any number of corrupted parties. Thus, it would seem that these claims contradict each other.

However, there is actually no contradiction because the results are in different models. Specifi-
cally, the impossibility result of Section 1.3.1 is demonstrated in a model where guaranteed output
delivery is required (i.e., all honest parties must receive their output and the adversary cannot carry
out a denial of service attack). In contrast, the definition of universal composability, similarly to
the definitions of Section 1.3.2, does not guarantee output delivery and thus honest parties may
abort (the outline of the definition of universal composability in Section 1.2.2 is very brief and
therefore does not include this point). We stress that the proof of the impossibility result for com-
posing (authenticated) Byzantine Agreement relies heavily on the requirement that parties must
receive output; whereas the fact that output delivery is not required is essential for achieving uni-
versal composability in the case of an honest minority. Thus, this difference in modeling is actually
central to both of the results. See the formal definitions of Byzantine Agreement and universal
composability in Sections 2.2 and 4.3, respectively, for a full description of the model used in each
result.’

1.4 Organization

Although the results of this thesis are all on the subject of the composition of secure protocols, each
result can be viewed in its own right. Therefore, despite the risk of a small amount of repetition,
each chapter is presented in a self-contained manner, enabling a reader to focus on one chapter
without having to read the others. We also provide an appendix containing abstracts of other work
done by the author during graduate studies at the Weizmann Institute of Science.

5There is another technical difference between the models in that the current formalization of universal compos-
ability assumes that each execution is assigned a unique session identifier. In such a case, it is actually possible to
achieve authenticated Byzantine Agreement that self-composes concurrently, for any number of corrupted parties; see
Section 2.4. Nevertheless, we believe that the feasibility result for universal composability holds even when unique
session identifiers are not assumed.



Chapter 2

The Composition of Authenticated
Byzantine Agreement

In this chapter we show that the basic problem of achieving secure broadcast in a distributed
network is strictly harder when composition is required. In particular, assuming a public-key
infrastructure for digital signatures, it is known that secure broadcast can be achieved for any
number of corrupted parties in the stand-alone model. In this chapter, we show that an analogous
result that composes cannot be achieved. That is, when a third or more of the parties may
be corrupted, it is ¢mpossible to obtain secure broadcast that remains secure under parallel self-
composition, (even given a public-key infrastructure). Notice that our impossibility result holds
even for the relatively weak notion of parallel self-composition.

2.1 Introduction

The Byzantine Generals (Byzantine Agreement!) problem is one of the most researched areas in
distributed computing. Numerous variations of the problem have been considered under different
communication models, and both positive results (i.e., protocols) and negative results (i.e., lower
bounds on efficiency and fault tolerance) have been established. The reason for this vast interest
is the fact that the Byzantine Generals problem is the algorithmic implementation of a broadcast
channel within a point-to-point network. In addition to its importance as a primitive in its own
right, broadcast is a key tool in the design of secure protocols for multi-party computation.

The problem of Byzantine Generals is (informally) defined as follows. The setting is that of n
parties connected via a point-to-point network, where one party is designated as the General (or
dealer) who holds an input message x. In addition, there is an adversary who controls up to ¢ of
the parties and can arbitrarily deviate from the designated protocol specification. The aim of the
protocol is to securely simulate a broadcast channel. Thus, first and foremost, all (honest) parties
must receive the same message. Furthermore, if the General is honest, then the message received
by the honest parties must be z (i.e., the adversary is unable to prevent an honest General from
successfully broadcasting its given input message).

Pease et al. [71, 62] provided a solution to the Byzantine Generals problem in the standard
model, i.e. the information-theoretic model with point-to-point communication lines (and no setup
assumptions). For their solution, the number of corrupted parties, ¢, must be less than n/3.
Furthermore, they complemented this result by showing that the requirement for ¢ < n/3 is in fact

!These two problems are essentially equivalent.
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inherent. That is, no protocol which solves the Byzantine Generals problem in the standard model
can tolerate a third or more corrupted parties.

The above bound on the number of corrupted parties in the standard model is a severe limitation.
It is therefore of great importance to find a different (and realistic) model in which it is possible
to achieve higher fault tolerance. One possibility involves augmenting the standard model such
that messages sent can be authenticated. By authentication, we mean the ability to ascertain that
a message was in fact sent by a specific party, even when not directly received from that party.
This can be achieved using a trusted preprocessing phase in which a public-key infrastructure for
digital signatures (e.g. [78, 56]) is set up. (We note that this requires that the adversary be
computationally bounded. However, there exist preprocessing phases which do not require any
computational assumptions; see [72].) Indeed, Pease et al. [71, 62] use such an augmentation and
obtain a protocol for the Byzantine Generals problem which can tolerate any number of corrupted
parties (this is very dramatic considering the limitation to 1/3 corrupted in the standard model).
The Byzantine Generals problem in this model is called authenticated Byzantine Generals. We
often informally refer to this model as the “authenticated model”.

A common use of Byzantine Generals is to substitute a broadcast channel in multi-party pro-
tocols. As such, it is likely to be executed many times. The question of whether these protocols
remain secure when executed concurrently, in parallel or sequentially is thus an important one.
However, existing work on this problem (in both the standard and authenticated models) focused
on the security and correctness of protocols in the stand-alone model only.

It is not difficult to show that the unauthenticated protocol of Pease et al. [71], and in fact all
protocols in the standard model, do compose concurrently (and hence in parallel and sequentially).
However, this is not the case with respect to authenticated Byzantine Generals. The first to notice
that composition in this model is problematic were Gong et al. [57], who also suggest methods
for overcoming the problem. Our work shows that these suggestions and any others are in fact
futile because composition in this model is impossible (as long as 1/3 or more of the parties may
be corrupted). (We note that by composition, we actually refer to stateless composition; see
Section 2.2.3 for a formal discussion.)

Our Results. The main result of this chapter is a proof that authenticated Byzantine Generals
protocols, both deterministic and randomized, cannot be self-composed in parallel (and thus con-
currently). This is a powerful statement with respect to the value of enhancing the standard model
by the addition of authentication. Indeed, it shows that despite popular belief, this enhancement
does mot provide the ability to improve fault tolerance when composition is required. That is, if
there is a need for parallel composition, then the number of corrupted players cannot be n/3 or
more, and hence the authenticated model provides no advantage over the standard model. This
result is summarized in the following theorem:

Theorem 2.1.1 No protocol for authenticated Byzantine Agreement that self-composes in parallel
(even twice) can tolerate n/3 or more corrupted parties.

On the Use of Unique Session ldentifiers. As will be apparent from the proof of Theo-
rem 2.1.1, the obstacle to achieving agreement in this setting is the fact that honest parties cannot
tell in which execution of the protocol a given message was authenticated. This allows the adversary
to “borrow” messages from one execution to another, and by that attack the system. In Section 2.4,
we show that if we further augment the authenticated model so that unique and common indices
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are assigned to each execution, then security under many concurrent executions can be achieved
for any number of corrupted parties.

Thus, on the one hand, our results strengthen the common belief that session identifiers are
necessary for achieving authenticated Byzantine Generals. On the other hand, we show that such
identifiers cannot be generated within the system. Typical suggestions for generating session iden-
tifiers in practice include having the General choose one, or having the parties exchange random
strings and then set the identifier to be the concatenation of all these strings. However, Theo-
rem 2.1.1 rules out all such solutions. Rather, one must assume the existence of some trusted
external means for coming up with unique and common indices. This seems to be a very difficult,
if not impossible, assumption to realize.

A natural question to ask here relates to the fact that unique and common session identifiers
seem to be necessary for carrying out any form of concurrent composition. This is because parties
need to be able to allocate messages to protocol executions, and this requires a way of distinguishing
executions from each other. Indeed, a natural solution to this problem is to provide unique and
global session identifiers to every execution. However, in such a case, these identifiers can also be
used for achieving broadcast. Nevertheless, it is possible to correctly allocate messages to protocol
executions without the use of of global identifiers. This can be achieved as follows. When a party
P; begins a new execution, it chooses a unique, local identifier sid(P;) and sends it to all the other
parties. Then, whenever a party P; wishes to send a message to F; in this execution, it concatenates
the identifier sid(P;) to the message. In this way, P; is able to route all messages that it receives to
the correct executions. In general, it is guaranteed that all the honest parties in a given execution
successfully differentiate this execution from others.? Most importantly, this is achieved without
any global identifiers whatsoever.

Implications for Secure Multi-Party Computation. As we have stated above, one important
use for Byzantine Generals protocols is to substitute the broadcast channel in a multi-party protocol.
In fact, all known solutions for general multi-party computation assume a broadcast channel. The
implicit claim is that this channel can be substituted by a Byzantine Generals protocol without
any complications. However, our results show that the use of authenticated Byzantine Generals
in such a way prevents the composition of the larger protocol (even if this protocol does compose
when using a physical broadcast channel).

Another important implication of our result is due to the fact that any secure protocol for solving
general multi-party tasks can be used to solve Byzantine Generals (by the standard definition of
secure computation for honest majority). Therefore, none of these protocols can be composed in
parallel or concurrently, unless more than 2/3 of the parties are honest or a physical broadcast
channel is available. This issue is dealt with in more depth in Chapter 3.

A Comparison to Zero-Knowledge. It is instructive to compare our results to the work of
Goldreich and Krawzcyk [48] on zero-knowledge. They show that there exist protocols that are zero-
knowledge when executed stand-alone, and yet do not remain zero-knowledge when composed in
parallel (even twice). Thus, they show that zero-knowledge does not necessarily compose in parallel.
Completing this picture, we note that there exist zero-knowledge protocols that do compose in
parallel (for example, see [47, 46]). In contrast, we show that it is impossible to obtain any protocol
for Byzantine Agreement that will compose in parallel (even twice).

2There are no guarantees regarding messages sent by corrupted parties. However, corrupted parties can anyway
send arbitrary messages, so this makes no difference.
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2.2 Definitions

2.2.1 Computational Model

We consider a setting involving n parties, P, ..., P,, that interact in a synchronous point-to-point
network. In such a network, each pair of parties is directly connected, and it is assumed that the
adversary cannot modify messages sent between honest parties. Each party is formally modeled
by an interactive Turing machine with n—1 pairs of communication tapes. The communication of
the network proceeds in synchronized rounds, where each round consists of a send phase followed
by a receive phase. In the send phase of each round, the parties write messages onto their output
tapes, and in the receive phase, the parties read the contents of their input tapes.

This paper refers to the authenticated model, where some type of trusted preprocessing phase
is assumed. This is modeled by all parties also having an additional setup-tape that is generated
during the preprocessing phase. Typically, in such a preprocessing phase, a public-key infrastructure
of signature keys is generated. That is, each party receives its own secret signing key, and in
addition, public verification keys associated with all other parties. (This enables parties to use the
signature scheme to authenticate messages that they receive, and is thus the source of the name
“authenticated”.) However, we stress that our lower bound holds for all preprocessing phases (even
those that cannot be efficiently generated).

In this model, a t-adversary is a party that controls up to ¢ < n of the parties P,..., P,
(these parties are said to be corrupted). The adversary receives the corrupted parties’ views and
determines the messages that they send. These messages need not be according to the protocol
execution, but rather can be computed by the adversary as an arbitrary function of its view. In
this work, we consider static adversaries for whom the set of corrupted parties is fixed before the
execution begins. (By taking a weaker adversary, we strengthen our impossibility result.) Finally,
our impossibility results hold for adversaries (and honest parties) whose running time is of any
complexity. In fact, our lower bound holds as long as the adversary is allowed to be of the same
complexity as the honest parties.

2.2.2 Byzantine Generals/Agreement

The existing literature defines two related problems: Byzantine Generals and Byzantine Agreement.
In the first problem, there is one designated party, the General or dealer, who wishes to broadcast its
value to all the other parties. In the second problem, each party has an input and the parties wish
to agree on a value, with a validity condition that if a majority of honest parties begin with the same
value, then they must terminate with that value. These problems are equivalent in the sense that
any protocol solving one can be used to construct a protocol solving the other, while tolerating the
same number of corrupted parties. We relax the standard requirements on protocols for the above
Byzantine problems in that we allow a protocol to fail with probability that is negligible in some
security parameter. This relaxation is needed for the case of authenticated Byzantine protocols
where signature schemes are used (and can always be forged with some negligible probability). We
present the formal definition for the Byzantine Agreement problem only and all references from
here on will be with respect to this problem.

Definition 2.2.1 (Byzantine Agreement): Let Py, ..., P, ben parties with associated inputs xy, ..., x,
and let A be an adversary who controls up to t of the parties. Then, a protocol solves the Byzantine
Agreement problem, tolerating t corruptions, if for any adversary A the following two properties
hold (except with negligible probability):
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1. Agreement: All honest parties output the same value.

2. Validity: If more than n/2 honest parties have the same input value x, then all honest parties
output x.

We note that the validity requirement is sometimes stated so that it must hold only when more
than n/3 honest parties have the same input value.

Authenticated Byzantine Agreement: In the model for authenticated Byzantine Agreement,
some trusted preprocessing phase is run before any executions begin. In this phase, a trusted party
distributes keys to every participating party. Formally,

Definition 2.2.2 (Authenticated Byzantine Agreement): A protocol for authenticated Byzantine
Agreement is a Byzantine Agreement protocol with the following augmentation:

e Fach party has an additional setup-tape.
e Prior to any protocol execution, an ideal (trusted) party chooses a series of strings $i,...,Sn
according to some distribution, and sets party P;’s setup-tape to equal s; (for everyi =1,...,n).

Following the above preprocessing stage, the protocol is Tun in the standard communication model
for Byzantine Generals/Agreement protocols.

As we have mentioned, a natural example of such a preprocessing phase is one where the strings

S1,...,8n constitute a public-key infrastructure. That is, the trusted party chooses verification and
signing key-pairs (vky, ski),..., (vky,, sk,) from a secure signature scheme, and sets the contents
of party P;’s tape to equal s; = (vky,...,vk;_1, sk;,vkit1,...,vky). In other words, all parties are

given their own signing key and the verification keys of all the other parties. We note that this
preprocessing phase can also be used to setup a common reference string to be accessed by all
parties (in this case, all the s;’s are set to the desired common reference string).

We remark that the above-defined preprocessing phase is very strong. First, it is assumed that
it is run completely by a trusted party. Furthermore, there is no computational bound on the power
of the trusted party generating the keys. Nevertheless, our impossibility results hold even for such
a preprocessing phase.

2.2.3 Composition of Protocols

This paper deals with the security of authenticated Byzantine Agreement protocols, when the
protocol is executed many times (rather than just once). We define the composition of protocols
to be stateless. This means that the honest parties act upon their view in a single execution only.
In particular, this means that the honest parties do not store in memory their views from previous
executions or coordinate between different executions occurring at the current time. Furthermore,
in stateless composition, there is no unique session identifier that is common to all participating
parties. (See the Introduction for a discussion on session identifiers and their role.) We note
that although the parties are stateless, the adversary is allowed to maliciously coordinate between
executions and record its view from previous executions. Formally, parallel composition is captured
by the following process:

Definition 2.2.3 (parallel self-composition): Let Py, ..., P, be parties for an authenticated Byzan-
tine Agreement protocol 11 and let I C [n] (|I| < t) be the set of corrupted parties controlled by an
adversary A. Then, the parallel self-composition of II involves the following process:
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e Run the preprocessing phase associated with I1 and obtain the strings s1,...,s,. Then, for every
J, set the setup-tape of P; to equal s;.

e Repeat the following process a polynomial number of times in parallel:

1. The adversary A chooses an input vector xi,...,x,.

2. Fiz the input tape of every honest P; to be x; and the random-tape to be a uniformly (and
independently) chosen random string.

3. Invoke all parties for an execution of II (using the strings generated in the preprocessing
phase above). The execution is such that for i € I, the messages sent by party P; are
determined by A (who also sees P;’s view). On the other hand, all other parties follow the
mstructions as defined in 11.

Protocol 11 is said to remain secure under parallel self-composition if each of the parallel executions
constitutes a secure Byzantine Agreement protocol tolerating t corruptions.

We stress that the preprocessing phase is executed only once and all executions use the strings
distributed in this phase. Furthermore, we note that Definition 2.2.3 implies that all honest parties
are oblivious of the other executions that have taken place (or that are taking place in parallel).
This is implicit in the fact that in each execution the parties are invoked with no additional state
information, beyond the contents of their input, random and setup tapes (i.e., the composition is
stateless). In contrast, the adversary A can coordinate between the executions, and its view at any
given time includes all the messages received in all other executions.?

Concurrent composition is defined analogously, with the only difference being that the adver-
sary can determine the scheduling of the executions (i.e., when they begin and at what rate they
proceed). Before continuing, we show that any Byzantine Generals (or Agreement) protocol in the
standard model composes concurrently.

Proposition 2.2.4 Let 11 be a protocol that solves the Byzantine Agreement problem in the stan-
dard model and tolerates t corruptions. Then, Il remains secure under concurrent self-composition.*

Proof (sketch): We reduce the security of II under concurrent composition to its security for a
single execution. Assume by contradiction that there exists an adversary A who runs IV concurrent
executions of II, such that with non-negligible probability, in one of the executions the outputs of
the parties do not meet the requirement on a Byzantine Agreement protocol. Then, we construct
an adversary A’ who internally incorporates A and attacks a single execution of II. Intuitively, A’
simulates all executions apart from the one in which A succeeds in its attack. Formally, A’ begins
by choosing an index i €x {1,...,N}. Then, for all but the i*" execution of the protocol, A’ plays
the roles of the honest parties in an interaction with .4 (this simulation is internal to A’). However,
for the i*" execution, A’ externally interacts with the honest parties and passes messages between
them and .A. The key point in the proof is that the honest parties hold no secret information (and
do not coordinate between executions). Therefore, the simulation of the concurrent setting by A’
for A is perfect. Thus, with probability 1/N, the i*" execution is the one in which A succeeds.
However, this means that A’ succeeds in breaking the protocol for a single execution (where A”’s
success probability equals 1/N times the success probability of A). This contradicts the stand-alone
security of II. [l

3The analogous definition for the composition of unauthenticated Byzantine Agreement is derived from Defini-
tion 2.2.3 by removing the reference to the preprocessing stage and setup-tapes.
“It can actually be shown that II remains secure even under concurrent general-composition.
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2.3 Impossibility Result

In this section we show that it is impossible to construct an authenticated Byzantine Agreement
protocol that self-composes in parallel (or concurrently), and is secure when n/3 or more parties
are corrupted. This result is analogous to the [71, 62] lower bounds for Byzantine Agreement in the
standard model (i.e., without authentication). We stress that our result does not merely show that
authenticated Byzantine Agreement protocols do not necessarily compose; rather, we show that
one cannot construct protocols that will compose. Since there exist protocols for unauthenticated
Byzantine Agreement that are resilient for any ¢ < n/3 corrupted parties and compose concur-
rently, this shows that the advantage gained by the preprocessing step in authenticated Byzantine
Agreement protocols is lost when composition is required.

Intuition. Let us first provide some intuition into why the added power of the preprocessing step
in authenticated Byzantine Agreement does not help when composition is required. (Recall that on
the one hand in the stand-alone setting, there exist authenticated Byzantine Agreement protocols
that tolerate any number of corrupted parties. On the other hand, under parallel composition, only
t < n/3 corruptions can be tolerated.) An instructive step is to first see how authenticated Byzan-
tine Agreement protocols typically utilize a public-key infrastructure (set up in the preprocessing
step) in order to increase fault tolerance. Consider three parties A, B and C participating in a
standard (unauthenticated) Byzantine Agreement protocol. Furthermore, assume that during the
execution A claims to B that C sent it some message x. Then, B cannot differentiate between the
case that C actually sent x to A, and the case that C did not send this value and A is corrupted.
Thus, B cannot be sure that A really received z from C. Indeed, such a model has been called
the “oral message” model, in contrast to the “signed message” model of authenticated Byzantine
Agreement [62]. The use of signature schemes helps to overcome this exact problem: If C' had
signed on the message x and sent this signature to A, then A could forward the signature to B.
Since A cannot forge C’s signature, this would then constitute a proof that C had indeed sent z
to A. Utilizing the unforgeability property of signatures, it is thus possible to achieve Byzantine
Agreement for any number of corrupted parties.

However, the above intuition holds ounly in a setting where a single execution of the agreement
protocol takes place. Specifically, if a number of executions were to take place, then A may send B
a value x along with C’s signature on z, yet B would still not know whether C signed on « in this
execution, or in a different (concurrent or parallel) execution. Thus, the mere fact that A produces
C’s signature on a value does not provide proof that C' signed this value in this execution. As we
will see in the proof, this is enough to render the public-key infrastructure useless under parallel
composition.

Theorem 2.3.1 (Theorem 2.1.1 — restated): No protocol for authenticated Byzantine Agreement
that self-composes in parallel (even twice) can tolerate n/3 or more corrupted parties.

Proof: Our proof of Theorem 2.1.1 uses ideas from the proof by Fischer et al. [38] that no
unauthenticated Byzantine Agreement protocol can tolerate n/3 or more corrupted parties. We
begin by proving the following lemmas:

Lemma 2.3.2 There exists no protocol for authenticated Byzantine Agreement for three parties,
that composes in parallel (even twice) and can tolerate one corrupted party.

Proof: Assume, by contradiction, that there exists a protocol II that solves the Byzantine Agree-
ment problem for three parties A, B and C, where one may be corrupt. Furthermore, Il remains
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secure even when composed in parallel twice. Exactly as in the proof of Fischer et al. [38], we define
a hexagonal system S that intertwines two independent copies of II. That is, let Ay, By, Cy and Ay,
B; and C be independent copies of the three parties participating in II. By independent copies,
we mean that Ay and A; are the same party A with the same key tape, that runs in two different
parallel executions of 11, as defined in Definition 2.2.3. The system S is defined by connecting party
Ap to Cy and By (rather than to Cy and By); party By to Ay and Cy; party Cy to By and Aj; and
so on, as in Figure 2.1.

0 0

B, Ay

Figure 2.1: Combining two copies of II in a hexagonal system S.

In the system S, parties Ag, By, and Cy have input 0; while parties Ay, By and C; have input 1.
Note that within S, all parties follow the instructions of II exactly. We stress that S is not a
Byzantine Agreement setting (where the parties are joined in a complete graph on three nodes),
and therefore the definitions of Byzantine Agreement tell us nothing directly of what the parties’
outputs should be. However, S is a well-defined system and this implies that the parties have
well-defined output distributions. The proof proceeds by showing that if II is a correct Byzantine
Agreement protocol, then we arrive at a contradiction regarding the output distribution in S. We
begin by showing that By and Cj output 0 in S. We denote by rounds(II) the upper bound on the
number of rounds of IT (when run in a Byzantine Agreement setting).

Claim 2.3.3 Ezcept with negligible probability, parties By and Cy halt within rounds(II) steps and
output 0 in the system S.

Proof: We prove this claim by showing that there exists an adversary A controlling A; and As
who participates in two parallel copies of II and simulates the system .S, with respect to By and
Cy’s view. (We stress that A controlling A; and As is considered one corruption because these are
both copies of the same party.) The adversary A (and the other honest parties participating in
the parallel executions) work within a Byzantine Agreement setting where there are well-defined
requirements on their output distribution. Therefore, by analyzing their output in this parallel
execution setting, we are able to make claims regarding their output in the system S.

Let Ay, By and Cy be parties running an execution of I, denoted Ily, where By and Cy both
have input 0. Furthermore, let A;, B; and C} be running a parallel execution of II, denoted Iy,
where B; and C] both have input 1. Recall that By and B; are independent copies of the party B
with the same key tape (as in Definition 2.2.3); likewise for Cy and C.
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Now, let A be an adversary who controls both Ay in IIy and A; in II; (recall that the corrupted
party can coordinate between the different executions). Party A’s strategy is to maliciously generate
an execution in which By’s and Cy’s view in Ilj is identical to their view in S. A achieves this
by redirecting edges of the two parallel triangles (representing the parallel execution), so that the
overall system has the same behavior as S; see Figure 2.2.

Ao Bo
0 0
. ———————— C (1 S 0, Co
0
1 1
By Aq

Figure 2.2: Redirecting edges of IIy and II; to make a hexagon.

Specifically, the (Ag, Cp) and (A1, C1) edges of [Ty and Iy respectively are removed, and the (A, C1)
and (A, Cp) edges of S are added in their place. A is able to make such a modification because it
only involves redirecting messages to and from parties that it controls (i.e., Ay and Aj).

Before proceeding, we present the following notation: let msg,;(Ag, By) denote the message sent
from Ay to By in the i*? round of the protocol execution. We now formally show how the adversary
A works. A invokes parties Ag and A, upon inputs 0 and 1 respectively. We stress that Ag and
A; follow the instructions of protocol II exactly. However, A provides them with their incoming
messages and sends their outgoing messages for them. The only malicious behavior of A is in the
redirection of messages to and from Ay and A;. A full description of A’s code is as follows (we
recommend the reader to refer to Figure 2.2 in order to clarify the following):

1. Send outgoing messages of round i: A obtains messages msg;(Ao, By) and msg;(Ap, Cp) from
Ap in TTy, and messages msg;(A1, B1) and msg;(A1,C1) from Ay in IT; (these are the round ¢
messages sent by Ap and A; to the other parties; as we have mentioned, Ay and A; compute
these messages according to the protocol definition and based on their view).

e In Ily, A sends By the message msg;( Ao, By) and sends Cy the message msg;(A;,C1) (and
thus the (A1, Cy) directed edge is replaced by the directed edge (A1, CYp)).

e InII;, A sends B; the message msg;(A;, By) and sends C the message msg;( Ao, Cp) (and
thus the (Ag,Cp) directed edge is replaced by the directed edge (Ap, C1)).

2. Obtain incoming messages from round i: A receives messages msg;( By, Ag) and msg,(Co, Ap)
from By and Cy in round 7 of Iy, and messages msg; (B, A1) and msg;(Cy, A;) from By and
Cy in round ¢ of II;.

e A passes Ag in IIy the messages msg;(By, Ap) and msg;(C1, A1) (and thus the (Cp, A;)
directed edge is replaced by the directed edge (Ci, Ap)).

e A passes A; in II; the messages msg;(B1, A1) and msg;(Cp, Ap) (and thus the (Cp, Ap)
directed edge is replaced by the directed edge (Cp, A1)).
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We now claim that By and Cy’s view in I is identical to By and Cpy’s view in S.> This holds
because in the parallel execution of IIy and IIy, all parties follow the protocol definition (including
Ap and Aj). The same is true in the system S, except that party Ay is connected to By and
C7 instead of to By and Cy. Likewise, Ay is connected to B; and Cj instead of to By and Cj.
Furthermore, by the definition of A, the messages seen by all parties in the parallel execution of
[Ty and II; are exactly the same as the messages seen by the parties in S (e.g., the messages seen
by Cjy in IIy are those sent by By and Aj, exactly as in S). Therefore, the views of By and Cj in
the parallel execution maliciously controlled by A, are identical to their views in S.5

By the assumption that II is a correct Byzantine Agreement protocol that composes twice in
parallel, we have that in IIy both By and Cj halt within rounds(IT) steps and output 0 (except with
negligible probability). The fact that they both output 0 is derived from the fact that By and Cy
are an honest majority with the same input value 0. Therefore, they must output 0 in the face
of any adversarial Ap; in particular this holds with respect to the specific adversary A described
above. Since the views of By and Cj in S are identical to their views in Ily, we conclude that in the
system S they also halt within rounds(IT) steps and output 0 (except with negligible probability).
This completes the proof of the claim. W

Using analogous arguments, we obtain the following two claims:

Claim 2.3.4 Ezxcept with negligible probability, parties Ay and By halt within rounds(IT) steps and
output 1 in the system S.

In order to prove this claim, the adversary is C who controls C; and Cs and works in a similar
way to A in the proof of Claim 2.3.3 above. (The only difference is regarding the edges that are
redirected.)

Claim 2.3.5 Ezcept with negligible probability, parties A1 and Cy halt within rounds(II) steps and
output the same value in the system S.

Similarly, this claim is proven by defining an adversary B who controls By and By and follows a
similar strategy to A in the proof of Claim 2.3.3 above.

Combining Claims 2.3.3, 2.3.4 and 2.3.5 we obtain a contradiction. This is because, on the one
hand Cjy must output 0 in S (Claim 2.3.3), and A; must output 1 in S (Claim 2.3.4). On the other
hand, by Claim 2.3.5, parties A; and Cy must output the same value. We conclude that there does
not exist a 3-party protocol for Byzantine Agreement that tolerates one corruption and composes
twice in parallel. This concludes the proof of the lemma. [l

Theorem 2.1.1 is derived from Lemma 2.3.2 in the standard way [71, 62] by showing that if there
exists a protocol that is correct for any n > 3 and n/3 corrupted parties, then one can construct a
protocol for 3 parties that can tolerate one corrupted party. This is in contradiction to Lemma 2.3.2,
and thus Theorem 2.1.1 is implied.

The following corollary, referring to concurrent composition, is immediately derived from the fact
that parallel composition (where the scheduling of the messages is fixed and synchronized) is merely
a special case of concurrent composition (where the adversary controls the scheduling).

5In fact, the views of all the parties in the parallel execution with A are identical to their views in the system S.
However, in order to obtain Claim 2.3.3, we need only analyze the views of By and Cy.

®We note the crucial difference between this proof and that of Fischer et al. [38]. In [38], the corrupted party A is
able to simulate the entire Ag—C1-B1—A;1 segment of the hexagon system S by itself. Thus, in a single execution of
II with By and Cy, party A can simulate the hexagon. Here, due to the fact that the parties B; and C; have secret
information that A does not have access to, A is unable to simulate their behavior itself. Rather, A needs to redirect
messages from the parallel execution of 11; in order to complete the hexagon.
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Corollary 2.3.6 No protocol for authenticated Byzantine Agreement that self-composes concur-
rently (even twice) can tolerate n/3 or more corrupted parties.

Sequential composition. The above results relate to the feasibility of parallel and concurrent
composition. However, sequential composition is also an important concern. We note that lower
bounds also hold for deterministic protocols. In particular, a deterministic protocol for Byzantine
Agreement that runs for r rounds and tolerates ¢ > n/3 corrupted parties, can be composed
sequentially at most 2r—1 times. On the other hand, randomized protocols can be used to overcome
this lower bound. We refer the interested reader to [66] for further details.

2.4 Authenticated Byzantine Agreement using Unique Identifiers

In this section we consider an augmentation to the authenticated model in which each execution is
assigned a unique and common identifier. We show that in such a model, it is possible to achieve
Byzantine Agreement that composes concurrently, for any number of corrupted parties. We stress
that in the authenticated model itself, it is not possible for the parties to agree on unique and
common identifiers, without some external help. This is because by the results of this section,
agreeing on a common identifier amounts to solving the Byzantine Agreement problem, and we
have proven that this cannot be achieved for ¢ > n/3 when composition is required. Therefore,
these identifiers must come from outside the system (and as such, assuming their existence is an
augmentation to the authenticated model).

Intuitively, the existence of unique identifiers helps in the authenticated model for the following
reason. Recall that our lower bound is based on the ability of the adversary to borrow signed mes-
sages from one execution to another. Now, if each signature also includes the session identifier, then
the honest parties can easily distinguish between messages signed in this execution and messages
signed in a different execution. It turns out that this is enough. That is, we give a transformation
from stand-alone Byzantine Agreement protocols based on signature schemes, to protocols that
compose concurrently when unique identifiers exist. Our transformation holds for protocols that
utilize the signature scheme in a natural way (as will be seen below).

The Transformation: Let IT be a protocol for authenticated Byzantine Agreement that uses a
secure signature scheme. We define a modified protocol II(id) that works as follows:

e Each party is given the identifier ¢d as auxiliary input.

e If a party P; has an instruction in II to sign a given message m with its signing key sk;, then P;
signs upon id o m instead (where o denotes concatenation).

e If a party FP; has an instruction in II to verify a given signature o on a message m with a
verification key vk;, then P; verifies that o is a valid signature for the message id o m.

Secure signature schemes. Before proceeding, we present an informal definition of secure sig-
nature schemes. A signature scheme is a triplet of algorithms (G, S, V'), where G is a probabilistic
generator that outputs a pair of signing and verification keys (sk,vk), S is a signing algorithm and
V' is a verification algorithm. The validity requirement for signature scheme states that for every
message m, V(vk,m,S(sk,m)) = 1, where (vk,sk) — G(1™) (i.e., honestly generated signatures
are always accepted). The validity can be relaxed so that it holds with overwhelming probability,
where the probability is taken over the random coin tosses of the different algorithms.
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The security requirement of a signature scheme states that the probability that an efficient
forging algorithm S* succeeds in generating any forgery, even when given oracle access to the
signing oracle, is negligible. Of course, a successful forgery is only with respect to a message for
which §* did not receive a signature from its oracle. More formally, the following experiment is
defined: The generator G is run, outputting a key-pair (vk, sk). Then, S* is given vk and oracle
access to the signing oracle S(sk,-). At the conclusion of the experiment, S* outputs a pair (m*, o*).
Let @, be the set of oracle queries by S*. Then, we say that S* succeeds if V (vk, m*,0*) =1 and
m* € Q. (That is, S* output a message along with a valid signature, and S* did not query its
oracle with this message.) A signature scheme is existentially secure against chosen-message attacks
if for every probabilistic polynomial-time S*, the probability that S* succeeds is negligible.

Modifying the definition. For our purposes here, we consider a modification of the above
definition where we somewhat restrict the forging algorithm S*. That is, let ¢d be any string.
Then, the modification is such that S* is given access to a restricted signing algorithm S™¢(sk, )
that signs on any message m that does not have prefix id. Furthermore, S* must output a pair
(m*,0*) where the prefix of m* equals id. As before, S* is said to succeed if V(vk,m*,o*) =1
and m* € Q. It is not hard to see that any signature scheme that is existentially secure against
chosen-message attacks is also secure with this modification. This is because a successful forgery
here contains a message m* with prefix id. Since S* only has access to S™(sk,-), it cannot have
queried its oracle with m*. Thus, a regular forging algorithm can also use S* to generate a forgery.

It is also not hard to see that protocols that use a signature scheme in a natural way, remain
secure when the modified definition is used and the appropriate id is required on all messages
that are verified (as in our transformation of Byzantine Agreement protocols). This is because the
infeasibility of forging messages containing ¢d is preserved and this is the only property of signature
schemes usually utilized. We are now ready to state the theorem:

Theorem 2.4.1 Let Il be a secure protocol for authenticated Byzantine Agreement which uses a
public-key infrastructure for a signature scheme that is existentially secure against chosen message
attacks. Furthermore, the parties use their secret keys for signing on messages only. Let 11(id)
be obtained from II as in the above transformation, and let idy,...,idy be a series of { unique
strings. If the stand-alone protocol 11(id) remains secure even when the adversary is given access
to restricted signing oracles S™"(sk,-) for the secret keys of all the honest parties, then the protocols
II(idy),...,11(idy) all solve the Byzantine Agreement problem, even when run concurrently.

Proof: Intuitively, the security of the protocols I1(idy), ..., II(id,) is due to the fact that signatures
from II(id;) cannot be of any help to the adversary in II(id;). This is because in 1I(¢d;), the honest
parties ignore any signature that includes an identifier that is not ¢d;. Since id; # id;, we have
that signatures sent in II(id;) are useless in II(id;). Our formal proof of this intuition proceeds by
showing how an adversary for a single execution of II(id) can internally simulate the concurrent
executions of II(idy),...,1I(idg), thereby reducing the security of the concurrent setting to the
stand-alone setting.

Let A be an adversary who attacks the concurrent executions II(id;),...,1I(id;). By contra-
diction, assume that A succeeds in “breaking” one of the II(id;) executions with non-negligible
probability. We construct an adversary A’ who internally incorporates A and attacks a single ex-
ecution of II(id) as follows. Intuitively, A" simulates all executions apart from the one in which
A succeeds in its attack. Formally, A’ first randomly selects an execution i €x {1,...,£}. Then,
A’ sets id; = id and chooses unique identifiers id; (for every j # i). Next, A" invokes A and
emulates the concurrent executions of II(idy), ..., I(idy) for A. Adversary A’ does this by playing
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the roles of the honest parties in all but the i*h execution II(id;). In contrast, in II(id;) adversary
A’ externally interacts with the honest parties and passes messages between them and A. Since A’
is given access to the restricted signing oracles of all the honest parties and the honest parties use
their signing keys to generate signatures only, A’ is able to generate the honest parties’ messages
in all the executions II(id;) for j # ¢. (Recall that in these executions, the prefix of every signed
message is id; # id; and thus the restricted oracle suffices.) Therefore, the emulation by A" of
the concurrent executions for A is perfect. This implies that A" succeeds in “breaking” II(id) with
success probability that equals 1/¢ times A’s success probability in the concurrent setting. Thus,
A’ succeeds with non-negligible probability and this contradicts the assumed stand-alone security
of I1(id) even when A’ is given access to the restricted oracles. [l

It is easy to verify that the protocols of [71, 62, 34] for authenticated Byzantine Agreement all fulfill
the requirements in the assumption of Theorem 2.4.1. We therefore obtain the following corollary:

Corollary 2.4.2 There exist protocols for authenticated Byzantine Agreement that tolerate any
t < n corruptions and remain secure under concurrent executions, asswming that global unique
tdentifiers are allocated to each execution.

We conclude by noting that it is not at all clear how the augmentation to the authenticated model
of unique identifiers can be achieved in practice. In particular, requiring the on-line participation of
a trusted party who assigns identifiers to every execution is clearly impractical. (Furthermore, such
a party could just be used to directly implement broadcast.) However, we do note one important
scenario where Theorem 2.4.1 can be applied. As we have mentioned, secure protocols often use
many invocations of a broadcast primitive. Furthermore, in order to improve round efficiency, in any
given round many broadcasts may be simultaneously executed. The key point here is that within
the secure protocol, unique identifiers can be allocated to each broadcast by the protocol designer.
Therefore, authenticated Byzantine Agreement can be used. Of course, this does not change the
fact that the secure protocol itself will not compose in parallel or concurrently. However, it does
mean that its security is guaranteed in the stand-alone setting, and a physical broadcast channel
is not necessary.



22 CHAPTER 2. THE COMPOSITION OF AUTHENTICATED BYZANTINE AGREEMENT



Chapter 3

Secure Computation Without
Agreement

In the previous chapter, we have shown that authenticated Byzantine Agreement protocols cannot
be composed concurrently (or even in parallel) when a third or more of the parties are corrupted.
An immediate and important ramification of this result relates to the self-composition of secure
multi-party computation. All known protocols for general secure multi-party computation strongly
rely on the extensive use of a broadcast primitive. When a third or more of the parties are corrupted,
this broadcast is implemented using authenticated Byzantine Agreement. Essentially, this use of
Byzantine Agreement cannot be eliminated since the standard definition of secure computation
(for the case that less than 1/2 of the parties are corrupted) actually implies Byzantine Agreement.
Moreover, it is accepted folklore that the use of a broadcast channel is essential for achieving secure
multiparty computation, in the case that 1/3 or more of the parties are corrupted. Due to the
above state of affairs, there are currently no known composable protocols for secure multi-party
computation in the point-to-point network model.

In this chapter we show that secure computation can be achieved without a broadcast channel,
and thus without authenticated Byzantine Agreement. Specifically, we present a new definition of
secure computation that only mildly relaxes previous definitions and that can be achieved without
using a broadcast channel. The new definition separates the issue of agreement from the central
security issues of privacy and correctness in secure computation. As a result the lower bounds of
Byzantine Agreement no longer apply to secure computation. Indeed, we prove that secure multi-
party computation can be achieved for any number of corrupted parties and without a broadcast
channel (or trusted preprocessing phase as required for running authenticated Byzantine Agree-
ment). An important corollary of the results in this chapter is the ability to obtain multi-party
protocols in a point-to-point network that self-compose.

3.1 Introduction

3.1.1 Background

Security in multi-party computation. A secure multi-party protocol should protect honest
parties from the malicious behavior of corrupted parties. In particular, malicious parties should
not be able to learn anything more than their prescribed output (privacy) and the outputs of
the computation should be as presribed (correctness). The security of multi-party computation
[53, 4, 69, 13] is formalized in the following way. Consider an ideal world in which an external
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trusted party is willing to help the parties carry out their computation. An ideal computation
takes place in the ideal world by having the parties simply send their inputs to the trusted party.
This trusted party then computes the desired function and passes each party its prescribed output.
A real protocol that is run by the parties (in a world where no trusted party exists) is said to
be secure, if no adversary controlling a coalition of corrupted parties can do more harm in a real
execution that in the above ideal computation. More formally, security is said to hold if a real
execution can be emulated within the ideal model.

Notice that in an ideal computation, the above-mentioned properties of privacy and correctness
are trivially guaranteed. Additional important properties that are implied are independence of
inputs (meaning that corrupted parties must choose their inputs independently of the honest par-
ties), guaranteed output delivery (meaning that all parties receive output and the adversary cannot
conduct a denial of service attack), and fairness (meaning that corrupted parties receive output if
and only if honest parties do). Since these properties all hold in the ideal model, and since real
executions of secure protocols can be emulated in the ideal model, it follows that these properties
also all hold in a real execution of a secure protocol. We remark that guaranteeing output delivery
and fairness is actually impossible unless a strict majority of the parties are honest. Therefore,
when this is not the case (i.e., when ¢ > n/2), the ideal model is modified so that these properties
are not implied. Specifically, under certain conditions, parties are allowed to abort (in which case
they output a special symbol L rather than their specified output). In addition, fairness takes on
different meanings for different values of £. We will single out a few forms of fairness. On the one
extreme, we have “complete fairness” that guarantees that if a corrupt party gets its output then
all honest parties also get their output. (As we have mentioned, this is only possible when ¢ < n/2.)
On the other extreme, we have “no fairness” in which the adversary always gets its output and
has the power to decide whether or not the honest parties also get output. An intermediate notion
that we call “partial fairness” singles out a specified party such that if this specified party is honest
then complete fairness is achieved. On the other hand, if the specified party is corrupt, then no
fairness is achieved. Thus, fairness is partial.

Byzantine agreement and secure multi-party computation. There is a close connection
between Byzantine agreement and secure multi-party computation. First, Byzantine agreement (or
broadcast) is used as a basic and central tool in the construction of secure protocols. In particular,
all known protocols for general multi-party computation use a broadcast channel (and implement it
using Byzantine agreement or authenticated Byzantine agreement). Second, Byzantine agreement
is actually a special case of secure computation (this holds by the standard definition taken for the
case that ¢ < n/2 where output delivery is guaranteed). Therefore, all the lower bounds relating
to Byzantine agreement immediately apply to secure multi-party computation. In particular, the
Byzantine agreement problem cannot be solved for any ¢ > n/3 [71]. Thus, it is also impossible to
achieve secure computation with guaranteed output delivery in a point-to-point network for ¢ > n/3.
On the other hand, for ¢ < n/2 it is possible to obtain secure computation with guaranteed output
delivery assuming a broadcast channel. This means that in order to achieve such secure computation
for the range of n/3 <t < n/2, either a physical broadcast channel or a trusted pre-processing
phase for running authenticated Byzantine agreement must be assumed.

In the previous chapter, it was shown that authenticated Byzantine agreement cannot be com-
posed (concurrently or even in parallel), unless ¢ < n/3. This has the following ramifications.
On the one hand, in the range of n/3 < t < n/2, it is impossible to obtain secure computa-
tion that composes without using a physical broadcast channel. This is because such a protocol
in the point-to-point network model and with trusted pre-processing would imply authenticated
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Byzantine agreement that composes. On the other hand, as we have mentioned, in the range of
t > n/2 the definitions of secure computation do not imply Byzantine agreement. Nevertheless, all
protocols for secure computation in this range make extensive use of a broadcast primitive. The
impossibility of composing authenticated Byzantine agreement puts this whole body of work into
question when composition is required. Specifically without using a physical broadcast channel,
none of these protocols compose (even in parallel). In summary, there are no known protocols for
secure computation in a point-to-point network that compose in parallel or concurrently, for any
t > n/3. Needless to say, the requirement of a physical broadcast channel is very undesirable (and
often unrealistic).

3.1.2 Our Results

We present a mild relaxation of the standard definition of secure multi-party computation that
decouples the issue of agreement from the issue of secure multi-party computation. In particular,
our definition focuses on the central issues of privacy and correctness. Loosely speaking, our
definition is different in the following way. As we have mentioned, for the case of ¢ > n/2, it is
impossible to guarantee output delivery and therefore some parties may conclude with a special
abort symbol L, and not with their output. Previously [44], it was required that either all honest
parties receive their outputs or all honest parties output L.! Thus the parties all agree on whether
or not output was received. On the other hand, in our definition some honest parties may receive
output while some receive L, and the requirement of agreement is removed. We stress that this is
the only difference between our definition and the previous ones.

We show that it is possible to achieve secure computation according to the new definition for
any t < n and without a broadcast channel or setup assumption (assuming the same computational
assumptions made, if any, by corresponding protocols that did use broadcast channels.) Thus, the
lower bounds for Byzantine agreement indeed do not imply lower bounds for secure multi-party
computation. We note that our result holds in both the information theoretic and the computational
models.

A hierarchy of definitions. In order to describe our results in more detail, we present a hier-
archy of definitions for secure computation. All the definition fulfill the properties of privacy and
correctness. The hierarchy that we present here relates to the issues of abort (or failure to receive
output) and fairness.

1. Secure computation without abort: According to this definition, all parties are guaranteed to
receive their output. (This is what we previously called “guaranteed output delivery”.) This
is the standard definition for the case of honest majority (i.e., t < n/2). Since all honest
parties receive output, complete fairness is always obtained here.

2. Secure computation with unanimous abort: In this definition, it is ensured that either all hon-
est parties receive their outputs or all honest parties abort. This definition can be considered
with different levels of fairness:

(a) Complete fairness: Recall that when complete fairness is achieved, the honest parties
are guaranteed to receive output if the adversary does. Thus, here one of two cases
can occur. Either all parties receive output or all parties abort. Thus, the adversary

We note that in private communication, Goldreich stated that the requirement in [44] of having all parties abort
or all parties receive output was only made in order to simplify the definition.
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can conduct a denial of service attack, but nothing else. (This definition can only be
achieved in the case of t < n/2.)

(b) Partial fairness: As in the case of complete fairness, the adversary may disrupt the
computation and cause the honest parties to abort without receiving their prescribed
output. However, unlike above, the adversary may receive the corrupted parties’ outputs,
even if the honest parties abort (and thus the abort is not always fair). In particular, the
protocol specifies a single party such that the following holds. If this party is honest, then
complete fairness is essentially achieved (i.e., either all parties abort or all parties receive
correct output). On the other hand, if the specified party is corrupt, then fairness may
be violated. That is, the adversary receives the corrupted parties’ outputs first, and then
decides whether or not the honest parties all receive their correct output or all receive
abort (and thus the adversary may receive output while the honest parties do not).

Although fairness is only guaranteed in the case that the specified party is not corrupted,
there are applications where this feature may be of importance. For example, in a sce-
nario where one of the parties may be “more trusted” than others (yet not too trusted),
it may be of advantage to make this party the specified party. Another setting where
this can be of advantage is one where all the participating parties are trusted. However,
the problem that may arise is that of an external party “hacking” into the machine of
one of the parties. In such a case, it may be possible to provide additional protection to
the specified party.

(c) No fairness: This is the same as in the case of partial fairness except that the adversary
always receives the corrupted parties’ outputs first (i.e., there is no specified party).

We stress that in all the above three definitions, if one honest party aborts then so do all honest
parties, and thus all are aware of the fact that the protocol did not successfully terminate.
This feature of having all parties succeed or fail together may be an important one in some
applications.

3. Secure computation with abort: The only difference between this definition and the one imme-
diately preceding it, is that some honest parties may receive output while others abort. That
is, the requirement of unanimity with respect to abort is removed. This yields two different
definitions, depending on whether partial fairness or no fairness is taken. (Complete fairness
is not considered here because it only makes sense in a setting where all the parties, including
the corrupted parties, either all receive output or all abort. Therefore, it is not relevant in
the setting of secure computation with non-unanimous abort.)

Using the above terminology, the definition proposed by Goldreich [44] for the case of any ¢ < n is
that of secure computation with unanimous abort and partial fairness. Our new definition is that
of secure computation with abort, and as we have mentioned, its key feature is a decoupling of the
issues of secure computation and agreement (or unanimity).

Achieving secure computation with abort. Using the terminology introduced above, our
results show that secure computation with abort and partial fairness can be achieved for any ¢ < n,
and without a broadcast channel or a trusted pre-processing phase. We achieve this result in the
following way. First, we define a weak variant of the Byzantine Generals problem, called broadcast
with abort, in which not all parties are guaranteed to receive the broadcasted value. In particular,
there exists a single value x such that every party either outputs x or aborts. Furthermore, when
the broadcasting party is honest, the value x equals its input, similarly to the validity condition of
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Byzantine Generals. (Notice that in this variant, the parties do not necessarily agree on the output
since some may output x while others abort.) We call this “broadcast with abort” because as
with secure computation with abort, some parties may output x while other honest parties abort.
We show how to achieve this type of broadcast with a simple deterministic protocol that runs in
2 rounds. Secure multi-party computation is then achieved by replacing the broadcast channel
in known protocols with a broadcast with abort protocol. Despite the weak nature of agreement
in this broadcast protocol, it is nevertheless enough for achieving secure multi-party computation
with abort. Since our broadcast with abort protocol runs in only 2 rounds, we also obtain a very
efficient transformation of protocols that work with a broadcast channel into protocols that require
only a point-to-point network. In summary, we obtain the following theorem:

Theorem 3.1.1 (efficient transformation): There exists an efficient protocol compiler that receives
any protocol 11 for the broadcast model and outputs a protocol II' for the point-to-point model such
that the following holds: If 11 securely computes a functionality f with unanimous abort and with
any level of fairness, then II' securely computes f with abort and with no fairness. Furthermore,

if TI tolerates up to t corruptions and runs for R rounds, then TI' tolerates up to t corruptions and
runs for O(R) rounds.

Notice that in the transformation of Theorem 3.1.1, protocol II' does not achieve complete fairness
or partial fairness, even if IT did. Thus, fairness may be lost in the transformation. Nevertheless,
meaningful secure computation is still obtained and at virtually no additional cost.

When obtaining some level of fairness is important, Theorem 3.1.1 does not provide a solution.
We show that partial fairness can be obtained without a broadcast channel for the range of ¢ > n/2
(recall that complete fairness cannot be obtained in this range, even with broadcast). That is, we
prove the following theorem:

Theorem 3.1.2 (partial fairness): For any probabilistic polynomial-time n-party functionality f,
there exists a protocol in the point-to-point model for computing f that is secure with abort, partially
fair and tolerates any t < n corruptions.

The theorem is proved by first showing that fairness can be boosted in the point-to-point model.
That is, given a generic protocol for secure multi-party computation that achieves no fairness, one
can construct a generic protocol for secure multi-party computation that achieves partial fairness.
(Loosely speaking, a generic protocol is one that can be used to securely compute any efficient func-
tionality.) Applying Theorem 3.1.1 to known protocols for the broadcast model, we obtain secure
multi-party computation that achieves no fairness. Then, using the above “fairness boosting”, we
obtain Theorem 3.1.2. We note that the round complexity of the resulting protocol is of the same
order of the “best” generic protocol that works in the broadcast model. In particular, based on
the protocol of Beaver et al. [9], we obtain the first constant-round protocol in the point-to-point
network for the range of n/3 <t < n/2.2 That is:

Corollary 3.1.3 (constant round protocols without broadcast for ¢ < n/2): Assume that there
exist public-key encryption schemes (or, alternatively, assume the existence of one-way functions
and a model with private channels). Then, for every probabilistic polynomial-time functionality f,
there exists a constant round protocol in the point-to-point network for computing f that is secure
with abort, partially fair and tolerates t < n/2 corruptions.

For the range of t < n/3, the broadcast channel in the protocol of [9] can be replaced by the expected constant-
round Byzantine agreement protocol of Feldman and Micali [37]. However, there is no known authenticated Byzantine
agreement protocol with analogous round complexity.
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Composition of secure multi-party protocols. An important corollary of our new definition
is the ability to obtain secure multi-party protocols for ¢ > n/3 that self-compose in parallel or
concurrently, without a broadcast channel. Since our protocols do not use a broadcast channel (or
authenticated Byzantine agreement), the lower bound of Chapter 2 does not apply. Specifically, if a
protocol composes when using a broadcast channel, then the transformed protocol in the point-to-
point network also composes. This is in contrast to all previous protocols that used authenticated
Byzantine agreement in order to replace the broadcast channel.? Jumping ahead, we compare
the composition achieved here to that obtained in Chapter 4. In Chapter 4, the strong notion
of concurrent general composition is obtained. However, the protocol there relies on a common
reference string. In contrast, in this chapter, we obtain only the weaker notion of self-composition.
Nevertheless, our protocols are in the standard model and do not require any setup assumptions.

Discussion. We propose that the basic definition of secure computation should focus on the issues
of privacy and correctness (and independence of inputs). In contrast, the property of agreement
should be treated as an additional, and not central, feature. The benefit of taking such a position
(irrespective of whether one is convinced conceptually) is that the feasibility of secure computation
is completely decoupled from the feasibility of Byzantine agreement. Thus, the lower bounds
relating to Byzantine agreement (and authenticated Byzantine agreement) do not imply anything
regarding secure computation. Indeed, as we show, “broadcast with abort” is sufficient for secure
computation. However, it lacks any flavor of agreement in the classical sense. This brings us
to an important observation. Usually, proving a lower bound for a special case casts light on the
difficulties in solving the general problem. However, in the case of secure computation this is not the
case. Rather, the fact that the lower bounds of Byzantine agreement apply to secure computation
is due to marginal issues relating to unanimity regarding the delivery of outputs, and not due to
the main issues of security.

3.1.3 Related Work

We have recently learned of two independent and concurrent results [39, 40] studying a problem
similar to ours, although apparently for different motivation.* In [39], Fitzi et al. study the question
of multi-party computation in the case that the number of faults is ¢ < n/2. They show that in
this case, it is possible to achieve weak Byzantine agreement (where loosely speaking, either all
honest parties abort or all honest parties agree on the broadcasted value). (We note that their
protocol is probabilistic and “breaks” the ¢ < n/3 lower-bound on deterministic weak Byzantine
Agreement protocols of Lamport [63].) They further show how this can be used in order to obtain
secure computation with unanimous abort and complete fairness for the case of ¢ < n/2. Thus for
the range of n/2 <t < n/3 their solution achieves complete fairness whereas ours achieves only
partial fairness.

In subsequent work [40], Fitzi et al. studied the question of Byzantine agreement for any ¢t < n
and whether its relaxation to weak Byzantine Agreement can be achieved without preprocessing.
They show that it is indeed possible to achieve (randomized) weak Byzantine Agreement for any

3Unfortunately, full proofs regarding the composition of protocols using a broadcast channel do not appear in the
literature. In this footnote we momentarily allow ourselves to rely on the belief/conjecture that in the broadcast
model the protocol of [76] for ¢ < n/2 self-composes concurrently, and the protocol of [52] for any ¢ < n self-composes
in parallel. We can therefore conclude that in the point-to-point network, concurrent self-composition of secure
multi-party computation is possible for ¢ < n/2, and parallel self-composition is possible for any t¢.

“We were informed of this work while presenting our work at a seminar at MIT, February 14 2002.
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t < n, in O(t) rounds. They also show how their weak Byzantine Agreement protocol can be used
to obtain secure computation with unanimous abort and partial fairness for any ¢ < n.

In comparison, we achieve secure computation with (non-unanimous) abort and partial fairness
for any ¢t < n. However, our focus is different. In particular, our results emphasize the fact that the
issue of agreement is not central to the task of secure computation. Furthermore, removing this
requirement enables us to remove the broadcast channel with almost no cost. This also results in
our obtaining a round-preserving transformation of secure protocols in the broadcast model to those
in the point-to-point model. This is in contrast to [39, 40] who use their weak Byzantine agreement
protocol in order to setup a public-key infrastructure for authenticated Byzantine agreement. They
therefore incur the cost of setting up this infrastructure along with a cost of £ + 1 rounds for
simulating every broadcast in the original protocol. Our protocols are therefore significantly more
round efficient.> Finally we note that we can use the weak Byzantine Agreement protocol of [40]
to transform any generic r-round protocol for secure computation with abort into an (r+¢)-round
protocol with unanimous abort (and the same level of fairness). This is achieved by having the
parties broadcast whether they received outputs or not after the protocol with abort concludes.
It is enough to use weak Byzantine agreement for this broadcast. We therefore reduce the O(tr)
round complexity of [40] to O(r+t), while achieving the same level of security.

Recall that Canetti in [14] introduced a communication model where the adversary has control
over the delivery of messages. Essentially, this definition also decouples secure computation from
agreement because parties are never guaranteed to get output. In particular, the adversary is
allowed to deliver output to whomever it wishes, and only these parties will ever receive output.
However, the motivation of [14] is different; it aims to decouple the issue of guaranteed output
delivery from the main issues of secure computation. On the other hand, we focus on the question
of agreement by the parties on whether or not output was delivered.

3.2 Definitions — Secure Computation

In this section we present definitions for secure multi-party computation. The basic description
and definitions are based on [44], which in turn follows [53, 4, 69, 13]. We actually consider a
number of definitions here. In particular, we present formal definitions for secure computation
with unanimous abort and with abort, with complete fairness, partial fairness, and no fairness. In
addition, we refer to secure computation without abort. This is the standard definition used when
more than half the parties are honest. According to this definition, all parties receive the output
and the adversary cannot disrupt the computation. However, we will not formally present this
definition here.

Notation: We denote by Uy the uniform distribution over {0,1}*; for a set S we denote s €5 S
when s is chosen uniformly from S; finally, computational indistinguishability is denoted by = and
statistical closeness by =. The security parameter is denoted by k.

%We note one subtle, yet important caveat. Given a generic protocol for secure computation that uses a broadcast
channel and runs for 7 rounds, we obtain an O(r)-round protocol that is secure with abort and partially fair (this
is in contrast to the O(tr) round complexity of [39, 40]). However, given a protocol that solves a specific secure
computation problem, our transformation does not achieve partial fairness. In order to achieve partial fairness, we
must revert to a generic protocol. On the other hand, the transformation of [39, 40] works for any protocol. Thus,
given a very efficient protocol for a specific problem that achieves partial fairness, it may be “cheaper” to use [39, 40]
rather than our results.
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Multi-party computation. A multi-party protocol problem (for n parties P, ..., P,) is cast by
specifying a random process that maps vectors of inputs to vectors of outputs (one for each party).
We refer to such a process as an n-ary functionality and denote it f : ({0,1}*)" — ({0,1}*)", where
f=(fi, -y fn). That is, for a vector of inputs T = (x1,...,x,), the output-vector is a random
variable (f1(%),..., f»(Z)) ranging over vectors of strings. The output for the i*" party (with input
x;) is defined to be f;(T).

Adversarial behavior. Loosely speaking, the aim of a secure multi-party protocol is to protect
the honest parties against dishonest behavior from the corrupted parties. This “dishonest behavior”
can manifest itself in a number of ways; in this paper we focus on malicious adversaries. Such
an adversary may arbitrarily deviate from the specified protocol. When considering malicious
adversaries, there are certain undesirable actions that cannot be prevented. Specifically, parties
may refuse to participate in the protocol, may substitute their local input (and enter with a different
input) and may cease participating in the protocol before it terminates.

Formally, the adversary is modeled by a non-uniform Turing machine: in the computational
model this machine is polynomial-time whereas in the information-theoretic model it is unbounded.
(We note that by standard arguments, we can assume that the adversary is deterministic.) For
simplicity, in this work we consider a static corruption model. Therefore, at the beginning of the
execution, the adversary is given a set I of corrupted parties which it controls. Then, throughout
the computation, the adversary obtains the views of the corrupted parties, and provides them with
the messages that they are to send.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in the protocol to what it can do in an ideal scenario that is secure by definition.
This is formalized by considering an ideal computation involving an incorruptible trusted party to
whom the parties send their inputs. The trusted party computes the functionality on the inputs and
returns to each party its respective output. Loosely speaking, a protocol is secure if any adversary
interacting in the real protocol (where no trusted party exists) can do no more harm than if it
was involved in the above-described ideal computation. We begin by formally defining this ideal
computation.

3.2.1 Execution in the ideal model

The ideal model differs for each of the definitions. We therefore present each one separately (see
Section 3.1.2 for an outline of the different definitions).

1. Secure computation with unanimous abort and complete fairness: This definition
requires complete fairness. That is, either all parties (including the corrupted parties) receive output
or all parties abort. Therefore, the abort is also unanimous. We note that this definition is only
achievable when the number of corrupted parties is less than n/2 (i.e., |I| < n/2), even assuming
a broadcast channel. Recall that a malicious party can always substitute its input or refuse to
participate. Therefore, the ideal model takes these inherent adversarial behaviors into account; i.e.,
by giving the adversary the ability to do this also in the ideal model. An ideal execution proceeds
as follows:

Inputs: Each party obtains its respective input from the input vector Z = (x1,...,2,).
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Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {z; }ics, either abort or send modified values
z; € {0, 1Yl to the trusted party. Denote the sequence of inputs obtained by the trusted
party by ' = (2f,...,2],) (for honest parties, ' = = always).

Trusted party answers the parties: In case T’ is a valid input sequence, the trusted party computes
f(@') and sends f;(Z') to party P; for every i. Otherwise (i.e., in case a corrupted party
aborted or sent a non-valid input), the trusted party replies to all parties with a special abort
symbol L.

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, A\). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {z;};c; and the messages the corrupted
parties received from the trusted party.

Definition 3.2.1 (ideal-model computation with unanimous abort and complete fairness): Let
f:({0,1}) — ({0,1}*)" be an n-ary functionality, where f = (f1,...,fn), and let I C [n] be
such that for every i € I, the adversary A controls P; (this is the set of corrupted parties). Then,
the joint execution of f under (A,I) in the ideal model on input vector T = (x1,...,x,), denoted

IDEALS}()A 0 (%), is defined as the output vector of Py, ..., P, and A resulting from the above described
1deal process.

2. Secure computation with unanimous abort and partial fairness: As before, a malicious
party can always substitute its input or refuse to participate. However, when there are a half or
less honest parties, it is not possible to continue computing in the case that the adversary ceases
prematurely (this definition is usually used when the number of corrupted parties is not limited in
any way). Thus, we cannot prevent the “early abort” phenomenon in which the adversary receives
its output, whereas the honest parties do not receive theirs. Nevertheless, party P, is specified
so that if it is honest, then complete fairness is achieved. In contrast, if it corrupted, then the
adversary receives the corrupted parties’ outputs first and then can decide whether or not the
honest parties receive output or abort. We note that the abort is unanimous and thus if one honest
party aborts, then so do all honest parties. An ideal execution proceeds as follows:

Inputs: Each party obtains its respective input from the input vector T = (x1,...,xy,).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {z; }ics, either abort or send modified values
z; € {0, 1Y%l to the trusted party. Denote the sequence of inputs obtained by the trusted
party by ' = (2f,...,2],) (for honest parties, ' = = always).

Trusted party answers first party: In case T' is a valid input sequence, the trusted party computes
f(T') and sends f1(T') to party P;. Otherwise (i.e., in case a corrupted party aborted or sent
a non-valid input), the trusted party replies to all parties with a special symbol, L.

Trusted party answers remaining parties: If the first party is not corrupted (i.e., 1 ¢ I), then the
trusted party sends f;(Z’) to party P;, for every j.

In case the first party is corrupted, then for every i € I, the trusted party sends f;(Z) to
party P; (i.e., the corrupted parties receive their outputs first). Then Py, depending on the
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views of all the corrupted parties and controlled by the adversary, instructs the trusted party
to either send f;(Z') to P; for every j ¢ I, or to send L to P; for every j & I.°

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, A\). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {z;},c; and the messages the corrupted
parties received from the trusted party.

Definition 3.2.2 (ideal-model computation with unanimous abort and partial fairness): Let f :
({0,1}*)" — ({0,1}*)™ be an n-ary functionality, where f = (f1,..., fn), and let I C [n] be such
that for every i € I, the adversary A controls P; (this is the set of corrupted parties). Then,
the joint execution of f under (A,T) in the ideal model on input vector T = (x1,...,%,), denoted

IDEALECZ()A D (T), is defined as the output vector of Py, ..., P, and A resulting from the above described

1deal process.

3. Secure computation with unanimous abort and no fairness: This definition is very
similar to the previous one, except that there is no specified party. Rather, the adversary first
receives the output of the corrupted parties. Then, it decides whether all the honest parties receive
output or they all abort. Formally,

Inputs: Each party obtains its respective input from the input vector T = (x1,...,xy,).

Send inputs to trusted party: An honest party always sends its input x to the trusted party. The
corrupted parties may, depending on their inputs {z; }ics, either abort or send modified values
z; € {0, 1Y%l to the trusted party. Denote the sequence of inputs obtained by the trusted
party by = (2f,...,2],) (for honest parties, ' = = always).

Trusted party answers adversary: In case T' is a valid input sequence, the trusted party computes
f(T') and sends f;(Z') to party P; for every i € I. Otherwise (i.e., in case a corrupted party
aborted or sent a non-valid input), the trusted party replies to all parties with a special
symbol, L.

Trusted party answers remaining parties: The adversary, depending on the views of all the cor-
rupted parties, instructs the trusted party to either send f;(z') to P; for every j ¢ I, or to
send L to P; for every j & I.

Outputs: An honest party always outputs the message that it received from the trusted party,
whereas the corrupted parties output nothing (say, A\). On the other hand, the adversary
outputs an arbitrary function of the initial inputs {z;};c; and the messages the corrupted
parties received from the trusted party.

Definition 3.2.3 (ideal-model computation with unanimous abort and no fairness): Let f : ({0,1}*)" —
({0,1}*)™ be an n-ary functionality, where f = (fi,..., fn), and let I C [n] be such that for every

i € I, the adversary A controls P; (this is the set of corrupted parties). Then, the joint execution

of f under (A, I) in the ideal model on input vector T = (x1,...,x,), denoted IDEALSI?:()AJ)(E), is
defined as the output vector of Py, ..., P, and A resulting from the above described ideal process.

SAn equivalent definition to this one says that P; always instructs the trusted party to send the outputs or L.
However, an honest P; always instructs the trusted party to provide all parties with outputs. In contrast, a corrupted
party can decide whatever it wishes.



3.2. DEFINITIONS — SECURE COMPUTATION 33

The above three definitions all relate to the case of secure computation with unanimous abort. We
now present the analogous definitions for the case of secure computation with abort. The only
difference between the definitions is regarding the “trusted party answers remaining parties” item.
In the above definitions all honest parties either receive their output or they receive L. However,
here some of these parties may receive their (correct) output and some may receive L. We only
present definitions for partial and no fairness (complete fairness only makes sense if all parties,
including the adversary, either receive their outputs or L).

4. Secure computation with abort and partial fairness: As we have mentioned, the only
difference between this definition and the analogous definition with unanimous abort is that if
party Pj is corrupted, then it may designate who does and does not receive output. We repeat
only the relevant item:

Trusted party answers remaining parties: If the first party is not corrupted (i.e., 1 ¢ I), then the
trusted party sends f;(Z’) to party P;, for every j.

In case the first party is corrupted, then for every i € I, the trusted party sends f;(Z') to P,
(i.e., the corrupted parties receive their output first). Then Pj, depending on the views of all
the corrupted parties and controlled by the adversary, chooses a subset of the honest parties
J C [n]\ I and sends J to the trusted party. The trusted party then sends f;(z') to P; for
every 5 € J, and L to all other honest parties.

Definition 3.2.4 (ideal-model computation with abort and partial fairness): Let f : ({0,1}*)" —
({0,1}*)™ be an n-ary functionality, where f = (f1,..., fn), and let I C [n] be such that for every
i € I, the adversary A controls P; (this is the set of corrupted parties). Then, the joint execution
of f under (A, I) in the ideal model on input vector T = (x1,...,x,), denoted IDEAL%()AJ)(E), is
defined as the output vector of Py, ..., P, and A resulting from the above described ideal process.

5. Secure computation with abort and no fairness: This definition is very similar to the
previous one, except that the first party P; does not receive its output first. Rather, the adversary
always receives the output of the corrupted parties first. Then, it designates which honest parties
receive their output and which receive L. We repeat only the relevant item:

Trusted party answers remaining parties: The adversary, depending on the views of all the cor-
rupted parties, chooses a subset of the honest parties J C [n]| \ I and sends J to the trusted
party. The trusted party then sends f;(z’) to P; for every j € J, and L to all other honest
parties.

Definition 3.2.5 (ideal-model computation with abort and no fairness): Let f : ({0,1}*)" —
({0,1}*)™ be an n-ary functionality, where f = (f1,..., fn), and let I C [n] be such that for every
i € I, the adversary A controls P; (this is the set of corrupted parties). Then, the joint execution
of f under (A, I) in the ideal model on input vector T = (x1,...,x,), denoted IDEALSI?()AJ)(E), is
defined as the output vector of Py, ..., P, and A resulting from the above described ideal process.

3.2.2 Execution in the real model

We now define a real model execution. In the real model, the parties execute the protocol in a
synchronous network with rushing. That is, the execution proceeds in rounds: each round consists
of a send phase (where parties send their message from this round) followed by a receive phase
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(where they receive messages from other parties). We stress that the messages sent by an honest
party in a given round depend on the messages that it received in previous rounds only. On the
other hand, the adversary can compute its messages in a given round based on the messages that
it receives from the honest parties in the same round. The term rushing refers to this additional
adversarial capability.

In this work, we consider a scenario where the parties are connected via a fully connected
point-to-point network (and there is no broadcast channel). We refer to this model as the point-
to-point model (in contrast to the broadcast model where the parties are given access to a physical
broadcast channel in addition to the point-to-point network). The communication lines between
parties are assumed to be ideally authenticated and private (and thus the adversary cannot modify
or read messages sent between two honest parties).” We assume that any message sent by an honest
party to another honest party is received immediately. Finally, we note that we do not assume a
preprocessing setup phase.

Throughout the execution, the honest parties all follow the instructions of the prescribed pro-
tocol, whereas the corrupted parties receive their (arbitrary) instructions from the adversary. Like-
wise, at the conclusion of the execution, the honest parties output their prescribed output from the
protocol, whereas the corrupted parties output nothing. On the other hand, the adversary outputs
an arbitrary function of its view of the computation (which contains the views of all the corrupted
parties). Without loss of generality, we assume that the adversary always outputs its view (and
not some function of it). Formally,

Definition 3.2.6 (real-model execution): Let f be an n-ary functionality and let 11 be a multi-
party protocol for computing f. Furthermore, let I C [n] be such that for every i € I, the adversary
A controls P; (this is the set of corrupted parties). Then, the joint execution of II under (A, I) in
the real model on input vector T = (v1,...,%,), denoted REALr (4 1)(T), is defined as the output
vector of Py,..., P, and A resulting from the protocol interaction, where for every i € I, party
P; computes its messages according to A, and for every j & I, party P; computes its messages
according to 1L.

3.2.3 Security as emulation of a real execution in the ideal model

Having defined the ideal and real models, we can now define security of protocols. Loosely speaking,
the definition asserts that the adversary can do no more harm in a real protocol execution that in
the ideal model (where security trivially holds). This is formulated by saying that adversaries in
the ideal model are able to simulate adversaries in an execution of a secure real-model protocol.
The definition of security comes in two flavors. In the first, we consider polynomial-time bounded
adversaries, and require that the simulation be such that the real-model and ideal-model output

"We note that when the parties are assumed to be computationally bounded, privacy can be achieved over
authenticated channels by using public-key encryption. Therefore, in such a setting, the requirement that the channels
be private is not essential. However, we include it for simplicity.

One can argue that achieving authenticated and private channels in practice essentially requires a trusted pre-
processing phase for setting up a public-key infrastructure. Therefore, there is no reason not to utilize this prepro-
cessing phase in the secure multi-party computation as well. In such a case, the preprocessing phase could be used
in order to implement authenticated Byzantine Agreement (and thereby achieve secure broadcast for any number
of corrupted parties). However, we claim that the issue of achieving “secure communication channels” should be
separated from the issue of achieving “secure broadcast”. An example of why this is important was demonstrated in
Chapter 2 where we showed that authenticated Byzantine Agreement does not compose (in parallel or concurrently)
when 2/3 or less of the parties are honest. On the other hand, secure channels can be achieved without any limitation
on the protocol using them [18]; in particular, without restrictions on composability and the number of faults.
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distributions are computationally indistinguishable. On the other hand, in the second, we consider
unbounded adversaries and require that the simulation be such that the output distributions of the
two models are statistically close.

Definition 3.2.7 (computational security): Let f and II be as above. We say that protocol 11
is a protocol for computational t-secure computation with unanimous abort (resp., with abort) and
with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniform
polynomial-time adversary A for the real model, there exists a non-uniform polynomial-time adver-
sary S for the ideal model, such that for every I C [n] with |I| < t,
_ < _
{IDEAL%()S,I)(I)}keN,Ee({O,l}k)" = {REALy (4,1)(T) bren,ze({0,115)"
where the value of o € {1,2,3,4,5} depends on whether secure computation with unanimous abort

or with abort is being considered, and whether complete fairness, partial fairness or no fairness is
required.

Definition 3.2.8 (information-theoretic security): Let f and II be as above. We say that protocol
I is a protocol for information-theoretic t-secure computation with unanimous abort (resp., with abort)
and with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniform
adversary A for the real model, there exists a non-uniform adversary S for the ideal model such
that for every I C [n] with |I]| < t,

(a)

{IDEAL; s 1)(T) Frenze({0,1)4) = {REAL; (4 1)(®) renze({0.1)4)n

where the value of o € {1,2,3,4,5} depends on whether secure computation with unanimous abort
or with abort is being considered, and whether complete fairness, partial fairness or no fairness is
required.

3.3 Broadcast with Abort

In this section, we present a weak variant of the Byzantine Generals problem, that we call “broadcast
with abort”. The main idea is to weaken both the agreement and validity requirements so that some
parties may output the broadcast value x while others output L. Formally,

Definition 3.3.1 (broadcast with abort): Let Py,...,P,, be n parties and let P) be the dealer
with input x. In addition, let A be an adversary who controls up to t of the parties (which may
include Py). A protocol solves the broadcast with abort problem, tolerating t corruptions, if for any
adversary A the following three properties hold:

1. Agreement: If an honest party outputs =', then all honest parties output either ' or L.
2. Validity: If Py is honest, then all honest parties output either x or L.

3. Non-triviality: If all parties are honest, then all parties output x.

(The non-triviality requirement is needed to rule out a protocol in which all parties simply output L
and halt.) We now present a simple protocol that solves the broadcast with abort problem for any
t. As we will see later, despite its simplicity, this protocol suffices for obtaining secure computation
with abort. The protocol appears in Figure 3.1.
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Protocol BWA

e Input: P, has a value z to broadcast.

e The Protocol:
1. P; sends x to all parties.

2. Denote by z* the value received by P; from P; in the previous round. Then, every party
P; (for i > 1) sends its value z* to all other parties.

3. Denote the value received by P; from P; in the previous round by CC; (recall that % denotes
the value P; received from P; in the first round). Then, P; outputs z* if this is the only
value that it saw (i.e., if 2* =% = --- = «?, ). Otherwise, it outputs L.

We note that if P; did not receive any value in the first round, then it always outputs L.

Figure 3.1: The broadcast with abort protocol

Proposition 3.3.2 Protocol BWA of Figure 3.1 solves the broadcast with abort problem, and tol-
erates any t < n corruptions.

Proof: The fact that the non-triviality condition is fulfilled is immediate. We now prove the other
two conditions:

1. Agreement: Let P; be an honest party, such that P, outputs a value 2/. Then, it must be
that P; received ' from P; in the first round (i.e., 2° = 2'). Therefore, P; sent this value to
all other parties in the second round. Now, a party P; will output x7 if this is the only value
that it saw during the execution. However, as we have just seen, P; definitely saw z’ in the
second round. Thus, P; will only output 27 if 27 = 2’. On the other hand, if P; does not
output 7, then it outputs L.

2. Validity: If P; is honest, then all parties receive = in the first round. Therefore, they will
only output x or L.

This completes the proof. W

3.3.1 Strengthening Broadcast with Abort

A natural question to ask is whether or not we can strengthen Definition 3.3.1 in one of the following
two ways (and still obtain a protocol for ¢ > n/3):

1. Strengthen the agreement requirement: If an honest party outputs a value z’, then all honest
parties output z’. (On the other hand, the validity requirement remains unchanged.)

2. Strengthen the validity requirement: If Py is honest, then all honest parties output z. (On the
other hand, the agreement requirement remains unchanged.)

It is easy to see that the above strengthening of the agreement requirement results in the definition
of weak Byzantine Generals. (The validity and non-triviality requirements combined together are
equivalent to the validity requirement of weak Byzantine Generals.) Therefore, there exists no
deterministic protocol for the case of ¢ > n/3. For what can be done if one utilizes probabilistic



3.4. SECURE COMPUTATION WITH ABORT AND NO FAIRNESS 37

protocols, see the section on recent related work (Section 3.1.3). Regarding the strengthening of the
validity requirement, the resulting definition implies a problem known as “Crusader Agreement”.
This was shown to be unachievable for any ¢ > n/3 by Dolev in [31]. We therefore conclude that
the “broadcast with abort” requirements cannot be strengthened in either of the above two ways
(for deterministic protocols), without incurring a ¢ < n/3 lower bound.

3.4 Secure Computation with Abort and No Fairness

In this section, we show that any protocol for secure computation (with unanimous abort and any
level of fairness) that uses a broadcast channel can be “compiled” into a protocol for the point-
to-point network that achieves secure computation with abort and no fairness. Furthermore, the
fault tolerance of the compiled protocol is the same as the original one. Actually, we assume that
the protocol is such that all parties terminate in the same round. We say that such a protocol has
simultaneous termination. Without loss of generality, we also assume that all parties generate their
output in the last round. The result of this section is formally stated in the following theorem:

Theorem 3.4.1 (Theorem 3.1.1 — restated): There exists a (polynomial-time) protocol compiler
that takes any protocol II (with simultaneous termination) for the broadcast model, and outputs
a protocol TI' for the point-to-point model such that the following holds: If I is a protocol for
information-theoretic (resp., computational) t-secure computation with unanimous abort and any
level of fairness, then TI' is a protocol for information-theoretic (resp., computational) t-secure
computation with abort and no fairness.

Combining Theorem 3.4.1 with known protocols (specifically, [76] and [52]%), we obtain the following
corollaries:

Corollary 3.4.2 (information-theoretic security — compilation of [76]): For any probabilistic polynomial-
time n-ary functionality f, there exists a protocol in the point-to-point model, for the information-
theoretic n/2-secure computation of f with abort and no fairness.

We note that this result is optimal in the following sense. Ben-Or et al. [10] showed that there are
functions for which there do not exist information-theoretically private protocols when ¢ > n/2.
The definition of a “private” (rather than “secure”) protocol, is regarding the behavior of corrupted
parties. In a private protocol, corrupted parties follow the protocol specification, but attempt to
learn more information than intended (such adversarial behavior is known as passive or semi-
honest). Therefore, security with abort implies privacy, and this means that for information-
theoretic security, resilience of ¢ > n/2 is not possible. On the other hand, the result is not
optimal regarding fairness. (In particular, the recent [39] achieve an analogous result with complete
fairness.)

Corollary 3.4.3 (computational security — compilation of [52]): For any probabilistic polynomial-
time n-ary functionality f, there exists a protocol in the point-to-point model, for the computational

t-secure computation of f with abort and no fairness, for any t.

We now proceed to prove Theorem 3.4.1.

¥Both the [76] and [52] protocols have simultaneous termination
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Proof of Theorem 3.4.1: Intuitively, we construct a protocol for the point-to-point model from
a protocol for the broadcast model, by having the parties in the point-to-point network simulate
the broadcast channel. When considering “pure” broadcast (i.e., Byzantine Generals), this is not
possible for t > n/3. However, it suffices to simulate the broadcast channel using a protocol for
“broadcast with abort”. Recall that in such a protocol, either the correct value is delivered to all
parties, or some parties output L. The idea is to halt the computation in the case that any honest
party receives L from a broadcast execution. The point at which the computation halts dictates
which parties (if any) receive output. The key point is that if no honest party receives L, then
the broadcast with abort protocol perfectly simulates a broadcast channel. Therefore, the result is
that the original protocol (for the broadcast channel) is simulated perfectly until the point that it
may prematurely halt.

Components of the compiler:

1. Broadcast with abort executions: Each broadcast of the original protocol (using the assumed
broadcast channel) is replaced with an execution of the broadcast with abort protocol.

2. Blank rounds: Following each broadcast with abort execution, a blank round is added in
which no protocol messages are sent. Rather, these blank rounds are used by parties to notify
each other that they have received L. Specifically, if a party receives L in a broadcast with
abort execution, then it sends L to all parties in the blank round that immediately follows.
Likewise, if a party receives L in a blank round, then it sends L to all parties in the next
blank round (it also does not participate in the next broadcast).

Thus each round of the original protocol is transformed into 3 rounds in the compiled protocol
(2 rounds for broadcast with abort and an additional blank round). We now proceed to formally
define the protocol compiler:

Construction 1 (protocol compiler): Given a protocol 11, the compiler produces a protocol II'.
The specification of protocol T1' is as follows:

e The parties use broadcast with abort in order to emulate each broadcast message of protocol 1I.
Each round of 11 is expanded into 3 rounds in II': broadcast with abort is run in the first 2
rounds, and the third round is a blank round. Point-to-point messages of 11 are sent unmodified
in II'. The parties emulate I1 according to the following instructions:

1. Broadcasting messages: Let P; be a party who is supposed to broadcast a message m in the
7™ round of II. Then, in the 5 broadcast simulation of II' (i.e., in rounds 3j and 35 + 1
of I'), all parties Tun an execution of broadcast with abort in which P; plays the dealer

role and sends m.

2. Sending point-to-point messages: Any message that P; is supposed to send to P; over the
point-to-point network in the ™ round of II is sent by P; to P; over the point-to-point
network in round 3j of II'.

3. Receiving messages: For each message that party P; is supposed to receive from a broadcast
1L, party P; participates in an ezecution of broadcast with abort as a receiver. If its
output from this execution is a message m, then it appends m to its view (to be used for
determining its later steps according to 1I).

If it receives L from this execution, then it sends L to all parties in the next round (i.e., in
the blank round following the execution of broadcast with abort), and halts immediately.
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4. Blank rounds: If a party P; receives L in a blank round, then it sends L to all parties in
the next blank round and halts. In the 2 rounds preceding the next blank round, Party P;
does not send any point-to-point messages or messages belonging to a broadcast execution.
(We note that if this blank round is the last round of the execution, then P; simply halts.)

5. Output: If a party P; received L at any point in the execution (in an execution of broadcast
with abort or in a blank round), then it outputs L. Otherwise, it outputs the value specified
by II.

In order to prove that IT' is t-secure with abort and no fairness, we first define a different trans-
formation of II to II which is a hybrid protocol between II and II'. In particular, II is still run in
the broadcast model. However, it provides the adversary with the additional ability of prematurely
halting honest parties. We now define the hybrid protocol IT and show that it is t-secure with abort
and no fairness:

Lemma 3.4.4 Let I1 be a protocol in the broadcast model that is computational (resp., information-
theoretic) t-secure with unanimous abort and any level of fairness. Then, define protocol 11 (also
for the broadcast model) as follows:

1. Following each round of 11, add a blank round.

2. If in a blank round, P; receives a L message, then P; sends L to Pj for all j # i in the next
blank round and halts. P; also does not broadcast any message or send any point-to-point
messages in the next round of I1 (before the blank round where it sends all the L messages).

3. Apart from the above, the parties follow the instructions of I1.

4. Output: If a party P; received L in any blank round, then it outputs L. Otherwise, it outputs
the value specified by I1.

Then, 11 is computational (resp., information-theoretic) t-secure with abort and no fairness.

Proof: We prove this theorem for the case that Il is computationally ¢-secure with unanimous abort
and partial fairness. The other cases (information theoretic security and security with complete
fairness or no fairness) are proved in a similar way. Let A be a real-model adversary attacking
II. Our aim is to construct an ideal-model simulator S for A. In order to do this, we must use
the fact that for any adversary A attacking protocol II, there exists an ideal-model simulator S.
Untortunately we cannot apply S to A because S is a simulator for protocol IT and A participates
in protocol I. We therefore first construct an adversary A that attacks II from the adversary A
that attacks II. The construction of A is such that the output distribution of an execution of II
with A is very similar to the output distribution of an execution of IT with A. Having counstructed
A, 1t is then possible to apply the simulator S that we know is guaranteed to exist. We therefore
obtain a simulator S for A by first “transforming” A into A and then applying S. As we will show,
the resulting simulator S is as required for II. Details follow.

As we have mentioned, we first define the adversary A who attacks II. Adversary A internally
invokes A and therefore has internal communication with A and external communication with the
honest parties executing II.
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Adversary A for II:

e Input: A receives an input sequence {z;};cr and a series of random-tapes {r; };c;. (Recall that
A controls all parties in the set I. Thus, corrupted party P;’s input and random-tape equal z;
and 7;, respectively.)

e Execution:

1. Invoke A: A begins by invoking A upon input sequence {z;}ier and random-tapes {r;}ics.
2. Emulation before A sends any L messages: A internally passes to A all the messages
that it externally receives from the honest parties (through broadcast or point-to-point

communication). Likewise, A externally broadcasts in Il any message that A broadcasts
in II, and A externally sends Pj in II any message that A sends P; in II.

3. Emulation after A sends a L message: Once A sends a L message in an execution of 11,
the honest parties in IT and II may behave differently (in particular, a party receiving L
may continue to send messages in I, whereas it would halt in II). Therefore, A filters
messages sent by honest parties in II so that A’s view equals what it would in an execution
of II. That is:

In the round of II following the first 1 message sent by A, adversary A forwards to A only
the point-to-point and broadcast messages sent by a party P; who did not receive L from A
in the previous (simulated) blank round of II. Furthermore, A simulates for A the sending

of all the 1 messages that would be sent in the next blank round of II (if one exists), and
halts.

4. Output: A outputs whatever A does.

Before proceeding, we show that the only difference between an execution of II with A, and II
with .A is that some additional honest parties may output L in the execution of II. That i is, we
claim that the joint distribution of the outputs of all parties not outputting 1 and the adversary,
is identical in II and II. We begin with some notation:

o Let REALy (4 )(T,7) be the global output of an execution of II with adversary A, inputs
Z, and random-tapes 7 (i.e., T = (rq,...,7,) where P; receives random-tape ;). (Thus,
REAL[ (4,1)(T) = {REALy (4,1)(T, U ) }.)

e For any subset J C [n], denote by REALy (4,1 (T,T)|s, the restriction of REALy (4 )(T,T) to
the outputs of A and all parties P; for j € J. We stress that A’s output is included in this
restriction.

e In any execution of I, it is possible to divide the parties into those who output L and those
who do not output L. We note that the set of parties outputting L is chosen by the adversary
A and is dependent on the parties’ inputs T and random-tapes 7. We denote by J = JA(E, )
the set of parties who do not output L in an execution of I with adversary A (and where the
inputs and random-tapes are T and 7). (Notice that J; is a fixed function depending only on
7 and 7.) We also denote by J;(Z) a random variable taking values over J ;(Z,7) for uniformly
distributed 7.

We now consider the joint distribution of the outputs of the adversary and the parties in J ;(Z,7)
(1 e., those not outputting L). We claim that these distributions are identical in IT with A4 and in
II Wlth A. Using the above notation, we claim that for every adversary A and set of corrupted
parties I, and for all input and random-tape sequences T and 7,

REALI,(4,1)(T,T)| 7 yz,7)= REALg (4 (T, 7)1 1z 7) (3.1)
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where A is as defined above. We now prove Eq. (3.1). First, it is clear that A’s view in a real
execution of IT is identical to its view in the simulation by A. Therefore A’s output in II equals A’s
output in II. Next, notice that if there exists an honest party that does not output L in II, then
it must be that L messages were sent in the last blank round only. However, this means that any
honest party not receiving such a message has an identical view in II and II. Therefore, the outputs
of all such parties are identical in II and II. Eq. (3.1) follows. We stress that the parties who
output L in A may have very different outputs in A (and in particular may output their prescribed
outputs). Nevertheless, at this stage we are only interested in those parties not outputting L.

We now proceed to construct a simulator S for A. Intuitively, S works by using the simulator
S for A, where A is derived from A as above. Recall that A is an adversary for the secure protocol
IT, and thus a simulator S is guaranteed to exist for A.

Simulator S: First consider an adversary A for I constructed from the adversary A as described
above. By the security requirements of II, for every adversary A there exists an ideal-model
simulator S for A. Simulator S for A works by emulating an ideal execution for S. Recall that S
works in an ideal model for secure computation with abort and no fairness, whereas & works in an
ideal model for secure computation with unanimous abort and partial fairness. Further recall that
where partial fairness holds, there are two cases depending on whether or not P; is corrupted. If
P is not corrupted, then essentially all parties receive output at the same time. If P; is corrupted,
then the adversary receives the corrupted parties’ outputs first and then decides whether the honest
parties all receive output or all abort.

We now describe the simulator: S receives input series {z;}icr and internally invokes S upon
the same inputs {z;};c;. Then, S works as an intermediary between S and the trusted party. That
is, S obtains the input values {xl}icr sent by S and externally sends these same values to the
trusted party. Once S forwards these inputs to the trusted party, it receives back all the corrupted
parties’ outputs (recall that S interacts in an ideal model with no fairness). S then forwards these
outputs to S. We distinguish two cases:

1. P; is not corrupted: in this case, S concludes at this point, outputting some value.

2. Py 1s corrupted: in this case, S first instructs the trusted party to either send all the honest
parties their outputs or send them all L. & then concludes, outputting some value.

S ignores the instruction sent to the trusted party in the second case, and sets its output to be
whatever S output.

It remains to define the set J that S sends to the trusted party in the “trusted party answers
remaining parties” stage of its ideal execution (recall that all honest parties in .J receive their
output and all others receive L). First notice that the string output by S is computationally
indistinguishable to A’s output from a real execution. However, by the definition of A, this output
contains A’s view of an execution of II. Furthermore, A’s view fully defines which honest parties
in an execution of II output L and which receive their output. In particular, if A sent a L message
before the last blank round, then all honest parties abort (and J = ¢). Otherwise, all parties receive
output except for those receiving L messages in the last blank round. Therefore, S examines this
view and defines the set J accordingly. Once J is defined, S sends it to the trusted party and halts.
This completes the description of S.

We now wish to show that the output of an ideal execution with abort and no fairness with adversary
S is computationally indistinguishable to the output of a real execution of II with .A. We begin by
showing an analog to Eq. (3.1) in the ideal model. That is, we show that the outputs of parties
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not outputting L in an execution of II are the same in an ideal execution (by Def. 2) with S and
in an ideal execution (by Def. 5) with S. Formally, we claim the following: For every set I, every
set of inputs T and every random-tape r (for S or S),

weaL’ ()s 1)( ) gs(@ )= IDEAL%()S’I)(T, i@ (3.2)
where S and S are invoked with random-tape r, and where J 5(T,7) equals the set of parties in
the ideal execution with S who do not output L. (Le., Jg 5(T,7) equals the set J sent by S to
the trusted party when the input vector equals T and 1ts random tape equals r.) In order to see
that Eq. (3.2) holds, notice the following. First, S (upon input {z;};c; and random-tape ) sends
exactly the same inputs to the trusted party as S does (upon input {z;};c; and random-tape r).
Now, the outputs of all honest parties not outputting L are fixed by  and the inputs sent to the
trusted party by the simulators S or S. Therefore, if S and S send the same inputs, it follows that
all parties not outputting L have exactly the same output. In addition, S outputs exactly the same
string that S outputs. Eq. (3.2) therefore follows.

By assumption, II is computationally ¢-secure with unanimous abort and partial fairness. It
therefore holds that for every set I C [n] such that |I| < ¢, and for every set J C [n]

{IDEALS,()SI)( )|J} {REALH(AI)( )|J}

Next, notice that the sets Jg and J ; are fully defined given A and S’s outputs respectively. (Recall
that Jg equals the set of parties not outputting L in an ideal execution with S, and J 5 equals the
set of parties not outputting L in a real execution of II with A.) Furthermore, by the definitions
of A and S, it follows that their outputs also fully define Jg and J;. Therefore, Jg (resp., J ;) is
part of the global output of IDEAL (resp., REAL). This implies that,

C —
{eaLf)s @ lsgn } = {REALL AN @)s 1)} (3.3)
(Otherwise, we could distinguish IDEALS,%()SJ)( ) from REALy (4 )(Z) by comparing the restriction
to Jg or to J 4, respectively.) Combining Eq. (3.3) with Equations (3.1) and (3.2), we have that

{IDEAL; 28 1)( )|JS~(E)} = {REALﬁ,(A,I)(TNJA(z)}

It remains to show that the entire output distributions (including the honest parties not in .J) are
computationally indistinguishable. However, this is immediate, because for every party P; for which
i ¢ J, it holds that P; outputs L (this is true for both the real and ideal executions). Therefore,

{IDEALS()&I) (E)} = {REALE(A,I) (E)}

completing the proof of Lemma 3.4.4. [

Recall that our aim is to show the security of the compiled protocol II' (and not H) However,
intuitively, there is no difference between IT and IT". The reason is as follows: in II, the adversary
can instruct any honest party P; to halt by sending it L in a blank round. On the other hand,
in IT', the same effect can be achieved by having the “broadcast with abort” terminate with P;
receiving L. Therefore, whatever an adversary attacking II' can achieve, an adversary attacking II
can also achieve. Formally:
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Lemma 3.4.5 Let II be a protocol in the broadcast model that is information-theoretic or computa-
tional t-secure with unanimous abort and with any level of fairness, and let II be the transformation
of I1 as described in Lemma 3.4.4. Then, for every real-model adversary A" for II' of Construction 1,
there exists a real-model adversary A for I1, such that for every I C [n] with |I| < t,

{REALE(AJ) (E)} = {REALHr’(Ar’I)(E)}

Proof: We begin by describing the adversary A. Intuitively, A works by simulating the executions
of broadcast with abort for A’. If a party receives L in II' (in a broadcast with abort execution
or in a blank round), then A sends the appropriate L messages in a blank round of II. This
strategy works because in I, there is no difference if a party receives L in a broadcast with abort
execution or in the following blank round. Formally, adversary A invokes A’ and in every round of
the execution of II works as follows:

1. Receiving messages in rounds r,r + 1: A receives the broadcast and point-to- point messages
from the honest parties in II. For every message broadcast by an honest party, A simulates

a “broadcast with abort” execution, playing the honest parties’ roles (where A" plays the
corrupted parties’ roles). In addition, A forwards any point-to-point messages unchanged to

A

2. Sending messages in round r,7+1: A plays the honest parties’ roles in “broadcast with abort”
executions, in which A" broadcasts messages to the honest parties. Consider a particular
execution in which a corrupted party P plays the dealer. If all the honest parties receive L
in this execution, then A broadcasts nothing in II. On the other hand, if at least one honest
party outputs a message m, then A broadcasts m. As before, point-to-point messages are
forwarded unchanged.

3. Blank round following round r + 1: Let P denote the set of honest parties receiving L in any
of the above simulated “broadcast with abort” executions (i.e., for the broadcast of rounds r
and 7 4+ 1). Then, for every P; € P, adversary A sends L to P; in this blank round.

At the conclusion of the execution, A outputs whatever A’ does. This completes the description
of A. The fact that A perfectly simulates an execution of II' with A’ follows directly from the
definition of IT". That is, the only difference between II and II' is that in I’ the broadcast channel
is replaced by broadcast with abort. This means that some parties may receive L instead of the
broadcasted message. However, in this case, A knows exactly who these parties are and can send
them L in the following blank round. The key point is that in IT' it makes no difference if L is
received in a broadcast with abort execution or in the following blank round. We conclude that
the outputs of all the honest parties and A in II, are identically distributed to the outputs of the
honest parties and A" in II'. W

Concluding the proof of Theorem 3.4.1: Let A’ be an adversary attacking II'. By Lemma 3.4.5,
we have that there exists an adversary A attacking IT such that the output distributions of II' with
A’ and II with A are identical. Then, by Lemma 3.4.4, we have that for real-model adversary A
for H there exists an ideal-model simulator S such that the output distributions of a real execution
with A and an ideal execution (with abort and no fairness) with S are computationally indistin-
guishable (or statistically close). We conclude that the output distribution of a real execution of IT'
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with adversary A’ is computationally indistinguishable (or statistically close) to an ideal execution
(with abort and no fairness) with S. That is, IT' is t-secure with abort and no fairness, as required.

The complexity of protocol IT': We remark that the transformation of II to IT' preserves the
round complexity of II. In particular, the number of rounds in II" equals exactly 3 times the number
of rounds in II. On the other hand, the bandwidth of IT’ is the same as that of II except for the cost
incurred in simulating the broadcast channel. Notice that in the “broadcast with abort” protocol,
if a dealer sends a k-bit message, then the total bandwidth equals n - k. (If the dealer cheats and
sends different messages, then the bandwidth is upper-bound by the length of the longest message
times n.) Therefore, the number of bits sent in an execution of I is only n times that sent in an
execution of II.

3.5 Secure Computation with Abort and Partial Fairness

In this section we show that for any functionality f, there exists a protocol for the computational
t-secure computation of f with abort and partial fairness, for any ¢. (This construction assumes the
existence of trapdoor permutations.) Furthermore, for any functionality f, there exists a protocol
for information-theoretic n/2-secure computation of f with abort and partial fairness (and without
any complexity assumptions).

Outline: We begin by motivating why the strategy used to obtain secure computation with abort
and no fairness is not enough here. The problem lies in the fact that due to the use of a “broadcast
with abort” protocol (and not a real broadcast channel), the adversary can disrupt communication
between honest parties. That is, of course, unless this communication need not be broadcast. Now,
in the definition of security with abort and partial fairness, once an honest P; receives its output,
it must be able to give this output to all honest parties. That is, the adversary must not be allowed
to disrupt the communication, following the time that an honest P; receives its output. This means
that using a “broadcast with abort” protocol in the final stage where the remaining parties receive
their outputs is problematic.

We solve this problem here by having the parties compute a different functionality. This func-
tionality is such that when P gets its output, it can supply all the other parties with their output
directly and without broadcast. On the other hand, P, itself should learn nothing of the other
parties’ outputs. As a first attempt, consider what happens if instead of computing the original
functionality f, the parties first compute the following:

First attempt:
Inputs: T = (x1,...,2y)
Outputs:

e Party P; receives its own output fi(Z). In addition, for every i > 1, it receives
¢i = fi(T) ® r; for a uniformly distributed ;.

e For every ¢ > 1, party F; receives the string r;.

That is, for each ¢ > 1, party P; receives a random pad r; and P; receives an encryption of f;(T)
with that random pad. Now, assume that the parties use a protocol that is secure with abort and no
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fairness in order to compute this new functionality. Then, there are two possible outcomes to such
a protocol execution: either all parties receive their prescribed output, or at least one honest party
receives L. In the case that at least one honest party receives L, this party can notify /2, who can
then immediately halt. The result is that no parties, including the corrupted ones, receive output
(if P; does not send the ¢; values, then the parties only obtain r; which contains no information
on f;(Z)). In contrast, if all parties received their prescribed output, then party P; can send each
party P; its encryption ¢;, allowing it to reconstruct its output f;(Z). The key point is that the
adversary is unable to prevent P; from sending these ¢; values and no broadcast is needed in this
last step. Of course, if P, is corrupted, then it will learn all the corrupted parties’ outputs first.
However, under the definition of partial fairness, this is allowed.

The flaw in the above strategy arises in the case that P is corrupted. Specifically, a corrupted
P; can send the honest parties modified values, causing them to conclude with incorrect outputs.
This is in contradiction to what is required of all secure protocols. Therefore, we modify the
functionality that is computed so that a corrupted P, is unable to cheat. In particular, the aim is
to prevent the adversary from modifying ¢; = f;(T) @ r; without P; detecting this modification. If
the adversary can be restrained in this way, then it can choose not to deliver an output; however,
any output delivered is guaranteed to be correct. The above-described aim can be achieved using
standard (information-theoretic) authentication techniques, based on pairwise independent hash
functions. That is, let H be a family of pairwise independent hash functions & : {0,1}* — {0, 1}*.
Then, the functionality that the parties compute is as follows:

Functionality F:

Inputs: T = (x1,...,2y)
Outputs:

e Party P; receives its own output f1(Z). In addition, for every i > 1, it receives
¢; = fi(T) ® r; for a uniformly distributed r;, and a; = h;(c¢;) for h; € H.

e For every ¢ > 1, party F; receives the string r; and the description of the hash
function h;.

Notice that as in the first attempt, P; learns nothing of the output of any honest P; (since f;(T)
is encrypted with a random pad). Furthermore, if P; attempts to modify ¢; to ¢} in any way, then
the probability that it will generate the correct authentication value a} = h;(c}) is at most 27% (by
the pairwise independent properties of h;). Thus, the only thing a corrupt P; can do is refuse to
deliver the output. The protocol for computing f, as motivated here, appears in Figure 3.2.

We now proceed to show that Protocol 3.2 achieves security with abort and partial fairness.

Theorem 3.5.1 (Theorem 3.1.2 —restated): For any probabilistic polynomial-time n-ary function-
ality f, there exists a protocol in the point-to-point model for the computational t-secure computation
of f with abort and partial fairness, for any t. Furthermore, there exists a protocol in the point-
to-point model for the information-theoretic n/2-secure computation of f with abort and partial
fairness.

Proof: The protocol referred to in the theorem statement is that of Protocol 3.2, where the
subprotocol used for Stage 1 is computationally ¢-secure (for the first part of the theorem) or

9By Corollaries 3.4.2 and 3.4.3 in Section 3.4, such protocols exist for any ¢ assuming the existence of trapdoor
permutations. Furthermore, for the case of ¢ > n/2, no assumptions are required.
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Protocol 3.2

The parties execute the following three steps:

1. Stage 1 — computation: The parties use any protocol for secure (computational or information-
theoretic) computation with abort and no fairness in order to compute the functionality F
defined above.”Thus, P; receives fi(Z) and a pair (c;,a;) for every i > 1, and each P; (i > 1)
receives (r;, h;) such that ¢; = f;(Z) ® r; and a; = h;(¢;).

2. Stage 2 — blank round: After the above protocol concludes, a blank-round is added so that if
any party receives L for its output from Stage 1, then it sends L to P; in this blank round.

3. Stage 3 — outputs: If P, received any L-messages in the blank round, then it sends L to
all parties and halts outputting L. Otherwise, for every ¢, it sends (¢;,a;) to P; and halts,
outputting fi(T).

Party P, outputs L if it received L from P; (it ignores any L it may receive from other
parties). If it received (c¢;,a;) from P; (and not L), then it checks that a; = hi(c;). If yes, it
outputs f;(T) = ¢; ® r;. Otherwise, it outputs L.

Figure 3.2: A protocol for secure computation with abort and partial fairness for any f

information-theoretically n/2-secure (for the second part of the theorem). Intuitively, the security
of Protocol 3.2 is derived from the fact that Stage 1 is run using a protocol that is secure with
abort (even though it has no fairness property). Consider the two cases regarding whether or not
P is corrupted:

1. Py is corrupt: in this case, A receives all the outputs of the corrupted parties first. Fur-
thermore, A4 can decide exactly which parties to give output to and which not. However,
this is allowed in the setting of secure computation with abort and partial fairness, and so is
fine. We stress that .4 cannot cause an honest party to output any value apart from L or its
correct output. This is because the authentication properties of pairwise independent hash
functions guarantee that A does not modify ¢;, and the correctness of the protocol of Stage 1
guarantees that ¢; @ r; equals the correct output f;(%).

2. Pp 15 honest: there are two possible cases here; either some honest party received L in the
computation of Stage 1 or all honest parties received their correct outputs. If some honest
party received L, then this party sends L to P; in Stage 2 and thus no parties (including the
corrupted parties) receive output. (Similarly, if A sends L to P; in Stage 2 then no parties
receive output.) On the other hand, if all honest parties received their outputs and A does
not send L to P; in Stage 2, then all parties receive outputs and the adversary cannot cause
any honest party to abort. We therefore have that in this case complete fairness is achieved,
as required.

In order to formally prove the security of the protocol, we use the sequential composition theorem of
Canetti [13]. This theorem states that we can consider a hybrid model in which an ideal call is used
for Stage 1 of the protocol, whereas the other stages are as described above. That is, the parties
all interact with a trusted party for the computation of Stage 1 (where the ideal model for this
computation is that of secure computation with abort and no fairness). Then, Stages 2 and 3 take
place as in a real execution. The result is a protocol that is a hybrid of real and ideal executions. In
order to prove the security of the (real) protocol, it suffices to construct an ideal-model simulator
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for the hybrid protocol. Thus, the description of the parties and adversary below relate to this
hybrid model (the parties send messages to each other, as in a real execution, and to a trusted
party, as in an ideal execution). The proof of [13] is stated for secure computation without abort
(and complete fairness); however it holds also for secure computation with abort and no fairness.

Let A be an adversary attacking Protocol 3.2 in the above-described hybrid model. Notice that
in the ideal call of Stage 1, A receives all the corrupted parties’ outputs first and then decides which
honest parties receive output (this is because there is no fairness in the computation of Stage 1).
We now construct an ideal-model adversary & who works in an ideal model with abort and partial
fairness. We stress that A works in a hybrid model in which the “ideal model” part has no fairness;
whereas, § works in an ideal model with partial fairness. S has external communication with the
trusted party of its ideal model and internal, simulated communication with the adversary A. In
our description of S, we differentiate between the cases that P, is corrupt and P; is honest:

1. Py is corrupt: S invokes A and receives the inputs that A intends to send to the trusted party
of the hybrid model. Then, § externally sends these inputs unmodified to the trusted party
of its ideal model for computing f. If the inputs are not valid, then in the hybrid model all
parties receive L as output. Therefore, S internally hands L to A as its output from Stage 1
and simulates all honest parties sending L in Stage 2 (as would occur in a hybrid execution).
S then halts, outputting whatever A does. Otherwise, if the inputs are valid, S receives all
the corrupted parties outputs { f;(Z)}ics (this is the case because S controls P; and by partial
fairness, when Pj is corrupt the adversary receives the corrupted parties’ outputs first). S
then constructs the corrupted parties’ outputs from Stage 1 that A expects to see in the
hybrid execution. S defines P;’s output as follows: First, P,’s personal output is f1(Z). Next,
for every corrupted party P;, party P;’s output contains the pair (¢; = fi(T) @® 74, hi(c;)) for
r; €r {0,1}* and h; €g H. Finally, for every honest party Pj, party P’s output contains
a pair (c;,a;) where ¢j,a; €r {0,1}F. This defines Pi’s output. We now define how S
constructs the other corrupted parties’ outputs: for every corrupted F;, simulator S defines
P;’s output to equal (r;, h;) where these are the values used in preparing the corresponding
pair (cj, hi(c;)) in Pi’s output. (We note that S can prepare these values because it knows
fi(Z) for every corrupted party FP;.) S then internally passes A all of these outputs. In the
hybrid model, after receiving the outputs from Stage 1, A sends a set J’ to the trusted party
instructing it to give outputs to the parties specified in this set (all other parties receive L).
S obtains this set J’ from A and records it.

S continues by simulating P; sending | to P; in the blank round, for every honest party P; for
which [ ¢ J' (as would occur in a hybrid execution). Then, in the last stage, A (controlling
Py) sends to each honest party P; a pair (c},a}) or L. S receives these strings and defines
the set of parties J to receive outputs to equal those parties in J’ to whom A sends the same
(¢j,a;) that S gave A in Stage 1. (These are the parties who do not see L in the execution
and whose checks of Stage 3 succeed; they therefore do not abort.) S concludes by externally

sending J to the ideal-model trusted party and outputting whatever A does.

2. Py is honest: In this case, S begins in the same way. That is, S invokes A and receives the
inputs that A intends to send the trusted party of the hybrid model. However, unlike in the
previous case, S does not forward these inputs to its trusted party; rather it just records
them.'? (If any of these inputs are invalid, then S internally sends L to all corrupted parties,

108 cannot forward the inputs to the trusted party yet, because in the model of partial fairness as soon as it does
this all parties receive output. However, in the execution of Protocol 3.2, A can cause the execution to abort at a
later stage.
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externally sends invalid inputs to the trusted party and halts. In the sequel, we assume that
all inputs sent by A are valid.) Now, 4 expects to receive outputs from Stage 1 before it
sends the trusted party the set J’ of honest parties receive output from Stage 1. However,
S does not have the corrupted parties’ outputs yet. Fortunately, when P; is honest, S can
perfectly simulate the corrupted parties outputs from Stage 1 by merely providing them with
(73, h;) where r; € {0,1}* and h; €g H. After internally passing A the simulated corrupted
parties’ outputs, S obtains a set J' from A, instructing the trusted party of the hybrid model
which parties should receive output.

S continues by simulating Stages 2 and 3 of the protocol. As above, S simulates every honest
party P, for which [ ¢ J’ sending L to P, in Stage 2. Furthermore, S obtains any messages
sent by A in this stage. If A sends L to P in Stage 2, then S simulates P; sending L to all
parties, sends invalid inputs to the trusted party and halts. Likewise, if .J’ does not contain
all the honest parties, then & internally simulates P; sending L to all the corrupted parties,
and externally sends invalid inputs to the trusted party. (These cases correspond to the case
that no parties receive their prescribed output.)

In contrast, if J' contains all the honest parties (i.e., no honest party received L from Stage 1)
and A did not send L to P; in Stage 2 of the simulation, then S externally sends the trusted
party the inputs that it recorded from A above, receiving back all of the corrupted parties
outputs {fi(ZT)}icr. Then, for each corrupted party’s output f;(Z), simulator S generates
the pair that corrupted P; would see in a hybrid execution. In particular, previously in the
simulation S provided P; with a pair (r;, h;) where 7; €z {0,1}* and h; €g H. Now, S
simulates P; sending corrupted party P; the pair (¢;, a;) where ¢; = f;(T) ®r; and a; = h;(¢;).
(S can do this because it knows the random-pad r; and the hash function h;.) Finally, S
outputs whatever 4 does and halts.

The fact that the global output in the hybrid execution with S is identically distributed to the
global output in a real execution with A is derived from the following observations. First, A’s
outputs from Stage 1 can be perfectly simulated, both when P; is corrupt and when P; is honest.
Second, the honest parties’ messages in Stage 2 can be perfectly simulated given only the set .J’
sent by A to the hybrid-model trusted party in the ideal execution of Stage 1. Therefore, A’s view
in the hybrid-model execution is identical to its view in a real execution. It remains to show that
the honest parties’ outputs are also correctly distributed.

First, consider the case that P, is corrupt. In this case, with overwhelming probability, the
set of honest parties receiving output in the real model are exactly those parties P; for whom
P; (controlled by A) sends the exact pair (cj,a;) that it received as output from Stage 1 (and
who did not see L at any time in the execution). This is due to the authentication properties of
pairwise independent hash functions. Likewise, in the ideal-model simulation, S designates these
same parties to be the ones receiving output. Therefore, except with negligible probability, the set
J sent by S to the trusted party contains exactly those parties who would receive output in a real
execution.

Next, consider the case that P; is honest. In this case, all parties receive output unless P; sees
1 in Stage 2. This can happen if A sends P; such a value, or if any honest party received L from
Stage 1. Both of these cases are detected by S in the hybrid-model simulation, and therefore the
case that all parties abort in the hybrid model corresponds to this case in the real model (and
likewise for the case that all parties receive output). This completes the proof of Theorem 3.5.1



Chapter 4

Universally Composable Multi-Party
Computation

In this chapter we prove a fundamental result stating that secure multi-party computation that
remains secure under concurrent general-composition can be achieved, for any number of corrupted
parties. That is, we consider an asynchronous multi-party network and an adversary that can
adaptively corrupt as many parties as it wishes. We present protocols that allow any subset of
parties in this setting to securely realize any desired functionality of their inputs, and be guaranteed
that security is preserved regardless of the activity in the rest of the network. Our protocols are in
the common reference string model and rely on standard intractability assumptions.

4.1 Introduction

As we have seen, the model of “stand-alone computation” does not fully capture the security re-
quirements from cryptographic protocols in a modern computer network. In such networks, a
protocol execution may run concurrently with an unknown number of other protocols. These ar-
bitrary protocols may be executed by the same parties or other parties, they may have potentially
related inputs and the scheduling of message delivery may be adversarially coordinated. Further-
more, the local outputs of a protocol execution may be used by other protocols in an unpredictable
way. These concerns, or “attacks” on a protocol are not captured by the stand-alone model.

One way to guarantee that protocols withstand some specific security threats in multi-execution
environments is to explicitly incorporate these threats into the security model and analysis. Such
an approach was taken, for instance, in the case of non-malleability of protocols [32], and regarding
the concurrent composition of zero-knowledge [33, 77] and oblivious transfer [43]. However, this
approach is inherently limited since it needs to explicitly address each new concern, whereas in a
realistic network setting, the threats may be unpredictable. Furthermore, it inevitably results in
definitions with ever-growing complexity.

In contrast, we take the approach where a protocol is designed and analyzed as “stand alone”,
and security in a multi-execution environment is guaranteed via a secure composition theorem. In
particular, we use the recently proposed framework of universally composable security [14]. Here
a generic definition is given for what it means for a protocol to “securely realize a given ideal
functionality”, where an “ideal functionality” is a natural algorithmic way of capturing the desired
functionality of the protocol problem at hand. In addition, it is shown that security of protocols
is preserved under a general composition operation called universal composition. This essentially
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means that any protocol that securely realizes an ideal functionality when considered as stand-
alone, continues to securely realize the same functionality even when composed with any other set
of protocols that may be running concurrently in the same system. (In other words, the protocol
remains secure under concurrent general-composition.) A protocol that is secure within the [14]
framework is called universally composable (UC).

It has been shown that eny ideal functionality can be securely realized in a universally compos-
able way using known constructions, as long as a majority of the participants remain uncorrupted
[14] (building upon [10, 76, 15]). However, this result does not hold when half or more of the parties
may be corrupted. In particular, it does not hold for the important case of {wo-party protocols,
where each party wishes to maintain its security even if the other party is corrupted. In fact, it was
shown in [16, 14] that in the standard model, a number of basic two-party functionalities (such as
commitment, zero-knowledge, and common coin-tossing) cannot be securely realized in this frame-
work by two-party protocols. Nonetheless, protocols that securely realize the commitment and
zero-knowledge functionalities in the common reference string (CRS) model were shown in [16, 26].
(In the CRS model all parties are given a common, public reference string that is ideally chosen
from a given distribution. This model was originally proposed in the context of non-interactive
zero-knowledge proofs [12] and since then has proved useful in other cases as well.)

Our results. Loosely speaking, we show that any functionality can be realized in a universally
composable way, in the CRS model, regardless of the number of corrupted parties. More specifically,
consider an asynchronous multi-party network where the communication is open and delivery of
messages is not guaranteed. (For simplicity, we assume that delivered messages are authenticated.
This can be achieved using standard methods.) The network contains an unspecified number of
parties, and any number of these parties can be adaptively corrupted throughout the computation.
In this setting, we show how arbitrary subsets of parties can securely realize any functionality of
their inputs in a universally composable way. The functionality may be reactive, namely it may
receive inputs and generate outputs multiple times throughout the computation.

In addition to our general constructions for two-party and multi-party computation, we also
present a new adaptively secure UC commitment scheme in the CRS model, assuming only the
existence of trapdoor permutations. (UC commitment schemes are protocols that securely realize
the ideal commitment functionality [16]. Existing constructions of UC commitments [16, 25] rely
on specific cryptographic assumptions.) Since UC zero-knowledge can be obtained given a UC
commitment scheme [16], we can plug our new scheme into the UC zero-knowledge protocol of [16]
and thereby obtain an adaptively secure UC zero-knowledge protocol in the CRS model, for any NP
relation, and based on any trapdoor permutation. Beyond being interesting in its own right, we use
this commitment scheme in order to base our constructions on general cryptographic assumptions.

Adaptive security. Our protocol is the first general construction that guarantees security against
adaptive adversaries in the two-party case and in the case of multi-party protocols with homnest
minority. (We note that no adaptively secure general construction was known in these cases even
in the traditional stand-alone model; all previous adaptively secure protocols for general multi-party
computation assumed an honest majority.) We remark that, in contrast to the case of stand-alone
protocols, in our setting adaptive security is a relevant concern even for protocols with only two
participants. Furthermore, it is important to protect even against adversaries that eventually break
into all the participants in an interaction. This is because we consider multiple interactions that
take place between different sets of parties in the system. Therefore, all the participants in one
interaction may constitute a proper subset of the participants in another interaction. Our results
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hold even in a model where no data can ever be erased.

Cryptographic assumptions. Our protocols are based on the following cryptographic assump-
tions. For the non-adaptive case (both semi-honest and malicious) we assume the existence of trap-
door permutations only. For the adaptive case we additionally assume the existence of augmented
non-committing encryption protocols [15]. The augmentation includes oblivious key generation and
invertible samplability [24]. Loosely speaking, oblivious key generation states that public keys can
be generated without knowing the corresponding private keys, and invertible samplability states
that given a public/private key-pair it is possible to obtain the random coin tosses of the key gen-
erator when outputting this key-pair (the oblivious key generator should also be invertible). Such
encryption schemes are known to exist under the RSA and DDH assumptions.

As we have mentioned, our protocols are in the CRS model. The above assumptions suffice if
we use a common reference string that is not uniformly distributed (but is rather taken from some
different distribution). If a uniformly distributed common reference string is to be used, then we
additionally assume the existence of dense cryptosystems [27].

Related work. In a concurrent and independent work [25], Damgard and Nielsen consider a
functionality that has great resemblance to our commit-and-prove functionality, and construct
universally composable protocols that realize this functionality under specific number-theoretic
assumptions. Our commit-and-prove protocol is based on more general assumptions, whereas their
protocol is considerably more efficient.

Organization. In Section 4.2 we provide an overview of the model of [14] and an outline of
our construction of UC two-party and multi-party protocols. Section 4.3 contains a number of
important preliminaries: First, in Section 4.3.1, a more detailed description of the [14] framework
and of the composition theorem itself is presented. Then, in Section 4.3.2, the issue of universal
composition and joint state is discussed (this is important where a common reference string is used,
as is the case in our constructions). Finally, in Section 4.6, the ideal zero-knowledge functionality
is described. Our new UC commitment scheme is presented in Section 4.5.

We then begin our presentation of constructions for UC two-party and multi-party computation.
That is, in Section 4.4, we show how to obtain UC two-party secure computation in the presence
of semi-honest adversaries. Next we proceed to the case of malicious adversaries. That is, in
Section 4.7 we define and realize the two-party commit-and-prove functionality. This is then used
in Section 4.8 to construct a two-party protocol compiler that is used to transform the protocol
of Section 4.4 into a protocol that is secure against malicious adversaries. Finally, in Section 4.9,
we extend our two-party constructions to the multi-party case. We present the two-party case
separately because most of the cryptographic ideas already arise in this setting.

4.2 Overview

This section provides a high-level overview of the model and our constructions. Section 4.2.1
contains an overview of the general framework of universal composability, the definition of security
and the composition theorem. Then, in Section 4.2.2 we provide a brief outline of our constructions
for two-party and multi-party computation. The aim of this outline is to provide the reader with
the “big picture”, before delving into details.
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4.2.1 The model

We begin by outlining the framework for universal composability; for more details see Section 4.3.1
and [14]. The framework provides a rigorous method for defining the security of cryptographic
tasks, while ensuring that security is maintained under a general composition operation in which a
secure protocol for the task in question is run in a system concurrently with an unbounded number
of other arbitrary protocols. This composition operation is called universal composition, and tasks
that fulfill the definitions of security in this framework are called universally composable (UC).

As in other general definitions (e.g., [53, 69, 5, 73, 13]), the security requirements of a given
task (i.e., the functionality expected from a protocol that carries out the task) are captured via a
set of instructions for a “trusted party” that obtains the inputs of the participants and provides
them with the desired outputs (in one or more iterations). We call the algorithm run by the trusted
party an ideal functionality. Informally, a protocol securely carries out a given task if any adversary
can gain nothing more from an attack on a real execution of the protocol, than from an attack on
an ideal process where the parties merely hand their inputs to a trusted party with the appropriate
functionality and obtain their outputs from it, without any other interaction. In other words, we
require that a real execution can be emulated in the above ideal process (where the meaning of
emulation is described below). We stress that in a real execution of the protocol, no trusted party
exists and the parties interact amongst themselves only.

In order to prove the universal composition theorem, the notion of emulation in this framework
is considerably stronger than in previous ones. Traditionally, the model of computation includes
the parties running the protocol, plus an adversary A that controls the communication channels
and potentially corrupts parties. Emulation means that for any adversary A attacking a real
protocol execution, there should exist an “ideal process adversary” or simulator S, that causes the
outputs of the parties in the ideal process to be essentially the same as the outputs of the parties in a
real execution. In the universally composable framework, an additional adversarial entity called the
environment Z is introduced. This environment generates the inputs to all parties, reads all outputs,
and in addition interacts with the adversary in an arbitrary way throughout the computation. (As
is hinted by its name, Z represents the external environment that consists of arbitrary protocol
executions that may be running concurrently with the given protocol.) A protocol is said to securely
realize a given ideal functionality F if for any “real-life” adversary A that interacts with the protocol
there exists an “ideal-process adversary” S, such that no environment Z can tell whether it is
interacting with A and parties running the protocol, or with & and parties that interact with F in
the ideal process. (In a sense, here Z serves as an “interactive distinguisher” between a run of the
protocol and the ideal process with access to F. See [14] for more motivating discussion on the role
of the environment.) Note that the definition requires the “ideal-process adversary” (or simulator)
S to interact with Z throughout the computation. Furthermore, Z cannot be “rewound”.

The following wniversal composition theorem is proven in [14]: Consider a protocol 7 that
operates in a hybrid model of computation where parties can communicate as usual, and in addition
have ideal access to an unbounded number of copies of some ideal functionality F. (This model is
called the F-hybrid model.) Furthermore, let p be a protocol that securely realizes F as sketched
above, and let 7” be the “composed protocol”. That is, n” is identical to = with the exception
that each interaction with the ideal functionality F is replaced with a call to (or an activation of)
an appropriate instance of the protocol p. Similarly, p-outputs are treated as values provided by
the functionality F. The theorem states that in such a case, 7 and 7” have essentially the same
input/output behavior. Thus, p behaves just like the ideal functionality F, even when composed
with an arbitrary protocol . A special case of this theorem states that if © securely realizes some
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ideal functionality G in the F-hybrid model, then 7* securely realizes G from scratch.

We counsider a network where the adversary sees all the messages sent, and delivers or blocks
these messages at will. (The fact that message delivery is not guaranteed frees us from the need to
explicitly deal with the “early stopping” problem of protocols run between two parties or amongst
many parties where only a minority may be honest. This is because even the ideal process allows
the adversary to abort the execution at any time.) We note that although the adversary may
block messages, it cannot modify messages sent by honest parties (i.e., the communication lines
are ideally authenticated). Our protocols are cast in a completely asynchronous point-to-point
network (and thus the adversary has full control over when messages are delivered, if at all). Also,
as usual, the adversary is allowed to corrupt parties. In the case of static adversaries the set of
corrupted parties is fixed at the onset of the computation. In the adaptive case the adversary
corrupts parties at will throughout the computation. We also distinguish between malicious and
semi-honest adversaries: If the adversary is malicious then corrupted parties follow the arbitrary
instructions of the adversary. In the semi-honest case, even corrupted parties follow the prescribed
protocol and the adversary essentially only gets read access to the states of corrupted parties.

4.2.2 An outline of the results and techniques

In this section we provide a high-level description of our protocols for two-party and multi-party
computation, and the techniques used in obtaining them. Our construction is conceptually very
similar to the construction of Goldreich, Micali and Wigderson [52, 44]. This construction (which
we call the GMW construction) is comprised of two stages. First, they present a protocol for
securely realizing any functionality in the semi-honest adversarial model. Next, they construct a
protocol compiler that takes any semi-honest protocol and transforms it into a protocol that has the
same functionality in the malicious adversarial model. (However, as discussed above, they consider
a model where only a single protocol execution takes place in the system. In contrast, we construct
protocols for universally composable secure computation.) We begin by considering the two-party
case.

Two-party computation in the case of semi-honest adversaries

Recall that in the case of semi-honest adversaries, even the corrupted parties follow the protocol
specification. However, the adversary may attempt to learn more information than intended by
examining the transcript of messages that it received during the protocol execution. Despite the
seemingly weak nature of the adversarial model, obtaining protocols secure against semi-honest
adversaries is a non-trivial task.

We begin by briefly recalling the [52, 44] construction for secure two-party computation in the
semi-honest adversarial model. Let f be the two-party functionality that is to be securely computed.
Then, the parties are given an arithmetic circuit over GF(2) that computes the function f. The
protocol starts with the parties sharing their inputs with each other using bitwise-xor secret sharing,
and thus following this stage, they both hold shares of the input lines of the circuit. That is, for
each input line [, party A holds a value a; and party B holds a value b;, such that both a; and b;
are random under the constraint that a; + b; equals the value of the input into this line. Next, the
parties evaluate the circuit gate-by-gate, computing random shares of the output line of the gate
from the random shares of the input lines to the gate. There are two types of gates in the circuit:
addition gates and multiplication gates. Addition gates are evaluated by each party locally adding
its shares of the input values. Multiplication gates are evaluated using 1-out-of-4 oblivious transfer
(the oblivious transfer protocol used is basically that of [35]). In the above way, the parties jointly
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compute the circuit and obtain shares of the output gates. The protocol concludes with each party
revealing the prescribed shares to the other party (i.e, if a certain output gate provides a bit of A’s
input, then B will reveal its share of this output line to A).

Our general construction is exactly that of GMW, except that the oblivious transfer protocol
used is universally composable. That is, we first define an ideal oblivious transfer functionality,
For, and show that in the Fyr-hybrid model, the GMW protocol securely realizes any two-party
functionality in the presence of semi-honest, adaptive adversaries. This holds unconditionally and
even if the adversary and environment are computationally unbounded. Of course, computational
assumptions are used for securely realizing For itself. (Our construction is actually somewhat more
general than that of GMW in that it deals with reactive functionalities that have multiple stages
which are separately activated. This is achieved by having the parties hold shares of the state of
the ideal functionality between activations.)

Next we present protocols that securely realize o, in the semi-honest case. In the non-adaptive
case, the protocol of [35, 44] suffices. In the adaptive case, our protocol uses an augmented version of
non-committing encryption [15]. The augmentation consists of two additional properties. First, the
encryption scheme should have an alternative key generation algorithm that generates only public
encryption keys without the corresponding decryption key. Second, the standard and additional
key generation algorithms should be invertible in the sense that given the output key or keys, it
is possible to find the random coin tosses used in generating these keys. (Following [24], we call
these properties oblivious key generation and invertible samplability.) All known non-committing
encryption schemes have this properties. In particular, such schemes exist under either the RSA
assumption or the DDH assumption.) In all, we show:

Proposition 4.2.1 (semi-honest computation — informal): Assume that trapdoor permutations
exist. Then, for any two-party ideal functionality F, there exists a protocol 11 that securely realizes
F in the presence of semi-honest, static adversaries. Furthermore, if augmented two-party non-
committing encryption protocols exist, then there exists a protocol 11 that securely realizes F in the
presence of semi-honest, adaptive adversaries.

Proposition 4.2.1 as stated above is not precise. This is due to two technicalities regarding the
model of computation as defined in [14]. We therefore define a class of functionalities for which
these technical problems do not arise and then construct secure protocols for any functionality in
this class. See Section 4.3.3 for more discussion and an exact definition.

Another point where our results formally differ from Proposition 4.2.1 is due to the fact that,
according to the definitions used here, protocols which do not generate any output are technically
secure (for any functionality). Thus, Proposition 4.2.1 as stated, can be easily (but un-interestingly)
achieved. In contrast, we prove the existence of protocols which do generate output and securely
realize any functionality (we call such a protocol non-trivial; for more details, see the discussion
after Definition 4.3.2 in Section 4.3.1). Proposition 4.2.1 is formally restated in Section 4.4.2.

Obtaining two-party computation secure against malicious adversaries

Having constructed a protocol that is universally composable when the adversary is limited to
semi-honest behavior, we construct a protocol compiler that transforms this protocol into one that
is secure even against malicious adversaries. From here on, we refer to the protocol that is secure
against semi-honest adversaries as the “basic protocol”. Recall that the basic protocol is only
secure in the case that even the corrupted parties follow the protocol specification exactly, using
a uniformly chosen random tape. Thus, in order to obtain a protocol secure against malicious
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adversaries, we need to enforce potentially malicious corrupted parties to behave in a semi-honest
manner. First and foremost, this involves forcing the parties to follow the prescribed protocol.
However, this only makes sense relative to a given input and random tape. Furthermore, a malicious
party must be forced into using a uniformly chosen random tape. This is because the security of the
basic protocol may depend on the fact that the party has no freedom in setting its own randomness.
We begin with a description of the GMW compiler.

An informal description of the GMW compiler. The GMW compiler begins by having each
party commit to its input. Next, the parties run a coin-tossing protocol in order to fix their random
tapes. A simple coin-tossing protocol in which both parties receive the same uniformly distributed
string is not sufficient here. This is because the parties’ random tapes must remain secret. Instead,
an augmented coin-tossing protocol is used, where one party receives a uniformly distributed string
(to be used as its random tape) and the other party receives a commitment to that string. Now,
following these two steps, each party holds its own input and uniformly distributed random tape,
and a commitment to the other party’s input and random tape.

Next, the commitments to the random tape and to the inputs are used to “enforce” semi-
honest behavior. Observe that a protocol specification is a deterministic function of a party’s view
consisting of its input, random tape and messages received so far, and recall that each party holds
a commitment to the input and random tape of the other party. Observe also that the messages
sent so far are public. Therefore, the assertion that a new message is computed according to the
protocol is an NP statement (and the party sending the message knows an adequate NP-witness
to it). This means that the parties can use zero-knowledge proofs to show that their steps are
indeed according to the protocol specification. Therefore, in the protocol emulation phase, the
parties send messages according to the instructions of the basic protocol, while proving at each
step that the messages sent are correct. The key point is that, due to the soundness of the proofs,
even a malicious adversary cannot deviate from the protocol specification without being detected.
Therefore, the adversary is limited to semi-honest behavior. Furthermore, since the proofs are
zero-knowledge, nothing “more” is revealed in the compiled protocol than in the basic protocol.
We conclude that the security of the compiled protocol (against malicious adversaries) is directly
derived from the security of the basic protocol (against semi-honest adversaries).

In summary, the GMW compiler has three components: input commitment, coin-tossing and
protocol emulation (where the parties prove that their steps are according to the protocol specifi-
cation).

Universally composable protocol compilation. A natural way of adapting the GMW com-
piler to the setting of universally composable secure computation would be to take the same
compiler, but rather use wniversally composable commitments, coin-tossing and zero-knowledge
as sub-protocols. However, such a strategy fails because the receiver of a universally composable
commitment receives no information about the value committed to. (Instead, the recipient receives
only a formal “receipt” assuring it that a value was committed to. See Section 4.5 for more details.)
Thus, there is no NP-statement that a party can prove relative to its input commitment. This is
in contrast to the GMW protocol where standard (perfectly binding) commitments are used and
thus each party holds a string that uniquely determines the other party’s input and random tape.

A different strategy is therefore required for constructing a universally composable compiler.
Before describing our strategy, observe that in GMW the use of the commitment scheme is not
standard. Specifically, although both parties commit to their inputs etc., they never decommit.
Rather, they prove NP-statements relative to their committed values. Thus, a natural primitive
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to use would be a “commit-and-prove” functionality, which is comprised of two phases. In the
first phase, a party “commits” (or is bound) to a specific value. In the second phase, this party
proves NP-statements (in zero-knowledge) relative to the committed value. We formulate this
notion in a universally composable commit-and-prove functionality, denoted Fcp, and then use
this functionality to implement all three phases of the compiler. More specifically, our protocol
compiler uses the “commit” phase of the F¢p functionality in order to execute the input and coin-
tossing phases of the compiler. The “prove” phase of the Fp functionality is then used to force
the adversary to send messages according to the protocol specification and consistent with the
committed input and the random tape resulting from the coin-tossing. The result is a universally
composable analog to the GMW compiler. We remark that in the Fgp-hybrid model the compiler
is unconditionally secure against adaptive adversaries, even if the adversary and the environment
are computationally unbounded.

We show how to securely realize F¢p in the F,i-hybrid model, i.e. in a hybrid model with
ideal access to an ideal zero-knowledge functionality, F,x. (Functionality F,c expects to receive a
statement x and a witness w from the prover. It then forwards x to the verifier, together with an
assertion whether R(z,w) holds, where R is a predetermined relation.) Essentially, in the commit
phase of the commit-and-prove protocol, the committer commits to its input value w using some
commitment scheme C, and in addition it proves to the receiver, using F,x with an appropriate
relation, that it “knows” the committed value. In the prove phase, where the committer wishes to
assert that the committed value w stands in relation R with some public value x, the committer
presents x and w to Fzx again — but this time the relation used by F;x asserts two properties:
first that R(z,w) holds, and second that w is the same value that was previously committed to.

To guarantee security against static adversaries, the commitment scheme of Naor [70] is sufficient
as an instantiation of the scheme C'. We thus obtain a protocol for securely realizing F¢p in the Fi-
hybrid model, based on any one-way function. To guarantee security against adaptive adversaries
we need “adaptively secure” commitment schemes, namely commitment schemes where a simulator
can generate “dummy commitments” which can be later opened in multiple ways. (In fact, a
slightly stronger property is needed here, see details within.) Such commitments exist assuming
the existence of trapdoor permutations, as is demonstrated by our construction of universally
composable commitments in Section 4.5. In all we obtain:

Theorem 4.2.2 (two-party computation in the malicious model — informal): Assume that trap-
door permutations exist. Then, for any two-party ideal functionality F, there exists a protocol 11
that securely realizes F in the Fy-hybrid model in the presence of malicious, static adversaries.
Furthermore, if augmented two-party non-commatting encryption protocols exist, then there exists a
protocol 11 that securely realizes F in the Fux-hybrid model in the presence of malicious, adaptive
adversaries.

Let Fegrs denote the common random string functionality (that is, Fegs provides all parties with
a common, public string drawn from a predefined distribution). Then, as we show in Section 4.5,
universally composable commitments can be securely realized in the Fezs-hybrid model, assuming
the existence of trapdoor permutations. Furthermore, [16] showed that the F,x functionality can be
securely realized given universally composable commitments. Combining these results together, we
have that F,x can be securely realized in the Fegrs-hybrid model, assuming the existence of trapdoor
permutations. Using the composition theorem we obtain a similar result to Theorem 4.2.2, with the
exception that F is realized in the Feps-hybrid model (rather than in the F,x-hybrid model). As
with Proposition 4.2.1, Theorem 4.2.2 is not stated exactly. It is formally restated in Section 4.8.2.



4.2. OVERVIEW 57

On the distribution of the reference string. In obtaining the above corollary, the common
reference string is used only in the construction of the universally composable commitment scheme
(which is used for obtaining F,x). As we have mentioned, in the Fogs-hybrid model, universally
composable commitments can be obtained assuming the existence of trapdoor permutations only.
However, in this case, the common reference string is not uniformly distributed. Nevertheless,
a uniformly distributed string can be used, under the additional assumption of the existence of
dense cryptosystems [27]. We therefore conclude that universally composable two-party computa-
tion can be obtained with a uniformly distributed reference string, under the assumption that the
following primitives exist: trapdoor permutations, dense cryptosystems and augmented two-party
non-committing encryption protocols.

Extensions to multi-party computation

We now describe how the two-party construction of Theorem 4.2.2 is extended to the setting of
multi-party computation, where any number of parties may be corrupt. Recall that in this setting,
each set of interacting parties is assumed to have access to an authenticated broadcast channel.

The outline of our construction is as follows. Similarly to the two-party case, we first construct
a multi-party protocol that is secure against semi-honest adversaries (as above, this protocol is
essentially that of GMW). Then, we construct a protocol compiler (again, like that of GMW), that
transforms semi-honest protocols into ones that are secure even against malicious adversaries. This
protocol compiler is constructed using a one-to-many extension of the commit-and-prove function-
ality, denoted F}M. The extension of the protocol that realizes two-party Fep to a protocol that
realizes one-to-many Fj>' constitutes the main difference between the two-party and multi-party
constructions. Therefore, in this outline, we focus exclusively on how this extension is achieved.

The first step in realizing F,", is to construct one-to-many extensions of universal commitments
and zero-knowledge. In a one-to-many commitment scheme, all parties receive the commitment
(and the committer is bound to the same value for all parties). Likewise, in one-to-many zero-
knowledge, all parties verify the proof (and they either all accept or all reject the proof). Now,
any mon-interactive commitment scheme can be transformed into a one-to-many equivalent by
simply having the committer broadcast its message to all parties. Thus, this functionality is
immediately obtained from our commitment scheme in Section 4.5 or from the scheme of [16] (both
of these constructions are non-interactive). However, obtaining one-to-many zero-knowledge is
more involved, since we do not know how to construct non-interactive adaptively-secure universally
composable zero-knowledge.! Nevertheless, using the methodology of [44], a one-to-many zero-
knowledge protocol can be constructed as follows. The construction is based on the universally-
composable zero-knowledge protocol of [16]. Specifically, they show that parallel executions of the
3-round zero-knowledge protocol of Hamiltonicity is universally composable, when a universally
composable commitment scheme is used for the prover’s commitments. Thus, the prover runs a
copy of the above zero-knowledge protocol with each receiver over the broadcast channel, using
the one-to-many commitment scheme for its commitments. Furthermore, each verifying party
checks that the proofs of all the other parties are accepting (this is possible because the proof of
Hamiltonicity is publicly verifiable and because all parties view all the communication). Thus,
at the end of the protocol, all honest parties agree (without any additional communication) on
whether the proof was successful or not. (Note also that the adversary cannot cause an honest
prover’s proof to be rejected.)

Tn the case of static adversaries, the non-interactive zero-knowledge protocol of [26] suffices. Thus, here too, the
prover message can simply be broadcast and one-to-many zero-knowledge is obtained.
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It remains to describe how to realize F2" in the F,;"-hybrid model. The basic idea is to
generalize the Fcp protocol. As with zero-knowledge, this is not straightforward because in the
protocol for adaptive adversaries, the F» commit-phase is interactive. Nevertheless, this problem
is solved by having the committer commit to its input value w by separately running the protocol for
the commit-phase of (two-party) Fep with every party over the broadcast channel. Following this,
the committer uses one-to-many zero-knowledge to prove that it committed to the same value in all
of these commitments. (Since each party views the communication from all the commitments, every
party can verify this zero-knowledge proof.) The prove phase is similar to the two-party case, except
that the one-to-many extension of zero-knowledge is used (instead of two-party zero-knowledge).

Finally, we note that, as in the two-party case, a multi-party protocol compiler can be con-
structed in the F3,"-hybrid model, with no further assumptions. Denoting the ideal broadcast
functionality used by the parties by Fgo, we have the following theorem:

Theorem 4.2.3 (multi-party computation in the malicious model — informal): Assume that trap-
door permutations exist. Then, for any multi-party ideal functionality F, there exists a protocol 11
that securely realizes F in the (Fyo, Fenrs)-hybrid model in the presence of malicious, static adver-
saries, and for any number of corruptions. Furthermore, if augmented two-party non-committing
encryption protocols exist, then there exists a protocol 11 that securely realizes F in the (Fsc, Fors)-
hybrid model in the presence of malicious, adaptive adversaries, and for any number of corruptions.

As with Proposition 4.2.1, Theorem 4.2.3 is not stated exactly. It is formally restated in Sec-
tion 4.9.4.

4.3 Preliminaries

Section 4.3.1 reviews the framework of [14] and the universal composition theorem. In Section
4.3.2 we discuss issues that arise regarding universal composition when some amount of joint state
between protocols is desired. Finally, Section 4.3.3 presents the class of functionalities which we
will show how to securely realize. Before proceeding, we recall the definition of computational in-
distinguishability. A distribution ensemble X = {X(k, a)}reN aefo,1}+ 18 an infinite set of probability
distributions, where a distribution X (k,a) is associated with each ¥ € N and a € {0,1}*. The
ensembles considered in this work describe outputs where the parameter a represents input, and
the parameter £ is taken to be the security parameter. A distribution ensemble is called binary if it
counsists only of distributions over {0,1}. Then,

Definition 4.3.1 Two binary distribution ensembles X and Y are indistinguishable (written X =Y)
iof for any ¢ € N there exists kg € N such that for all k > ko and for all a we have

|Pr(X(k,a) =1) = Pr(Y(k,a) =1)| < k™°.

4.3.1 Universally Composable Security: The general framework

We start by reviewing the syntax of message-driven protocols in asynchronous networks. We then
present the real-life model of computation, the ideal process, and the general definition of securely
realizing an ideal functionality. Next we present the hybrid model and the composition theorem.
The text is somewhat informal for clarity and brevity, and is mostly taken from the Overview
section of [14]. For full details see there.
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Protocol syntax. Following [55, 45], a protocol is represented as a system of probabilistic in-
teractive Turing machines (ITMs), where each ITM represents the program to be run within a
different party. Specifically, the input and output tapes model inputs and outputs that are received
from and given to other programs running on the same machine, and the communication tapes
model messages sent to and received from the network. Adversarial entities are also modeled as
ITMs. We concentrate on a model where the adversaries have an arbitrary additional input, or an
“advice” string. From a complexity-theoretic point of view, this essentially implies that adversaries
are non-uniform I'TMs.

In order to simplify the exposition, we introduce the following convention. We assume that all
protocols are such that the parties read their input tapes only at the onset of a protocol execution.
This can easily be achieved by having the parties copy their input tape onto an internal work tape.
This convention prevents problems that may occur when parties’ input tapes are modified in the
middle of a protocol execution (as is allowed in the model).

The basic framework

As sketched in Section 4.2, protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in the presence of
an adversary and in a given computational environment is formalized. Next, an “ideal process” for
carrying out the task at hand is formalized. In the ideal process the parties do not communicate
with each other. Instead they have access to an “ideal functionality”, which is essentially an
incorruptible “trusted party” that is programmed to capture the desired functionality of the given
task. A protocol is said to securely realize an ideal functionality if the process of running the
protocol amounts to “emulating” the ideal process for that ideal functionality. We overview the
model for protocol execution (called the real-life model), the ideal process, and the notion of protocol
emulation.

We concentrate on the following model of computation, aimed at representing current realis-
tic communication networks (such as the Internet). The communication takes place in an asyn-
chronous, public network, without guaranteed delivery of messages. We assume that the commu-
nication is authenticated and thus the adversary cannot modify messages sent by honest parties.?
Furthermore, the adversary may only deliver messages that were previously sent by parties, and
may deliver each message sent only once. The fact that the network is asynchronous means that
the messages are not necessarily delivered in the order which they are sent. Parties may be bro-
ken into (i.e., become corrupted) throughout the computation, and once corrupted their behavior
is arbitrary (or, malicious). (Thus, our main consideration is that of malicious, adaptive adver-
saries. However, below we present the modifications necessary for modeling static and semi-honest
adversaries.) We do not trust data erasures; rather, we postulate that past states are available
to the adversary upon corruption. Finally, all the involved entities are restricted to probabilistic
polynomial time (or “feasible”) computation.

Protocol execution in the real-life model. We sketch the process of executing a given protocol
7 (run by parties Pp,..., P,,) with some adversary A and an environment machine Z with input
z. All parties have a security parameter £ € N and are polynomial in k. The execution consists

*We remark that the basic model in [14] postulates unauthenticated communication, i.e. the adversary may
delete, modify, and generate messages at wish. Here we concentrate on authenticated networks for sake of simplicity.
Authentication can be added in standard ways. Formally, the model here corresponds to the F,yru-hybrid model in
[14].
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of a sequence of activations, where in each activation a single participant (either Z, A, or some
P;) is activated. The environment is activated first. In each activation it may read the contents of
the output tapes of all the uncorrupted parties® and the adversary, and may write information on
the input tape of one of the parties or of the adversary. Once the activation of the environment
is complete (i,e, once the environment enters a special waiting state), the entity whose input tape
was written on is activated next.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or corrupt a party. Only messages that were sent in the past
by some party can be delivered, and each message can be delivered at most once. Upon corrupting
a party, the adversary gains access to all the tapes of that party and controls all the party’s future
actions. (We assume that the adversary also learns all the past internal states of the corrupted
party. This means that the model does not assume effective cryptographic erasure of data.) In
addition, whenever a party is corrupted the environment is notified (say, via a message that is added
to the output tape of the adversary). If the adversary delivered a message to some uncorrupted
party in its activation then this party is activated once the activation of the adversary is complete.
Otherwise the environment is activated next.

Once a party is activated (either due to an input given by the environment or due to a message
delivered by the adversary), it follows its code and possibly writes local outputs on its output
tape and outgoing messages on its outgoing communication tape. Once the activation of the
party is complete the environment is activated. The protocol execution ends when the environment
completes an activation without writing on the input tape of any entity. The output of the protocol
execution is the output of the environment. We assume that this output consists of only a single
bit.

Let REALx 4 z(k, z,7) denote the output of environment Z when interacting with adversary A
and parties running protocol 7 on security parameter k, input z and random tapes7 = rz, 74,71, . .,
as described above (z and rz for Z, ry for A; r; for party P;). Let REALr 4 z(k,2) denote the
random variable describing REAL, 4 z(k, z,7) when 7 is uniformly chosen. Let REAL, 4 z denote
the ensemble {REAL: 4 z(k, 2) }reN 2cf0,1}+ -

The ideal process. Security of protocols is defined via comparing the protocol execution in the
real-life model to an ideal process for carrying out (a single instance of) the task at hand. A key
ingredient in the ideal process is the ideal functionality that captures the desired functionality, or
the specification, of that task. The ideal functionality is modeled as another I'TM that interacts
with the environment and the adversary via a process described below. More specifically, the ideal
process involves an ideal functionality F, an ideal process adversary S, an environment Z with input
z, and a set of dummy parties P, ..., P,.

As in the process of protocol execution in the real-life model, the environment is activated first.
As there, in each activation it may read the contents of the output tapes of all (dummy) parties and
the adversary, and may write information on the input tape of either one of the (dummy) parties
or of the adversary. Once the activation of the environment is complete the entity whose input
tape was written on is activated next.

The dummy parties are fixed and simple ITMs: Whenever a dummy party is activated with
input z, it forwards « to the ideal functionality F, say by writing  on the incoming communication

3The adversary is not given read access to the corrupted parties’ output tapes because once a party is corrupted,
it is no longer activated. Rather, the adversary sends messages in its name. Therefore, the output tapes of corrupted
parties are not relevant.
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tape of F. In this case F is activated next, and a note that the party sent a message to F is written
on the incoming communication tape of S. Whenever a dummy party is activated due to delivery
of some message (from F), it copies this message to its output. In this case Z is activated next.

Ounce F is activated, it reads the contents of its incoming communication tape, and potentially
sends messages to the parties and to the adversary by writing these messages on its outgoing
communication tape. Omnce the activation of F is complete, the entity that was last activated
before F is activated again. In the case this entity was one of the dummy parties, it immediately
relinquishes control to Z.

Once the adversary S is activated, it may read its own input tape and in addition it can read
the destinations of the messages on the outgoing communication tape of F. That is, S can see the
identity of the recipient of each message sent by F, but it cannot see the contents of this message
(unless the recipient of the message is S or a corrupted party?). S may either deliver a message from
F to some party by having this message copied to the party’s incoming communication tape, write
a message from itself on F’s incoming communication tape’, or corrupt a party. Upon corrupting
a party, both Z and F learn the identity of the corrupted party (say, a special message is written
on their respective incoming communication tapes).® In addition, the adversary learns all the past
inputs and outputs of the party. Finally, the adversary controls the party’s actions from the time
that the corruption takes place.

If the adversary delivered a message to some uncorrupted (dummy) party in an activation then
this party is activated once the activation of the adversary is complete. Otherwise the environment
is activated next.

As in the real-life model, the protocol execution ends when the environment completes an
activation without writing on the input tape of any entity. The output of the protocol execution is
the (one bit) output of Z.

Let IDEALF s z(k, 2,7) denote the output of environment Z after interacting in the ideal process
with adversary S and ideal functionality F, on security parameter k, input z, and random input
T =rz,rs,rF as described above (z and rz for Z, rg for S; rr for ). Let IDEALF s z(k, 2) denote
the random variable describing IDEALF s z(k,2,7) when T is uniformly chosen. Let IDEALf s z
denote the ensemble {IDEALF s z(k, 2) }keN ze{0,1}*-

Securely realizing an ideal functionality. We say that a protocol p securely realizes an ideal
functionality F if for any real-life adversary A there exists an ideal-process adversary S such that no
environment Z, on any input, can tell with non-negligible probability whether it is interacting with
A and parties running p in the real-life process, or with & and F in the ideal process. This means
that, from the point of view of the environment, running protocol p is ‘just as good’ as interacting
with an ideal process for F. (In a way, Z serves as an “interactive distinguisher” between the two

“Note that the ideal process allows S to obtain the output values sent by F to the corrupted parties as soon as
they are generated. Furthermore, if at the time that S corrupts some party P; there are messages sent from F to P;,
then & immediately obtains the contents of these messages.

SMany natural ideal functionalities indeed send messages to the adversary S (see the zero-knowledge and commit-
ments functionalities of Sections 4.6 and 4.5 for examples). On the other hand, having the adversary send messages
to F is less common. Nevertheless, this option can be useful in order to relax the requirements on protocols that
realize the functionality. For example, it may be easier to obtain coin-tossing if the adversary is allowed to bias some
of the bits of the result. If this is acceptable for the application in mind, we can allow the adversary this capability
by having it send its desired bias to F.

5Allowing F to know which parties are corrupted gives it considerable power. This power provides greater freedom
in formulating ideal functionalities for capturing the requirements of given tasks. On the other hand, it also inherently
limits the scope of general realizability theorems. See more discussion in Section 4.3.3.
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processes. Here it is important that Z can provide the process in question with adaptively chosen
inputs throughout the computation.) We have:

Definition 4.3.2 Let n € N. Let F be an ideal functionality and let m be an n-party protocol. We
say that w securely realizes F if for any adversary A there exists an ideal-process adversary S such
that for any environment Z,

IDEALF s,z = REAL; 4 z- (4.1)

Non-trivial protocols and the requirement to generate output. Recall that the ideal
process does not require the ideal-process adversary to deliver messages that are sent by the ideal
functionality to the dummy parties. Consequently, the definition provides no guarantee that a
protocol will ever generate output or “return” to the calling protocol. Indeed, in our setting where
message delivery is not guaranteed, it is impossible to ensure that a protocol “terminates” or
generates output. Rather, the definition concentrates on the security requirements in the case that
the protocol generates output.

A corollary of the above fact is that a protocol that “hangs”, never sends any messages and never
generates output, securely realizes any ideal functionality. Thus, in order to obtain a meaningful
feasibility result, we introduce the notion of a non-trivial protocol. Such a protocol has the property
that if the real-life adversary delivers all messages and does not corrupt any parties, then the ideal-
process adversary also delivers all messages (and does not corrupt any parties). Note that in a
non-trivial protocol, a party may not necessarily receive output. However, this only happens if
either the functionality does not specify output for this party, or if the real-life adversary actively
interferes in the execution (by either corrupting parties or refusing to deliver some messages).
Our main result is to show the existence of non-trivial protocols for securely realizing any ideal
functionality. All our protocols are in fact clearly non-trivial; therefore, we ignore this issue from
here on.

Relaxations of Definition 4.3.2. We recall two standard relaxations of the definition:

e Static (non-adaptive) adversaries. Definition 4.3.2 allows the adversary to corrupt parties
throughout the computation. A simpler (and somewhat weaker) variant forces the real-life
adversary to corrupt parties only at the onset of the computation, before any uncorrupted party
is activated. We call such adversaries static.

e Passive (semi-honest) adversaries. Definition 4.3.2 gives the adversary complete control over
corrupted parties (such an adversary is called malicious). Specifically, the model states that from
the time of corruption the corrupted party is no longer activated, and instead the adversary sends
messages in the name of that party. In contrast, when a semi-honest adversary corrupts a party,
the party continues to follow the prescribed protocol. Nevertheless, the adversary is given read
access to the internal state of the party at all times, and is also able to modify the values
that the environment writes on the corrupted parties’ input tapes.” Formally, if in a given
activation, the environment wishes to write information on the input tape of a corrupted party,
then the environment first passes the adversary the value x that it wishes to write (along with
the identity of the party whose input tape it wishes to write to). The adversary then passes

"Allowing a semi-honest adversary to modify a corrupted party’s input is somewhat non-standard. However, this
simplifies the presentation of this work (and in particular the protocol compiler). All the protocols presented for the
semi-honest model in this paper are secure both when the adversary can modify a corrupted party’s input tape and
when it cannot.
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a (possibly different) value 2/ back to the environment. Finally, the environment writes 2’ on
the input tape of the corrupted party, following which the corrupted party is activated. We
stress that when the environment writes on the input tape of an honest party, the adversary
learns nothing of the value and cannot modify it. Everything else remains the same as in the
above-described malicious model. We say that protocol 7 securely realizes functionality F for
semi-honest adversaries, if for any semi-honest real-life adversary A there exists an ideal-process
semi-honest adversary S such that Eq. (4.1) holds for any environment Z.

The composition theorem

The hybrid model. In order to state the composition theorem, and in particular in order to
formalize the notion of a real-life protocol with access to multiple copies of an ideal functionality,
the hybrid model of computation with access to an ideal functionality F (or, in short, the F-hybrid
model) is formulated. This model is identical to the real-life model, with the following additions.
On top of sending messages to each other, the parties may send messages to and receive messages
from an unbounded number of copies of F. Each copy of F is identified via a unique session
identifier (SID); all messages addressed to this copy and all message sent by this copy carry the
corresponding SID. (Sometimes a copy of F will interact only with a subset of the parties. The
identities of these parties is determined by the protocol in the F-hybrid model.)

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, once a party sends a message m to a copy of F with a particular SID, that copy
is immediately activated to receive this message. (If no such copy of F exists then a new copy of
F is created and immediately activated to receive m.) Furthermore, although the adversary in the
hybrid model is responsible for delivering the messages from the copies of F to the parties, it does
not have access to the contents of these messages.

The hybrid model does not specify how the SIDs are generated, nor does it specify how parties
“agree” on the SID of a certain protocol copy that is to be run by them. These tasks are left
to the protocol in the hybrid model. This convention simplifies formulating ideal functionalities,
and designing protocols that securely realize them, by freeing the functionality from the need to
choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common practice
of protocol design in existing networks. See more discussion following Theorem 4.3.3 below.

Let HYBRIDf,A,Z(k,z) denote the random variable describing the output of environment ma-
chine Z on input z, after interacting in the F-hybrid model with protocol 7, adversary .4, anal-
ogously to the definition of REAL; 4 z(k,z). (We stress that here 7 is a hybrid of a real-life
protocol with ideal evaluation calls to F.) Let HYBRIDf,A,Z denote the distribution ensemble

f
{HYBRIDW”A’Z}keN,ze{UJ}*.

Replacing a call to F with a protocol invocation. Let 7 be a protocol in the F-hybrid
model, and let p be a protocol that securely realizes F (with respect to some class of adversaries).
The composed protocol 7 is constructed by modifying the code of each I'TM in 7 so that the
first message sent to each copy of F is replaced with an invocation of a new copy of p with fresh
random input, with the same SID, and with the contents of that message as input. Each subsequent
message to that copy of F is replaced with an activation of the corresponding copy of p, with the
contents of that message given to p as new input. Each output value generated by a copy of p is
treated as a message received from the corresponding copy of F. (See [14] for more details on the
operation of “composed protocols”, where a party, i.e. an I'TM, runs multiple protocol-instances
concurrently.)
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If protocol p is a protocol in the real-life model then so is 7. If p is a protocol in some G-hybrid
model (i.e., p uses ideal evaluation calls to some functionality G) then so is 7.

Theorem statement. In its general form, the composition theorem basically says that if p se-
curely realizes F in the G-hybrid model for some functionality G, then an execution of the composed
protocol 7, running in the G-hybrid model, “emulates” an execution of protocol 7 in the F-hybrid
model. That is, for any adversary A in the G-hybrid model there exists an adversary S in the F-
hybrid model such that no environment machine Z can tell with non-negligible probability whether
it is interacting with A and 7” in the G-hybrid model or it is interacting with S and 7 in the
F-hybrid model.

A corollary of the general theorem states that if 7 securely realizes some functionality Z in the
F-hybrid model, and p securely realizes F in the G-hybrid model, then n” securely realizes Z in
the G-hybrid model. (Here one has to define what it means to securely realize functionality Z in
the F-hybrid model. This is done in the natural way.) That is:

Theorem 4.3.3 ([14]) Let F,G,T be ideal functionalities. Let m be an n-party protocol in the
F-hybrid model, and let p be an n-party protocol that securely realizes F in the G-hybrid model.
Then for any adversary A in the G-hybrid model there exists an adversary S in the F-hybrid model
such that for any environment machine Z we have:

g < F
HYBRID7, 4 z = HYBRID; g z. (4.2)

In particular, if ™ securely realizes functionality T in the F-hybrid model then ©f securely realizes

T wn the G-hybrid model.

On the uniqueness of the session IDs. The session IDs play a central role in the hybrid model
and the composition operation, in that they enable the parties to distinguish different instances
of a protocol. Indeed, differentiating protocol instances via session IDs is a natural and common
mechanism in protocol design.

Yet, the current formulation of the hybrid model provides a somewhat over-idealized treatment
of session IDs. Specifically, it is assumed that the session IDs are globally unique and common to
all parties. That is, it is assumed that no two copies of an ideal functionality with the same session
ID exist, even if the two copies have different (and even disjoint) sets of participants. Furthermore,
all parties are assumed to hold the same SID (and they must somehow have agreed upon it). This
treatment greatly simplifies the exposition of the model and the definition of ideal functionalities
and protocols that realize them. Nonetheless, it is somewhat restrictive in that it requires the
protocol in the hybrid model to guarantee global uniqueness of common session IDs. This may
be hard (or even impossible) to achieve in the case that the protocol in the hybrid model is truly
distributed and does not involve global coordination. See [66] for more discussion on this point.
More elaborate ways of defining session IDs so as not to require global uniqueness exist. We leave
this issue for future work.

4.3.2 Universal Composition with Joint State

Traditionally, composition operations among protocols assume that the composed protocol in-
stances have disjoint states, and in particular independent local randomness. The universal com-
position operation is no exception: if protocol p securely realizes some ideal functionality F, and
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protocol 7 in the F-hybrid model uses m copies of F, then the composed protocol 7* uses m
independent copies of p, and no two copies of p share any amount of state.

This property of universal composition (and of protocol composition in general) is bothersome
in our context, where we wish to construct and analyze protocols in the common reference string
(CRS) model. Let us elaborate. Assume that we follow the natural formalization of the CRS model
as the Frs-hybrid model, where Fggs is the functionality that chooses a string from the specified
distribution and hands it to all parties. Now, assume that we construct a protocol p that realizes
some ideal functionality F in the Fegrs-hybrid model (say, let F be the commitment functionality,
Feoom). Assume further that some higher level protocol 7 (in the F-hybrid model) uses multiple
copies of F, and that we use the universal composition operation to replace each copy of F with
an instance of p. We now obtain a protocol 7” that runs in the Fggg-hybrid model and emulates
m. However, this protocol is highly wasteful of the reference string. Specifically, each instance of
p in wf has its own separate copy of Fcgs, or in other words each instance of p requires its own
independent copy of the reference string. This stands in sharp contrast with our common view of
the CRS model, where an unbounded number of protocol instances should be able to use the same
copy of the reference string.

One way to get around this limitation of universal composition (and composition theorems in
general) is to treat the entire, multi-session interaction as a single instance of a more complex
protocol, and then to explicitly require that all sessions use the same copy of the reference string.
More specifically, proceed as follows. First, given a functionality F as described above, define a
functionality, F , called the “multi-session extension of 7”. Functionality F will run multiple copies
of F, where each copy will be identified by a special “sub-session identifier”, ssid. Upon receiving
a message for the copy associated with ssid, F activates the appropriate copy of F (running within
]:"), and forwards the incoming message to that copy. If no such copy of F exists then a new copy is
invoked and is given that ssid. Outputs generated by the copies of F are copied to Fs output. The
next step after having defined F is to construct protocols that directly realize F in the Fops-hybrid
model, while making sure that the constructed protocols use only a single copy of Fegs-

This approach works, in the sense that it allows constructing and analyzing universally com-
posable protocols that are efficient in their use of the reference string. However, it results in
a cumbersome and non-modular formalization of ideal functionalities and protocols in the CRS
model. Specifically, if we want to make sure that multiple sessions of some protocol (or set of
protocols) use the same copy of the reference string, then we must treat all these sessions (that
may take place among different sets of parties) as a single instance of some more complex proto-
col. For example, assume that we want to construct commitments in the CRS model, then use
these commitments to construct UC zero-knowledge protocols, and then use these protocols in yet
higher-level protocols. Then, in any level of protocol design, we must design functionalities and
protocols that explicitly deal with multiple sessions. Furthermore, we must prove the security of
these protocols within this multi-session setting. This complexity obviates much of the advantages
of universal composition (and protocol composition in general).

In contrast, we would like to be able to formulate a functionality that captures only a single
instance of some interaction, realize this functionality by some protocol 7 in the CRS model,
and then securely compose multiple copies of 7 in spite of the fact that all copies use the same
copy of the reference string. This approach is, in general, dangerous, since it can lead to insecure
protocols. However, there are conditions under which such “composition with joint state” maintains
security. This section describes a general tool that enables the composition of protocols even when
they have some amount of joint state, under some conditions. Using this tool (suggested in [21]
and called universal composition with joint state (JUC)), we are able to state and realize most of the
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functionalities in this work as functionalities for a single session, while still ending up with protocols
where an unbounded number of instances use the same copy of the common reference string. This
greatly simplifies the presentation while not detracting from the composability and efficiency of the
presented protocols.

In a nutshell, universal composition with joint state is a new composition operation that can
be sketched as follows. Let F be an ideal functionality, and let m be a protocol in the F-hybrid
model. Let F denote the “multi-session extension of F” sketched above, and let p be a protocol
that securely realizes F. Then construct the composed protocol 7! by replacing all copies of F in
7 by a single copy of p. (We stress that 7 assumes that it has access to multiple independent copies
of F. Still, we replace all copies of F with a single copy of some protocol.) The JUC theorem
states that protocol «l#), running in the real-life model, “emulates” 7 in the usual sense. A more
detailed presentation follows.

The multi-session extension of an ideal functionality. We formalize the notion of a multi-
session extension of an ideal functionality, sketched above. Let F be an ideal functionality. Recall
that F expects each incoming message to contain a special field consisting of its session ID (SID).
All messages received by F are expected to have the same SID. (Messages that have different SIDs
than that of the first message are ignored.) Similarly, all outgoing messages generated by F carry
the same SID.

The multi-session extension of F, denoted ]:", is defined as follows. F expects each incoming
message to contain two special fields. The first is the usual SID field as in any ideal functionality.
The second field is called the sub-session ID (SSID) field. Upon receiving a message (sid, ssid,v)
(where sid is the SID, ssid is the SSID, and v is an arbitrary value or list of values), F first verifies
that sid is the same as that of the first message, otherwise the message is ignored. Next, F checks
if there is a running copy of F whose session ID is ssid. If so, then F activates that copy of F with
incoming message (ssid,v), and follows the instructions of this copy. Otherwise, a new copy of F
is invoked (within ]:") and immediately activated with input (ssid,v). From now on, this copy is
associated with sub-session ID ssid. Whenever a copy of F sends a message (ssid,v’) to some party
P;, F sends (sid, ssid,v") to P;, and sends ssid to the adversary. (Sending ssid to the adversary
implies that F does not hide which copy of F is being activated within F )

The composition operation. Let F be an ideal functionality. The composition operation,
called universal composition with joint state (JUC), takes two protocols as arguments: a protocol 7
in the F-hybrid model and a protocol p that securely realizes F. The result is a composed protocol
denoted 7?) and described as follows.

Recall that the F-hybrid model is identical to the real-life model of computation, with the
exception that the parties have access to multiple copies of F. The different copies of F are

identified via their SIDs as described above. Let F(;q4) denote the copy of functionality F with SID

sid. Protocol 7l?l behaves like 7 with the following exceptions:®

1. When activated for the first time within party P;, 7l?) invokes a copy of protocol p with SID
stdg. That is, a copy of the ith Interactive Turing Machine in p is invoked as a subroutine
within P;, and is (locally) given identity sidy. No activation of p occurs yet. (sidy is some
fixed, predefined value. For instance, set sidg = 0.)

8For simplicity, we assume that p securely realizes F in the real-life model of computation. The composition
operation and theorem can be extended in a natural way to account for protocols p that securely realize F in the
G-hybrid model for some ideal functionality G.
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2. Whenever 7 instructs party P; to send a message (sid,v) to F(yq), protocol ©” instructs P
to activate p with input value (sidy, sid, v).

3. Whenever protocol p wishes to send a message m to some party Py, P; writes the message
(p, sid, Py, m) on the outgoing communication tape.

4. Whenever activated due to delivery of a message (p, sid,m) from Py, P; activates p with
incoming message (sid, Py, m).

5. Whenever (the single copy of) p generates an output value (sid, v), proceed just as w proceeds
with incoming message v from F;q).

Theorem statement. The JUC theorem asserts that if p securely realizes ]:", then protocol /!
behaves essentially like 7 with ideal access to multiple independent copies of F. More precisely,

Theorem 4.3.4 (Universal composition with joint state [21]): Let F,G be ideal functionalities.
Let m be a protocol in the F-hybrid model, and let p be a protocol that securely realizes F, the multi-
session extension of F, in the G-hybrid model. Then the composed protocol 7P\ in the G-hybrid
model emulates protocol w in the F-hybrid model. That s, for any adversary A there exists an
adversary S such that for any environment Z we have

HYBRID, g z = HYBRIDY | , _.
In particular, if ™ securely realizes some functionality T in the F-hybrid model then ') securely
realizes I in the G-hybrid model.

Discussion. Jumping ahead, we sketch our use of the JUC theorem. Recall the commitment
functionality, Feoun, formalized in [16]. This functionality captures the process of commitment and
decommitment to a single value, performed by two parties. In addition, [16] show how to realize
}"COM in the CRS model, using a single copy of the CRS for all commitments. (In [16] functionality
Foou is called Fucou- ) An alternative protocol that realizes Feou s also presented here.

In this work we construct protocols that use these commitment protocols. However, to preserve
modularity of exposition, we present our protocols in the Feoy-hybrid model, while allowing the
protocols to use multiple copies of Fgon and thus enjoy full modularity. We then use universal
composition with joint state to compose any protocol 7 in the Fooy-hybrid model with any protocol
p that securely realized Feon using a single copy of the reference string, to obtain a protocol 7l?!
that emulates 7 and uses only a single copy of the reference string for all the commitments. (We
remark that the same technique is applied also to protocols that use the ideal zero-knowledge
functionality, F,x. See more details in Section 4.6.)

4.3.3 Well-Formed Functionalities

We would like to be able to state a theorem saying that any ideal functionality can be securely
realized. However, for technical reasons, such a claim cannot be made in our model. The first
problem that arises is as follows. Since the ideal functionality is informed of the identities of the
corrupted parties, it can do things that cannot be realized by any protocol. For example, consider
the ideal functionality that lets all parties know which parties are corrupted. Then this functionality
cannot be realized in the face of an adversary that corrupts a single random party but instructs
that party to continue following the prescribed protocol.
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In order to bypass this problem, we define a special class of functionalities that do not utilize
their direct knowledge of the identities of the corrupted parties. For the lack of a better name,
we call these functionalities well-formed. A well-formed functionality consists of a main proce-
dure (called the shell) and a subroutine (called the core.) The core is an arbitrary probabilistic
polynomial-time algorithm, while the shell is a simple procedure described as follows. The shell
forwards any incoming message to the core, with the exception that notifications of corruptions
of parties are not forwarded. Outgoing messages generated by the core are copied by the shell to
the outgoing communication tape. The above definition guarantees that the code of a well-formed
ideal functionality “does not depend” on its direct knowledge regarding who is corrupted.

In subsequent sections, we show how to realize any well-formed functionality in the face of static
adversaries. However, another technicality arises when considering adaptive adversaries. Consider
for instance a two-party ideal functionality F that works as follows: Upon activation, it chooses two
large random primes p and ¢ and sends n = pq to both parties. The value n is the only message
output by the functionality; in particular, it never reveals the values p and ¢. The important
property of this functionality that we wish to focus on is the fact that it has private randomness
that is never revealed. Such a functionality can be securely realized in the static corruption model.
However, consider what happens in a real execution if an adaptive adversary corrupts both parties
after they output n. In this case, all prior randomness is revealed (recall that we assume no
erasures). Therefore, if this randomness explicitly defines the primes p and ¢ (as is the case in all
known protocols for such a problem), these values will necessarily be revealed to the adversary. On
the other hand, in the ideal process, even if both parties are corrupted, p and ¢ are never revealed.”
(We stress that this is not a weakness of the model because in the case that all participating parties
are corrupted, there are no security requirements on a protocol. In particular, there are no honest
parties to “protect”). In light of the above discussion, we define adaptively well-formed functionalities
that do not keep private randomness when all parties are corrupted. Formally, such functionalities
have a shell and a core, as described above. However, in addition to forwarding messages to and
from the core, the shell keeps track of the parties with whom the functionality interacts. If at
some activation all these parties are corrupted, then the shell sends the random tape of the core
to the adversary. Thus, when all the parties participating in some activation are corrupted, all
the randomness is revealed (even in the ideal process). We show how any adaptively well-formed
functionality can be securely realized in the face of adaptive adversaries.

In order to make sure that the multi-session extension of an adaptively well-formed functionality
remains adaptively well-formed, we slightly modify the definition of the multi-session extension of
an ideal functionality (see Section 4.3.2) as follows. If the given ideal functionality F is adaptively
well-formed, then F , the multi-session extension of F, is an adaptively well-formed functionality
defined as follows. The core of F consists of the multi-session extension (in the usual sense) of
the core of F. The shell of F is as defined above except that it separately keeps track of the
participating parties of each session. Then, if all the participating parties of some session are
corrupted in some activation, the shell sends the random tape of the core for that session to the
adversary. (Recall that each session of the multi-session functionality uses an independent random
tape.) We note that the JUC theorem (Theorem 4.3.4) holds even with respect to the modified
definition of multi-session extensions.

9We do not claim that it is impossible to realize this specific functionality. Indeed, it may be possible to sample
the domain {n | n = pg} (or a domain that is computationally indistinguishable from it) without knowing p or gq.
Nevertheless, the example clearly demonstrates the problem that arises.
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4.4 Two-party Secure Computation for Semi-Honest Adversaries

This section presents general constructions for securely realizing any two-party ideal functionality
in the presence of semi-honest adversaries. In the case of static adversaries, the construction
is basically that of Goldreich, Micali and Wigderson [52]. In the case of adaptive adversaries
the construction of oblivious transfer is somewhat different (however, the rest of the construction
remains unchanged). The main difference between our presentation and that of [44], is that we
consider the reactive case where parties may receive new inputs during the run of the protocol.
Each new input may depend on the current adversarial view of the system. In particular, it may
depend on previous outputs of this execution and on the activity in other executions. We note
that although the basic construction of our protocol is very similar to [52], our proof is significantly
different. This is due to the fact that we show universal composability, and in addition consider
also the adaptive corruption case (and not only the static case like in [52]).

We begin by presenting the oblivious-transfer ideal functionality For, and demonstrate how
to realize this functionality in the presence of semi-honest adversaries (both static and adaptive).
Following this we present our protocol for securely realizing any two-party functionality, in the
For-hybrid model.

4.4.1 Universally Composable Oblivious Transfer

Oblivious transfer [75, 35] is a two-party functionality, involving a sender with input z, ..., 2, and
a receiver with input ¢ € {1,...,¢}. The receiver should learn z; (and nothing else) and the sender
should learn nothing. An exact definition of the ideal oblivious transfer functionality, denoted }"f;T,
appears in Figure 4.1. (Using standard terminology, 75, captures 1-out-of-¢ OT.)

Functionality F’,

FL. proceeds as follows, parameterized with an integer £ and running with an oblivious transfer
sender T', a receiver R and an adversary S.

1. Upon receiving a message (sender, sid, 1, ..., x¢) from T', where each z; € {0,1}™, record the
tuple (z1,...,x¢). (The length of the strings m is fixed and known to all parties.)

2. Upon receiving a message (receiver, sid, i) from R, where i € {1,...,¢}, send (sid,z;) to R
and (sid) to S, and halt. (If no (sender,...) message was previously sent, then send nothing
to R.)

Figure 4.1: The oblivious transfer functionality, F5,

Section 4.4.1 presents a protocol that securely realizes For for static adversaries. Section 4.4.1
presents our protocol for securely realizing Fo, for adaptive adversaries.

Static UC Oblivious Transfer

The oblivious transfer protocol of [52, 44|, denoted SOT (for Static Oblivious Transfer) is presented
in Figure 4.2. For simplicity we present the protocol for the case where each of the ¢ input values
is a single bit. (In the semi-honest case, oblivious transfer for strings can be constructed from this
one via the composition theorem.)




70 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION

Protocol SOT

Proceed as follows, on security parameter k.

1. Given input (sender, sid, 1, ...,x;), party T chooses a trapdoor permutation f over {0,1}*,
together with its inverse f~!, and sends (sid, f) to the receiver R. (The permutation f is
chosen uniformly from a given family of trapdoor permutations.)

2. Given input (receiver,sid,i), and having received (sid,f) from T, receiver R chooses
Y1, Yi—1,7,Yi+1, -, Yt €ER {07 1}k7 computes Yi = f(’f'), and sends (Sida Yi,- - ;yl) to T'.

3. Having received (sid,y1,...,y¢) from R, the sender T sends (sid,z; ® B(f~*(y1)),...,z¢ @
B(f~(y¢))) to R, where B(-) is a hard-core predicate for f.

4. Output: Having received (sid, by,...,b,) from T, the receiver R outputs (sid,b; & B(r)).

Figure 4.2: The static, semi-honest oblivious transfer protocol

Claim 4.4.1 Assuming that f is a trapdoor permutation, Protocol SOT securely realizes FL, in
the presence of semi-honest, static adversaries.

Proof: Let A be a semi-honest, static adversary that interacts with parties running the above
protocol. We construct an adversary S for the ideal process for ]-"C‘;T such that no environment Z
can tell with non-negligible probability whether it is interacting with A and the above protocol or
with S in the ideal process for F5;. Recall that S interacts with the ideal functionality F5, and
with the environment Z. Simulator S starts by invoking a copy of A and running a simulated
interaction of A with Z and parties running the protocol. (We refer to the interaction of S in the
ideal process as external interaction. The interaction of A with the simulated A is called internal
interaction.) S proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from A’s environment). Likewise, every output value written
by A on its output tape is copied to S’s own output tape (to be read by S’s environment Z).

Simulating the case where the sender T only is corrupted: S simulates a real execution in
which T is corrupted. S begins by activating A and receiving the message (sid, f) that A
(controlling T) would send R in a real execution. Then, S chooses y1,...,y, €g {0,1}* and
simulates R sending T the message (sid, y1,...,y¢) in the internal interaction. Finally, when
A sends the message (sid, b, ..., by) from T to R in the internal interaction, S externally sends
T’s input z1,...,2 to ng and delivers the output from ng to R. (Recall that in the semi-
honest model as defined here, A is able to modify the input tape of 7. Therefore, the value
T1,...,xp sent by S to Fb, is the (possibly) modified value. Formally this causes no problem
because actually it is the environment who writes the modified value, after “consultation”
with A. Since all communication is forwarded unmodified between A and Z, the value that
Z writes on 1”s input tape is the already-modified value. We ignore this formality in the
subsequent proofs in this section.)

Simulating the case where the receiver R only is corrupted: S begins by activating A and
internally sending it the message that A (controlling R) receives from 7' in a real execution.
That is, S chooses a random trapdoor permutation f and its inverse f—!, and sends it to
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A. Next, it internally receives a message of the form (sid,y,...,y¢) from A. Simulator S
then externally sends R’s input i to F5,. and receives back the output x;. S concludes the
simulation by choosing by, ...,b; 1,bsu1,. .., by uniformly, setting b; = x; ® B(f~'(y;)), and
internally sending 4 the message (sid, by,...,by). (Recall that z; is the output as obtained
by S from the ideal functionality F%,.)

Simulating the case that neither party is corrupted: In this case, S receives a message (sid)
signalling it that 7' and R concluded an ideal execution with Fo;. S then generates a sim-
ulated transcript of messages between the real model parties. That is, S generates 1’s first
message (sid, f) as the real T would, sets R’s reply to be (sid,y1,...,y,) where y; €g {0,1}*
for each j, and finally sets T”s second message to (sid, b1, ...,by) where b; € {0,1} for every

7.

Simulating the case that both parties are corrupted: In this case, S knows both parties’
inputs and can therefore simulate a protocol execution by generating the actual messages
that the parties would send in a real execution.

We demonstrate that IDEALF,, s = = REALsor 4, z. This is done by showing that the joint view of
Z and A in the execution of SOT is indistinguishable from the joint view of Z and the simulated A
within § in the ideal process. First, notice that the simulation for the case where 7" is corrupted is
perfect. This is because in both the ideal simulation and a real execution, the message received by T’
consists of £ uniformly distributed k-bit strings, and the output of R is the same in both executions.
(Notice that since f is a permutation, choosing 7 uniformly and computing y; = f(r), as occurs in a
real execution, results in a uniformly distributed y;. Furthermore, the output of R is b; ® B(f~'(y;))
where b; is the ith value sent by 7'.) Second, we claim that the simulation for the case where R is
corrupted is indistinguishable from in a real execution. The only difference between the two is in the
message by, ..., by received by R. The bit b; is identically distributed in both cases (in particular,
in both the simulation and a real execution it equals x; ® B(f~!(y;))). However, all the bits b; for
j # i are uniformly chosen and are not distributed according to z; ® B(f '(y;)). Nevertheless,
due to the hard-core properties of B, the bit B(f~!(y;)) for a random y; is indistinguishable from
a random-bit b; €Ex {0,1}. The same is also true for z; ® B(f (y;)) when z; is fixed before y;
is chosen. (More precisely, given an environment that distinguishes with non-negligible probability
between the real-life and the ideal interactions, we can construct an adversary that contradicts
the hard-core property of B.) Thus the views are indistinguishable. By the same argument, we
also have that the simulation for the case that neither party is corrupted results in a view that is
indistinguishable from a real execution. This completes the proof. [

Our proof of security of the above protocol fails in the case of adaptive adversaries. Intuitively the
reason is that when a party gets corrupted, S cannot present the simulated .4 with a valid internal
state of the corrupted party. (This internal state should be consistent with the past messages sent by
the party and with the local input and output of that party.) In particular, the messages (sid, f),
(sid,y1,...,y¢) and (sid,by,...,by) fully define the input bits z1,...,z,. However, in the case
that T is not initially corrupted, S does not know x1,...,z, and therefore with high probability,
the messages define a different set of input bits. Thus, if A corrupts 1" after the execution has
concluded, & cannot provide A with an internal state of T' that is consistent both with z1,...,xy
and the simulated transcript that it had previously generated.
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Adaptive UC Oblivious Transfer

Due to the above-described problem, we use a different protocol for securely realizing }"gT for the
case of adaptive, semi-honest adversaries. A main ingredient in this protocol are non-committing
encryptions as defined in [15] and constructed in [15, 6, 24]. In addition to standard semantic
security, such encryption schemes have the property that ciphertexts that can be opened to both
0 and 1 can be generated. That is, a non-committing (bit) encryption scheme consists of a tuple
(G,E,D,S), where G is a key generation algorithm, F and D are encryption and decryption
algorithms, and S is a simulation algorithm (for generating non-committing ciphertexts). The triple
(G, E, D) satisfies the usual properties of semantically secure encryption. That is, G(1¥) = (e, d)
where e and d are the respective encryption and decryption keys, and Dy(F.(m)) = m except
with negligible probability. Furthermore, {E.(1)} is indistinguishable from {FE.(0)}. In addition,
the simulator algorithm S is able to generate “dummy ciphertexts” that can be later “opened” as
encryptions of either 0 or 1. More specifically, it is required that S(1¥) = (e, ¢, 70,71, do,d;) with
the following properties:

e The tuple (e, ¢, rg,dpy) looks like a normal encryption and decryption process for the bit 0. That
is, (e,¢,19,dp) is indistinguishable from a tuple (¢’, ', 7', d") where (¢/,d') is a randomly chosen
pair of encryption and decryption keys, 7’ is randomly chosen, and ¢ = E.(0;7'). (In particular,
it should hold that Dg,(c) = 0.)

e The tuple (e,c,r1,d;) looks like a normal encryption and decryption process for the bit 1. That
is, (e,c,71,dy) is indistinguishable from a tuple (¢, ', 7', d") where (¢’,d’) is a randomly chosen
pair of encryption and decryption keys, 7' is randomly chosen, and ¢ = E.(1;7). (In particular,
it should hold that Dy, (¢) = 1.)

Thus, given a pair (e,c), it is possible to explain ¢ both as an encryption of 0 (by providing dy
and rp) and as an encryption of 1 (by providing d; and 7). Here, we actually use augmented
non-committing encryption protocols that have the following two additional properties:

1. Oblivious key generation: It should be possible to choose a public encryption key e “without
knowing” the decryption key d. That is, there should exist a different key generation algorithm
G such that G‘(lk) = ¢ where ¢ is indistinguishable from the encryption key e chosen by G,
and in addition { E¢(0)} remains indistinguishable from {E;(1)} even when the entire random
input of G is known.

2. Invertible samplability: this property states that the key generation and oblivious key genera-
tion algorithms G and G should be invertible. That is, we require the existence of an inverting
algorithm who receives any e output by the simulator algorithm S and outputs r such that
G(’I“) = e. (This algorithm may receive the coins used by S in computing e in order to find
r.) We also require an algorithm that receives any pair (e, d;) for i € {0,1} from the output
of S, and outputs r such that G(r) = (e, d;). (As before, this algorithm may receive the coins
used by S.) The idea here is that in order to “explain” the simulator-generated keys as being
generated in a legal way, it must be possible to find legal random coin tosses for them.'®

Augmented two-party non-committing encryption protocols exist under either one of the RSA or
the DDH assumptions. The requirements are also fulfilled in the case that public keys are uniformly

0Tn its most general form, one can define an invertible sampling algorithm for G' that receives any pair (e,d) in
the range of G and outputs r such that G(r) = (e,d). However, we actually only need the inverting algorithm to
work for keys output by the simulator S.
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distributed over some public domain and secret keys are defined by the random coins input to G.
See more details in [15, 24].

The protocol for securely realizing Fr., denoted AOT (for Adaptive Oblivious Transfer) is
presented in Figure 4.3. As in the static case, the protocol is defined for the case where each of the
£ input values is a single bit.

Protocol AOT
Proceed as follows, on security parameter £ and using an augmented non-committing encryption
scheme (G,G,E,D,S).

1. Given input (receiver, sid, i), receiver R runs G(1*) to obtain (e, d), and runs G(1¥) /-1 times
to obtain éy,...,€;_1,€;41,...,€. Then, R sends (sid,éi,...,€;—1,€,€i+1,...,€7) to T.

2. Given input (sender, sid, z1, ..., z;), and having received (sid, ey, ..., e;) from R, sender T' com-
putes ¢; = E, (z;) for every 1 < j </, and sends (sid, cy,...,c¢) to R.

3. Having received (sid, 1, . .., ¢¢) from T, receiver R computes z; = Dg4(c;) and outputs (sid, z;).

Figure 4.3: The adaptive, semi-honest oblivious transfer protocol

Claim 4.4.2 Assume that (G,@,E,D,S) 15 an augmented non-committing encryption scheme.
Then, Protocol AOT securely realizes ]—"gT in the presence of semi-honest, adaptive adversaries.

Proof: The main difference between this proof and the proof of Claim 4.4.1 is due to the fact that
the real-model adversary A can corrupt parties during (or after) the simulation. When S receives
such a “corrupt” command, it corrupts the ideal-model party and receives its input (and possibly
its output). Given this information, S must produce random coins for this party such that the
simulated transcript generated so far is consistent with the revealed input (and output).

Let A be a semi-honest, adaptive adversary that interacts with parties running the above
protocol. We construct an adversary S in the ideal process for }"gT such that no environment Z
can tell with non-negligible probability whether it is interacting with A and the above protocol or
with S in the ideal process for F5,. In describing the simulation here, it is helpful to explicitly
consider the I'TMs representing the real model parties in the internal interaction. We denote these
parties by T and R. S works as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from A’s environment). Likewise, every output value written
by A on its output tape is copied to S’s own output tape (to be read by S’s environment Z).

Simulating the receiver: We separately describe the simulation for a corrupted and uncorrupted
receiver.

1. Stmulation when the receiver is mot corrupted: In this case, & needs to simulate the
receiver message. This is done as follows: & runs the encryption simulation algorithm
S(1%) independently ¢ times. For each j, S obtains a tuple (ej,cj,r(]),r{,d%,d{); see the
explanation above for the meaning of each element in this tuple. Then, S generates R’s
message to be (sid, e1, ..., e;) and simulates R sending it to 7.
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2. Simulation when the receiver is corrupted: In this case, S holds the input (receiver, sid, 7)

of the ideal receiver R and constructs a virtual real-model receiver R as follows. The
contents of the input tape of R is set to (receiver, sid, ). In order to set the contents of
R’s random tape, S first runs the encryption simulation algorithm S (1%) independently
¢ times, obtaining tuples (e;, ¢;, 9,71, d}, d]). Next, for every j, S uses the invertible
sampling algorithm in order to find 7; so that G(r;) = e;, where G is the oblivious key
generator. Then, S sets the contents of R’s random tape to equal 71, ..., ry.
S passes the internal state of R (including the contents of its input and random tapes)
to A and waits for A to activate R in the simulation. When this occurs, S internally
obtains the message (sid,eq,...,e;) that R writes on its outgoing message tape, and
externally sends (receiver, sid z) to FE.. (We note that for every j # i, it holds that
ej = G(r;) is the same ¢; as generated by S(1¥). On the other hand, e; = G(r;), where
G is the standard encryption key generator.)

Simulating the sender: Ounce again, we separately consider the case that the sender is corrupted
or not corrupted.

1. Simulation when the sender is not corrupted: S simulates T sending (sid,cy,...,cp)
where the ¢;’s were generated from S(1*) when simulating the receiver message above.
This is the same whether or not R was corrupted.

2. Simulation when the sender is corrupted: S holds the ideal T7s input (sender, sid, x1, ..., xy)
and constructs a virtual real-model sender T by writing (sender, sid, z1,...,zs) on its
input tape and a wniformly distributed string on its random tape. Then, as above, S
passes A the internal state of T (consisting of the contents of its input and random tapes).
When A activates T, simulator S externally sends the message (sender, sid, z, ..., x;)
to F;.

Dealing with “corrupt” commands: We assume that any corruption of a party occurs after the
party has sent its protocol message in the simulation. (Otherwise, the corruption essentially
occurs before the protocol begins and the instructions above suffice.) Now, if S receives a
command from A to corrupt the real-model R, then it corrupts the ideal model R and obtains
its input ¢ and its output z;. Given ¢ and z;, simulator S passes A the decryption-key dii
(and thus the ciphertext ¢; given to R in the simulated sender-message is “decrypted” to ;).
Furthermore, for every j # 4, S runs the invertible sampling algorithm on e; in order to find
r; such that G(Tj) = ¢;. Finally, S runs the invertible sampling algorithm on e; in order to
find r; such that G(r;) = (e;, d%,). Notice that these two invertible sampling algorithms are
different. S supplies A with the random tape r1,...,r, for R.

If S receives a command from A to corrupt real-model 7', then it first corrupts the ideal-
model T" and obtains x1,...,x,. Next, it prepares appropriate randomness to make it appear
that for every j, it holds that c¢; = Ee,(v;) (where the (cj,e;) pairs are taken from the
simulated receiver and sender messages). Since the encryption keys are non-committing and
were generated by running S(1%), we have that for every 1 < j < £ simulator S has a string
Te; such that ¢; = B, (xj;74,). Therefore, S writes r,,..., 74, as T’s random tape.

Output and output delivery: § delivers the output from ]:éT to (an uncorrupted) R when A
delivers the message from 71" to R in the simulation.

As argued in the proof of Claim 4.4.1, it suffices to show that A’s view in the simulation is indis-
tinguishable from its view in a real execution. (Note that in the adaptive case there is a positive
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correctness error. That is, there is non-zero probability that the outputs of the uncorrupted parties
in the real-life interaction will differ from their outputs in the ideal process. This error probability is
due to the fact that encryption schemes can “fail” with negligible probability. Since the probability
of such an event is negligible, we ignore it here.) The indistinguishability of the views is demon-
strated using the properties of the augmented non-committing encryption scheme. In particular, the
non-committing encryption keys, ciphertexts and decommitment strings are all indistinguishable
from those appearing in a real execution. Furthermore, by the oblivious key-generation algorithm,
S supplies only a single decryption key (for the i*® encryption key) and this is what a real receiver
would also have. (More precisely, given an environment that distinguishes between the real-life and
ideal interactions we construct an adversary that breaks either the security of the non-committing
encryption or the oblivious key generation property. We omit further details.) i

4.4.2 The General Construction

We are now ready to show how to securely realize any (adaptively) well-formed two-party function-
ality in the For-hybrid model, in the semi-honest case. (Adaptively well-formed functionalities are
defined in Section 4.3.3. Two-party functionalities are functionalities that interact with the adver-
sary, plus at most two parties.) The construction is essentially that of [52, 44], although as we have
mentioned, our protocol is actually more general in that it also deals with reactive functionalities.
We begin by formally restating Proposition 4.2.1:

Proposition 4.4.3 (Proposition 4.2.1 — formally restated): Assume that trapdoor permutations
exist. Then, for any two-party well-formed ideal functionality F, there exists a non-trivial protocol
that securely realizes F in the presence of semi-honest, static adversaries. Furthermore, if two-party
augmented non-committing encryption protocols exist, then for any two-party adaptively well-formed
wdeal functionality F, there exists a non-trivial protocol that securely realizes F in the presence of
semi-honest, adaptive adversaries.

Recall that a protocol is non-trivial if the ideal-process adversary delivers all messages from the
functionality to the parties whenever the real-life adversary delivers all messages and doesn’t corrupt
any parties. This restriction is included to rule out meaningless protocols such as the protocol that
never generates output. (See Section 4.3.1 for more discussion.)

The construction. Let F be an ideal two-party functionality and let P; and P, be the partic-
ipating parties. The first step in constructing a protocol that securely realizes F is to represent
(the shell of) F via a family Cr of boolean circuits. That is, the m' circuit in the family describes
an activation of F when the security parameter is set to m. Following [52, 44], we use arithmetic
circuits over GF(2) where the operations are addition and multiplication modulo 2.

For simplicity we assume that the input and output of each party in each activation has at most
m bits, the number of random bits used by F in all activations is at most m, and at the end of
each activation the local state of F can be described in at most m bits. Consequently the circuit
has 3m input lines and 3m output lines, with the following interpretation. In each activation, only
one party has input. Therefore, m of the input lines are allocated for this input. The other 2m
input lines describe F’s m random coins and the length-m internal state of F at the onset of an
activation. The 3m output lines are allocated as follows: m output lines for the output of each of
the two parties and m output lines to describe the state of F following an activation. The circuit
is constructed so that each input from the adversary is set to 0, and outputs to the adversary are
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ignored.'’ We note that if the input or output of a party in some activation is less than m bits
then this is encoded in a standard way. Also, each party initially sets its shares of the state of F
to 0 (this denotes the empty state).

Protocol IIx (for securely realizing F): We state the protocol for an activation in which
Py sends a message to F; the case where P, sends the message is easily derived (essentially by
exchanging the roles of P; and P, throughout the protocol). It is assumed that both parties hold
the same session identifier sid as auxiliary input. When activated with input (sid,v) within P,
the protocol first sends a message to the partner P, asking it to participate in a joint evaluation of
the m' circuit in Cz. Next, P; and P, engage in a gate-by-gate evaluation of Cz, on inputs that
represent the incoming message v from P;, the current internal state of 7, and a random string.
This is done as follows.

1. Input Preparation Stage:

e [nput value: Recall that v is P;’s input for this activation. P; first pads v to be of length
exactly m (using some standard encoding). Next P; “shares” its input. That is, P; chooses
a random string v; €g {0,1}" and defines vy = v; @ v. Then, P; sends (sid,v9) to P, and
stores vy.

e Internal state: At the onset of each activation, the parties hold shares of the current
internal state of . That is, let ¢ denote the current internal state of F, where |¢| = m.
Then, P, and P» hold ¢, ¢ € {0,1}™, respectively, such that ¢; and cg are random under
the restriction that ¢ = ¢; @ ¢y. (In the first activation of F, the internal state is empty
and so the parties’ shares both equal 0.)

e Random coins: Upon the first activation of F only, parties P, and P, choose random
strings 71 €r {0,1}"™ and ro €r {0,1}™, respectively. These constitute shares of the
random coins r = 11 @ r2 to be used by Cr. We stress that r; and ro are chosen upon
the first activation only. The same r; and ry are then used for each subsequent activation
of F (r1 are 79 are kept the same because the random tape of F does not change from
activation to activation).

At this point, P; and P; hold (random) shares of the input message to F, the internal state
of F and the random tape of F. That is, they hold shares of every input line into C'r. Note
that the only message sent in the above stage is the input share vo sent from P to Ps.

2. Circuit Evaluation: P; and P, proceed to evaluate the circuit C'r in a gate-by-gate manner.
Let o and 3 denote the values of the two input lines to a given gate. Then P; holds bits oy, 81
and P holds bits «ag, f2 such that « = oy + a9 and 8 = 1 + 2. The gates are computed as
follows:

o Addition gates: If the gate is an addition gate, then P locally sets its share of the output
line of the gate to be 71 = a1 + f1. Similarly, P» locally sets its share of the output line
of the gate to be v2 = az + f2. (Thus 1 + 72 =a+5.)

e Multiplication gates: If the gate is a multiplication gate, then the parties use Fa, in order
to compute their shares of the output line of the gate. That is, the parties wish to compute
random shares 7, and 7y such that v; + v, = - = (a1 + a9)(81 + fB2). For this purpose,

HThus, we effectively prevent the ideal-model adversary from utilizing its capability of sending and receiving
messages. This simplifies the construction, and only strengthens the result.
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P, chooses a random bit v, €r {0, 1}, sets its share of the output line of the gate to 7,
and defines the following table:

Value of (g, 32) | Receiver input i Receiver output 7o
(0,0) 1 o=y +ai- B
(0,1) 2 02 =71+ar-(f1+1)
(1,0) 3 o3 =7+ (a1 +1) B
(1,1) 4 og=m+ (a1 +1)- (B +1)

Having prepared this table, P; sends the oblivious transfer functionality F3, the message
(sender, sid o j, 01, 09, 03,04), where this is the 5" multiplication gate in the circuit and o
denotes concatenation (the index j is included in order to ensure that the inputs of the
parties match to the same gate). P sets its input value i for F3, according to the above
table (e.g., for ay = 1 and By = 0, P, sets ¢ = 3). Then, P, sends (receiver, sid o j,i) to
Fi. and waits to receive (sid o j,72) from Fa.. Upon receiving this output, P sets 7o to
be its share of the output line of the gate. Thus, we have that v, +v9 = (a1 + 1) (a2 + 32)
and the parties hold random shares of the output line of the gate.

3. Output Stage: Following the above stage, the parties P; and P hold shares of all the output
lines of the circuit C'r. Each output line of C'r is either an output addressed to one of the
parties P; and P, or belongs to the internal state of Cr after the activation. The activation
concludes as follows:

e P’s output: P> sends P all of its shares in P;’s output lines. P; reconstructs every bit of
its output value by adding the appropriate shares. (If the actual output generated by F
has less than the full m bits then this will be encoded in the output in a standard way.)

e Py’s output: Likewise, P; sends P» all of its shares in P»’s output lines; P, reconstructs
the value and writes it on its output tape.

e S’s output: Recall that the outputs of F to S are ignored by Cr. Indeed, the protocol
does not provide the real-life adversary with any information on these values. (This only
strengthens the security provided by the protocol.)

e Internal state: Finally, P; and P» both store the shares that they hold for the internal
state lines of Cz. (These shares are to be used in the next activation.)

Recall that there is no guarantee on the order of message delivery, so messages may be delivered
“out of order”. However, to maintain correctness, the protocol must not start some evaluation
of Cr before the previous evaluation of Cx has completed. Furthermore, evaluating some gate
can take place only after the shares of the input lines of this gate are known. Thus, in order to
guarantee that messages are processed in the correct order, a tagging method is used. Essentially,
the aim of the method is to assign a unique tag to every message sent during all activations of F.
Thus, the adversary can gain nothing by sending messages in different orders. This is achieved in
the following way. Recall that both parties hold the same session-identifier std. Then, in activation
1, the parties use the session-identifier sid oi. They also attach a tag identifying the stage which
the message sent belongs to. Thus, for example, the message vo sent by P; in the input stage of
the (" activation is tagged with (sid o £ o input). Likewise, the j*® call to Fo, in the i*! activation
is referenced with the session identifier sid o £ o j (and not just sid o j as described above). Now,
given the above tagging method, the ordering guarantees can be dealt with in standard ways by
keeping messages that arrive too early in appropriate buffers until they become relevant (where the
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time that a message becomes relevant is self-evident from the labelling). By the above, it makes
no difference whether or not the adversary delivers the messages according to the prescribed order.
From here on we therefore assume that all messages are delivered in order. We also drop explicit
reference to the additional tagging described here. This completes the description of I1£.

We now prove that the above construction securely realizes any adaptively well-formed functionality.
(We stress that for the case of static adversaries, Il securely realizes any well-formed functionality,
and not just those that are adaptively well-formed. Nevertheless, here we prove the claim only for
adaptively well-formed functionalities and adaptive adversaries. The static case with security for
any well-formed functionality is easily derived.)

Notice that each activation of Il is due to an input sent by one of the participating parties.
This implicitly assumes that the only messages that the functionality receives are from the parties
themselves. This is indeed the case for well-formed functionalities (or, more accurately, the shells
of such functionalities). However, recall that in general, functionalities receive notification of the
parties that are corrupted. The protocol does not (and cannot) deal with such messages and
therefore does not securely realize functionalities that are not well-formed.

Claim 4.4.4 Let F be a two-party adaptively well-formed functionality. Then, protocol I1x securely
realizes F in the For-hybrid model, in the presence of semi-honest, adaptive adversaries.

Note that the claim holds unconditionally. In fact, it holds even if the environment and the
adversary are computationally unbounded. (Of course, computational assumptions are required
for securely realizing the oblivious transfer functionality.) The proof below deals with the security
of reactive functionalities, in the presence of adaptive adversaries. This proof is significantly more
involved than an analogous claim regarding non-reactive functionalities and static adversaries. For
a warm-up, we refer the reader unfamiliar with this more simple case to [44, Sec. 2.2.4].

Proof: First note that protocol Iz “correctly” computes F. That is, in each activation, if the
inputs of both parties in the real-life model are identical to their inputs in the ideal process, then the
outputs of the uncorrupted parties are distributed identically as their outputs in the ideal process.
This fact is easily verified and follows inductively from the property that the parties always hold
correct shares of the lines above the gates computed so far. (The base case of the induction relates
to the fact that the parties hold correct shares of the input and internal state lines. In addition,
the lines corresponding to F’s random tape contain uniformly distributed values.)

We now proceed to show that Iz securely realizes F. Intuitively, the security of protocol I1£ is
based on the fact that all the intermediate values seen by the parties are uniformly distributed. In
particular, the shares that each party receives of the other party’s input are random. Furthermore,
every output that a party receives from an oblivious transfer is masked by a random bit chosen by
the sender. Throughout the proof, we denote by x and y the outputs of P, and P», respectively.

Let A be a semi-honest, adaptive adversary that interacts with parties running Protocol I1£
in the For-hybrid model. We construct an adversary S for the ideal process for F such that no
environment Z can tell whether it interacts with A and II£ in the For-hybrid model, or with S in
the ideal process for F. S internally runs a simulated copy of A, and proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from A’s environment). Likewise, every output value written
by A on its output tape is copied to S’s own output tape (to be read by S’s environment Z).

Simulation of the input stage: We first describe the simulation in the case that P, is corrupted
(before the protocol begins). In this case, S holds the contents of P;’s input tape (sid,v) and
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therefore externally sends the value to the ideal functionality F. Now, the input stage of 1Ix
consists only of P; sending a random string vs to P5. In the case that P; is corrupted, this
string is already determined and thus no further simulation is required. In the case that P;
is not corrupted, S chooses a uniformly distributed string vs and simulates P; sending this
string to Ps.

Simulation of the circuit evaluation stage: The computation of addition gates consists only
of local computation and therefore requires no simulation. In contrast, each multiplication
gate is computed using an ideal call to For, where P; plays the sender and P» plays the
receiver. We describe the simulation of these calls to Fo, separately for each corruption case:

1. Simulation when both Py and Py are not corrupted: In this case, the only message seen
by A in the evaluation of the j' gate is the (sid o j) message from the corresponding
copy of For. Thus, S simulates this stage by merely simulating for A an (sidoj) message
sent from Fop to the recipient P;.

2. Simulation when Py is corrupted and Ps is not corrupted: The simulation in this case
is the same as in the previous (P, obtains no output from Fo; and therefore A receives
(sid o j) only).

3. Simulation when Py 1s not corrupted and Py is corrupted: The receiver P, obtains a
uniformly distributed bit s as output from each call to Fopr. Therefore, S merely
chooses vy €r {0,1} and simulates P» receiving 7y from For.

4. Simulation when both Py and P» are corrupted: Since all input and random tapes are
already defined when both parties are corrupted, simulation is straightforward.

Simulation of the output stage: S simulates P, and P» sending each other their shares of the
output lines. As above, we separately describe the simulation for each corruption case:

1. Simulation when both Py and Py are not corrupted: In this case, all A sees is P, and Py
sending each other random m-bit strings. Therefore, S chooses y1,z2 €r {0,1}™ and
simulates P; sending y; to P, and P, sending z9 to P; (y; is P;’s share in P»’s output
y and vice versa for xg).

2. Simulation when Py 1s corrupted and P is not corrupted: First, notice that the output
shares of a corrupted party are already defined (because A holds the view of any cor-
rupted party and this view defines the shares in all output lines). Thus, in this case,
the string sent by P; in the output stage is predetermined. In contrast, P»’s string is
determined as follows: P is corrupted and therefore S has P;’s output x. Furthermore,
Py’s shares z in its own output lines are fixed (because P is corrupted). S therefore
simulates P, sends 29 = z@®x1 to P; (and so P; reconstructs its output to x, as required).

3. Simulation when Py is not corrupted and P, is corrupted: The simulation here is the
same as in the previous case (while reversing the roles of P, and P).

4. Simulation when both Py and Py are corrupted: The shares of all output lines of both
parties are already determined and so simulation is straightforward.

Simulation of the first corruption: We now show how S simulates the first corruption of a
party. Notice that this can occur at any stage after the simulation described above begins.
(If the party is corrupted before the execution begins, then the simulation is according to
above.) We describe the corruption as if it occurs at the end of the simulation; if it occurs
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earlier, then the simulator follows the instructions only until the appropriate point. We
differentiate between the corruptions of P; and P»:

1. Py s the first party corrupted: Upon corrupting P, simulator S receives P;’s input value
v. & proceeds by generating the view of P, in the input preparation stage. Let vy be
the message that P, sent P in the simulation of the input stage by §. Then, S sets P;’s
shares of its input to vy, where v; ® vy = v. Furthermore, S sets P,’s m-bit input r; to
the lines corresponding to C'x’s random tape to be a uniformly distributed string, and
Py’s shares of the internal state of F to be a random string ¢; €r {0,1}™. (Actually,
if this is the first activation of C'z, then ¢; is set to 0 to denote the empty state.) In
addition, S sets P;’s random tape to be a uniformly distributed string of the appropriate
length for running ITx. (Notice that this random tape defines the bits 71 that P; chooses
when defining the oblivious transfer tables for the multiplication gates; recall that these
bits then constitute P;’s shares of the output lines from these gates.) In the case that
P is corrupted before the output stage, this actually completes the simulation of P;’s
view of the evaluation until the corruption took place. This is due to the fact that P;
receives no messages during the protocol execution until the output stage (P; is always
the oblivious transfer sender).

We now counsider the case that P; is corrupted after the output stage is completed. In
this case the output messages s and y; of both parties have already been sent. Thus,
we must show that & can efficiently compute a random tape for P, that is consistent
with these messages. For simplicity of exposition, we assume that only multiplication
gates, and no addition gates, lead to output lines; any circuit can be easily modified to
fulfill this requirement. Now, notice that the random coin 7; chosen by P; in any given
multiplication gate is independent of all other coins. Therefore, the simulated output
messages xo,y; that § already sent only influence the coins of multiplication gates that
lead to output lines; the coins of all other multiplication gates can be chosen uniformly
and independently of x9,y;. The coins for multiplication gates leading to output lines
are chosen as follows: For the i*t output line belonging to P»’s output, S sets P;’s coin
71 to equal the i*" bit of y;. (Recall that P’s random coin 7, equals its output from the
gate; therefore, P;’s output from the gate equals its appropriate share in Py’s output,
as required.) Furthermore, for the i*® output line belonging to P;’s output, S sets Py’s
random coin 7; to equal the i*® bit of @ @ x9. (Therefore, P;’s reconstructed output
equals x, as required; furthermore, this reconstructed value is independent from the
intermediary information learned by the adversary.)

2. Py s the first party corrupted: Upon the corruption of P, simulator S receives P»’s
output y (P has no input). Then, & must generate P»’s view of the execution. S begins
by choosing re €r {0,1}™ and setting P»’s input to the lines corresponding to Cz’s
random tape to ro. In addition, it chooses the shares of the internal state of F to be
a random string ¢s. (As above, in the first activation of Cz, the string ¢y is set to 0.)
Next, notice that from this point on, P, is deterministic (and thus it needs no random
tape). Also, notice that the value that P, receives in each oblivious transfer is uniformly
distributed. Therefore, S simulates P, receiving a random bit for every oblivious transfer
(S works in this way irrespective of when P, was corrupted). If this corruption occurs
before the output stage has been simulated, then the above description is complete (and
accurate). However, if the corruption occurs after the simulation of the output stage,
then the following changes must be made. First, as above, the random bits chosen for
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P,’s outputs from the oblivious transfers define P,’s shares in all the output lines. Now,
if the output stage has already been simulated then the string xo sent by P» to P; and
the string y; sent by P, to P» have already been fixed. Thus, as in the previous case, S
chooses the output bits of the oblivious transfers so that they are consistent with these
strings. In particular, let y be P,’s output (this is known to S since P is corrupted)
and define yo =y @ y;. Then, S defines P»’s output-bit of the oblivious transfer that is
associated with the i*" bit of its shares of its own output to be the i*" bit of y,. Likewise,
the output from the oblivious transfer associated with the i*h bit of P»’s share of P;’s
output is set to equal the i*" bit of x.

We note that in the above description, S generates the corrupted party’s view of the current
activation. In addition, it must also generate the party’s view for all the activations in
the past. Observe that the only dependence between activations is that the shares of the
state string input into a given activation equal the shares of the state string output from the
preceding activation. Thus, the simulation of prior activations is exactly the case of simulation
where the corruption occurs after the output stage has been completed. The only difference
is that S defines the shares of the state string so that they are consistent between consecutive
activations.

Simulation of the second corruption: As before, we differentiate between the corruptions of
Pl and P2:

1. P is the second party corrupted: Upon corrupting P, simulator S obtains P,’s output
in this activation and all its inputs and outputs from previous activations. Furthermore,
since the functionality is adaptively well-formed, S obtains the random tape used by the
ideal functionality F in its computation. Next, S computes the internal state of F in
this activation, based on all the past inputs, outputs and the internal random tape of F
(this can be computed efficiently). Let ¢ be this state string and let r equal F’s m-bit
random tape. Then, P» sets cy such that ¢ = ¢; @ ¢, where ¢; was randomly chosen
upon P;’s corruption. (S also makes sure that the output state information from the
previous execution equals the input state information from this execution. This is easily
accomplished because output gates are always immediately preceded by multiplication
gates, and so independent random coins are used.) Similarly, S sets ry = 1 @& r, where
r equals F’s random tape and r; equals the random string chosen upon P;’s corruption
(for simulating P;’s share of the random tape of C'r).

We now proceed to the rest of the simulation. In the case we are considering here,
P has already been corrupted. Therefore, all the tables for the oblivious transfers have
already been defined. It thus remains to show which values P, receives from each of these
gate evaluations. However, this is immediately defined by P»’s input and the oblivious
transfer tables. Thus, all the values received by P» from this point on, including the
output values, are fully defined, and S can directly compute them.

2. Py is the second party corrupted: The simulation by & here begins in the same way as
when P, is the second party corrupted. That is, S corrupts P, and obtains the random
tape of F. Then, S defines the appropriate state share string ¢, and random tape
share string r; (in the same way as above). In addition, S obtains P;’s input value v
and defines the appropriate share v; (choosing it so that vy @ ve = v). This defines
all the inputs into the circuit Cx. Given this information, S constructs the tables for
all the oblivious transfers. Recall that P» is already corrupted. Therefore, the bits
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that it receives from each oblivious transfer are already defined. Now, for each gate
(working from the inputs to the outputs), S works as follows. Let 75 be the output that
P, received from some oblivious transfer. Furthermore, assume that S holds the input
shares of both parties for the gate in question (this can be assumed because S works
bottom-up, from the input lines to the output lines). Then, S checks what the real
(unmasked) output bit of the gate should be, let this value be . Given that P, received
~v2 and the output value should be v, simulator S sets P;’s random-bit in defining this
table to be 4 = 72 ® . S continues in this way for all the gates evaluated in the
simulation before P; was corrupted. We note that if the corruption occurred after the
output stage, then the output strings sent are defined by the outputs of the gates, as
computed above.

Output and output delivery: S delivers the output from F to (an uncorrupted) party after A
delivers the corresponding output message to the party in the simulation. This takes care of
the outputs of corrupted parties. For a corrupted party P; (i € {1,2}), simulator S copies
the contents of the simulated P;’s output tape (as written by .A) onto the output tape of the
ideal process party F;.

Analysis of S. We show that no environment Z can distinguish the case where it interacts with
S and F in the ideal process from the case where it interacts with A and I1# in the Fyr-hybrid
model. In fact, we demonstrate that Z’s view is distributed ¢dentically in the two interactions.
The proof proceeds by induction on the number of activations in a run of Z. Recall that in each
activation, Z reads the output tapes of P, P», and the adversary, and then activates either P, Ps
or the adversary with some input value. (One should not confuse activations of a party, as is the
intention here, with activations of the functionality and protocol.) We actually prove a somewhat
stronger claim: Let (' denote the random variable describing the state of Z at the onset of the
ith activation in an interaction with adversary A and parties running Il in the Fop-hybrid model,
and let of denote the random variable describing the state of A at this point in the interaction.
Let ¢! denote the random variable describing the state of Z at the onset of its i activation in an
interaction with adversary S in the ideal process for functionality F, and let o} denote the random
variable describing the state of the simulated A within S at this point in the interaction. We show
that for all 4, the pairs (¢}, ') and ((},a}) are identically distributed. More precisely, Let i > 0.

(2 2
Then, for any values a1, as, by, by we show:

Pr[(¢haafin) = (br,b) | (¢ af) = (a1, a2)] = Pr[(¢hsabyn) = (b1, 52) | (¢} ad) = (a1, 09)]

(4.3)
That is, assume that the states of Z and A at the onset of some activation of Z have some arbitrary
(fixed) values a; and ag, respectively. Then the joint distribution of the states of Z and A at the
onset of the next activation of Z is the same regardless of whether we are in the “real interaction”
with IIz, or in the ideal process. (In the interaction with IIx the probability is taken over the
random choices of the uncorrupted parties. In the ideal process the probability is taken over the
random choices of S and F.)

Asserting Eq. (4.3), recall that in the i*! activation Z first reads the output tapes of Py, P,
and the adversary. (We envision that these values are written on a special part of the incoming
communication tape of Z, and are thus part of its state (* = (}.) Next, Z either activates some
uncorrupted party with some input x, or activates the adversary with input x. We treat these cases
separately:
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Z activates an uncorrupted party with some input value x. In this case, in the interaction
with Il £, the activated party sends out a request to the other party to evaluate an activation
of Cz, plus a random share of . This message becomes part of the state of A (who sees
all messages sent). In the ideal process, S (who sees that the party sent a message to F)
generates a simulated message for A with the same distribution. (Recall that this message is
just a uniformly distributed string.)

Z activates the adversary with some input value z. Recall that in the interaction with I1r
adversary A is now activated, reads x, and in addition has access to the messages sent by
the parties and by the various copies of For since its last activation. (We envision that this
information is written on A’s incoming communication tape.) Next, A can either deliver
a message to some party, modify the input/output tapes of some already corrupted party
or corrupt a currently honest party. Finally, A writes some value on its output tape and
completes its activation. In the ideal process, S forwards =z to A and activates .A. Next,
S provides A with additional information representing the messages sent by the parties and
also, in case of party corruption, the internal state of the corrupted party.

We proceed in four steps. First, we show that the contents of A’s incoming communication
tape has the same distribution in both interactions. Second, we show that the effect of message
delivery on the states of A and Z is the same in both interactions. Third, we demonstrate
that the information learned by .4 upon corrupting a party has the same distribution in
both interactions. Finally, we demonstrate that A’s view regarding the states of the already
corrupted parties has the same distribution in both interactions.

New messages seen by A. Each message seen by A is of one of the following possible
types:

e An input-sharing message as described above: As mentioned above, in this case in both
interactions A sees an m-bit long random string, representing a share of the sender’s
new input value.

e A message from a party to some copy of For: In this case, in both interactions, A only
gets notified that some message was sent from the party to the copy of For.

e A message from some copy of For to Pa: In both interactions, if P5 is uncorrupted then
A does not see the contents of this message. If P is corrupted then this message consists
of a single random bit that is independent from the states of A and Z so far. (This bit
is P»’s share of the corresponding line of the circuit.)

e An output message from one party to another: Here one party sends its share of some
output line to the other party (who is designated to get the value of this line.) In both
interactions, if the recipient party is uncorrupted then this message consists of a single
random bit « that is independent from the states of A and Z so far. If the recipient
is corrupted then A already has [, the recipient’s share of that line. In the interaction
with Iz, the value v = a@® (3 is the value of this output line in C'r. In the ideal process,
v = a® [ is the corresponding value generated by F. The distribution of ¢ (given the
states of A and Z so far) is identical in both cases; this is the case because C'x correctly
represents an activation of F.

Messages delivered by A. If A delivers an output message to some party in an execution
of I, then this party outputs the (correct) value derived from the corresponding output lines
of Cx. This output value, v*, becomes part of the state of Z (to be read by Z at the onset of
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its next activation.) If A delivers an output message to some party in the ideal process, then
S (who runs A) delivers the corresponding message from F to this party. Consequently, this
party outputs the value, 7', sent by F. Since Cr correctly represents the computation of F,
we have that v* and ' are identically distributed.

If A delivers to some party FP; a message that is not an output message then P; outputs
nothing. (P; may send other messages, but these messages will only become part of the state
of A in its next activation. This next activation of A occurs after the next activation of Z.)

Corruption of the first party. In the interaction with Iz, upon corrupting the first
party A sees all the past inputs and outputs of this party. In addition, it sees all the shares
of this party from the input lines, the random input lines, the internal state input lines,
and all the internal lines of the circuit Cr; these shares are all random values distributed
independently from the states of A and Z so far. In the ideal process, S provides A with
identically distributed information.

Corruption of the second party. In the interaction with IIr, upon corrupting the second
party A sees the same information as in the first corruption, namely all the past inputs and
outputs of this party, as well as the shares of this party from the input lines, the random input
lines, the internal state input lines, and all the internal lines of the circuit C'x. Here, however,
this information determines the actual values of all types of input lines to the circuit, plus
the values of all the internal lines of the circuit. (The values of the random input lines to
the circuit are uniformly distributed. All other lines are uniquely determined by the states
of Z and A at this point.) In the ideal process, S provides A with identically distributed
information. (This can be seen from the code of S.)

This completes the analysis of S and the proof of the claim. [
Using the composition theorem, Proposition 4.4.3 follows from Claims 4.4.1, 4.4.2, and 4.4.4.

4.5 Universally Composable Commitments

We describe our new universally-composable non-interactive commitment scheme. Our construction
is in the common reference string model, and assumes only the existence of trapdoor permutations.
(If the common reference string must come from the uniform distribution, then we actually re-
quire trapdoor permutations with dense public descriptions [27].) UC commitment schemes are
protocols that securely realize the multi-session ideal commitment functionality Fycom presented
in Figure 4.4. Note that Fycon is in fact a re-formulation of ~7:'001\,[, the multi-session extension of
the single-session ideal commitment functionality, F¢oy, presented in [16].

Informally speaking, in order to achieve universal composability against adaptive adversaries, a
commitment scheme must have the following two properties:

e Polynomial equivocability: the simulator (i.e., the adversary in the ideal process) should be able
to produce many commitments for which it can decommit to both 0 and 1, using the same
reference string. (An additional property is actually needed for adaptive security; see below.)
Of course, the real committer must be able to decommit to only a single value (as required by
the binding property of commitment schemes).

o Simulation extractability: the simulator should be able to extract the contents of any valid com-
mitment generated by the adversary, even after having supplied an adversary with an arbitrary
number of equivocable commitments.
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Functionality Fycou

Fucou proceeds as follows, running with parties Py, ..., P, and an adversary S:

e Commit Phase: Upon receiving a message (commit, sid, ssid, P;, P;,b) from P;, where b € {0,1},
record the tuple (ssid, P;, P;,b) and send the message (receipt, sid, ssid, P;, Pj) to P; and S. Ignore
any future commit messages with the same ssid from P; to P;.

e Reveal Phase: Upon receiving a message (reveal, sid, ssid) from P;: If a tuple (ssid, P;, P;,b)
was previously recorded, then send the message (reveal, sid, ssid, P;, P;,b) to P; and S. Otherwise,
ignore.

Figure 4.4: The ideal commitment functionality

We remark that in the equivocable commitment protocols of [28, 29] each copy of the reference string
can be used for only a single commitment. Furthermore, they are not extractable. In contrast, [16]
show how to use a single copy of the reference string for multiple commitments (although they rely
on specific cryptographic assumptions).

We describe our construction in phases. First we describe a new non-interactive variant of the
Feige-Shamir trapdoor commitment scheme [36], which is at the heart of our construction. Then
we show how to transform this scheme into one that is universally composable.

Underlying standard commitment. In our construction we use a non-interactive, perfectly
binding commitment scheme with pseudorandom commitments; denote this scheme by Com. An
example of such a scheme is the standard non-interactive commitment scheme based on a one-way
permutation f and a hard-core predicate b of f. In order to commit to a bit ¢ in this scheme,
one computes Com(c) = (f(Ug),b(Ux) @ o), where Uy, is the uniform distribution over {0,1}*.
The C'om scheme is computationally secret and produces pseudorandom commitments: that is, the
distribution ensembles {Com/(0)}, {Com(1)}, and {Ug41} are all computationally indistinguishable.

Non-interactive Feige-Shamir trapdoor commitments. We briefly describe a non-interactive
version of the Feige-Shamir trapdoor commitment scheme [36], which is based on the zero-knowledge
proof for Hamiltonicity of Blum [11]. (We are able to obtain a non-interactive version of this scheme
by utilizing the common reference string.) First, we obtain a graph G (with ¢ nodes), so that it is
hard to find a Hamiltonian cycle in G within polynomial-time. This is achieved as follows: choose
x €g {0,1}* and compute y = f(z), where f is a one-way function. Then, use the reduction of
the language {y | 3z s.t. y = f(z)} to that of Hamiltonicity, to obtain a graph G so that finding a
Hamiltonian cycle in G is equivalent to finding the preimage = of y. The one-wayness of f implies
the difficulty of finding a Hamiltonian cycle in G. This graph G, or equivalently the string y, is
placed in the common reference string accessible by both parties. Now, in order to commit to 0,
the committer commits to a random permutation of G using the underlying commitment scheme
Com (and decommits by revealing the entire graph and the permutation). In order to commit to 1,
the committer commits to a graph containing a randomly labeled g-cycle only (and decommits
by opening this cycle only). Note that this commitment scheme is binding because the ability to
decommit to both 0 and 1 implies that the committer knows a Hamiltonian cycle in G. The impor-
tant property of the [36] scheme that we use here is equivocability (or what they call the trapdoor
property). That is, given a Hamiltonian cycle in G, it is possible to generate commitments that
are indistinguishable from legal ones, and yet have the property that one can decommit to both a 0
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and a 1. In particular, after committing to a random permutation of G, it is possible to decommit
to 0 in the same way as above. However, it is also possible to decommit to 1 by only revealing the
(known) Hamiltonian cycle in G.

Adaptively secure commitments. We proceed to describe our first step for obtaining adaptive
security. In general, the following additional property is required of the simulator: Let ¢ be a
commitment produced by the simulator who knows a Hamiltonian cycle in G. Then, for any
b € {0,1}, the simulator should be able to produce a random string rp, so that the honest committer,
given input b and random tape 7y, outputs the commitment c¢. Thus, the simulator can provide an
“explanation” of its actions, as if it were an honest committer. We note that the [36] scheme does
not have this property.

The adaptively secure scheme, denoted aHC (for adaptive Hamiltonian Commitment), differs
from [36] in the way commitments are generated. That is:

e To commit to a 0, the sender picks a random permutation 7 of the nodes of G, and commits to
the entries of the adjacency matrix of the permuted graph one by one, using Com. To decommit,
the sender sends 7 and decommits to every entry of the adjacency matrix. The receiver verifies
that the graph it received is 7(G). (This is the same as in the [36] scheme.)

e To commit to a 1, the sender chooses a randomly labeled g-cycle, and for all the entries in the
adjacency matrix corresponding to edges on the g-cycle, it uses Com to commit to 1 values.
For all the other entries, it simply produces random values from Uy, (for which it does not
know the decommitment). To decommit, the sender opens only the entries corresponding to the
randomly chosen ¢-cycle in the adjacency matrix. (This is the point where our scheme differs
to that of [36]. That is, in [36] the edges that are not on the g-cycle are sent as commitments
to 0. Here, random strings are sent instead.)

By the above description, the length of the random string used in order to commit to 0 is different
from the length of the random string used in order to commit to 1. Nevertheless, we pad the
lengths so that they are equal (the reason why this is needed will be explained below). We denote by
aHC(b;7) a commitment of the bit b using randomness r, and by aHC(b) the distribution aHC(b; U,.|).

This commitment scheme has the property of being computationally secret; i.e., the distribution
ensembles {aHC(0)} and {aHC(1)} are computationally indistinguishable for any graph G. Also,
given the opening of any commitment to both a 0 and 1, one can extract a Hamiltonian cycle in G.
Therefore, the committer cannot decommit to both 0 and 1, and the binding property holds. Finally,
as with the scheme of [36], given a Hamiltonian cycle in G, a simulator can generate a commitment
to 0 and later open it to both 0 and 1. (This is because the simulator knows a simple g-cycle in G
itself.) Furthermore, in contrast to [36], here the simulator can also produce a random tape for the
sender, explaining the commitment as a commitment to either 0 or 1. Specifically, the simulator
generates each commitment string ¢ as a commitment to 0. If, upon corruption of the sender, the
simulator has to demonstrate that ¢ is a commitment to 0 then all randomness is revealed. To
demonstrate that ¢ was generated as a commitment to 1, the simulator opens the commitments
to the edges in the ¢g-cycle and claims that all the unopened commitments are merely uniformly
chosen strings (rather than commitments to the rest of G). This can be done since commitments
produced by the underlying commitment scheme Com are pseudorandom. This therefore gives us
polynomial equivocability, where the same reference string can be reused polynomially-many times.

Achieving simulation extractability. As discussed above, the commitment scheme aHC has
the equivocability property, as required. However, a UC commitment scheme must also have the
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stmulation extractability property. We must therefore modify our scheme in such a way that we add
extractability without sacrificing equivocability. Simulation-extractability alone could be achieved
by including a public-key for an encryption scheme secure against adaptive chosen-ciphertext at-
tacks (CCA2) [32] into the common reference string, and having the committer send an encryption
of the decommitment information along with the commitment itself. A simulator knowing the as-
sociated decryption key can decrypt and obtain the decommitment information, thereby extracting
the committed value from any adversarially prepared commitment. (The reason that we use a
CCA2-secure encryption scheme will become evident in the proof. Intuitively, the reason is that in
the simulated interaction extracting the committed value involves ciphertext decryptions. Thus by
interacting with the simulator the adversary essentially has access to a decryption oracle for the
encryption scheme.) However, just encrypting the decommitment information destroys the equiv-
ocability of the overall scheme, since such an encryption is binding even to a simulator. In order
to regain equivocability, we use encryption schemes with pseudorandom ciphertexts. This is used
in the following way. Given any equivocable commitment, there are two possible decommitment
strings (by the binding property, only one can be efficiently found but they both exist). The com-
mitment is sent along with two ciphertexts: one ciphertext is an encryption of the decommitment
information known to the committer and the other ciphertext is just a uniformly distributed string.
In this way, equivocability is preserved because a simulator knowing both decommitment strings
can encrypt them both and later claim that it only knows the decryption to one and that the
other was uniformly chosen. A problem with this solutions is that there is no known CCA2-secure
scheme with pseudorandom ciphertexts (and assuming only trapdoor permutations). We therefore
use double encryption. That is, first the value is encrypted using a CCA2-secure scheme, which
may result in a ciphertext which is not pseudorandom, and then this ciphertext is re-encrypted
using an encryption scheme with pseudorandom ciphertexts. (The second scheme need only be
secure against chosen plaintext attacks.)

For the CCA2-secure scheme, denoted F..,, we can use any known scheme based on trapdoor
permutations with the (natural) property that any ciphertext has at most one valid decryption.
This property holds for all known such encryption schemes, and in particular for the scheme of [32].
For the second encryption scheme, denoted E, we use the standard encryption scheme based on
trapdoor-permutations and hard-core predicates [49], where the public key is a trapdoor permuta-
tion f, and the private key is f~!. Here encryption of a bit b is f(z) where x is a randomly chosen
element such that the hard-core predicate of z is b. Note that encryptions of both 0 and 1 are
pseudorandom. The commitment scheme, called UC Adaptive Hamiltonicity Commitment UAHC, is
presented in Figure 4.5.

Let Fers denote the common reference string functionality (that is, Fegrs provides all parties
with a common, public string drawn from the distribution described in Figure 4.5). Then, we have:

Proposition 4.5.1 Assuming the existence of trapdoor permutations, Protocol UAHC of Figure 4.5
securely realizes Fycom tn the Fers-hybrid model.

Proof: Let A be a malicious, adaptive adversary that interacts with parties running the above
protocol in the Firg-hybrid model. We construct an ideal process adversary & with access to
Fucom, Which simulates a real execution of Protocol UAHC with A such that no environment Z
can distinguish the ideal process with S and Fycon from a real execution of UAHC with A.

2 As we have mentioned, the length of the random string r is the same for the case of b = 0 and b = 1. This is
necessary because otherwise it would be possible to distinguish commitments merely by looking at the lengths of Cy

and C1.
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Protocol UAHC

e Common Reference String: The string consists of a random image y of a one-way function f
(this y determines the graph G), and public-keys for the encryption schemes E and E..,. (The
security parameter k is implicit.)

e Commit Phase:

1. On input (commit, sid, ssid, P;, P;,b) where b € {0,1}, party P; computes z = aHC(b;r)
for a uniformly distributed string of the appropriate length. Next, P; computes C, =
E(E...(P;, P}, sid, ssid,r)) using random coins s, and sets Ci_; to a random string of length
|Cy|.*? Finally, P; records (sid, ssid, P;,r,s,b), and sends ¢ = (sid, ssid, P;, z,Cy, C) to P;.

2. Pj receives and records ¢, and outputs (receipt, sid, ssid, P;, Pj). P; ignores any later commit
messages from P; with the same (sid, ssid).
¢ Reveal Phase:
1. On input (reveal, sid, ssid), party P; retrieves (sid, ssid, P;,r,s,b) and sends (sid, ssid,r, s, b)
to Pj.

2. Upon receiving (sid, ssid,r, s,b) from P;, P; checks that it has a tuple (sid, ssid, P;, z,Co, Cy).
If yes, then it checks that z = aHC(b;r) and that C, = E(E.co(P;, P}, sid, ssid, r)), where the
ciphertext was obtained using random coins s. If both these checks succeed, then P; outputs
(reveal, sid, ssid, P;, P;,b). Otherwise, it ignores the message.

Figure 4.5: The commitment protocol UAHC

Recall that S interacts with the ideal functionality Fycon and with the environment Z. The
ideal adversary S starts by invoking a copy of A and running a simulated interaction of A with
the environment Z and parties running the protocol. (We refer to the interaction of S in the ideal
process as external interaction. The interaction of S with the simulated A is called internal inter-
action.) We fix the following notation. First, the session and sub-session identifiers are respectively
denoted by sid and ssid. Next, the committing party is denoted FP; and the receiving party P;.
Finally, C' denotes a ciphertext generated from E(-), and ¢ denotes a ciphertext generated from
E¢cq(+). Simulator S proceeds as follows:

Initialization step: The common reference string (CRS) is chosen by S in the following way
(recall that S chooses the CRS for the simulated A by itself):

1. S chooses a string « € {0,1}* and computes y = f(x), where f is the specified one-way
function.

2. S runs the key-generation algorithm for the CCA2-secure encryption scheme, obtaining
a public-key E.., and a secret-key D cq.

3. S runs the key-generation algorithm for the CPA-secure encryption scheme with pseu-
dorandom ciphertexts, obtaining a public-key E and a secret-key D.

Then, S sets the common reference string to equal (y, Eccq, E) and locally stores the triple
(2, Deea, D). (Recall that y defines a Hamiltonian graph G and knowing z is equivalent to
knowing a Hamiltonian cycle in G.)

Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input-tape (as if coming from A’s environment). Likewise, every output value written
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by A on its own output tape is copied to S’s own output tape (to be read by S’s environment
2Z).

Simulating “commit” activations where the committer is uncorrupted: Upon receiving a
(receipt, sid, ssid, P;, Pj) message from Fycon when P is not corrupted, S simulates a real
commit message from P; as follows. S computes z « aHC(0) along with two strings ry and
r1 such that 7, constitutes a decommitment of z to b. (As we have described, since S knows a
Hamiltonian cycle in G, it is able to do this.) Next, S computes Cy «— E(FEcco(F;, P}, sid, ssid, 1))
using random coins sg, and C) < E(Ec. (P, P, sid, ssid,ry)) using random coins s;. Then,
in the internal interaction, S simulates P; sending ¢ = (sid, ssid, P;, z, Cy, C1) to P; and stores
(¢, 70, 80,71,51)-

Simulating “reveal” activations where the committer is uncorrupted: Upon receiving a
(reveal, sid, ssid, P;, Pj,b) message from Fycoy when P; is not corrupted, S generates a sim-
ulated decommitment message from the real-model P;: this message is (sid, ssid, 1y, sp, D),
where r, and s, are as generated in the previous item. S then simulates for A the event
where P; sends this message to P; in the internal interaction.

Simulating corruption of parties: When A issues a “corrupt P;” command in the internal (sim-
ulated) interaction, S first corrupts the ideal model party P; and obtains the values of all
its unopened commitments. Then, S prepares the internal state of P; to be consistent with
these commitment values in the same way as shown above. That is, in a real execution party
P; stores the tuple (sid, ssid, Pj,r,s,b) for every commitment c. In the simulation, S defines
the stored tuple to be (sid, ssid, P, ry, sp, b) where 1, and s, are as generated above.

Simulating “commit” activations where the committer is corrupted: When A, control-
ling corrupted party P;, sends a commitment message (sid, ssid, P;, z,Cy,C1) to an uncor-
rupted party P; in the internal (simulated) interaction, S works as follows. If a commitment
from P; to P; using identifiers (sid, ssid) was sent in the past, then S ignores the message.
Otherwise, informally speaking, & must extract the commitment bit committed to by .A.
Simulator S begins by decrypting both Cy and C; obtaining ciphertexts ¢y and ¢; and then
decrypting each of ¢y and ¢;. There are three cases here:

1. Case 1: For some b € {0,1}, ¢, decrypts to (P, P, sid, ssid,r) where r is the correct
decommitment information for z as a commitment to b, and ¢;_; does not decrypt to a
decommitment to 1 — b. Then, S sends (commit, sid, ssid, P;, Pj, b) to Fyeom and stores
the commitment string.

2. Case 2: Neither ¢y or ¢; decrypt to (P, P}, sid, ssid,r) where r is the appropriate de-
commitment information for z (and sid and ssid are the correct identifiers from the
commitment message). In this case, S sends (commit, sid, ssid, P;, P;,0) to Fycou- (The
commitment string is not stored, since it will never be opened correctly.)

3. Case 3: cy decrypts to (P, P;, sid, ssid, rg) and ¢; decrypts to (F;, Pj, sid, ssid, 1), where
ro 18 the correct decommitment information for z as a commitment to 0 and 7y is the
correct decommitment information for z as a commitment to 1. Furthermore, the iden-
tifiers in the decryption information are the same as in the commitment message. In
this case, S outputs a special failure symbol and halts.

Simulating “reveal” activations where the committer is corrupted: When 4, controlling
corrupted party P;, sends a reveal message (sid,ssid,r,s,b) to an uncorrupted party P;
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in the internal (simulated) interaction, & works as follows. S first checks that a tuple
(sid, ssid, P;, z,Cyp, C1) is stored and that r and s constitute a proper decommitment to b. If
the above holds, then S sends (reveal, sid, ssid, P;, Pj) to Fycon. Otherwise, S ignores the
message.

Delivery of messages: S delivers a message from Fycoy in the external interaction when A deliv-
ers the corresponding message in the simulated interaction. For example, S delivers a receipt
message in the external interaction when A delivers the appropriate (sid, ssid, P;, z, Cy, C1)
message in the simulated internal interaction.

We now prove that Z cannot distinguish an interaction of Protocol UAHC with A from an inter-
action in the ideal process with Fycon and S. In order to show this, we examine several hybrid
experiments:

(I) Real interaction: This is the interaction of Z with A and Protocol UAHC.

(IT) Real interaction with partially fake commitments: This is the interaction of Z with A and
Protocol UAHC, except that: (i) The Hamiltonian Cycle to G is provided to all honest parties,
but this information is not revealed upon corruption. (ii) In honest party commitments, a
commitment to b is generated by computing z < aHC(0) and strings 7, r; such that ry and
are correct decommitments to 0 and 1, respectively. (This is just like the simulator.) Then, C)
is computed as an encryption to E(Ecc,(F;, Pj, sid, ssid,ry)). However, unlike the simulator,
C1_p is still chosen as a uniformly distributed string. Again, this modification is not revealed
upon corruption (i.e., the honest party decommits to b as in a real interaction).

(III) Real interaction with completely fake commitments: This is the same as (II), except that in

commitments generated by honest parties, the ciphertext C_y equals E(Ec.q (B, Pj, sid, ssid,r1_p))

as generated by S, rather than being chosen uniformly. Commitments are opened in the same
way as the simulator.

(IV) Simulated interaction: This is the interaction of Z with S, as described above.

Our aim is to show that interactions (I) and (IV) are indistinguishable to Z, or in other words
that Z’s output at the end of interaction (I) is deviates only negligibly from Z’s output at the end
of interaction (IV). We prove this by showing that each consecutive pair of interactions are indis-
tinguishable to Z. (Abusing notation, we use the term “distribution 7” to denote both “interaction
i”, and “Z’s output from interaction i”.)

The fact that distributions (I) and (II) are computationally indistinguishable is derived from
the pseudorandomness of the underlying commitment scheme aHC. This can be seen as follows.
The only difference between the two distributions is that even commitments to 1 are computed by
z < aHC(0). However, the distribution ensembles {aHC(0)} and {aHC(1)} are indistinguishable.
Furthermore, these ensembles remain indistinguishable when the decommitment information to 1
is supplied. That is, {aHC(0),r;} and {aHC(1),r} are also indistinguishable, where r; is the
(simulator) decommitment of aHC(0) to 1, and r is the (prescribed) decommitment of aHC(1) to 1.
(A standard hybrid argument is employed to take into account the fact that many commitments
and decommitments occur in any given execution.)

Next, distributions (IT) and (III) are indistinguishable due to the pseudorandomness of encryp-
tions under E. In particular, the only difference between the distributions is that in (II) the cipher-
text C_j is uniformly chosen, whereas in (III) ciphertext C) _ equals E(Eccq (P, P;, sid, ssid,r1_p)).
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Intuitively, CPA security suffices because in order to emulate experiments (II) and (III), no decryp-
tion oracle is needed. In order to formally prove this claim, we use the “left-right” oracle formulation
of security for encryption schemes [7]. In this formulation of security, there is a “left-right” oracle
(LR-oracle) which has a randomly chosen and hidden value b € {0,1} built into it. When queried
with a pair of plaintexts (ag, a;), the oracle returns E(ap). Equivalently, the oracle can be queried
with a single message a such that it returns E(a) if b = 0 and a uniformly distributed string if b = 1.
This reflects the fact that here the security lies in the pseudorandomness of the ciphertext, rather
than due to the indistinguishability of encryptions. (We stress that the LR-oracle always uses the
same bit b.) A polynomial-time attacker is successful in this model if it succeeds in guessing the bit
b with a non-negligible advantage. For chosen-plaintext security, this attacker is given access to the
LR-oracle for the encryption scheme E. We now construct an adversary who carries out a chosen-
plaintext attack on E and distinguishes encryptions to strings of the form E...(P;, P;, sid, ssid, ri_p)
from uniformly chosen strings. This adversary emulates experiments (II) and (III) by running Z
and all the parties. However, when an honest party is supposed to generate Cj_j, the attacker
hands the LR-oracle the query Ec..(P;, P;, sid, ssid,r;_) and receives back C’ which either equals
E(Eccq(P;, P, sid, ssid,r1_p)) or is uniformly distributed. The attacker then sets C;_; = C’. This
emulation can be carried out given the encryption-key E only (i.e., no decryption key is required).
Now, if b = 1 for the LR-oracle, then the attacker perfectly emulates experiment (II). Furthermore,
if b = 0 then the attacker perfectly emulates experiment (IIT). Finally, as we have mentioned, the
above emulation is carried out using a chosen-plaintext attack on E only. Therefore, if Z can
distinguish experiments (II) and (III), then the attacker can guess the bit b of the LR-oracle with
non-negligible advantage. This is in contradiction to the CPA-security of E.

Finally, we consider the hybrid experiments (III) and (IV). The only difference between these
experiments is that in experiment (IIT) the checks causing S to output failure are not carried out. We
therefore conclude that it suffices to show that S outputs failure with at most negligible probability.
In order to prove this, we again consider a sequence of hybrid experiments:

(V) Simulation with partially real encryptions: This is the same as (IV), except that S is given (say,
by F) the true values of the inputs for all uncorrupted parties. Then, when generating simu-
lated commitments for uncorrupted parties, S replaces C_ with E(E.cq (5, Pj, sid, sstid, olr1-sl)),
where b is the true input value.

(VI) Simulation with nearly real commitments: Thisis the same as (V), except that in the simulated
commitments generated for uncorrupted parties, S computes z < aHC(b) where b is the true
value of the commitment (instead of always computing z < aHC(0)).

We now claim that the probability that S outputs failure in experiment (IV) is negligibly close to the
probability that it outputs failure in experiment (V). The only difference between these experiments
relates to the encryption value of Cj_;. The proof relies on the chosen-ciphertext security of the
scheme F... (Chosen ciphertext security is required because the emulation of experiments (IV)
and (V) requires access to a decryption oracle: Recall that S must decrypt ciphertexts in the
simulation of commit-activations where the committer is corrupted.) Formally, we prove this claim
using the “left-right” oracle formulation of security for encryption schemes. Recall that according
to this definition, an attacker is given access to an LR-oracle that has a randomly chosen bit b
internally hardwired. The attacker can then query the oracle with pairs (ag, a1) and receives back
Eccq(ap). When considering CCA2-security, the attacker is given access to the LR-oracle as well as a
decryption oracle for E.., which works on all ciphertexts except for those output by the LR-oracle.

We argue that if S outputs failure with probabilities that are non-negligibly far apart in exper-
iments (IV) and (V), then Z together with A can be used to construct a successful CCA2 attacker
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against E.., in the LR-model. We now describe the attacker. The attacker receives the public
key for E... It then simulates experiment (IV) by playing Z, A and S as above, except for the
following differences:

1. The public key for E.., is given to S externally and S does not have the decryption key.

2. When generating a simulated commitment for an honest party P;, the attacker computes
z « aHC(0) and decommitment strings 7o and 7 to 0 and 1, respectively. Furthermore,
the attacker computes Cy «— E(Eccqa( P, P, sid, ssid, rp,)) as S does. However, for Cy_y, the
attacker queries the LR-oracle with the pair ((£;, P}, sid, ssid, 1), (P, P}, sid, ssid, 0l1-sl)).
When the LR-oracle responds with a ciphertext ¢/, the attacker sets Cy_p «— E(c').

3. When § obtains a commitment (sid, ssid, Pj, z,Cp, C1) from A controlling a corrupted party
F;, then the attacker decrypts Cy and C using the decryption key for £ and obtains ¢y and
c1. There are two cases:

e Cuse 1: A ciphertext ¢, came from a commitment previously generated for an honest
party by S. Now, if this generated commitment was not from P; to P;, then ¢, can-
not constitute a valid decommitment because the encryption does not contain the pair
(P;, P;) in this order. On the other hand, if the previous commitment was from P; to P;,
then the sub-session identifiers must be different and therefore it still cannot be a valid
decommitment. (Recall that P; will ignore a second commitment from P; with the same
identifiers.) In this case, the attacker acts just as S would for ciphertexts that do not
decrypt to valid decommitment information. (Notice that the attacker does not need to
use the decryption oracle in this case.)

e Cuase 2: A ciphertext ¢, was not previously generated by S. Then, except with negligible
probability, this ciphertext could not have been output by the LR-oracle. Therefore, the
attacker can query its decryption oracle and obtain the corresponding plaintext. Given
this plaintext, the attacker proceeds as S does.

Analyzing the success probability of the attacker, we make the following observations. If the
LR-oracle uses Left encryptions (i.e., it always outputs a ciphertext ¢’ that is an encryption of
(P;, Pj, sid, ssid,r1_p)), then the resulting simulation is negligibly close to experiment (IV). (The
only difference is in the case that a ciphertext ¢, generated by A coincides with a ciphertext
output by the LR-oracle. However, this occurs with only negligible probability, otherwise E.c,
does not provide correctness.) On the other hand, if the LR-oracle uses Right encryptions (i.e, it
always outputs a ciphertext ¢ that is an encryption of (P;, Pj, sid, ssid, 0l"1-+1)), then the resulting
simulation is negligibly close to experiment (V). Therefore, by the CCA2-security of F..,, the
probability that Z outputs 1 from experiment (IV) must be negligibly close to the probability that
it outputs 1 in experiment (V). By having Z output 1 if and only if S outputs a failure symbol, we
have that the probability that S outputs failure in the two experiments is negligibly close.

We now proceed to show that the probability that S outputs failure in experiments (V) and
(VI) is negligibly close. This follows from the indistinguishability of commitments {aHC(0)} and
{aHC(1)}. (A standard hybrid argument is used to take into account the fact that many commit-
ments are generated by S during the simulation.) Here we use the fact that in both experiments
(V) and (VI) the ciphertext C;_; is independent from the rest of the commitment.

Finally, to complete the proof, we show that in experiment (VI) the probability that S outputs
failure is negligible. The main observation here is that in experiment (VI), S does not use knowledge
of a Hamiltonian cycle in G. Now, if § outputs failure when simulating commit activations for a
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corrupted party, then this means that it obtains a decommitment to 0 and to 1 for some commitment
string z. However, by the construction of the commitment scheme, this means that S obtains a
Hamiltonian cycle (and equivalently a pre-image of y = f(z)). Since S can do this with only
negligible probability we have that this event can also only occur with negligible probability. We
conclude that S outputs failure in experiment (VI), and therefore in experiment (IV), with only
negligible probability. (Formally speaking, given & we construct an inverter for f that proceeds
as described above.) This completes the hybrid argument, demonstrating that Z can distinguish
experiments (I) and (IV) with only negligible probability. [l

4.6 Universally Composable Zero-Knowledge

We present and discuss the ideal zero-knowledge functionality F,x. This functionality plays a central
role in our general construction of protocols for realizing any two-party functionality. Specifically,
our protocol for realizing the commit-and-prove functionality is constructed and analyzed in a
hybrid model with access to F,x (i.e., in the F,-hybrid model). Using the universal composition
theorem, the construction can be composed with known protocols that securely realize F, either
in the Fycon-hybrid model or directly in the common reference string (CRS) model, to obtain
protocols for realizing any two-party functionality in the CRS model. (Actually, here we use
universal composition with joint state. See more details below.)

In the zero-knowledge functionality, parameterized by a relation R, the prover sends the func-
tionality a statement z to be proven along with a witness w. In response, the functionality forwards
the statement x to the verifier if and only if R(x,w) =1 (i.e., if and only if it is a correct statement).
Thus, in actuality, this is a proof of knowledge in that the verifier is assured that the prover actually
knows w (and has explicitly sent w to the functionality), rather than just being assured that such
a w exists. The zero-knowledge functionality, F,x, is presented in Figure 4.6.

Functionality F,i
Fux proceeds as follows, running with a prover P, a verifier V and an adversary S, and parameterized
with a relation R:

e Upon receiving (ZK-prover, sid, z,w) from P, do: if R(x,w) = 1, then send (ZK-proof, sid, z) to V'
and S and halt. Otherwise, halt.

Figure 4.6: The single-session F,x functionality

Let us highlight several technical issues that motivate the present formalization. First, notice
that the functionality is parameterized by a single relation (and thus a different copy of Fy is
used for every different relation required). Nonetheless, the relation R may actually index any
polynomial number of predetermined relations for which the prover may wish to prove statements.
This can be implemented by separating the statement = into two parts: x; that indexes the relation

to be used and x2 that is the actual statement. Then, define R((z1,x2),w) o R, (z2,w). (Note
that in this case the set of relations to be indexed is fixed and publicly known.)'3

13 Another possibility is to parameterize Fyx by a polynomial q(-). Then, P; sends the functionality a triple
(z,w, Cr), where Cg is a two-input binary circuit of size at most ¢(|z|). (This circuit defines the relation being used.)
The ideal functionality then sends P; the circuit Cr and the bit Cr(z,w). This approach has the advantage that the
relations to be used need not be predetermined and fixed.
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Second, the functionality is defined so that only correct statements (i.e., values x such that
R(z,w) = 1) are received by P, in the prove phase. Incorrect statements are ignored by the
functionality, and the receiver P» receives no notification that an attempt at cheating in a proof
took place. This convention simplifies the description and analysis of our protocols. We note,
however, that this is not essential. Error messages can be added to the functionality (and realized)
in a straightforward way. Third, we would like to maintain the (intuitively natural) property that
a prover can always cause the verifier to reject, even if for every w it holds that R(z,w) =1 (e.g.,
take R = {0,1}* x {0,1}*). This technicality is solved by defining a special witness input symbol
“1” such that for every relation R and every z, R(z, L) = 0.

Note that each copy of the functionality handles only a single proof (with a given prover and a
given verifier). This is indeed convenient for protocols in the Fy-hybrid model, since a new copy
of F,x can be invoked for each new proof (or, each “session”). However, directly realizing F,x in
the Firs-hybrid model and using the universal composition theorem would result in an extremely
inefficient composed protocol, where a new instance of the reference string is needed for each proof.
Instead, we make use of universal composition with joint state, as follows. We start by defining
functionality ]:“ZK, the multi-session extension of F,, and recall known protocols that securely
realize Fyy using a single short instance of the common string. We then use the JUC theorem to
compose protocols in the F,x-hybrid model with protocols that securely realize Fc.

The definition of ]:"ZK, the multi-session extension of Fx, follows from the definition of Fx
and the general definition of multi-session extensions (see Section 4.3.2). Nonetheless, for sake
of clarity we explicitly present functionality Fu in Figure 4.7. An input to Fue is expected to
contain two types of indices: the first one, sid, is the SID that differentiates messages to Fx from
messages sent to other functionalities. The second index, ssid, is the sub-session ID and is unique
per “sub-session” (i.e., per input message).

Functionality .7-A'ZK

Fx proceeds as follows, running with parties P, ..., P, and an adversary S, and parameterized with
a relation R:

e Upon receiving (ZK-prover, sid, ssid, P;, Pj,x,w) from P;: If R(x,w) = 1, then send the message
(ZK-proof, sid, ssid, P;, P;, x) to P; and S. Otherwise, ignore.

Figure 4.7: The multi-session zero-knowledge functionality

In the case of static adversaries, De Santis et al. present a protocol that securely realizes ]:“ZK, for
any NP relation, in the common reference string (CRS) model [26]. This is done assuming existence
of trapdoor one-way permutations. Furthermore, the protocol is “non-interactive”, in the sense that
it consists of a single message from the prover to the verifier. In the case of adaptive adversaries,
Canetti and Fischlin show a three-round protocol that securely realizes ]:'ZK in the Fycon-hybrid
model, where Fycoy is the multi-session universally composable commitment functionality (see
Section 4.5 below). The protocol uses a single copy of Fycou.'*

 Actually, the zero-knowledge functionality in [16] is only “single session” (and has some other technical differences
from F,i). Nonetheless, it is easy to see that by using Fyucon and having the prover first check that it’s input = and
w is such that (z,w) € R, their protocol securely realizes Fyy.
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4.7 The Commit-and-Prove Functionality F.p

In this section we define the “commit-and-prove” functionality, Fcp, and present protocols for
securely realizing it. As discussed in Section 4.2, this functionality, which is a generalization of the
commitment functionality, is central for constructing the protocol compiler. As in the case of Fy,
the Fep functionality is parameterized by a relation R. The first stage is a commit phase in which
the receiver obtains a commitment to some value w. The second phase is more general than plain
decommitment. Rather than revealing the committed value, the functionality receives some value
x from the committer, sends x to the receiver, and asserts whether R(x,w) = 1. To see that this
is indeed a generalization of a commitment scheme, take R to be the identity relation and x = w.
Then, following the prove phase, the receiver obtains w and is assured that this is the value that
was indeed committed to in the commit phase.

In fact, Fcp is even more general, in the following ways. First it allows the committer to commit
to multiple secret values w;, and then have the relation R depend on all these values in a single
proof. (This extension is later needed for dealing with reactive protocols, where inputs may be
received over time.) Second, the committer may ask to prove multiple statements with respect to
the same set of secret values. These generalizations are dealt with as follows. When receiving a
new (commit, sid, w) request from the committer, Fep adds the current w to the already existing
list @ of committed values. When receiving a (CP-prover, sid, z) request, F¢p evaluates R on x and
the current list w. Functionality Fcp is presented in Figure 4.8.

Functionality F.,

Fep proceeds as follows, running with a committer C, a receiver V' and an adversary S, and is param-
eterized by a value k and a relation R:

Commit Phase: Upon receiving a message (commit, sid, w) from C where w € {0,1}*, append the
value w to the list w, and send the message (receipt,sid) to V and S. (Initially, the list w is

empty.)

Prove Phase: Upon receiving a message (CP-prover, sid, z) from C, where z € {0,1}P°¥(¥) compute
R(z,w): If R(z,w) = 1, then send V and S the message (CP-proof, sid,z). Otherwise, ignore
the message.

Figure 4.8: The commit-and-prove functionality

As in the case of Fyx, the Fgp functionality is defined so that only correct statements (i.e.,
values z such that R(x,w) = 1) are received by V in the prove phase. Incorrect statements are
ignored by the functionality, and the receiver V receives no notification that an attempt at cheating
in a proof took place.

4.7.1 Securely Realizing F., for static adversaries

We present protocols for securely realizing the F¢p functionality in the F,-hybrid model, for both
static and adaptive adversaries. We first concentrate on the case of static adversaries, since it is
significantly simpler than the adaptive case, and therefore serves as a good warm-up.

The commit phase and the prove phase of the protocol each involve a single invocation of F.
(The relation used in each phase is different.) In the commit phase the committer commits to
a value using a standard commitment scheme, and proves knowledge of the decommitment value
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through F,x. Thus we obtain a “commit-with-knowledge” protocol, in which the simulator can
extract the committed value.

Specifically, let C' be a perfectly binding commitment scheme, and denote by C'(wj;r) a commit-
ment to a string w using a random string r. For simplicity, we use a non-interactive commitment
scheme. Such schemes exist assuming the existence of 1-1 one-way functions, see [45]. (Alterna-
tively, we could use the Naor scheme [70] that can be based on any one-way function, rather than
requiring 1-1 one-way functions. In this scheme, the receiver sends an initial message and then the
committer commits. This changes the protocol and analysis only slightly. We note that in fact,
the use of perfect binding is not essential and computational binding actually suffices, as will be
the case in Section 4.7.2.) Loosely speaking, the protocol begins by C sending ¢ = C(w;r) to V,
and then proving knowledge of the pair (w,r). In our terminology, this consists of the committer
C sending (ZK-prover, sidc,c = C(w;r), (w,r)) to Fu, which is parameterized by the following
relation R¢:

Re = {(e, (w,r)) | e = Clusr)} (4.4)

That is, R¢ is the relation of pairs of commitments with their decommitment information. In
addition, the committer C' keeps the list w of all the values w committed to. It also keeps the lists
7 and ¢ of the corresponding random values and commitment values.

When the receiver V receives (ZK-proof, sid¢, ¢) from Fy, it accepts ¢ as the commitment string
and adds c to its list ¢ of accepted commitments. (Note that in the F,x-hybrid model, V' is guar-
anteed that C' “knows” the decommitment, in the sense that C explicitly sent the decommitment
value to Fyk.)

The prove phase of the protocol also involves invoking F,x where the relation Rp parameterizing
the F,x functionality is defined as follows. Let R be the relation parameterizing Fcp. Then, Rp is

defined by:
def

Rp = {((I7E)7 (@,7)) | Vi, ¢; = C(wi;"'i) & R(I,@) = 1} (4'5)
That is, Rp confirms that ¢ is the vector of commitments to w, and that R(z,w) = 1. Thus, the
prove phase consists of the committer proving some NP-statement regarding the values committed
to previously. (The value z is the NP-statement and the values committed to, plus the randomness
used, comprise the “witness” for ). Upon receiving the message (ZK-proof, sidp, (z,¢)) from Fy,
the receiver accepts if € equals the list of commitments that it had previously received. (The receiver
must check ¢ because this is what ensures that the witness being used is indeed the list of values
previously committed to, and nothing else.) Finally, note that if R € NP, then so too is Rp.

We denote by F5, and F, the copies of F,x from the commit phase and prove phase respectively
(i.e., Fy. is parameterized by Rc and F}. is parameterized by Rp). Formally, the two copies
of F,x are differentiated by using session identifiers sidc and sidp, respectively. (E.g., one can
define side = sido‘C’ and sidp = sido‘P’, where sid is the session identifier of the protocol
for realizing Fep and “o” denotes concatenation.) The protocol, using a perfectly binding non-
interactive commitment scheme C, is presented in Figure 4.9.

Proposition 4.7.1 Assuming that C is a secure (perfectly binding) commitment scheme, Protocol
SCP of Figure 4.9 securely realizes Fop in the Fyc-hybrid model, for static adversaries.

Proof: Let A be a static adversary who operates against Protocol SCP in the F,x-hybrid model.
We construct an ideal-process adversary (or simulator) S such that no environment Z can tell with
non-negligible probability whether it is interacting with A and parties running Protocol SCP in
the F,x-hybrid model or with § in the ideal process for F¢p. As usual, § will run a simulated copy
of A and will use A in order to interact with Z and Fgp. For this purpose, S will “simulate for
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Protocol SCP

e Auxiliary Input: A security parameter k.
e Commit phase:

1. On input (commit, sid,w), where w € {0,1}*, C chooses a random string r of length
sufficient for committing to w in scheme C, and sends (ZK-prover, sid¢, C(w;r), (w,r)) to
Fs., where Fg, is parameterized by the relation R defined in Eq. (4.4). In addition, C
stores in a vector W the list of all the values w that it has sent to F,, and in vectors 7 and
€ the corresponding lists of random strings and commitment values.

2. When receiving (ZK-proof, sid¢, ¢) from F5., V outputs (receipt, sid), and adds ¢ to its list
of commitments ¢. (Initially, ¢ is empty.)
e Prove phase:
1. Oninput (CP-prover, sid, z), C sends (ZK-prover, sidp, (z,¢), (w,T)) to F,,, where w,T,T are
the above-define vectors and F,, is parameterized by the relation Rp defined in Eq. (4.5).

2. When receiving (ZK-proof, sidp, (z,¢)) from Fj,, V proceeds as follows. If its list of com-
mitments equals ¢, then it outputs (CP-proof, sid, z). Otherwise, it ignores the message.

Figure 4.9: A protocol for realizing Fcp for static adversaries

A” an interaction with parties running Protocol SCP, where the interaction will match the inputs
and outputs seen by Z in its interaction with & in the ideal process for Fop. We use the term
external communication to refer to S’s communication with Z and Fyp. We use the term internal
communication to refer to S’s communication with the simulated A.

Recall that A is a static adversary and therefore the choice of which parties are under its control
(i.e., corrupted) is predetermined. When describing S, it suffices to describe its reaction to any
one of the possible external activations (inputs from Z and messages from F¢p) and any one of
the possible outputs or outgoing messages generated internally by 4. This is done below. For
clarity, we group these activities according to whether or not the committing party C is corrupted.
Simulator & proceeds as follows:

Simulating the communication with the environment: Every input value coming from Z
(in the external communication) is forwarded to the simulated A (in the internal communi-
cation) as if coming from A’s environment. Similarly, every output value written by A on its
output tape is copied to S’s own output tape (to be read by the external Z).

Simulating the case where the committer is uncorrupted: In this case, A expects to see
the messages sent by Fy. and F,, to V. (Notice that the only messages sent in the protocol
are to and from FJ and F}; therefore, the only messages seen by A are those sent by these
functionalities. This holds regardless of whether the receiver V' is corrupted or not.) In the
ideal process, S receives the (receipt,...) and (CP-proof,...) messages that V receives from
Fep. It constructs the appropriate Fj, messages given the receipt messages from Fgp, and
the appropriate F,, messages given the CP-proof messages from F¢p. This is done as follows:

e Whenever S receives a message (receipt, sid) from Fp where C' is uncorrupted, S computes
¢ = C(0%;r) for a random r and (internally) passes A the message (ZK-proof, sidc,c), as
A would receive from FJ in a real protocol execution. Furthermore, S adds the value ¢
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to its list of simulated-commitment values ¢. (It is stressed that the commitment here is
to an unrelated value, however by the hiding property of commitments and the fact that
all commitments are of length £, this is indistinguishable from a real execution.)

e Whenever S receives a message (CP-proof,sid,z) from F.p where C is uncorrupted, S
internally passes A the message (ZK-proof, sidp, (z,¢)), as A would receive from F,, in
a protocol execution, where € is the current list of commitment values generated in the
simulation of the commit phase.

Simulating the case where the committer is corrupted: Here, A controls C' and generates
the messages that C sends during an execution of Protocol SCP.' Intuitively, in this case S
must be able to extract the decommitment value w from A during the commit phase of the
protocol simulation. This is because, in the ideal process, S must explicitly send the value w
to Fep (and must therefore know the value being committed to). Fortunately, this extraction
is easy for S to do because A works in the F;c-hybrid model, and any message sent by A to
Fux is seen by S during the simulation. In particular, S obtains the ZK-proof message sent
by A to F5., and this message is valid only if it explicitly contains the decommitment. The
simulation is carried out as follows:

e Whenever the simulated A internally delivers a message of the form (ZK-prover, sid¢, ¢, (w,))
from a corrupted C to Fj, simulator S checks that ¢ = C'(w;r). If yes, then S externally
sends (commit, sid, w) to Fep and internally passes (ZK-proof, sidc, ¢) to A (as if coming
from Fj). Furthermore, S adds ¢ to its list of received commitments €. Otherwise, S
ignores the message.

e Whenever A internally generates a message of the form (ZK-prover,sidp, (z,¢), (w,T))
going from C to F,, simulator S acts as follows. First, S checks that ¢ equals its
list of commitments and that ((z,¢),(w,7)) € Rp. If yes, then S internally passes
(ZK-proof, sidp, (z,¢)) to A (as if received from F} ) and externally sends the prover
message (CP-prover, sid, z) to Fep. If no, then S does nothing.

Output delivery: It remains to describe when (if at all) S delivers the receipt and CP-proof
messages sent to V' from F¢p in the ideal process. This is decided by simply having S deliver
a receipt message to V when A delivers the corresponding ZK-proof message of the commit
phase in the simulation. Likewise, S delivers a CP-proof message to V when A delivers the
corresponding ZK-proof message of the prove phase in the simulation.

We show that for every environment Z it holds that:
IDEALF,, 5,z = HYBRIDLZ 4 - (4.6)

We first assert the following claim regarding the case where the committer is corrupted: the
receiver V accepts a proof in the protocol execution if and only if in the ideal model simulation, V'
receives (CP-proof, sid, ) from Fp. This can be seen as follows. First, note that if A (controlling
C) sends a ZK-prover message containing a different vector of commitments to that sent in previous
commit activations, then & does not send any CP-prover message to Fup. Likewise, in such a case,
V ignores the ZK-proof message. Simulator S also checks that ((x,¢), (w,7)) € Rp before sending
any CP-prover message to Fcp. Thus, if this does not hold, no CP-proof message is received by

15We assume without loss of generality that the receiver V' is uncorrupted, since carrying out an interaction where
both participants are corrupted bears no effect on the view of Z.



4.7. THE COMMIT-AND-PROVE FUNCTIONALITY Fcp 99

V. Likewise, in a protocol execution, if ((z,¢), (w,7)) € Rp, then V receives no CP-proof message.
Finally, we note that by the (perfect) binding property of the commitment scheme, if A tries to use
a different vector of witnesses than that committed to in the commit phase, then this is detected by
V and S, and the message is ignored. (By the perfect binding of the commitment scheme, the vector
€ defines a unique witness vector w that can be used.) We conclude that when S sends a CP-prover
message to Fep the following holds: R(z,w) = 1 if and only if Rp((x,¢),(w,T)) = 1, where € is the
vector of commitments sent by the corrupted committer. Thus, V' outputs (CP-proof, sid,z) in a
protocol execution if and only if F¢p sends (CP-proof, sid, z) to V in the ideal model simulation.

We proceed to demonstrate Eq. (4.6). Since S obtains the messages sent by A to both the g
and F,, functionalities, most of the simulation is perfect and the messages seen by A are exactly
the same as it would see in a hybrid execution of Protocol SCP. There is, however, one case where
the simulation #s different from a real execution. When the committer is uncorrupted, S receives
a (receipt, sid) message from Fop and must generate the message that A would see from Fj in
the protocol. Specifically, S sends (ZK-proof, sid, c) to A, where ¢ = C(0%;r). That is, S passes
A a commitment to a value that is unrelated to C’s input. In contrast, in a real execution of
Protocol SCP, the value ¢ seen by A is ¢ = C(w;r), where w is C’s actual input. Intuitively, by
the hiding property of the commitment scheme C', these two cases are indistinguishable. Formally,
assume that there exists an adversary A, an environment Z and an input z to Z, such that the
IDEAL and HYBRID distributions can be distinguished. Then, we construct a distinguisher D for
the commitment scheme C. That is, the distinguisher D chooses some challenge w, receives a
commitment ¢ that is either to 0% or to w, and can tell with non-negligible probability which is the
case.

Distinguisher D invokes the environment Z, the party C' and the simulator S (which runs A
internally) on the following simulated interaction. First, a number 7 is chosen at random in [t],
where ¢ is a bound on the running time of Z. Then, for the first 7 — 1 commitments ¢ generated
by S, distinguisher D sets ¢ = C(0F;7). When S is about to generate the i*" commitment, D
declares the corresponding value w to be the challenge value, and obtains a test value ¢*. (This w
is the value that the simulated Z hands the uncorrupted committer C.) Then, S uses ¢* as the
commitment value for the i commitment. The rest of the commitments in the simulation are
generated as normal commitments to the corresponding input values provided by Z. When Z halts
with an output value, D outputs whatever Z outputs and halts.

Analysis of the success probability of D is done via a standard hybrid argument and is omit-
ted. We obtain that D succeeds in breaking the commitment with advantage p/t, where p is the
advantage in which Z distinguishes between an interaction in the hybrid model and an interaction
in the ideal process (and ¢ is the bound on Z’s running time). [l

On sufficient assumptions for realizing Fp,: For simplicity, Protocol SCP uses a non-interactive
commitment scheme, which can be based on 1-1 one-way functions. However, as we have men-
tioned, the commit-phase of Protocol SCP can be modified to use Naor’s commitment scheme [70]
(which in turn can use any one-way function). In this case, V' begins by sending the receiver
message of the [70] scheme, and then C sends the commit message, using F, as in Protocol SCP.
Thus, we have that F¢p can be securely realized in the F,-hybrid model, assuming the existence
of any one-way function.
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4.7.2 Securely Realizing F., for adaptive adversaries

We now present a protocol for securely realizing functionality Fcp in the Fyi-hybrid model, in the
presence of adaptive adversaries. The difference between this protocol and Protocol SCP for static
adversaries is in the properties of the underlying commitment scheme C' in use. Essentially, here we
use a commitment scheme that is “adaptively secure”. That is, a simulator (having access to some
trapdoor information) can generate “dummy commitments” that can later be opened in several
ways.'® In order to achieve this, the commit phase of the protocol will now involve two invocations
of F,k. As in the case of Protocol SCP, the relations used by the invocations of F,x in the commit
phase are different from the relation used in the prove phase. Thus, for sake of clarity we use three
different copies of F,i, two for the commit messages and one for the prove messages.

The specific commitment scheme C used in the commit phase here is the aHC commitment
that lies at the core of the universally composable commitment scheme of Section 4.5. Recall
that this scheme uses a common reference string containing an image y of a one-way function f.
However, here we work in the F,-hybrid model and do not have access to a common reference
string. Thus, the common reference string is “replaced” by interaction via the Fy functionality.
That is, the basic commitment scheme is as follows. The receiver V' chooses a random value ¢
and sends the committer C the value s = f(¢). Next, C uses s to commit to its input value, as
defined in the aHC commitment scheme. That is, C first obtains a Hamiltonian graph G such
that finding a Hamiltonian cycle in G is equivalent to computing the preimage ¢t of s. (This is
obtained by reducing the NP-language {s | 3¢ s.t. s = f(¢)} to Hamiltonicity.) Then, in order to
commit to 0, C' chooses a random permutation 7 of the nodes of G and commits to the edges of the
permuted graph one-by-one, using a non-interactive commitment scheme Com with pseudorandom
commitments. (Such a scheme can be obtained using one-way permutations, see Section 4.5.) On
the other hand, in order to commit to 1, C' chooses a randomly labeled cycle over the same number
of nodes as in G. Then, C' uses C'om to commit to these entries and produces random values for
the rest of the adjacency matrix. As was shown in Section 4.5, this commitment scheme is both
hiding and binding, and also has the property that given a preimage ¢ of s, it is possible to generate
a “dummy commitment” that can be later explained as a commitment to both 0 and 1. (Thus, ¢ is
essentially a trapdoor.) We denote a commitment of this type by aHC,(w;r), where s is the image
of the one-way function being used, w is the value being committed to, and r is the randomness
used in generating the commitment.

The commitment scheme aHC as described above requires that the underlying one-way function
be a permutation. However, by using interaction, we can implement Com using the commitment
scheme of Naor [70] (this scheme also has pseudorandom commitments). We thus obtain that aHC
can be implemented using any one-way function. For simplicity, the protocol is written for Com
that is non-interactive (and therefore assumes one-way permutations). However, it is not difficult
to modify it so that the [70] scheme can be used instead.

As in the case of Protocol SCP, the first stage of the adaptive protocol (denoted ACP for adap-
tive commit-and-prove) involves carrying out the commit phase of the above-described commitment
scheme via invocations of F,x. This use of F;x enables the simulator to extract the committed
value from the committing party. In addition, here F;x is also used to enable the simulator to ob-
tain the trapdoor information needed for carrying out the adaptive simulation. Thus the protocol
begins by the receiver first choosing a random string ¢ and computing s = f(¢). Next, it sends

The property actually required is that the simulator can generate a “commitment” ¢ such that given any w at
a later stage, it can find randomness r such that ¢ = C'(w;r). This is needed for the adaptive corruption of the
committing party. See Section 4.5 for more discussion.
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s to the committer and, in addition, proves that it knows the preimage ¢. Loosely speaking, in
the Fyk-hybrid model, this involves sending a (ZK-prover, sid, s,t) message to F,x and having the
functionality send C' the message (ZK-proof, sid, s) if s = f(t). We note that this step is carried
out only once, even if many values are later committed to. Thus, the same s is used for many
commitments.

Let F} denote the copy of F,x used for proving knowledge of the trapdoor/preimage. Then,
Fj is parameterized by the relation Ry defined as follows:

Rr % {(s,t) | s = f(£)} (4.7)

Fux is used twice more; once more in the commit phase and once in the prove phase. These copies
of Fux are denoted Fj and Fj,, respectively. The uses of Fy here are very similar to the static
case (Protocol SCP). We therefore proceed directly to defining the relations R and Rp that
parameterize Fp and F}., respectively:

Re ¥ {((s,0),(w,7)) | ¢ = aHC,(w;r)} (4.8)

Rp ¥ {((z,5,2),(®@,7)) | Vi,c; = aHCy(wi; i) & R(z,w) = 1} (4.9)
The only difference between the definition of Rc and Rp here and in the static case is that here
the value s is included as well. This is because a pair (s,c) binds the sender to a single value w,
whereas ¢ by itself does not. The protocol for the adaptive case is presented in Figure 4.10. (As

in the static case, we formally differentiate the copies of F,« by session identifiers sidy, sidc and
Sidp.)

Proposition 4.7.2 Assuming the existence of one-way functions, Protocol ACP of Figure 4.10
securely realizes Fep in the Fu-hybrid model, in the presence of adaptive adversaries.

Proof (sketch): The proof of the above proposition follows similar lines to the proof of Proposi-
tion 4.7.1. However, here the adversary A can adaptively corrupt parties. Therefore, the simulator
S must deal with instructions from A to corrupt parties during the simulation. When given such
a “corrupt” command, S corrupts the ideal model party and receives its input (and possibly its
output). Then, given these values, S must provide A with random coins such that the simulated
transcript generated so far is consistent with this revealed input and output. (An additional “com-
plication” here is that the binding property of C is only computational. Thus, the validity of the
simulation will be demonstrated by a reduction to the binding property of C'.)

More precisely, Let 4 be an adaptive adversary who operates against Protocol ACP in the Fy-
hybrid model. We construct a simulator & such that no environment Z can tell with non-negligible
probability whether it is interacting with A and parties running Protocol ACP in the F,-hybrid
model or with § in the ideal process for F¢p. Simulator S will operate by running a simulated copy
of A and will use A in order to interact with Z and Fgp. S works in a similar way to the simulator
in the static case (see the proof of Proposition 4.7.1), with the following changes:

1. § records the pair (s,t) from the initialization phase of an execution. In the case where
the receiver is uncorrupted, this pair is chosen by S itself. In the case where the receiver
is corrupted this pair is chosen by the simulated A, and S obtains both s and ¢ from the
message that the corrupted receiver sends to .

2. Whenever an uncorrupted party C' commits to an unknown value w, simulator S hands A a
commitment to 0¥ as the commitment value. More precisely, whenever S receives from Fep
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Protocol ACP
e Auxiliary Input: A security parameter k, and a session identifier sid.
e Initialization phase:
The first time that the committer C' wishes to commit to a value using the identifier sid, parties
C and V execute the following before proceeding to the commit phase:

1. C sends sid to V to indicate that it wishes to initiate a commit activation.

2. Upon receiving sid from C, the receiver V chooses t € {0,1}*, computes s = f(¢) (where f
is a one-way function), and sends (ZK-prover, sidy, s,t) to Fp, where F is parameterized by
the relation Ry defined in Eq. (4.7). V records the value s.

3. Upon receiving (ZK-proof, sidr, s) from Fr ., C records the value s.

¢ Commit phase:

1. On input (commit, sid, w) (where w € {0,1}*), C computes ¢ = aHC,(w;r) for a random r and
using the s it received in the initialization phase. C' then sends (ZK-prover, sid¢, (s, ¢), (w, 1))
to Fy., where Fy is parameterized by the relation R¢ defined in Eq. (4.8). In addition, C
stores in a vector w the list of all the values w that were sent, and in vectors 7 and ¢ the
corresponding lists of random strings and commitment values.

2. Upon receiving (ZK-proof, sidc, (s, ¢)) from F5,., V verifies that s’ equals the string s that it
sent in the initialization phase, outputs (receipt, sid) and adds the value ¢ to its list €. (Initially,
€ is empty.) If s’ # s, then V ignores the message.

e Prove phase:

1. On input (CP-prover, sid, z), C sends (ZK-prover, sidp, (z, s,¢), (W,T)) to Fr., where ¢, w and
7 are the vectors described above, and F}, is parameterized by the relation Rp defined in
Eq. (4.9).

2. Upon receiving (ZK-proof, sid, (z, s',¢)) from F}., V verifies that s’ is the string that it sent
in the initialization phase, and that its list of commitments equals €. If so, then it outputs
(CP-proof, sid, z). Otherwise, it ignores the message.

Figure 4.10: A protocol for realizing Fip for adaptive adversaries
a message (receipt, sid) where C is uncorrupted, S computes ¢ = aHC,(0¥;7) for a random
r, and hands A the message (ZK-proof, sidc, (s, ¢c)), as if coming from Fj. (Recall that by
the aHC scheme, a commitment to 0 can be opened as either 0 or 1, given the trapdoor
information ¢; see Section 4.5.)
3. When the simulated A internally corrupts C, simulator S first externally corrupts C in the

ideal process for Fqp and obtains the vector of values w that C committed to so far. Next,
S prepares for A a simulated internal state of C' in Protocol ACP as follows. Apart from
the vector of committed values w, the only hidden internal state that C' keeps in Protocol
ACP is a vector of random strings 7 that were used to commit to each w; in w. That is, for
each input value w; in W, adversary A expects to see a value r; such that ¢; = aHCy(w;,7;),
where ¢; is the corresponding commitment value that S generated and handed to A in the
simulation of commitments by an uncorrupted C (see step 2 above). Thus, for every i, S
generates the appropriate value r; using the trapdoor ¢, and then hands the list 7 to A. (See
Section 4.5 for a description of exactly how this randomness is generated.)
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4. When the simulated A internally corrupts V', S provides A with a simulated internal state
of V. This state consists of the preimage ¢, plus the messages that V receives from Fy. All
this information is available to S.

The analysis of the above simulator is very similar to the static case (Proposition 4.7.1). The main
difference is that here the commitment is only computationally binding. Thus the following bad
event is potentially possible: When the committer C is corrupted, the simulated A commits to
a series of values w with corresponding commitment values €. Later, in the prove phase, A then
generates a message (ZK-prover, sidp, (x,¢), (w',7')) to send to F},, where @’ # w and yet for every
i, it holds that ¢; = aHC4(w}, rf). Furthermore, R(z,@w') =1 and R(x,w) = 0. In other words, the
bad event corresponds to a case where in the ideal process Fgp does not send a (CP-proof, sid, x)
message (because R(x,w) = 0), whereas V does output such a message in a real execution of
Protocol ACP (because Rp((x,s,¢)(w’,7')) =1 and the vector of commitments ¢ is as observed by
V). (We note that given that this event does not occur, the correctness of the simulation carried
out by S follows the same argument as in the proof of Proposition 4.7.1.)

We conclude the proof by showing that this bad event occurs with negligible probability, or else
Z and A can be used to construct an algorithm that breaks the binding property of the aHC commit-
ment scheme. It suffices to show that A cannot generate a message (ZK-prover, sidp, (z,¢), (@w',7"))
where W' # w and yet for every 4, it holds that ¢; = aHCy(w}, 7}). Intuitively, this follows from the
binding property of aHC (see Section 4.5). In particular, let Z and A be such that the bad event
occurs with non-negligible probability during the above ideal-process simulation by &. Then, we
construct a machine M who receives s and with non-negligible probability outputs a commitment
¢ along with (wy,r1) and (wg,r9), where ¢ = aHC,(wq;71) = aHC4(we;72) and wy # ws.

M invokes S on Z and A, and emulates the ideal process, while playing the roles of the ideal
functionality and the uncorrupted parties C' and V. Simulator S is the same as described above,
with the following two important differences:

e Instead of S choosing the pair (s,t) itself in step 1 of its instructions above, it uses the value s
that M receives as input. (Recall that M receives s and is attempting to contradict the binding
property of the commitment relative to this s.)

e If C commits to any values before it is corrupted, the simulation is modified as follows. Instead
of S providing A with a commitment ¢ = aHC,(0¥;r), machine M provides S with the input
w being committed to and then S provides A with ¢ = aHC,(w;r). Upon corruption of C,
simulator S then provides A directly with the list of random values 7 used in generating the
commitments. M can give S these values because it plays the uncorrupted C in the emulation
and therefore knows the w values.!'?

If during the emulation by M, the above-described bad event occurs, then M outputs ¢ and the
two pairs (wq,71) and (wz,r2). In order to analyze the success probability of M, first notice that
the views of Z and A in this simulation by M are indistinguishable from their views in an ideal
process execution. The only difference between the executions is that .4 does not receive “dummy
commitments” to 0¥, but real commitments to w. By the hiding property of the commitments,
these are indistinguishable. Therefore, the probability that A generates the messages constituting
a bad event in M’s emulation is negligibly close to the probability that the bad event occurs in the
ideal process simulation by S. The key point here is that S does not need to know the trapdoor t

'7A more “natural” definition of M would be to have it run S in the same way as in the simulation, even before C'
is corrupted. In such a case, M would need to know the trapdoor in order to proceed when C' is corrupted. However,
it is crucial here that M not know the trapdoor (because the binding property only holds when the trapdoor is not
known).
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in order to carry out the emulation. In particular, M carries out its emulation with s only, and
without knowing t. Therefore the binding property of the commitment scheme aHC, must hold with
respect to M. However, by the contradicting hypothesis, the bad event occurs in M’s emulation
with non-negligible probability. This contradicts the binding property of the commitment scheme.

4.8 Two-Party Secure Computation for Malicious Adversaries

In this section, we show how to obtain universally composable general secure computation in the
presence of malicious adversaries. Loosely speaking, we present a protocol compiler that transforms
any protocol that is designed for the semi-honest adversarial model into a protocol that guarantees
essentially the same behavior in the presence of malicious adversaries. The compiler is described
in Section 4.8.1. Then, Section 4.8.2 ties together all the components of the construction, from
Sections 4.4, 4.6, 4.7 and 4.8.1.

4.8.1 The Protocol Compiler

As discussed in Section 4.2.2, the F¢p functionality is used to construct a protocol compiler that
transforms any non-trivial protocol that securely realizes some two-party functionality F in the
presence of semi-honest adversaries (e.g., the protocol of Section 4.4), into a non-trivial protocol
that securely realizes F in the presence of malicious adversaries. In this section we present the
compiler (the same compiler is valid for both static and adaptive adversaries). Now, let II be a
two-party, reactive protocol. Without loss of generality, we assume that II works by a series of
activations, where in each activation, only one of the parties has an input. This is consistent with
our description of general two-party functionalities, see Section 4.3.3. For the sake of simplicity, we
also assume that the lengths of the random tapes specified by II for all activations is k.

The compiled protocol Comp(IT) is described in Figure 4.11 below. It uses two copies of Fep:
one for when P, is the committer and one for when P, is the committer. These copies of F¢p are
denoted F}, and FZ,, respectively, and are formally identified by session identifiers sid; and sids
(where sid; can be taken as sid o i). The description of the compiler is from the point of view of
party Pp; P’s instructions are analogous.

Loosely speaking, the effect of the compiler on the adversary’s capabilities, is that the (mali-
cious) adversary must exhibit semi-honest behavior, or else its cheating will be detected. Recall
that a semi-honest adversary follows the protocol instructions exactly, according to a fixed input
and a uniformly distributed random input. The following proposition asserts that for every mali-
cious adversary A participating in an execution of the compiled protocol (in the Fqp-hybrid model),
there exists a semi-honest adversary A’ that interacts with the original protocol in the plain real-
life model such that for every environment Z, the output distributions in these two interactions
are identical. Thus, essentially, a malicious adversary is reduced to semi-honest behavior. We
note that the compiler does not use any additional cryptographic construct other than access to
Fep. Consequently, the following proposition holds unconditionally, and even if the adversary and
environment are computationally unbounded.

Proposition 4.8.1 Let I be a two-party protocol and let Comp(II) be the protocol obtained by
applying the compiler of Figure 4.11 to 1I. Then, for every malicious adversary A that interacts
with Comp(II) in the Fop-hybrid model there exists a semi-honest adversary A’ that interacts with
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Comp (1)

Party P; proceeds as follows (the code for party P, is analogous):

1. Random tape generation: When activating Comp(II) for the first time with session identifier
sid, party P; proceeds as follows:

(a) Choosing a random tape for P;:

i. P, chooses 11 €r {0,1}* and sends (commit,sidy,r}) to FL,. (P receives a

(receipt, sid; ) message, chooses r? € {0,1}* and sends (sid, %) to P;.)

.. . . . def .
ii. When P; receives a message (sid,r?) from P, it sets 11 = 7 @1} (r; will serve as
Py’s random tape for the execution of II).

(b) Choosing a random tape for P:

i. Py waits to receive a message (receipt, sidy) from F2, (this occurs after P sends a
commit message (commit, sidz,3) to F2,). It then chooses r3 € {0,1}* and sends
(sid,r}) to Py. (Py sets ro = ri @72 to be its random tape for the execution of II.)

2. Activation due to new input: When activated with input (sid, x), party P; proceeds as follows.

(a) Input commitment: P, sends (commit, sidy,z) to F!, and adds z to the list of inputs =
(this list is initially empty and contains P;’s inputs from all the previous activations of
II). Note that at this point P» receives the message (receipt, sid;) from Fp,.

(b) Protocol computation: Let Ti; be the series of II-messages that Py received from P, in
all the activations of IT until now (7, is initially empty). P runs the code of II on its
input list T, messages m1, and random tape r, (as generated above).

(c) Outgoing message transmission: For any outgoing message m that II instructs P; to
send to P, P, sends (CP-prover, sidy, (m,r?,m1)) to FL, where the relation Ry for F,
is defined as follows:

RH = {((m7rf7m1)a(jar%)) | m = H(T,T% @Tf,ml)}

In other words, P, proves that m is the correct next message generated by II when

the input sequence is 7, the random tape is 11 = 7{ @ r? and the series of incoming

[I-messages equals ;. (Recall that 71 and all the elements of T were committed to by

P in the past using commit invocations of FZ,, and that r? is the random string sent

by P, to Py in Step 1(a)ii above.)

3. Activation due to incoming message: When activated with incoming message
(CP-proof, sidy, (m,r3,m2)) from F2,, P, first verifies that the following conditions hold. (We
note that F2, is parameterized by the same relation Ry as FZ,.)

(a) 3} is the string that P sent to P in Step 1(b)i above.
(b) ™2 equals the series of II-messages received by P, from P; (i.e., P;’s outgoing messages)
in all the activations until now.

If any of these conditions fail, then P, ignores the message. Otherwise, P; appends m to its
list of incoming Il-messages 71 and proceeds as in Steps 2b and 2c.

4. Output: Whenever II generates an output value, Comp(II) generates the same output value.

Implicit in the above protocol specification is the fact that P, and P, only consider messages that
are associated with the specified identifier sid.

Figure 4.11: The compiled protocol Comp(II)
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IT 4n the plain real-life model, such that for every environment Z,

]:(‘P

REAL[ A",z = HYBRIDCoL ) 4 5

An immediate corollary of this proposition is that any protocol that securely realizes some two-party
functionality F in the semi-honest model can be compiled into a protocol that securely realizes F
in the malicious model. This holds both for static and adaptive adversaries.

Corollary 4.8.2 Let F be a two-party functionality and let 11 be a non-trivial protocol that securely
realizes F in the real-life model and in the presence of semi-honest adversaries. Then Comp(Il)
15 a non-trivial protocol that securely realizes F in the Fep-hybrid model and in the presence of
malicious adversaries.

We note that the proposition and corollary hold both for the case of adaptive adversaries and for
the case of static adversaries. Here we prove the stronger claim, relating to adaptive adversaries.
We now prove the proposition.

Proof of Proposition 4.8.1: Intuitively, a malicious adversary cannot cheat because the validity
of each message that it sends is verified using the F¢p functionality. Therefore, it has no choice but
to play in a semi-honest manner (or be detected cheating).

More precisely, let A be a malicious adversary interacting with Comp(Il) in the Fp-hybrid
model. We construct a semi-honest adversary A’ that interacts with IT in the plain real-life model,
such that no environment Z can tell whether it is interacting with Comp(II) and A in the Fp-
hybrid model, or with IT and A’ in the plain real-life model. As usual, A’ works by running a
simulated copy of A and using the messages sent by A as a guide for its interaction with Il and Z.
We use the term ezternal communication to refer to the communication of A’ with Z and II. The
term internal communication is used to refer to the communication of A" with the simulated .A.
Before describing A’, we note the difference between this proof and all previous ones in this paper.
Until now, we constructed an ideal process adversary S from a hybrid or real model adversary
A. In contrast, here we construct a real model adversary A’ from a hybrid model adversary .A.
Furthermore, previously both & and A were malicious adversaries, whereas here A is malicious and
A’ is semi-honest. We now describe A’:

First, A’ runs a simulated copy of A and simulates for A the Comp(II) messages relating to
the generation of the random string of both parties. Next, A’ translates each message externally
sent in IT to the corresponding message (or sequence of messages) in Comp(IT). Each message sent
by the simulated A (supposedly by a corrupted party running Comp(Il)) is translated back to a
[TI-message and sent externally. The rationale of this behavior is that if the simulated A (controlling
the corrupted party) deviates from the protocol, then this would have been detected by the partner
in Comp(II), and thus A’ can ignore that message. If A does not deviate from the protocol, then A’
can forward the messages sent by A to the other party as this is allowed behavior for a semi-honest
party. More precisely, A’ proceeds as follows.

Simulating the communication with the environment: Every input value coming from Z
(in the external communication) is forwarded to the simulated A (in the internal communi-
cation) as if coming from A’s environment. Similarly, every output value written by A on its
output tape is copied to A”’s own output tape (to be read by the external Z).
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Simulating the “random tape generation” phase: When the first activation of II takes place,
A’ internally simulates the “random tape generation” phase of Comp(II). Here we separately
deal with each corruption case:

1. Both parties are not corrupted: A’ simulates both parties’ messages from this stage.
That is, in order to simulate the generation of P;’s random tape, A’ internally passes A
the message (receipt, sid1), as if coming from FZ,. Furthermore, A’ chooses a random
r?, records the value, and simulates P, sending P; the message (sid,r?) of Step 1(a)ii in

Figure 4.11. The simulation of P’s random tape is analogous.

2. Py 1s not corrupted and Py is corrupted: We begin with the generation of P;’s random

tape. Asabove, A’ begins by internally passing A the message (receipt, sidy), as if coming
from FZl,. Then, A’ obtains and records the message (sid,r?) from the corrupted Ps
(controlled by A in Comp(II)).
We now proceed to the generation of P»’s random tape. A’ obtains from A the message
(commit, sidy, r3), as sent by P, to F2, in an execution of Comp(II). Now, let 75 equal
the random tape of the corrupted P, in the external execution of II (A’ knows this
value because it can read all of the corrupted Py’s tapes). Then, A’ sets ri = ry @ r2
and internally passes A the message (sid,73), as if sent by P; to Py. (Recall that A’ is
semi-honest and thus it cannot modify P,’s random tape ry for II. A’ therefore “forces”
A to use this exact same random tape in the simulated execution of Comp(II).)

3. Py s corrupted and P> is not corrupted: The simulation of this case is analogous to the
previous one. In particular, for the generation of the corrupted P;’s random tape, A’
first receives a message (commit, sidy,r}) from A and simulates P sending (sid,r?) to

Py, where 72 = 71 @ r} and r; equals the random tape of the real party P; executing II.

4. Both parties are corrupted: When both parties are corrupted, the entire simulation is
straightforward. (A’ simply runs both malicious parties and at the end, copies the
contents of their output tapes to the output tapes of the semi-honest parties running
I1.) We therefore ignore this case from now on.

Simulating an activation due to new input: We deal with the case that P, is not corrupted
separately from the case that P is corrupted. Recall that the input commitment phase
consists only of Py sending a commit message to Fg,. First, if party P is not corrupted, then
A’ learns that the external P; received new input from the fact that it sends its first message
of the execution of II. In response, A’ simulates the input commitment step by internally
passing (receipt, sidy) to A (as A expects to receive from F2, in a real execution of Comp(II)).

If P is corrupted, then A’ receives a message (commit, sidy,z) from A (who controls Py
in Comp(II)). Then, A" adds x to the list T of inputs committed to by P; and passes A
the string (receipt, sid;), as if coming from FZ,. Furthermore, A’ sets P;’s input tape to
equal x. (Recall that a semi-honest adversary is allowed to modify the input values that the
environment writes on the input tape of a corrupted party. Formally, when the environment
Z notifies the semi-honest A’ of the value that it wishes to write on P;’s input tape, A’
simulates for .4 the malicious model where Z writes directly to P;’s input tape. Then, when
A sends the message (commit, sidy, x) in the simulation, A’ externally instructs Z to write the
value z (as committed to by .A) on P;’s input tape. See Section 4.3.1 for an exact description
of how values are written to the parties’ input tapes in the semi-honest model.)

Dealing with protocol messages sent externally by uncorrupted parties: If an uncorrupted
party P; externally sends P, a message m in the execution of II, then A’ internally passes A



108 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION

the message (CP-proof, sidy, (m,r?,7,)), where r? is the value recorded by A’ in the simu-
lated generation of P;’s random tape above, and 771 is the series of all II-messages received
by P, so far. Similarly, if an uncorrupted party P» sends P; a message m in the execution
of TI, then A’ internally passes A the message (CP-proof, sidy, (m,73,M2)), where r§ and s
are the analogous values to the previous case.

Next, A’ externally delivers messages sent from P; to P, (resp., from P, to P} ) in the execution
of IT when A delivers the corresponding (CP-proof,...) message from FL, to P, (resp., from
F2, to Pp) in the simulated execution of Comp(II).

Dealing with protocol messages sent internally by corrupted parties: Assume that P is
corrupted. If A, controlling P, sends a message (CP-prover, sidy, (m,'1,7,)), then A’ works
as follows. First, A" has seen all the messages 7 received by P; and can check that m) = mm;.
Likewise, A’ checks that '] = 72 (recall that r2 is the value recorded by A’ in the simulated
generation of P’s random tape above). Finally, A’ checks that m = [I(Z,r{ ©r?,mm;). (Notice
that since Py is corrupted, A" has all the necessary information to carry out these checks.) If
all of the above is true, then A" internally passes A the message (CP-proof, sidy, (m, T’%,W’l)),
as A expects to receive from FL,. Then, when A delivers this (CP-proof, .. .) message from FZ,
to P» in the simulation, A externally delivers the message that P, running II, has written on
its outgoing communication tape for P,.!® If any of these checks fail, then A’ does nothing.
(That is, no message is externally delivered from P; to P, at this point.) The case of A
sending a CP-proof message in the name of a corrupt P is analogous.

Dealing with corruption of parties:'” When the simulated A internally corrupts a party Py,
A’ first externally corrupts P, and obtains all of P;’s past inputs and outputs, and its random
tape. Next, A’ prepares for A a simulated internal state of P; in protocol Comp(IT). This is
done as follows. The only additional internal state that P; keeps in Comp(Il) is the random
string 71 (this is the string that P; commits to in the random tape generation phase of
Comp(II)). Then, A’ sets r{ = r; @ r?, where r1 is P;’s random string for II and r? is the
string that P, sent to P; in the internal simulated interaction with A of Comp(II). Thus, in
the above way, A’ prepares a simulated internal state of P; in Comp(II) and internally passes
it to A. A’ works in an analogous way upon the corruption of P;.

We argue that Z’s view of the interaction with A’ and parties running II in the real-life semi-
honest model is identical to its view of the interaction with .4 and parties running Comp(II) in the
Fep-hybrid model. (In particular, the view of the simulated A within A’ is identical to its view
in a real interaction with the same Z and Comp(Il) in the Fp-hybrid model.) This can be seen
by observing the computational steps in an interaction of Z with A’ and II. The cases where an
uncorrupted party sends a message are immediate. To see that this holds also in the case where A’
delivers messages sent by corrupted parties, recall that A’ forces the random input of a corrupted
Py in the internal execution of Comp(II) with A to be the random tape of the semi-honest party
Py externally executing II. Furthermore, A’ modifies the input tape of the external party P; so
that it is the same input as committed to by .A. We therefore have that the input and random
tapes that malicious A committed to for the internal P, are exactly the same as the input and
random tapes used by the external P;. Now, A’ obtains all the inputs committed to by a corrupted

¥ This point requires some elaboration. Notice that if all checks were successful, then the message that P, would
send in an execution of IT equals m. This is because external P; in IT and internal P; in Comp(II) both have the
same inputs, random tapes and series of incoming messages. Therefore, their outgoing messages are also the same.

¥In the case of static adversaries the simulation remains the same with the exception that this case is ignored.
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Py in the simulated interaction with A. Consequently, A’ is able to verify at every step if the
message m sent by A, in the name of a corrupted P; in the simulated interaction, is according to
the protocol specification. If yes, then we are guaranteed that P, generates the exact same message
m in the external execution of II. Thus, P, receives the same [I-message in the execution of II
(where the adversary A’ is semi-honest) and in the execution of Comp(II) (where the adversary
A is malicious). Furthermore, we are guaranteed that whenever A" delivers a message m in the
external execution of II, the simulated A generated and delivered a valid corresponding message
to Fep. Finally, the internal state that A receives from A’ upon corrupting a party is exactly the
same as it receives in a real execution of Comp(Il). In particular, observe that in the simulation
of the random tape generation phase when P; is not corrupted, A receives no information about
ri (it only sees a (receipt, sid;) message). Therefore, A’ can choose 71 as any value that it wishes
upon the corruption of Py, and in particular it can set it to equal r; ® 77 (recall that P indeed uses
the random tape r1; therefore this is consistent with its true internal state). We conclude that the
ensembles REAL and HYBRID are identical. |

4.8.2 Conclusions

Combining Proposition 4.4.3 and Corollary 4.8.2, we have that for any two-party ideal functionality
F, there exists a protocol that securely realizes F in the Fcp-hybrid model (in the presence of
malicious adversaries). Combining this with Proposition 4.7.1, and using the universal composition
theorem (Theorem 4.3.3), we obtain universally composable general two-party computation in the
Fzx-hybrid model. That is,

Theorem 4.8.3 (Theorem 4.2.2 — formally restated): Assume that trapdoor permutations exist.
Then, for any well-formed two-party ideal functionality F, there exists a non-trivial protocol that
securely realizes F in the Fyc-hybrid model in the presence of malicious, static adversaries. Further-
more, if two-party augmented non-commaitting encryption protocols exist, then for any adaptively
well-formed two-party ideal functionality F, there exists a non-trivial protocol that securely realizes
F in the F-hybrid model wn the presence of malicious, adaptive adversaries.

Recall that, under the assumption that trapdoor permutations exist, functionality Fe (the multi-
session extension of Fyx) can be securely realized in the Fcgps-hybrid model by protocols that uses
a single copy of the reference string. We can thus use the universal composition with joint state
theorem (Theorem 4.3.4) to obtain the following corollary:

Corollary 4.8.4 Assume that trapdoor permutations exist. Then, for any well-formed two-party
wdeal functionality F, there exists a non-trivial protocol that securely realizes F in the Fops-hybrid
model 1n the presence of malicious, static adversaries. Furthermore, if two-party augmented non-
committing encryption protocols exist, then for any adaptively well-formed two-party functionality
F, there exists a non-trivial protocol that securely realizes F in the Fors-hybrid model in the presence
of malicious, adaptive adversaries. In both cases, the protocol uses a single copy of Fogs-

4.9 Multi-party Secure Computation

This section extends the two-party constructions of Sections 4.5-4.8 to the multi-party setting,
thereby proving Theorem 4.2.3. The results here relate to a multi-party network where subsets of the
parties wish to realize arbitrary (possibly reactive) functionalities of their local inputs. Furthermore,
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there is an adaptive adversary that can corrupt any number of the parties (in particular, no honest
majority is assumed). Throughout, we continue to assume a completely asynchronous network
without guaranteed message delivery.

This section is organized as follows. We start by showing how to obtain UC multi-party com-
putation in the presence of semi-honest adversaries. Next we define a basic broadcast primitive
which will be essential for our protocols in the case of malicious adversaries. We then generalize
the UC commitment, zero-knowledge and F¢p functionalities to the multi-party case. Finally, we
construct a multi-party protocol compiler using the generalized F¢p, and obtain UC multi-party
computation in the malicious adversarial model. In our presentation below, we assume familiarity
with the two-party constructions.

4.9.1 Multi-party Secure Computation for Semi-Honest Adversaries

In this section, we sketch the construction of non-trivial protocols that securely realize any adap-
tively well-formed functionality F for semi-honest adversaries. (Recall the definition of adaptively
well-formed functionalities in Section 4.3.3.) The construction is a natural extension of the con-
struction for the two-party case. We assume that the set P of participating parties in any execution
is fixed and known; let this set be Pj,..., P;. Then, the input lines to the circuit (comprising of the
input value, random coins and internal state of the functionality) are shared amongst all £ parties.
That is, for every input bit ¢ to the circuit, the parties hold random bits «aq,..., oy, respectively,
under the constraint that o = @leai. Next, the parties compute the circuit inductively from the
inputs to outputs so that at every step, they hold shares of the lines already computed. Once the
circuit is fully computed, the parties reconstruct the outputs, as required. We now proceed to prove
the following proposition:

Proposition 4.9.1 Assume that trapdoor permutations exist. Then, for any well-formed (multi-
party) ideal functionality F, there exists a non-trivial protocol that securely realizes F in the presence
of semi-honest, static adversaries. Furthermore, if two-party augmented non-committing encryp-
tion protocols exist, then for any adaptively well-formed (multi-party) functionality F, there exists
a non-trivial protocol that securely realizes F in the presence of semi-honest, adaptive adversaries.

As in the two-party case, for adaptive adversaries we assume the existence of two-party augmented
non-committing encryption protocols. Indeed, as in the two-party case this assumption is needed
only to securely realize the two-party functionality Fa., which plays a central role even in the
multi-party case.

We begin our proof of Proposition 4.9.1 by presenting a non-trivial multi-party protocol I that
securely realizes any adaptively well-formed functionality F in the For-hybrid model. (We prove
the proposition for the adaptive case only, the static case is easily derived.) We start by defining
a boolean circuit Cr that represents an activation of F. The circuit Cr has 3m input lines: m
lines represent the input value sent to F in this activation (i.e., this is the input held by one of the
parties). The additional 2m input lines are used for F’s random coins and for holding F’s state at
the onset of the activation. The circuit also has m output lines for each party and m output lines
for final state of F after the activation (a total of m¢ + m lines). For more details on how F and
Cr are defined, see the description for the two-party case in Section 4.4.2 (the extensions to the
multi-party case are straightforward).
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Protocol IIx (for securely realizing F): Let the set of participating parties equal P =
{Py,...,P;}. We state the protocol for an activation in which P; sends a message to F. When
activated with input (sid,v) for P, where |v| < m, the protocol first pads v to length m (according
to some standard encoding), and sends a message to all the parties in P, asking them to participate
in a joint evaluation of C'r. Next, the parties do the following:

1. Input Preparation Stage:

e Input value: P; starts by sharing its input v with all parties. That is, P; chooses £ random
strings vi,...,vs €g {0,1}" with the constraint that @levi = v. Then, P, sends (sid, v;)
to P; for every 2 < ¢ < /¢, and stores v;.

e Internal state: At the onset of each activation, the parties hold shares of the current
internal state of 7. That is, let ¢ denote the current internal state of F, where |c| = m
and m is an upper bound on the size of the state string stored by F. Then, party P; holds
c¢i € {0,1}™ and all the ¢;’s are random under the restriction that ®¢_ ;c; = ¢. (In the
first activation of F, the internal state is empty and so the parties hold fixed shares 0 that
denote the empty state.)

e Random coins: Upon the first activation of F only, each party F; locally chooses a random
string r; €r {0,1}™. The strings rq,...,r, then constitute shares of the random coins
r = ®Y_,7; to be used by Cr in all activations.

At this point, the parties hold (random) shares of every input line of Cr.

2. Circuit Evaluation: The parties proceed to evaluate the circuit C'x in a gate-by-gate man-
ner. Let o and 3 denote the bit-values of the input lines to a given gate. Then every F; holds
bits «;, ; such that o = Zle o; and = Zle B;. The gates are computed as follows:

e Addition gates: If the gate is an addition gate, then each P; locally sets its share of the
output line of the gate to be v; = a; 4+ Bi. (Thus Y51 vi = Sr_ (i + ) =a+ 5 =7.)

o Multiplication gates: If the gate is a multiplication gate, then the parties need to compute
their shares of v = (Zle ozi) (Zle ﬂi). The key to carrying out this computation is the
following equality:

4 4 L
(Z‘“) (Z&) =Y aifit Y (@it a) - (Bi+5))
=1 =1 =1

1<i<j<e

(See [44, Section 3.2.2] for a justification of this equality.) Notice that each party can
compute a share of the first sum locally (by simply computing «; - f; and multiplying
the product by £). Shares of the second sum can be computed using activations of the
two-party oblivious transfer functionality Fa,. (That is, for each pair i and j, parties P;
and P; compute shares of (o; + ;) - (8; + ;). This is exactly the same computation as in
the two-party case and can be carried out using Fa,.) After computing all of the shares,
each party P; locally sums its shares into a value -;, and we have that Zle Vi = 7, as
required.

3. Output stage: Following the above stage, the parties hold shares of all the output lines of
the circuit Cz. Each output line of Cx is either an output addressed to one of the parties
Py, ..., P, or belongs to the internal state of Cr after the activation. The activation concludes
as follows:
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e P;’s output (for every i): For every j # ¢, party P; sends P; all of its shares in P;’s output
lines. F; then reconstructs every bit of its output value by adding the appropriate shares,
and writes the result on its output tape.

e Internal state: Py, ..., P; all locally store the shares that they hold for the internal state
lines of Cx. (These shares are to be used in the next activation.)

Recall that since we are working in an asynchronous network, there is no guarantee on the order of
message delivery and messages may be delivered “out of order”. In contrast, to maintain correctness
the protocol must be executed according to its prescribed order (e.g., new activations must begin
only after previous ones have completed and gates may be evaluated only after the shares of the
input lines are known). As in the two-party case, this is dealt with by assigning unique identifiers
to every message sent during all activations. A full description of how this can be achieved appears
in Section 4.4.2. By having the parties store messages that arrive before they are relevant in
appropriate buffers (where the time that a message becomes relevant is self-evident from the unique
tags), we have that all honest parties process the messages in correct order. Thus, it makes no
difference whether or not the adversary delivers the messages according to the prescribed order and
we can assume that all messages are delivered in order.

This completes the description of IIr. We now sketch the proof that IIx securely realizes any
adaptively well-formed multi-party functionality F:

Claim 4.9.2 Let F be an adaptively well-formed multi-party functionality. Then, protocol 1lr
securely realizes F in the For-hybrid model, in the presence of semi-honest, adaptive adversaries.

Proof (sketch): The proof of this claim is very similar to the two-party case (i.e., Claim 4.4.4).
First, it is clear that [Tz correctly computes F (i.e., all parties receive outputs that are distributed
according to F). Next, we show the existence of a simulator for IIz. The basis for the simulator’s
actions is the fact that, as long as there is at least one uncorrupted party, all the intermediary
values seen by the parties are uniformly distributed.

Let A be a semi-honest, adaptive adversary; we construct a simulator & for the ideal process
F. Simulator S internally invokes .4 and works as follows:

Simulating the communication with Z: The input values received by S from Z are written
on A’s input tape, and the output values of A are copied to S’s own output tape.

Simulation of the input stage: Recall that in this stage, the only messages sent are random

strings vy, ...,vy that P, sends to P,,..., ;. Thus, the simulation of this stage involves
simulating P; sending ¢ — 1 random strings vs,...,vs to Ps, ..., Pp. (If Py is corrupted, then
v9,...,vp are chosen according to P;’s random tape. Otherwise, S chooses each v; uniformly.)

Simulation of the circuit evaluation stage: The addition gates require no simulation since
they constitute local computation only. The multiplication gates involve simulation of pair-
wise oblivious transfer calls to F,. We describe the simulation of these oblivious transfers
separately for each corruption case.

1. Oblivious transfers run with an uncorrupted receiver: In the case that the receiver is not
corrupted, the only message seen by A in a call to For is the session-identifier used.
This is therefore easily simulated by S. (If the sender is corrupted, then its input table
to For is seen by A. However, this is already defined because it is a function of the
sender’s view which is known to A.)
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2. Oblivious transfers Tun with an uncorrupted sender and a corrupted receiver: In this
case, the receiver obtains a uniformly distributed bit v as output from the oblivious
transfer. Therefore, S merely chooses v, uniformly.

3. Oblivious transfers run with a corrupted sender and receiver: Simulation is straightfor-
ward when both participating parties are corrupted (all input values and random tapes
are already defined).

Simulation of the output stage: S simulates the parties sending strings in the output stage in

order to reconstruct their outputs. First, we note that the shares of the input lines, for any
party Pj that is already corrupted, are already defined. (This is because A holds the view of
P; and this view defines the shares that P; holds of all the output lines.) This means that
the strings that P; sends in the output stage are also defined. Now, S defines the strings
received by a party P; in the output stage as follows. If P; is not corrupted, then & simulates
all the other uncorrupted parties sending F; uniformly distributed strings. If P; is corrupted,
then S has P;’s output y;. S uses this to choose random strings for the honest parties so that
the exclusive-or of these strings along with the defined output strings sent by the corrupted
parties equals y;. (Thus, P;’s output is reconstructed to y;, as required.) Simulator S carries
out this simulation for all parties Py,..., Py.

Simulation of corruptions before the last honest party is corrupted: When some party F;

is corrupted, S should provide A with the internal state of P; for all the activations of F (i.e.,
for all the evaluations of C'r) so far. All the evaluations are dealt with independently from
each other (except that P;’s output shares of F’s internal state from one evaluation equals
its input shares of F’s internal state in the following evaluation). Also all evaluations, ex-
cept perhaps for the current one, are complete. Here we describe how S deals with a single,
complete activation. (If the current activation is not complete then S follows its instructions
until the point where P; is corrupted.)

Upon the corruption of party P;, simulator S receives F;’s input z; and output y;, and should
generate P;’s view of the simulated protocol execution. This view should be consistent with
the messages sent in the simulation so far. We begin with the simulation of P;’s view of the
input stage. If i = 1 (i.e., P is the party that is corrupted), then S obtains the input value
v. Let vg,...,vp be the random strings that P, sent P»,..., % in the simulated interaction.
Then, S defines P;’s share of the input to equal v; so that @levz- = v. S continues for any F;
(i.e., not just for ¢ = 1) as follows. S chooses random strings r; €g {0,1}™ and ¢; € {0,1}*
and sets P;’s inputs to Cx’s random-coins and internal state to be r; and c¢;, respectively.

Having completed the simulation of P;’s view of the input stage, S proceeds to simulate P;’s
view in the oblivious transfers of the protocol execution. Below we describe the simulation
for all the multiplication gates except for those immediately preceding output lines (these will
be dealt with separately below). We distinguish four cases:

1. Oblivious transfers run with P; as sender and an uncorrupted P; as receiver: Recall that
in every oblivious transfer, the sender inputs a random-bit ; to mask the outcome. In
this case, S simply chooses y; uniformly. (This is the random bit that P; supposedly
chose upon computing this gate.)

2. Oblivious transfers run with an uncorrupted P; as sender and P; as receiver: In this
case, in the execution of Il r, party P; receives a uniformly distributed bit v, as output
from the oblivious transfer. Therefore, S chooses s uniformly.
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3. Oblivious transfers run with P; as sender and an already corrupted P; as receiver: Pj is
already corrupted and therefore the value o that it received from this oblivious transfer
has already been fixed in the simulation. Furthermore, both F; and P;’s circuit inputs
v;, V5, T3, 7j and ¢;, c¢; have been fixed, as too have their views for all the multiplication
gates leading to this one. (S computes the view inductively from the inputs to the out-
puts.) Thus, the input lines to this oblivious transfer are fixed, as too is P;’s output from
the oblivious transfer. This fully defines the oblivious transfer table that P2 constructs
in the protocol execution (as well as its “random” bit ~;). Therefore, S constructs the
table according to the protocol instructions.

4. Oblivious transfers run with an already corrupted P; as sender and P; as receiver: As in
the previous case, the input lines and the random-bit v; that P; inputs into the oblivious
transfer are fixed. Since P;’s input into this oblivious transfer is also already fixed, this
fully defines the bit v that P; receives as output.

As we have mentioned, there is a difference regarding the simulation of multiplication gates
that precede output lines. (As in the two-party case, we assume for simplicity that every
output line is preceded by a multiplication gate.) We describe the simulation of these gates
together with the output stage. During the simulation of the output stage, P; received
uniformly distributed strings y! from every party P; (the strategy for choosing these values is
described in the item on “simulation of the output stage”). Note that all the yf-"s (for j # 1)
are defined and fixed.?? Upon the corruption of P;, simulator S receives P;’s output string ;.
The aim of S is to have P;’s output lines define shares y? such that @521 y! = y; (and thus P;’s
output reconstruction will be as required). This is done as follows. Recall that the evaluation
of each multiplication gate is comprised of a series of oblivious transfers between all pairs
of parties. Since P; is not the last honest party to be corrupted, there exists at least one
honest party P, with which P; runs a pairwise oblivious transfer in the computation of this
gate. All the oblivious transfers of this gate apart from this one are simulated as described
above. These simulations all provide bit-shares to P;: let b denote the sum of these shares. It
remains to simulate this last oblivious transfer between P; and FP;. Let ; be the bit of y: that
P; is supposed to receive as its share of the output line that follows from this multiplication
gate. Now, the specific oblivious transfer between P; and P, defines one share of the output
bit ~;, and all the other shares have already been fixed and sum to b. Thus, the aim of S is to
have P;’s output from the oblivious transfer with P; equal ; + b (and thus P;’s overall output
from the gate will be ~; as required). However, P, is not corrupted. Therefore, whether P;
is the sender or P, is the sender, P;’s output can be chosen arbitrarily by S. (See the first 2
of the 4 simulation cases above; in those cases, S merely chooses the output bit randomly.)
Thus, § sets the output bit to be v; + b and P; receives the correct bit. This completes the
simulation for the corruption of F;.

Simulation of the corruption of the last honest party: Let P, be the party that is corrupted

last. If ¢ = 1, then S obtains the input-value v into this activation. (As above, in this case,
S defines P;’s share of the input v; to be so that @521 vj = v.) In all cases, S obtains the
output-value y; that P; receives. Furthermore, since F is adaptively well-formed, S obtains
the random tape of F. Given this information, & computes the internal state of F in the
beginning of this activation. Let ¢ be this state string and let r equal F’s length-m random

20 Actually, corruption can happen in the middle of the output stage and in such a case only some of the output

strings may be fixed. In such a case, first (internally) fix all the output strings and then continue as here.
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tape. Now, all other parties are corrupted and thus the shares of the random tape r; are
fixed for every j # i. S takes P;’s share of the random tape to be r; so that 69;:1 rj =T.
Likewise, except for ¢;, all the shares of the state input ¢; are fixed. S thus defines ¢; so that
69;:1 ¢; = c¢. This completes the simulation of the input stage.

Next S simulates the circuit evaluation stage, working from the input gates to the output
gates, in the same way as described above (i.e., for the case that P; is not the last honest party
corrupted). Notice above that when P; runs an oblivious transfer with an already corrupted
party, then all the inputs and outputs are essentially fixed. Thus, S merely computes the bit
that P; should see in each oblivious transfer as in the above cases. We therefore have that
the simulation of this stage is a deterministic process. This simulation also defines the output
shares that P; receives, thus concluding the simulation.

Output delivery: S delivers the output from F to an uncorrupted party P; when A delivers all
the output shares y! that parties Pj send P; in the simulation.

It remains to show that no environment Z can distinguish the case that it interacts with & and F
in the ideal process or with A and II£ in the Fyr-hybrid model. The analysis is similar to the one
for the two-party case and is omitted. [

4.9.2 Authenticated Broadcast

In order to obtain our result, we assume that each set of parties that engage in a protocol execution
have access to an authenticated broadcast channel. The broadcast channel is modeled by the ideal
broadcast functionality, Fgo, as defined in Figure 4.12. In our protocols for malicious adversaries,
all communication among the parties is carried out via Fyc.

Functionality F.

Fsc proceeds as follows, running with parties Py, ..., P, and an adversary S:

e Upon receiving a message (broadcast,sid,P,z) from P;, where P is a set of parties, send
(broadcast, sid, P;, P, x) to all parties in P and to S, and halt.

Figure 4.12: The ideal broadcast functionality

Note that the Fyzc-hybrid model does not guarantee delivery of messages, nor does it provide
any synchrony guarantees for the messages that are delivered. It only guarantees that no two
uncorrupted parties in P will receive two different message with the same sid. We now show
that Fge can be securely realized, for any number of corrupted parties and without any setup
assumptions.

Protocol 2 (universally composable broadcast):
e Input: P; has input (broadcast, sid, P, x).
e The Protocol:

1. P; sends (sid, P, x) to all parties.

2. Denote by (P7,27) the message received by P; in the previous round. Then, every party P;
(for j # 1) sends its message (sid, P?,z7) to all other parties.
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3. Denote the message received by P; from Py in the previous round by (P,i,xfc) (recall
that a7 denotes the value P; received from P; in the first round). Then, P; outputs
(broadcast, sid, P;, P, x7) if it belongs to the set P, if it received all the messages (P, x7)
and this is the only message that it saw (i.e., if it received (Pi,x7) from every Py, and it
holds that all these messages are the same). Otherwise, it outputs nothing.

We note that iof P; did not receive any value in the first round, then it does not output
anything.

Proposition 4.9.3 Protocol 2 securely realizes Fye (in the universally composable framework).

Proof: Let A be a real-model adversary attacking Protocol 2. We construct an ideal model
adversary S for A that interacts with Fy.. We differentiate between two cases: in the first the
dealer is corrupted (and thus is controlled by A), and in the second it is honest. Let P; be the
dealer in this execution.

e Case 1 - P; is corrupt: In the first round, A (controlling P;) sends messages to ¢ of the honest
parties for some ¢; denote these messages by (P;,,x;,),...,(Ps,, ;). Simulator S receives all
these messages and then simulates the messages sent by the honest parties in the second round.
Furthermore, S obtains all the messages sent by 4 in the second round.

Now, if there exist j and k (1 < j,k < () such that (P;;,z;;) # (Pi,, i), then S sends
nothing to Fge. Otherwise, let x be the message sent by A. Then, S sends x to the ideal
functionality Fgze. Next, S defines the set of honest parties to whom to deliver the output
(broadcast, sid, P;, P,x) from Fg.. This set of parties is defined to be those parties in P to
whom A delivers all the second round messages and whose messages all contain the same z. S
concludes by delivering the messages from the Fy functionality to these parties, and only to
these parties.

e Case 2 — P; is honest: S receives (broadcast, sid, P;, P, z) from Fye and simulates P;’s sending
x to all the parties controlled by .A. Then, S receives back messages sent by A to the honest
parties. S defines the set of parties to whom to deliver output as those in P who receive all
the second round messages and who only see z. Then, S delivers the messages from the Fyc
functionality to these and only to these parties.

We claim that the global output of an ideal execution with & is identically distributed to the global
output of a real execution with A. We first deal with the case that P; is corrupt. If A sends two
different messages in round 1 (i.e., if there exist j and k such that (P;;,z;) # (Pi;, 7)), then by
the protocol definition, all honest parties will see both (P;,,z;) and (P;,, ). (Here it is important
that parties do not output (P, z) unless seeing the round 2 messages of all parties.) Therefore, in
a real execution all honest parties will output nothing. This is identical to the case that S does
not send anything to Fye in an ideal execution. In contrast, if A sends the same message = to all
honest parties in the first round, then the outputs depend on what A4 sends in the second round.
Since S receives all these messages from A, it can see which parties would output (P, x) and which
parties would output nothing. S thus delivers the (broadcast,...) messages from Fye only to the
parties which would output z in the real model. We conclude that the output is identical.

In the case that P; is honest, A can cause honest parties to output nothing (rather than x) by
sending them messages (P',z') # (P,z) in the second round or by not delivering messages. As
above, S receives all these messages and therefore its delivery of (broadcast, ...) messages from Fge
accurately represents exactly what happens in a real execution. [
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4.9.3 One-to-Many Commitment, Zero-Knowledge and Commit-and-Prove

One-to-Many UC commitment. We begin by defining a one-to-many extension of the UC
commitment functionality, denoted F\;}t,. In this functionality, one party commits to a value to
many receivers. The formal definition appears in Figure 4.13. Similarly to the two-party case, the
commitment functionality is presented as a multi-session functionality. From here on, the JUC
theorem of [21] is applied and we consider only single-session functionalities (see Section 4.3.2 for
more explanation). We denote the single session analog to Fyi o, by Flon-

Functionality FlM

MCOM

FLM . proceeds as follows, running with parties Py, ..., P, and an adversary S:

e Commit Phase: Upon receiving a message (commit, sid, ssid, P,b) from P, where P is a set of
parties and b € {0, 1}, record the tuple (ssid, P;, P,b) and send the message (receipt, sid, ssid, P;, P)
to all the parties in P and to S. Ignore any future commit messages with the same ssid.

e Prove Phase: Upon receiving a message (reveal, sid, ssid) from P;: If a tuple (ssid, P;, P,b) was
previously recorded, then send the message (reveal, sid, ssid, b) to all parties in P and to S. Other-
wise, ignore.

Figure 4.13: One-to-Many multi-session commitment

The key observation in realizing the F} i, functionality is that Protocol UAHC (of Section 4.5)
that securely realizes the two-party commitment functionality Fycoy is non-interactive. Therefore,
the one-to-many extension is obtained by simply having the committer broadcast the commitment
string of Protocol UAHC to all the participating parties on the broadcast channel. The proof
that this protocol realizes F i, is almost identical to the proof that Protocol UAHC realizes
Fucou, and is omitted. We do, however, mention one important point. The commitment string
is broadcast using the Fgo functionality which ensures that only one message is broadcast using
a given session identifier. This is important because otherwise the adversary could broadcast two
different commitment strings ¢; and ¢y, where it delivers ¢; to some of the honest parties and
¢z to the others. This is, of course, not allowed by the F 5, functionality that ensures that all
parties receive the same commitment for the same identifier pair (sid, ssid). We therefore have the
following:

Proposition 4.9.4 Assuming the ezistence of trapdoor permutations, there exists a (non-interactive)
protocol that securely realizes FEM, in the (Fors, Fac)-hybrid model?! | in the presence of malicious,

adaptive adversaries. Furthermore, this protocol uses only a single copy of Fegs.

One-to-Many UC zero-knowledge. Similarly to the one-to-many extension of commitments,
we define a one-to-many functionality where one party proves a statement to some set of par-
ties. The definition of the (single-session) one-to-many zero-knowledge functionality, denoted F M,
appears in Figure 4.14. (For simplicity, in the multi-party case we concentrate on single-session
zero-knowledge, constructed using a single-session version of F; ), These protocols will later be
composed, using universal composition with joint state, to obtain protocols that use only a single
copy of the reference string when realizing all the copies of of F;M.)

2y the (Fers, Fuc)-hybrid model, all parties have ideal access to both the common reference string functionality
Fers and the ideal broadcast functionality Fye.
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Functionality F,M

FrM proceeds as follows, running with parties Py, ..., P, and an adversary S, and parameterized with
a relation R:

e Upon receiving a message (ZK-prover, sid, P,z,w) from a party P; where P is a set of parties: If
R(z,w) = 1, then send (ZK-proof, sid, P;,P,z) to all parties in P and to & and halt. Otherwise,
halt.

Figure 4.14: Single-session, One-to-Many zero-knowledge

As with the case of commitments, a non-interactive protocol that realizes the two-party zero-
knowledge functionality F,x could be directly used to realize F,;. For the case of static adversaries,
the protocol of [26] can be used. However, for the case of adaptive adversaries, no non-interactive
protocol is known. Rather, we base the one-to-many extension on the interactive UC zero-knowledge
protocol of [16]. Their protocol is basically that of parallel Hamiltonicity (cf. [11]), except that the
commitments used are universally composable. Our extension of this protocol to the one-to-many
case follows the methodology of [44] and is presented in the proof of the following proposition:

Proposition 4.9.5 There exists a protocol that realizes FjM in the (Flon, Fsc)-hybrid model, in
the presence of malicious, adaptive adversaries.

Proof (sketch): The protocol for realizing F,; works by having the prover separately prove the
statement in question to all parties. The protocol used in each of these pairwise proofs is exactly
the two-party protocol of [16], with the exception that the messages of each proof are broadcast to
all parties. (This also means that all commitments and decommitments are run using Fgo%,, rather
than the two-party Foom. (Fapy 1S the single-session parallel to Fi,.) Also, the protocol must
make sure that each invocation of broadcast will have a unique session ID. This can be done in
standard ways, given the unique session ID of the zero-knowledge protocol.) Then, a party accepts
the proof, outputting (ZK-proof, sid, P;, P, x), if and only if all the pairwise proofs are accepting.
Note that, other than the use of F3)},, no cryptographic primitives are used. Indeed, security of
this protocol in the Fj y-hybrid model is unconditional.

Next, note that it is indeed possible for the parties to know whether all the pairwise proofs are
accepting. This is because all the commitments and messages are seen by all the parties and the
zero-knowledge proof of Hamiltonicity used by [16] is publicly verifiable (i.e., it is enough to see
the transcript of prover/verifier messages to know whether or not the proof was accepted by the
verifier).

Now, recall that in order to prove the universal composability of F:™, we must present an
ideal-process adversary (i.e., a simulator) that simulates proofs for the case that the prover is not
corrupted and verifiers are corrupted, and is also able to extract the witness from an adversarially
generated proof (for the case that the prover is corrupted). When simulating a proof for a corrupted
verifier, the simulator for 7, works simply by running the simulator of the two-party protocol
of [16] for every pairwise proof. On the other hand, in order to extract the witness from a corrupted
prover, first note that it is possible to run the two-party extractor for any pairwise proof in which
the verifier is not corrupted. Now, the scenario in which we need to run the extractor here is where
the prover is corrupted and at least one verifier is not (otherwise, all parties are corrupted and
simulation is straightforward). Therefore, there exists one pairwise proof in which the verifier is
not corrupted. The simulator for F; thus runs the simulator for the protocol of [16] for this proof.
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Finally, we note that the simulator delivers the output of F,;* to the verifiers if and only if all
verifiers accept in the simulation. (Thus, the parties’ outputs in the ideal process are the same as
in a real execution.) This concludes the proof sketch. W

One-to-Many UC commit-and-prove. The one-to-many extension of the commit-and-prove
functionality, denoted F}M, is presented in Figure 4.15. The functionality handles a single session
only, and requires that all commitments and proofs are to the same set P. (This set is fixed the
first time a commit is sent with a given sid.)

Functionality F}M

FEM proceeds as follows, running with parties P, ..., P, and an adversary S, and parameterized by a
value k£ and a relation R:

e Commit Phase: Upon receiving a message (commit, sid, P, w) from P; where P is a set of parties
and w € {0, 1}*, append the value w to the list W, record P, and send the message (receipt, sid, P;, P)
to the parties in P and S. (Initially, the list w is empty. Also, if a commit message has already
been received, then check that the recorded set of parties is P. If it is a different set, then ignore
this message.)

e Prove Phase: Upon receiving a message (CP-prover,sid,z) from P;, where z € {0,1}Pe(k),
compute R(z,w): If R(z,w) = 1, then send the message (CP-proof, sid,z) to the parties in P and
to §. Otherwise, ignore.

Figure 4.15: One-to-Many commit-and-prove

Our protocol for securely realizing the one-to-many commit-and-prove functionality F2" is
constructed in the F;M-hybrid model. The protocol, denoted ACP** | is very similar to Protocol
ACP for the two-party case. Recall that Protocol ACP begins with the receiver choosing a pair
(s,t), where s = f(t) and f is a one-way function. The value s is then used by the committer who
commits to w by sending ¢ = aHC4(w;r). This is generalized in the natural way by having every
receiving party P; choose a pair (sj,t;), and the committer then sending c¢; = aHC,, (w;r;) for all
values of s;. In addition, the committer proves that all these commitments are to the same w (this
is done to prevent the committer from committing to different w’s for different s;’s). We define a
compound commitment scheme as follows. Let § = (s1,...,s¢) and ¥ = (r1,...,rg). Then, define
aHCy(w; ) = (aHCy, (w;r1),...,aHC,, (w; ;). Restating the above, the commit phase consists of
the committer committing to w using the compound scheme aHCz and proving that the commitment
was generated correctly.

The multi-party protocol ACP** uses three different copies of F;, where each copy is param-
eterized by a different relation. The copies are denoted 7, (for the initialization phase), 72
(for the commit stage) and F, (for the prove stage). These functionalities are differentiated by
session identifiers sidy, stdc and sidp, respectively. These identifiers should be unique, as long as
the session ID of the current instance of ACP"™ is unique. One way to guarantee this is setting
stdp = sid o T, sidg = sid o C and sidp = sid o P, where sid is the session ID of the current
instance of ACP"™. The protocol is presented in Figure 4.16.

Proposition 4.9.6 Assuming the existence of one-way functions, Protocol ACP*™ of Figure 4.16
securely realizes F2" in the Fi'-hybrid model, in the presence of adaptive adversaries.
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Protocol ACP'™

e Auxiliary Input: A security parameter k, and a session identifier sid.

e Initialization phase:
The first time that the committer P; wishes to commit to a value to the set of parties P using
the identifier sid, the parties in P execute the following initialization phase. (To simplify notation,
assume that P = {P,..., P;} for some ¢, and that the sender belongs to P. Also, the parties ignore
incoming messages that are addressed to a set P’ that is different than the set P specified in the
first message.)

1. P; sends a (broadcast, sid, P, begin-commit) message to Fyc to indicate that it wishes to initiate
a commit activation.

2. Upon receiving (broadcast, sid, P;, P, begin-commit), each party P; € P records the triple
(sid, P;,P). From here on, the parties only relate to messages with identifier sid if they are
associated with the committer/prover P; and set of parties P.

Then, every P; chooses t; €r {0,1}*, computes s; = f(t;) (where f is a one-way function),
and sends (ZK-prover, sidr, P, s;,t;) to i, where | is parameterized by the relation Rr
defined by: def

' Rr = {(s,t) | s = f(8)}

3. Upon receiving (ZK-proof, sidr, P;, P, s;) from F,;Y, all the parties in P (including the com-
mitter P;) record the value s;. This phase concludes when all parties in P have sent the
appropriate ZK-proof message, and thus when all the parties hold the vector 3= (s1,...,s¢).

The parties now proceed to the commit phase.
e Commit phase: (P;’s input is (commit, sid, P, w), where w € {0,1}*.)

1. P; computes the compound commitment ¢ = aHCz(w;7) where the vector §is the one obtained
in the initialization phase, and the r;’s in 7 are uniformly chosen.
P; then sends (ZK-prover, sidc, P, (5, ¢), (w,7)) to F, where FiN is parameterized by the
relation R¢ defined by:

Re ¥ {(3,¢),(w,7) | ¢ = aHCy(w; 7)}

(That is, R¢ verifies that ¢ is a valid compound commitment to the value w, using 3.)
In addition, P; stores in a list w all the values w that were sent, and in lists ¢ and 7 the
corresponding commitment values ¢ and random strings ¥ = (r1,...,7¢).
2. Upon receiving (ZK-proof, sidc, P;, P, (5,c)) from F,M, every party P; € P verifies that
§ = § (where § equals the list of strings that it recorded in the initialization phase). If yes,
then P; outputs (receipt, sid) and adds the commitment c to its list €. (Initially, ¢ is empty.)
Otherwise, the parties in P ignore the message.
e Prove phase: (P;’s input is (CP-prover, sid, z).)

1. P; sends (ZK-prover, sidp, P;, P, (z,5,¢), (W,T)) to F;%, where ¢, W and T are the lists de-
scribed above. Let @ = (w1, ..., wm), €= (c1,.--,¢m) and T = (71,..., 7). Then, F; is
parameterized by the relation Rp defined by:

def - _ _ . —
Rp = {((CE,S,C), (’IU,T)) | R(a:,w) =1&Vj Cj = aHC;(wj;rj)}

That is, Rp verifies that R(z,w) = 1 and that € contains commitments to the previously
committed values w.

2. Upon receiving (ZK-proof, sidp, P;, P, (z,5,¢)) from F,;",, every party in P verifies that 5 = &
and that its list of stored commitments equals €. If yes, then it outputs (CP-proof, sid, z).
Otherwise, it ignores the message.

Figure 4.16: A protocol for realizing F3" for adaptive adversaries
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Proof (sketch): The proof of this proposition is very similar to the proof of Proposition 4.7.2
for the two-party case. Let A be an adaptive adversary who operates against Protocol ACP"™
in the F,;"-hybrid model. We construct a simulator S such that no environment Z can tell with
non-negligible probability whether it is interacting with A and parties running Protocol ACP*™ in
the F,:M-hybrid model or with S in the ideal process for F>'. Simulator S operates by running a
simulated copy of A and using A in order to interact with Z and F})'. S works as follows.

Simulating the initialization phase: S records the pairs (s1,%1),..., (s, t¢) from the initializa-
tion phase of an execution, and defines § = (s1,...,s¢). For every uncorrupted receiving
party P, simulator S chooses the pair (sj,¢;) by itself. For corrupted receiving parties, the
pairs are chosen by the simulated A and S obtains the ¢;’s from A’s messages to F;%.

Simulating the case where the committer is corrupted: We first describe how to simulate
the commit phase. Whenever A (controlling P;) wishes to commit to a value, S obtains
the message (ZK-prover,sidc, P, (8,¢), (w,7)) that A sends to F .. S checks that 5 is as
generated in the initialization phase and that ¢ = aHCz(w; 7). If yes, then S internally passes
A the message (ZK-proof, sidc, P, (5,¢)) and externally sends (commit, sid, P,w) to FEiM.
Furthermore, & adds the commitment ¢ to its list of commitments €.

We now describe the simulation of the prove phase. Whenever A wishes to prove a statement,
S receives the message (ZK-prover, sidp, (z, 5,¢), (w,T)) that A sends to F;",. S then checks
that the list ¢ is as stored above and that R(z,w) = 1. If yes, then S internally passes
(ZK-proof, sidp, (x, §,¢)) to A and externally sends (CP-prover, sid, z) to F3,". Otherwise, it
ignores the message.

Simulating the case where the committer is not corrupted: Whenever an uncorrupted party
P; commits to an unknown value w, simulator S hands A a commitment to 0¥ as the com-
mitment value. More precisely, whenever S receives from F} a message (receipt, sid, P;, P)
where P; is uncorrupted, simulator S computes ¢ = aHC#(0%;7) and hands A the message
(ZK-proof, sid¢, P;, P, (5, c)), as if coming from Fj, . (Recall that by the aHC scheme, given
the trapdoor information £ = (¢1,...,t), a commitment to 0 with § can be opened as either
0 or 1; see Section 4.5.)

The simulation of the prove phase is carried out as follows. Whenever S receives a message
(CP-proof, sid, ) from F3*, it internally passes A the message (ZK-proof, sidp,(z,3,T)),
where ¢ is the list of simulated commitments generated above.

Dealing with the corruption of parties: The only private information held by a receiving party
P; is the trapdoor information ¢; that it chooses in the initialization phase. As we have seen in
the simulation of the initialization phase above, S knows all of the trapdoors in the simulated
execution. Therefore, when A corrupts a receiving party P;, simulator & internally passes t;

to A.

The committing party P;’s private state in an execution of Protocol ACP*™ consists of the
list of committed values w and the list of vectors of random strings 7 (that contain the
decommitment information of the list ¢). Therefore, when A corrupts the committer P,
simulator S first externally corrupts P; in the ideal process and obtains the list w. Next, S
generates the list 7 so that the simulated list of commitments € is “explained” as a list of
commitments to w. S can do this because it has all of the trapdoor information t;,...,%,
(this case is identical to in the proof of Proposition 4.7.2).
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The analysis of the correctness of the simulation is analogous to in the two-party case and is omitted.

4.9.4 Multi-party Secure Computation for Malicious Adversaries

As in the two-party case, multi-party secure computation in the presence of malicious adversaries is
obtained by constructing a protocol compiler that transforms protocols for the semi-honest model
into protocols for the malicious model. This compiler is then applied to Protocol 11+ of Section 4.9.1.
The compiler is constructed in the F/;'-hybrid model and in a very similar way to the two-party
compiler. The compiler itself is described in Figure 4.17. We note that each party has to commit
and prove statements to all other parties during the protocol execution. In order to do this, each
party P; uses a separate invocation of F3*, with session ID sid;. (Also here, the protocol should
make sure that these session ID’s are unique as long as the session ID of the current copy of Comp(1I)
is unique. This can be done by setting sid; = sid o ¢ where sid is the session ID of the current
copy of Comp(II). The relations parameterizing these functionalities are natural extensions of the
relations parameterizing the relations F}, and F2, in the two-party compiler of Figure 4.11. The
multi-party compiler here also uses “standard” commitments (rather than UC commitments) for
coin-tossing. In order to remain in the F}"-hybrid model, these commitments are implemented by
Fit where the relation used is the identity relation (and so a proof is just a decommitment). Once
again, the different invocations of F}2* are distinguished by unique identifiers (in the coin-tossing
used for generating P;’s random tape, P; uses F* with session ID sid; ; = sid o i o j). Notice
that protocol Comp(Il) essentially broadcasts (via F}o"') each message that was sent in II, even if
this message was originally sent only to a single party. This is done to provide all parties with
consistent views of the execution; it clearly has no negative effect on the security of the protocol
(since the adversary anyway sees all messages).

Implicit in the above protocol specification is the fact that all parties only consider messages
that are associated with the specified session identifiers and referring to the same set of parties P.
All other messages are ignored. As in the two-party case, we assume that I is such that the parties
copy their input tape onto an internal work tape when first activated.

We now prove that the compiler achieves the desired result:

Proposition 4.9.7 (multi-party protocol compiler): Let II be a multi-party protocol and let Comp(1I)

be the protocol obtained by applying the compiler of Figure 4.17 to II. Then, for every malicious

adversary A that interacts with Comp(Il) in the F3p"-hybrid model there exists a semi-honest

adversary A’ that interacts with 11 in the plain real-life model, such that for every environment Z,
1:M

REAL 4z = HYBRID?;l:np(H),A,Z

Proof (sketch): The proof sketch is very similar to the proof of Proposition 4.8.1 for the two-party
case. We construct a semi-honest adversary A’ from the malicious adversary A. Adversary A’ runs
the protocol II while internally simulating an execution of Comp(Il) for \A. The key point in the
simulation is that A’ is able to complete the simulation in spite of the fact that, being semi-honest,
it cannot diverge from the protocol specification. This is so since A is forced to send all messages
via FiM that verifies their correctness. Thus, essentially, A must behave in a semi-honest way and
can be simulated by a truly semi-honest party A’. (Of course, A is not semi-honest and can send
arbitrary messages. However, since all invalid messages are ignored by F 2" in Comp(Il), they do
not cause any problem.) A’ runs a simulated copy of A, and proceeds as follows:
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(a)
(b)

()

(a)

Comp(1I)

Party P; proceeds as follows (the code for all other parties is analogous):

1. Random tape generation: When activating Comp(II) for the first time with session identifier sid and
set P or parties, party P; proceeds as follows. For every party Pj, the parties run the following
procedure in order to choose a random tape for P;:

P; chooses rg €r {0,1}* and sends (commit, sidi,j,P,rg) to FLM,

P; receives (receipt, sidy j, Pi, P) for every P, € P. P; also receives (receipt, sid;, Pj, P), where

P; is the party for whom the random tape is being chosen. P; then uses FEM to decommit
f That is, P; sends (CP-prover, sidi,j,v“f) to FHM | where the relation parame-
terizing the FALM functionality with identifier sid;; is the identity relation (i.e., Fi:M sends
(CP-proof, Sidiyijj) if r{ was the value previously committed to; it thus serves as a regular

7

to its value r

commitment functionality).
P; receives (CP-proof, sidy ;, ri) messages for every k # j and defines the string s; = @k# ri.
(The random tape for P; is defined by r; =7} @ s;.)

When choosing a random tape for P;, the only difference for P; is that it sends its random string
ri to FEM indexed by session-identifier sid; and it does not decommit (as is understood from P;’s
behavior above).

2. Activation due to new input: When activated with input (sid,x), party P; proceeds as follows.

Input commitment: P; sends (commit, sid;, P, ) to Fi™M and adds z to the list of inputs F; (this
list is initially empty and contains P;’s inputs from all the previous activations of IT). (At this
point all other parties P; receive the message (receipt, sid;, P;, P) from FEM_ P; then proceeds

to the next step.)

Protocol computation: Let m be the series of II-messages that were broadcast in all the activa-
tions of 11 until now (7 is initially empty). P; runs the code of 11 on its input list Z;, messages
mm, and random tape 7; (as generated above). If II instructs P; to broadcast a message, P;
proceeds to the next step (Step 2c).

Outgoing message transmission: For each outgoing message m that P; sends in II, P; sends
(CP-prover, sid;, (m, s;,m)) to FLM with a relation Ry defined as follows:

Rn = {((m: Si:m): (Etar:)) | m= H(@;Tz D Si:m)}

In other words, P; proves that m is the correct next message generated by Il when the input
sequence is T;, the random tape is r; = r! @ s; and the series of broadcast II-messages equals
m. (Recall that ! and all the elements of Z; were committed to by P; in the past using comuinit
activations of ‘7-11.1:,M with identifier sid;, and that s; is the random-string derived in the random
tape generation for P; above.)

3. Activation due to incoming message: Upon receiving a message (CP-proof,sid;, (m,s;,m)) that is
sent by P;, party P; first verifies that the following conditions hold (note that FALM with sid; is
parameterized by the same relation Ry as FiM with sid; above):

e s; is the random string that is derived in the random tape generation for P; above.

e T equals the series of II-messages that were broadcast in all the activations until now. (P; knows
these messages because all parties see all messages sent.)

If any of these conditions fail, then P; ignores the messages. Otherwise, P; appends m to m and
proceeds as in Steps 2b and send-step-multi above.

4. Output: Whenever II generates an output value, Comp(II) generates the same output value.

Figure 4.17: The compiled protocol Comp(II)
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Simulating the communication with Z: The input values received by A’ from Z are written
on A’s input tape, and the output values of A are copied to .A”’s own output tape.

Simulating the “random tape generation” phase: When the first activation of I takes place,
A’ simulates the random tape generation phase of Comp(II) for .A. We describe .A”’s simula-
tion of the random tape generation for a party P; (this simulation is repeated for every j).
We differentiate between the case that P; is honest and P; is corrupted:

1. Party P; is not corrupted: A’ hands A the message (receipt, sid;, P;, P) from F>" (this
refers to P;’s commitment). In addition, A" simulates all the (receipt, sidy ;, Py, P) mes-
sages that A’ expects to receive from F})". A’ completes the simulation by passing A
the “decommit” messages (CP-proof, sidy, ;,77.) for every uncorrupted party Py. A’ also
obtains (commit, sidy, ;,7,) messages from A for the corrupted parties Py as well as the
respective decommit messages (CP-prover, sidkyj,ri). A’ computes s; as in the protocol
and records this value.

2. Party Pj 1is corrupted: Let r; be the random tape of the semi-honest party P; in pro-
tocol II. Now, as above, for every uncorrupted party Py, adversary A’ passes A the
(receipt, sidy j, Py, P) messages that A expects to receive from F}*. A’ also obtains
(commit, sidy, ;, ri) messages from A (for every corrupt Py) and corrupted Pj’s commit-
ment (commit, sid;, 7). Notice that at this point, A is bound to all the r; values of
the corrupted parties, whereas A’ is still free to choose the analogous values for the
uncorrupted parties. Therefore, in the “decommitment” part of the phase, A’ chooses
the uncorrupted parties’ values so that @f;zl ] = r; where 7; is the random tape of the
external P; in II. (Thus, A’ forces A into using r; for the malicious P; in Comp(II) as
well.)

Simulating an activation due to a new input: When the first message of an activation of II
is sent, A’ internally simulates for A the appropriate stage in Comp(II). This is done as
follows. Let P; be the activated party with a new input. If P; is not corrupted, then A’
internally passes A the message (receipt, sid;, P;, P) that A expects to receive from FiM. If
P; is corrupted, then A’ receives a message (commit, sid;, P, z) from A (who controls P;). A’
adds x to its list T; of inputs received from P; and passes A the string (receipt, sid;i, P;, P).
Furthermore, A" sets P,;’s input tape to equal x. (Recall that in the semi-honest model, A’
can modify the input that the environment writes on a corrupted party’s input tape.)

Dealing with messages sent by honest parties: If an uncorrupted party P; sends a message
m in II to a corrupted party (controlled by A’), then A’ prepares a simulated message of
Comp(II) to give to A. Specifically, A’ passes A the message (CP-proof, sid;, (m, s;,T)) as
expected from F "

Dealing with messages sent by corrupted parties: When A sends a Comp(II)-message from
a corrupted party, A’ translates this to the appropriate message in II. That is, A’ obtains
a message (CP-prover, sid;, (m,s;,m)) from A controlling a corrupted party P;. A’ checks
that the series of broadcasted II-messages is indeed 7. A’ also checks that si = s;, where
s; is the value defined in the random tape generation phase. Finally, A’ checks that m =
11(7;, s;Drt,m). If yes, then it delivers the message written on semi-honest party P;’s outgoing
communication tape in II. Otherwise, A" does nothing.
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Dealing with corruption of parties: When the simulated A internally corrupts a party F;, ad-
versary A’ externally corrupts P; and obtains all of its past inputs, outputs and random tapes
in II. Then, A’ prepares a simulated internal state of P; in Comp(II). The only additional
state that P; has in Comp(II) is the random string r¢ for the random tape generation phase.
Since the string s; is public and fixed, A’ sets Tf so that r; = s; ® rf, where r; is P;’s random
tape in II.

We now claim that Z’s view of an interaction with A’ and II is distributed identically to its view of
an interaction with A and Comp(II). This follows from the same observations as in the two-party
case. The key points are as follows. For every corrupted P;, the semi-honest adversary A’ can force
A into using the exact random tape of P; in II. Furthermore, any modification of the inputs made
by A can also be carried out by A’. We therefore have that if A follows the protocol specification
with respect to these inputs and random tapes, then the semi-honest parties in II will send exactly
the same messages as the malicious parties in Comp(II). The proof is concluded by observing that
A must follow the protocol specification because the FEM functionality enforces this. Thus, A"s
checks of correctness in the simulation perfectly simulate the behavior of /" in a hybrid execution.
Finally, the internal state revealed to A in the case of a corruption is exactly as it expects to see.
This completes the proof. W

Conclusions

By combining Propositions 4.9.5 and 4.9.6, and using the universal composition theorem (Theorem
4.3.3), we obtain that FiM can be securely realized in the (Fge, Fide,)-hybrid model, assuming
the existence of trapdoor permutations. Then, combining this with Proposition 4.9.7 we obtain
a protocol compiler in the same hybrid model and under the same assumptions. Applying this
compiler to Proposition 4.9.1, we derive universally composable multi-party computation in the
presence of malicious adversaries. That is:

Theorem 4.9.8 Assume that trapdoor permutations exist. Then, for any well-formed multi-party
ideal functionality F, there exists a non-trivial protocol that securely realizes F in the (Fpo, Frioou)-
hybrid model in the presence of malicious, static adversaries. Furthermore, if two-party augmented
non-committing encryption protocols exist, then for any adaptively well-formed multi-party ideal
functionality F, there exists a nmon-trivial protocol that securely realizes F in the (Fac, Foidom)-
hybrid model in the presence of malicious, adaptive adversaries.

By combining Theorem 4.9.8 and Proposition 4.9.4, and using the universal composition with joint
state theorem (Theorem 4.3.4), we obtain:

Theorem 4.9.9 (Theorem 4.2.3 — restated): Assume that trapdoor permutations exist. Then, for
any well-formed multi-party ideal functionality F, there exists a non-trivial protocol that securely
realizes F in the (Fyo, Fers)-hybrid model in the presence of malicious, static adversaries. Further-
more, if two-party augmented non-commaitting encryption protocols exist, then for any adaptively
well-formed multi-party ideal functionality F, there exists a non-trivial protocol that securely real-
izes F in the (Fac, Fors)-hybrid model in the presence of malicious, adaptive adversaries. In both
cases, the protocol uses only a single copy of Fegs.
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Appendix A

Abstracts of Additional Results

In this appendix we present abstracts of additional work done by the author during graduate studies
at the Weizmann Institute of Science.

A.1 Secure Protocols

Session-Key Generation using Human Passwords Only [50]: In this paper, we present
session-key generation protocols in a model where the legitimate parties share only a human-
memorizable password. The security guarantee holds with respect to probabilistic polynomial-time
adversaries that control the communication channel (between the parties), and may omit, insert
and modify messages at their choice. Loosely speaking, the effect of such an adversary that attacks
an execution of our protocol is comparable to an attack in which an adversary is only allowed to
make a constant number of queries of the form “is w the password of Party A”. We stress that
the result holds also in case the passwords are selected at random from a small dictionary so that
it is feasible (for the adversary) to scan the entire directory. We note that prior to our result, it
was not clear whether or not such protocols were attainable without the use of random oracles or
additional setup assumptions.

Joint work with Oded Goldreich.

Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation [64]: In
this paper we show that any two-party functionality can be securely computed in a constant number
of rounds, where security is obtained against (polynomial-time) malicious adversaries that may
arbitrarily deviate from the protocol specification. This is in contrast to Yao’s constant-round
protocol that ensures security only in the face of semi-honest adversaries, and to its malicious
adversary version that requires a polynomial number of rounds.

In order to obtain our result, we present a constant-round protocol for secure coin-tossing of
polynomially many coins (in parallel). We then show how this protocol can be used in conjunction
with other existing constructions in order to obtain a constant-round protocol for securely comput-
ing any two-party functionality. On the subject of coin-tossing, we also present a constant-round
almost perfect coin-tossing protocol, where by “almost perfect” we mean that the resulting coins
are guaranteed to be statistically close to uniform (and not just pseudorandom).

Privacy Preserving Data Mining [68]: This paper addresses the issue of privacy preserving
data mining. Specifically, we consider a scenario in which two parties owning confidential databases
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wish to run a data mining algorithm on the union of their databases, without revealing any unnec-
essary information. Our work is motivated by the need to both protect privileged information and
enable its use for research or other purposes.

The above problem is a specific example of secure multi-party computation and as such, can
be solved using known generic protocols. However, data mining algorithms are typically complex
and, furthermore, the input usually consists of massive data sets. The generic protocols in such a
case are of no practical use and therefore more efficient protocols are required. We focus on the
problem of decision tree learning with the popular ID3 algorithm. Our protocol is considerably
more efficient than generic solutions and demands both very few rounds of communication and
reasonable bandwidth.

Joint work with Benny Pinkas.

Sequential Composition of Protocols without Simultaneous Termination [67]: The
question of the composition of protocols is an important and heavily researched one. In this
paper we consider the problem of sequential composition of synchronous protocols that do not have
simultaneous termination; i.e., the parties do not necessarily conclude a protocol execution in the
same round. A problem arises becauses such protocols must begin in synchrony; therefore a second
execution cannot follow from the first in a straightforward manner. An important example of a
protocol with this property is that of randomized Byzantine Agreement with an expected constant
number of rounds (such as the one due to Feldman and Micali). We note that expected constant-
round Byzantine Agreement cannot have simultaneous termination and thus this (problematic)
property is inherent.

Given that the termination of the parties is not simultaneous, a natural question to consider is
how to synchronize the parties so that such protocols can be sequentially composed. Furthermore,
such a composition should preserve the original running-time of the protocol, i.e. running the
protocol £ times sequentially should take in the order of £ times the running-time of the protocol.
In this paper, we present a method for sequentially composing any protocol in which the players
do not terminate in the same round, while preserving the original round complexity. An important
application of this result is the sequential composition of parallel Byzantine Agreement. Such a
composition can be used by parties connected in a point-to-point network to run protocols designed
for the broadcast model, while maintaining the original round complexity.

Joint work with Anna Lysyanskaya and Tal Rabin.

A.2 Zero-Knowledge

Resettably-Sound Zero-Knowledge and Its Applications [2]: Resettably-sound proofs and
arguments maintain soundness even when the prover can reset the verifier to use the same ran-
dom coins in repeated executions of the protocol. We show that resettably-sound zero-knowledge
arguments for NP exist if collision-free hash functions exist. In contrast, resettably-sound zero-
knowledge proofs are possible only for languages in P/poly.

We present two applications of resettably-sound zero-knowledge arguments. First, we construct
resettable zero-knowledge arguments of knowledge for AP, using a natural relaxation of the defini-
tion of arguments (and proofs) of knowledge. We note that, under the standard definition of proof
of knowledge, it is impossible to obtain resettable zero-knowledge arguments of knowledge for lan-
guages outside BPP. Second, we construct a constant-round resettable zero-knowledge argument
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for AP in the public-key model, under the assumption that collision-free hash functions exist. This
improves upon the sub-exponential hardness assumption required by previous constructions.

We emphasize that our results use non-black-box zero-knowledge simulations. Indeed, we show
that some of the results are impossible to achieve using black-box simulations. In particular, only
languages in BPP have resettably-sound arguments that are zero-knowledge with respect to black-
box simulation.

Joint work with Boaz Barak, Oded Goldreich and Shafi Goldwasser.

Strict Polynomial-Time in Simulation and Extraction [3]: The notion of efficient com-
putation is usually identified in cryptography and complexity with probabilistic polynomial time.
However, until recently, in order to obtain constant-round zero-knowledge proofs and proofs of
knowledge, one had to allow simulators and knowledge-extractors to run in time which is only
polynomial on the average (i.e., expected polynomial time). Whether or not allowing expected
polynomial-time is necessary for obtaining constant-round zero-knowledge proofs and proofs of
knowledge, has been posed as an important open question. This question is interesting not only
for its theoretical ramifications, but also because expected polynomial time simulation is not closed
under composition. Therefore, in some cases security may not be maintained when a protocol that
utilizes expected polynomial time simulation (or extraction) is used as a part of a larger protocol.

A partial answer to the question of the necessity (or non-necessity) of expected polynomial-time
was provided recently by Barak, who gave the first constant-round zero-knowledge argument with
a strict (in contrast to expected) polynomial-time simulator. His was also the first protocol that
is not black-box zero-knowledge. That is, the simulator in his protocol makes inherent use of the
description of the code of the verifier.

In this paper, we completely resolve the question of expected polynomial-time in constant-round
zero-knowledge arguments and arguments of knowledge. First, we show that there exist constant-
round zero-knowledge arguments of knowledge with strict polynomial-time eztractors. As in the
simulator of Barak’s zero-knowledge protocol, the extractor for our proof of knowledge is not black-
box and makes inherent use of the code of the prover. On the negative side, we show that non-black-
box techniques are essential for both strict polynomial-time simulation and extraction. That is,
we show that no constant-round zero-knowledge argument (or proof) can have a strict polynomial-
time black-box simulator. Similarly, we show that no constant-round zero-knowledge argument of
knowledge can have a strict polynomial-time black-box knowledge extractor. Thus, for constant-
round black-box zero-knowledge arguments (resp., arguments of knowledge), it is imperative that
the simulator (resp., extractor) be allowed to run in expected polynomial-time.

Joint work with Boaz Barak.

A.3 Miscellaneous

A Simpler Construction of CCA2-Secure Public-Key Encryption Under General As-
sumptions [65]: In this paper we present a simpler construction of an encryption scheme that
achieves adaptive chosen ciphertext security (CCA2), assuming the existence of trapdoor permu-
tations. We build on previous works of Sahai and De Santis et al. and construct a scheme that we
believe is the easiest to understand to date. In particular, it is only slightly more involved than
the Naor-Yung encryption scheme that is secure against passive chosen-ciphertext attacks (CCA1).
We stress that the focus of this paper is on stmplicity only.
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