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cols is zero-knowledge too. We demonstrate thmitations of the composition of zero-
knowledge protocols by proving that the original definition of zero-knowledge is not closed under
sequential composition; and that even the strong formulations of zero-knowledge (e.g. black-box
simulation) are not closed under parallel execution.

We present lower bounds on the round complexity of zero-knowledge proofs, with significant
implications to the parallelization of zero-knowledge protocols. We prove that 3-round interac-
tive proofs and constant-round Arthur-Merlin proofs that are black-box simulation zero-
knowledge exist only for languages in BPP. In particular, it follows that the "parallel versions" of
the first interactive proofs systems presented for quadratic residuosity, graph isomorphism and
any language in NP, are not black-box simulation zero-knowledge, unless the corresponding
languages are in BPP. Whether these parallel versions constitute zero-knowledge proofs was an
intriguing open question arising from the early works on zero-knowledge. Other consequences
are a proof ofoptimality for the round complexity of various known zero-knowledge protocols,
and the necessity of using secret coins in the design of "parallelizable” constant-round zero-
knowledge proofs.
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1. INTRODUCTION

In this paper we investigate the problem of composing zero-knowledge proof sys-
tems. Zero-knowledge proof systems, introduced in the seminal paper of Goldwasser,
Micali and Rackoff [GMR1], are efficient interactive proofs which have the remarkable
property of yielding nothing but the validity of the assertion. Namely, whatever can be
efficiently computed after interacting with a zero-knowledge prover, can be efficiently
computed on input a valid assertion. Thus, a zero-knowledge proof is computationally
equivalent to an answer of a trusted oracle.

A basic question regarding zero-knowledge interactive proofs is whether their com-
position remains zero-knowledge. This question is not only of theoretical importance, but
is also crucial to the utilization of zero-knowledge proof systems as subprotocols inside
cryptographic protocols. Of particular interest are sequential and parallel composition.
Candidate "theorems" (whose correctness we investigate) are:

Sequential Compositiontet M, andn, be zero-knowledge proof systems for languages
L, andL, respectively. Then, on inpw; ox,, executing first; on x; and afterwards
executing, onx,, constitutes a zero-knowledge interactive proof systenh fot.,.

Parallel Composition:Let M, andr, be as above. Then, on input-x,, executing con-
currently , on inputx, andn, on x,, constitutes a zero-knowledge interactive proof
system forL,0L,. (Concurrent execution means that ihth message of the composed
protocol consists of the concatenation of itie messages ifi; andn,, respectively).

Sequential Composition

Soon after the publication of the [GMRL1] paper, several researchers noticed that the
formulation of zero-knowledge proposed therein (hereafter referred asrip@al for-
mulation) is probably not closed under sequential composition. In particular, Feige and
Shamir [Fel] proposed a protocol conjectured to be a counterexample to the Sequential
Composition "Theorem". In this paper we use the ideas of [Fei] and new results on pseu-
dorandom distributions [GK], to prove that indeed tbeginal formulation of zero-
knowledge is not closed under sequential composit@ar proof is independent of any
intractability assumption. It applies to the notion cbmputationakzero-knowledge (see
Section 2), and uses computationally unbounded provers. (So far no proof exists for the
same result with provers limited to polynomial-time, or for statistical or perfect zero-
knowledge.)

The reader should be aware that the Sequential Composition Theorem was proven
(by Goldreich and Oren [GO, Ore]) for a stronger ("non-uniform™) formulation of zero-
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knowledge suggested by several authors (cf. [Fei, GMR2, GO, Ore, TW]). The Sequen-
tial Composition Theorem is crucial to the utilization of zero-knowledge interactive
proofs in cryptographic applications and in particular to the construction of cryptographic
protocols for playing any computable game [Yao,GMW?2].

Parallel Composition

Parallel composition of interactive proofs is widely used as a means of decreasing
the error probability of proof systems, while maintaining the number of rounds. Of
course one would be interested in applying these advantages of parallelism to zero-
knowledge protocols as well. Parallelism is also used in multi-party protocols in which
parties wish to prove (the same and/or different) statements to various parties con-
currently. Unfortunately, we show in this paper a counterexample to the Parallel Compo-
sition "Theorem". Namely, we introduce a pair of protocols which are (computational)
zero-knowledge with respect to the strongest known definitions (including the non-
uniform formulation discussed above and the "black-box simulation" formulation dis-
cussed bellow) yet their parallel composition is not zero-knowledge (not even in the
"weak" sense of the original [GMR1] formulation). Also in this case, our proof does not
rely on any unproven hypotheses; on the other hand it uses in an essential way the
unbounded computational power of the prover and the computational notion of zero-
knowledge. Based omtractability assumptions, Feige and Shamir [FS2] show a perfect
zero-knowledge protocol with a polynomial-time prover which fails parallel composition.
Our results below on 3-round zero-knowledge proofs imply a similar result but our case
requires a super-logarithmic number of repetitions while in [FS2] two repetitions suffice.

By the above result we have ruled out the possibility of proving that particular
interactive proofs are zero-knowledge by merely arguing that they are the result of paral-
lel composition of various zero-knowledge protocols. But this does not resolve the ques-
tion whether concrete cases of composed interactive proofs are zero-knowledge. In par-
ticular, since the first presentation of the results in [GMR1] and [GMW1] it was repeat-
edly asked whether the "parallel versions" of the interactive proofs presented for Qua-
dratic Residuosity, Graph Isomorphism and for any language in NP are zero-knowledge.

Round complexity of zero-knowledge proofs

In this paper we prove a general result concerning the round complexity of zero-
knowledge interactive proofs which, in particular, resolves the questipaalelization
of the above mentioned protocols. This general result statesotiigtBPP languages
have 3-round interactive proofs which are black-box simulation zero-knowléd®gjace

1 This result applies to interactive proofs in which the prover can convince the verifier of
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the parallel versions of the above examples are 3-round interactive proofs (with negligi-
ble cheating probability for the prover) it follows that these interactive proofs cannot be
proven zero-knowledge using black-box simulation zero-knowledge, unless the
corresponding languages are in BPP. This (negative) result is proven for computational
zero-knowledge proofs and therefore applies to statistical and perfect zero-knowledge as
well.

Loosely speaking, we say that an interactive proof for a languageblack-box
simulation zero-knowledgé there exists a (probabilistipolynomial-time) universal
simulator which using any (even non-uniform) verifiér as a black box, produces a pro-
bability distribution which is polynomially indistinguishable from the distribution of
conversations of (the sam¥) with the prover, on inputs il. This definition of zero-
knowledge is more restrictive than the original one which allows each vevfiéo have
a specific simulatolS,-. Nevertheless, alknown zero-knowledge protocols are also
black-box simulation zero-knowledge. This fact cannot come as a surprise since it is hard
to conceive of a way of taking advantage of the full power of the more liberal definition.

It is not plausible that our result could be extended to 4-round interactive proofs
since such proofs are known for languages believed to be outside BPP. The protocols for
Quadratic Non-Residuosity [GMR1] and Graph Non-lsomorphism [GMW1] are such
examples. In addition, zero-knowledge interactive proofs of 5 rounds are known for Qua-
dratic Residuosity and Graph Isomorphism [BMO1], and assuming the existence of
claw-free permutations there exist 5-round zero-knowledge interactive proofs for any
language in NP [GKa]. Moreover, our results extend to zero-knowledgements, for
which Feige and Shamir [FS] presented (assuming the existence of one-way functions) a
4-round protocol for any language in NP. Our result implies that the round complexity of
this protocol is optimal (as long as BRPNP).

accepting a false assertion with only negligible probability. The above mentioned languages have
3-round zero-knowledge interactive proofs in which the prover has a significant (e.g. constant)
probability of cheating.

2 Interactivearguments(also known as "computationally sound proofs" and "computationally
convincing protocols") differ from an interactive proof system in that the soundness condition of
the system is formulated with respect poobabilistic polynomial-timeprovers, possibly with
auxiliary input (see [BCC]). Namelyefficientprovers cannot fool the verifier into accepting an
input not in the language, except with negligible probability.



Constant Round Arthur-Merlin Proofs

When restricting ourselves to Arthur-Merlin interactive proofs, we can extend the
above result to any constant number of rounds. We showothigtBPP languages have
constant-round Arthur-Merlin proofs which are also black-box simulation zero-
knowledge.

Arthur-Merlin interactive proofs, introduced by Babai [Bab], are interactive proofs
in which all the messages sent by the verifier are the outcome of his coin tosses. In other
words, the verifier "keeps no secrets from the prover”. Our result is a good reason to
believe that the only feasible way of constructing constant-round zero-knowledge
interactive proofs is to let the verifier use "secret coins". Indeed, the above mentioned
constant-round zero-knowledge proofs, as well as the constant round statistical zero-
knowledge proofs of [BMO2], use secret coins. Thus, secret coins do help in the zero-
knowledge setting. This should be contrasted with the result of Goldwasser and Sipser
[GS] which states that Arthur-Merlin interactive proofs @&guivalentto general interac-
tive proofs (as far as language recognition is concerned). They show that any language
having a general interactive proof &frounds, has also an Arthur-Merlin proof &f
rounds. Using our result we see that in the zero-knowledge setting such a preservation of
rounds (when transforming IP into AM) is not plausible (e.g., Graph Non-Isomorphism).

Our result concerning Arthur-Merlin proofs is tight in the sense that the languages
considered above (e.g. Graph Non-Isomorphism, every language in NP) have unbounded
(i.e. w(n)-round, for every unbounded functiaaN - N) Arthur-Merlin proof systems
which are black-box simulation zero-knowledge. In particular, we get that bounded
round Arthur-Merlin proofs which are black-box zero-knowledge exist only for BPP,
while unbounded round proofs of the same type exist for all PSPACE (if one-way func-
tions exist [IY, B*, Sha]). That is, while thénite hierarchyof languages having black-
box zero-knowledge Arthur-Merlin proofs collapses to BPP (= AM(0)), the correspond-
ing infinite hierarchycontains all of PSPACE. This implies (assuming the existence of
one-way functions) a separation between the two hierarchies.

Organization: In Section 2 we outline the definitions of interactive proofs and zero-
knowledge, and introduce some terminology and notation used through the paper. Sec-
tion 3 presents the definitions and results concerning pseudorandom distributions that are
used for disproving the composition theorems. In Sections 4 and 5 we present these dis-
proofs for the case of sequential and parallel composition, respectively. Finally, in Sec-
tion 6 we present the lower bounds on the round complexity of black-box simulation
zero-knowledge proofs. We stress that this last section is technically independent from
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sections 3,4 and 5, and can be read without going through these sections.

2. PRELIMINARIES

The notions of interactive proofs and zero-knowledge were introduced by
Goldwasser, Micali and Rackoff [GMR1]. Here, we give an informal outline of these
notions. For formal and complete definitions, as well as the basic results concerning
these concepts, the reader is referred to [GMR1, GMW1, GMR2].

An interactive proofis a two-party protocol in which a computationally unrestricted
prover, P, interacts with a probabilistic polynomial-timeerifier, V, by exchanging mes-
sages. Both parties share a common inputAt the end of the interaction the verifier
computes a predicate depending on this input and the exchanged messages in order to
acceptor reject the inputx. Such a protocol, denotedP,V>, is called aninteractive
proof for a language lif the following two conditions hold:

Completeness propertyFor any positive constart and sufficiently longx OL,
Prob(V accepts x> 1-|x |™°.

Soundness property:For any positive constant and sufficiently longx (L,
Prob(V accepts X< |x |, no matter how the prover behaves during the protocol.

(The above probabilities are taken over the coin tosses of both the prover and
verifier).
In other words we require that on inputs belongind.tthe probability that the prove?
"convinces'"V to accept the common input is almost 1, while on inputs outsittere is
no prover that can fool into accepting, except with negligible probability.

Note: Notice that we define an interactive proof to have a negligible probability of error.
Some authors define this probability to be just a constant (#3). The latter is
motivated by the fact that constant error interactive proofs can be converted into negligi-
ble error proofs by parallel repetition. However, in the setting of zero-knowledge interac-
tive proofs our results show that such parallel repetition may sacrifice the zero-
knowledge property.

An interactive proof in which théonestverifier chooses all its messages at random (i.e.
with uniform probability over the set of all strings of same length as the message) is
called anArthur-Merlin interactive proof [Bab]. That is, in an Arthur-Merlin proof sys-
tem the only non-trivial computation carried out by the honest verifier is the evaluation
of a polynomial-time predicate at the end of the interaction, in order to decide the accep-
tance or rejection of the input to the protocol. We say that such a verifierpugas

coins (Notice that there is no "public coin” restriction on the cheating verifiers).
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We say that an interactive proof hasounds if there are a total & messages (alter-
nately) exchanged between the prover and verifier during the protocol (i.e. we count mes-
sages from both parties). In general, the numbean be a functiork(|x |) of the input
length. The notation IR} stands for the class of languages havikagund interactive
proofs, and AMK) for languages havinground Arthur-Merlin interactive proofs.

An interactive proof is calledzero-knowledgef on input x JL no probabilistic
polynomial-time verifier (i.e. one that may arbitrarily deviate from the predetermined
program) gains information from the execution of the protocol, except the knowledge
that x belongs toL. This means that any polynomial-time computation based on the
conversation with the prover can be simulated, without interacting with the real prover,
by a probabilistic polynomial-time machine ("the simulator") that geds its only input.
More precisely, let<P,V*'>(x) denote the probability distribution generated by the
interactive machine (verifie))” which interacts with the prové? on inputx JL. We say
that an interactive proof izero-knowledgef for all probabilistic polynomial-time
machines/”, there exists a probabilistic expected polynomial time algorikhymn (called
the simulatol) that on inputx 0L produces probability distributiond, (x) that are poly-
nomially indistinguishable from the distributionsP,V*>(x). (This notion of zero-
knowledge is also calledomputational zero-knowledye

The above formalization of the notion of zero-knowledge is taken from the original
paper by Goldwasser, Micali and Rackoff [GMR1]. Later, stronger formulations of
zero-knowledge were introduced in which the simulation requirement is extended to deal
with stronger verifiers [Fei, GMR2, GO, Ore, TW]. Namely, verifiers with non-uniform
properties, e.g. probabilistic polynomial-time verifiers which get an additianailiary-
inputtape, or verifiers modeled by polynomial-size circuits.

One further formulation of zero-knowledge is callétack-box simulation zero-
knowledge[GO, Ore]. This formulation differs from the former by requiring the
existence of a ("universal") simulator that using any (non-uniform) verMeras a
black-box, succeeds in simulating the,V"> interaction. In other words, there exists a
probabilistic expected polynomial time oracle machmeuch that for any polynomial
size verifierv® and forx OL, the distributions<P,V*>(x) andM"" (x) are polynomially
indistinguishable.

3 Other definitions were proposed in which it is required that the distribution generated by the
simulator isidentical to the distribution of conversations between the verifier and the prover
(perfectzero-knowledge)or at least statistically closestatisticalzero-knowledge).See [GMR2]
for further details.



-8-

Remark: A complete formalization of the notion of black-box simulation zero-
knowledge requires dealing with the following technical problem. The simulator\ises

as a black-box. This means that the simulator is responsible, during the simulation pro-
cess, of feeding into the black-box the external parameters that determine the behavior of
V*. These parameters are the string representing the input to the protocol, the contents of
the random tape of ", and the messages of the prover. A problem arises when feeding
the random coins used by . Although the number of coin tosses used by a particular
verifier V' is bounded by a polynomial, there is songle polynomial that bounds this
number forall possible verifiers. On the other hand, the simulaoruns (expected)

time that is bounded by a specific polynomial. So, how can this simulator manage to feed
a verifier requiring more coin tosses than this bound? In [BMOZ2] this problem is over-
come by stating the existence of two random tapesvfor he first is used in the regular
way for M's computations. The second can be entirely fedvbiyito V* in a single step.

That is,M can feed the random coins for the black-box in an "intelligent way" as long as
the number of coins does not exceed the time capability,dfeyond this number it can

only feed truly random bits. We stress that this formalization is general enough to
include allknownzero-knowledge proofs.

An alternative solution to the above problem is to hdee eachpolynomialp, a simula-

tor M, which simulates all verifierg” that use at mosi(|x |) random coins on any input

x. Clearly, the running time of the simulatef, may depend on the polynomialand

then the above difficulty is overcome. This second formulation is weaker than the one
proposed in [BMOZ2], but it suffices for the results proved in our paper and therefore
adopted here. (In fact our results of Section 6 only require the existence of a simulator
that simulates deterministic verifiers, i, with p=0).

Based on the above remark we give our definition of black-box simulation zero-
knowledge.

Definition: An interactive prookP,V > is calledblack-box simulation zero-knowledge

for every polynomialp, there exists a probabilistic expected polynomial time oracle
machineM, such that for any polynomial size verifigf that uses at mogt(n) random
coins on inputs of lengtm, and forxOL, the distributions<P,V*>(x) and Ml‘o’* (x) are
polynomially indistinguishable.

Note: The notion of polynomial indistinguishability in the above definition can be for-
malized based on non-uniform polynomial size distinguishers, or uniform polynomial-
time distinguishers which have black-box access to the correspondingdur results
apply to both formalizations.
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Terminology: Through this paper we use the termagligiblefor denoting functions that

are (asymptoticly) smaller than one over any polynomial, and the temanegligiblefor
denoting functions that are greater than one over some fixed polynomial. More precisely,
a functionf from nonnegative integers to reals is calleegligibleif for all constantsc

and sufficiently large, f (n) <n°. The functionf is callednon-negligibleif there exists

a constant such that for all (sufficiently large), f (n)>n"°.

(Observe that non-negligible is not the complement of negligible).

Notation: We use the notatioaUg Sfor "the element is chosen with uniform probabil-
ity from the setS'.

3. ON EVASIVE AND PSEUDORANDOM SETS

In the demonstration of counterexamples for the "composition theorems" we make
use of pseudorandom distributions which have some interesting "evasiveness" properties.
These properties and the corresponding proofs are given in [GK] and cited here without
proof.

Roughly speaking, a distribution on a set of strings of lerigit pseudorandonif
this distribution cannot be efficiently (i.e. in time polynomialkindistinguished from the
uniform distribution on the set of all strings of length In order to formalize this notion
one has to define it in asymptotical terms and refer to collections of distributions (called
pseudorandom ensembjegather than single distributions. The notion of a "pseudoran-
dom set" is made precise in the following definition.

Definition 3.1: A setS0{0,1} is called(t(k), £(k))-pseudorandonif for any (proba-
bilistic) circuit C of sizet(k) with kinputs and a single output

| pc(S) - pc{0,1}%) | < &(k)

wherepc(S) (resp.pc({0,1}%)) denotes the probability that outputsl when given ele-
ments ofS (resp{0,1}¥), chosen with uniform probability.

Note that a collection of uniform distributions on a sequence of Sets,,..., where
eachs, is a(1(k), €(k))-pseudorandom set, constitutes a pseudorandom ensemble, pro-
vided that both functions(n) ands™(n) grow faster than any polynomial. Therefore, we
shall refer to such a sequence of sets pseudorandom ensemble

We now present the concept of "evasive sets". Informally, evasiveness means that it is
hard, for efficient algorithms, to find strings which belong to these sets.

Definition 3.2: LetS;,S,,... be a sequence of (non-empty) sets such that for enery
S,0{0,1}°M for a fixed polynomialQ. Such a sequence is calledpalynomially-
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evasive(denotedP-evasive ensemble if for any probabilistic polynomial-time algorithm
A, any constant, sufficiently largen, and any J{0,1}"

Prob(Ax) 0 S,) < n~®
where the probability is taken over the random coins of algorithm

The following theorem states the existence of a P-evasive ensemble which is also pseu-
dorandom.

Theorem 3.1[GK]: There exists a P-evasive pseudorandom enser®pls,,... with
Q(n)=4n. Furthermore, there exists a Turing machine which on irffuutputs the set
S,

For disproving the parallel composition theorem we shall need a stronger notion of
evasiveness. Namely, one which resists also non-uniform algorithms. This definition of
evasiveness involves a collection of sets for each length, rather than a single set per
length as in the uniform case.

Definition 3.3: Let Q() be a polynomial, and fon=1,2.... let S™ be a collection of"

sets{Sf",...,SM}, where eacts™ 0{0,1}°®™. The sequenc&?,6S? .. is called a
non-uniform polynomially evasi@lenotedP/poly-evasivieensemble if for anyg >0, for

sufficiently largen and any (probabilistic) circuiC of sizen® (with n inputs andQ (n) out-
puts)

Prob(C(i)0S) < —
n
where the probability is taken over the random coin€andi 0{1, ..., 2"}, both with
uniform probability.

That is, a sequenc8? , S? ... is a P/poly-evasive ensemble if any circuit of size
polynomial inn, which gets a randomly selected index of one of the se&"in cannot
succeed to output an element in that set, except for a negligible probability.

Remark: Notice that in the definition of P-evasive ensembles the (uniform) algorithm
trying to hit an element in the evasive gt gets as input a string of lengthn, which

can be seen as an auxiliary input. The crucial difference between this "uniform”
definition and the definition of P/poly-evasiveness is that in the latter the auxiliary input
is allowed to be of any length polynomial in the length of the target strings, while in the
former the auxiliary input is properly shorter than the target strings in thg,set

The following theorem states the existence of a P/poly-evasive ensemble which is
composed of pseudorandom sets.
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Theorem 3.2: There exists a P/poly-evasive ensem8fe, S? ... with Q(n)=4n, such
that for everyn, eachg™ is a (2", 2™"*)-pseudorandom set of cardinali®). Further-
more, there exists a Turing machine which on inpubutputs the collectios™.

The proof of this theorem is given in the Appendix.

4. SEQUENTIAL COMPOSITION OF ZERO-KNOWLEDGE PROTOCOLS

A natural requirement from the notion of zero-knowledge proofs is that the informa-
tion obtained by the verifier during the execution of a zero-knowledge protocol will not
enable him to extract any additional knowledge from subsequent executions of the same
protocol. That is, it would be desirable that tlsequential compositiorof zero-
knowledge protocols would yield a protocol which is itself zero-knowledge. Such a pro-
perty is crucial for applications of zero-knowledge protocols in cryptography (for details
and further motivation see [GO, Ore]).

We prove that the original definition of (computational) zero-knowledge introduced
by Goldwasser, Micali and Rackoff in [GMR13 not closedunder sequential composi-
tion. Several authors have previously observed that this definprobably does not
guarantee the robustness of zero-knowledge under sequential composition, and hence
have introduced more robust formulations of zero-knowledge [Fei, GMR2, GO, Ore,
TW]. But so far, no proof has been given for the claim that computational zero-
knowledge (with uniform verifiers) fails sequential composition.

Intuitively, the reason that a zero-knowledge protocol could not be closed under
sequential composition is that the definition of zero-knowledge requires that the informa-
tion transmitted in the execution of the protocol is "useless" for palynomial-time
computation it does not rule out the possibility that a cheating verifier could take advan-
tage of this "knowledge” in a subsequent interaction with then{polynomial timg
prover for obtaining valuable information. This intuition (presented in [Fei]) is the basis
of our example of a protocol which is zero-knowledge in a single execution but reveals
significant information when composed twice in a sequence. This protocol, presented in
the proof of the following theorem, uses a P-evasive ensemble as defined in Definition
3.2 and whose existence is stated in Theorem 3.1.

Theorem 4.1. Computational Zero-Knowledge ([GMR1] formulation) is not closed
under sequential composition.

Proof: LetS;,S,,... be a P-evasive pseudorandom ensemble as described in Theorem
3.1. Also, letK be an (arbitrary) hard Boolean function, in the sense that the language
Lk ={x:K(x)=1} is not in BPP (we use this function as a "knowledge" function).
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We present the following interactive-proof protoceP,v> for the language
L={0,1}". (Obviously, this language has a trivial zero-knowledge proof in which the
verifier accepts every input, without carrying out any interaction. We intentionally
modify this trivial protocol in order to demonstrate a zero-knowledge protocol which
fails sequential composition).

Let x be the common input fd? andV, and letn denote the length of The verifier
V begins by sending to the prover a random stirmaf length4n. The proverP checks
whethers S, (the n-th set in the P-evasive ensemble defined above). If this is the case
(i.e.,s0S,) thenP sends tov the value ofk (x). Otherwise (i.e.s[S,), P sends tov a
string so randomly selected frong,. In any case the verifier accepts the inpufas
belonging ta.).

We stress that the same P-evasive ensemble is used in all the executions of the pro-
tocol. Thus, the se%, does not depend on the specific input to the protocol, but only on
its length. Therefore, the stringy, obtained by the verifier in the first execution of the
protocol, enables him to deviate from the protocol during a second execution in order to
obtain the value oK (x'), for anyx' of lengthn (and in particular foi’' =x). Indeed, con-
sider a second execution of the protocol, this time on inputA "cheating" verifier
which sends the string=s, instead of chosing it at random, will get the valuekod’)
from the prover. Observe that this cheating verifier obtains information that it could not
compute by itself. There is no way to simulate in probabilistic polynomial-time the
interaction in which the prover sends the valu&ax'), otherwise the languadg would
be in BPP (indeed, such a simulator could be used as a probabilistic polynomial-time
algorithm for computing the functiok with negligible error probability. To see that,
notice that the real prover in an interaction with the above cheater verifier on igxpujs
will output k(x') with probability1. Therefore, the simulator must output the correct value
of k(x') with probability almost 1, or otherwise, its output is polynomially distinguishable
from the real conversations). Thus, the protocol is not zero-knowledge when composed
twice.

On the other hand, the protocol is zero-knowledge (when executed once). To show
this, we present for any verifier”, a polynomial-time simulatoM,+ that can simulate
the conversations betweaf and the proveP. There is only one message sent by the
prover during the protocol. It sends the valuekgk), in case that the stringisent by the
verifier belongs to the s&&,, and a randomly selected elementSyf otherwise. By the
evasivity condition of the se,, there is only a negligible probability that the first case
holds. Indeed, no probabilistic polynomial-time machine (in our case, the verifier) can
find such a string O S,, except with negligible probability (no matter what the inpub
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the protocol is). Thus, the simulator can succeed by always simulating the second possi-
bility, i.e. the sending of a random elemestfrom S,. This step is simulated by ran-
domly choosings, from {0,1}*" rather than froms,. The indistinguishability of this
choice from the original one follows from the fact that e&;hs a pseudorandom subset

of {0,1}*", and that the prover choosgsfrom S, with uniform probability. m

Remark: The argument presented in the above proof generalizes to any langinaye
ing a zero-knowledge interactive proof. Simply, modify the zero-knowledge prodaf for
as in the proof of Theorem 4.1.

Remark: Another example of a zero-knowledge protocol which is not closed under
sequential composition was independently found by D. Simon [Sim]. His construction
assumes the existence of secure encryption systems.

5. PARALLEL COMPOSITION OF ZERO-KNOWLEDGE PROTOCOLS

In this section we address the question of whether zero-knowledge interactive
proofs are robust under parallel composition.

Clearly, we cannot expect the original GMR definition to satisfy this condition: it is
easy to see that a zero-knowledge protocol which is not closed under sequential composi-
tion can be transformed into another zero-knowledge protocol which fails parallel com-
position.

In light of the fact thatauxiliary-input zero-knowledge is robust under sequential
composition [GO, Ore], it is an interesting open question whether this formulation of
zero-knowledge is also robust under parallel composition. The main result of this section
is that this isnot the case. We prove the existence of protocols which are zero-
knowledge even against non-uniform verifiers (e.g. auxiliary-input zero-knowledge), but
which do not remain zero-knowledge when executed twice in parallel. As in the case of
sequential composition our results concern only computational zero-knowledge.

The ideas used for the design of a protocol which fails parallel composition are
similar to those used for the sequential case. There, we have used the pseudorandomness
and evasiveness of some sets to construct the intended protocol. We use this method also
here. The main difficulty for extending these properties to the present case, is that now
we need an evasive collection which resists even non-uniform verifiers. Clearly, a P-
evasive ensemble will not satisfy this condition, since for any set of strings there exist
non-uniform verifiers which can output elements in this set (e.g. by getting such a string
as auxiliary-input). Instead, we use the notion of P/poly-evasive ensembles as defined in
Definition 3.3. Based on Theorem 3.2 that states the existence of such ensembles we
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prove the main result of this section:

Theorem 5.1: Computational Zero-Knowledge (even with non-uniform verifiers) is not
closed under parallel composition.

Proof: We present a pair of protocolsP.,V,;> and <P,,V,> which are zero-
knowledge when executed independently, but whose parallel composition is provably not
zero-knowledge.

We use some dummy steps in the protocols in order to achieve synchronization
between them. Of course one can modify the protocol substituting these extra steps by
significant ones. The version we give here prefers simplicity over naturality. Both proto-
cols consist of five steps and are described below (see also Figure 1).

P, Vi step P, Vs,
iOg{1, ---,2"}> 1 dummy step
dummy step | 2 <jOr{1, ---,27
dummy step 3 r Og S >
<sg{0,1}4" 4 dummy step
if sOSM: K(x)> 5 dummy step

Figure 1: protocolsP 1,V 1> and<P ,,V5>> with inputX.

The first protocol is denotedP ;,V,>. Letx be the input to the protocol and let
denote its length. The protocol uses (for all its executions) a P/poly-evasive ensemble
S, S? ... with the properties described in Theorem 3.2. It also involves a hard Boolean
functionK as in the proof of Theorem 4.1. The provey begins by sending tv/; an
index i Og{1,...,2"}. After two dummy steps the verifiev; sends toP; a string
sr{0,1}*". The proverP,; checks whethes 0 S™. If this is the case then it sends Vg
the value oK (x), (otherwise an empty message). This concludes the protocol.

The second protocetP ,,V,> uses thesameP/poly-evasive ensemb@? , S@ ..
as protocokP {,V,> does. The first step of the protocol is a dummy one. In the second
step the verifiew, sends td, an indexj Og{1, ..., 2"}. The proveP, responds with a
stringr Og Sﬁ”). After two more dummy steps the protocol stops.

We show that each of the above protocols is indeed zero-knowledge (even for non-
uniform verifiers). For the first protocol, there are two steps of the prover to be
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simulated. In the first step; sends an indekOgr{1, ..., 2"}. The simulator does the
same. In the second step, the prover sends the valki¢xponly if the verifier succeeds

to present him a string which belongs to the S&t. By the evasivity condition of the
sequenc&® , S@ . this will happen with negligible probability and therefore the simu-
lator can always simulate this step as for the case where the verifier sends a §tgifig
(Observe that the circuits in the definition of P/poly-evasive ensembles only get as input
the index of the set to be hit. Nevertheless, in our case the circuits also have an additional
input x. Clearly, this cannot help them finding an elementSiii, otherwise, circuits
which have such a string incorporated will contradict the evasiveness condition).

In the second protocokP ,,V,>, the only significant step of the proves is when
it sends an elementJgr S in response to the indg)sent by the verifier. In this case the
simulator will send a string’ g {0,1}*". Using the pseudorandomness property of the set
S™ we get that the simulator's choice is polynomially indistinguishable from the
prover’s one.

Finally we show that the parallel composition of the above protocols into a single
protocol<P,V > is not zero-knowledge. Leat" be a "cheating" verifier which behaves as
follows. Instead of sending a randomly selected inglégorresponding to the second
step of the subprotocedP ,,V,>) it sends the indekreceived fromP as part ofP,’s first
step. Thusj =i, and the proveP will respond with a string OS™. In the next step this
stringr will be sent byv" to P instead of the "random" stringthatV, should send t®;.

The proverP will verify that r 1™ and then will send the informatiok (x). By the
hardness of the functioK this step cannot be simulated by a probabilistic polynomial-
time machine. Therefore, the composed protedgV > is not zero-knowledgem

Remark: The two protocolsP,,V,> and<P,,V,> can be merged into a single zero-
knowledge protocol which is not robust under parallel composition. In this merged pro-
tocol, the verifier chooses (at random) an indéx1, 2}, sends it to to the prover, and
then both parties execute the protoesl,V,>. When executing two copies of this proto-
col in parallel, the verifiers may choose 1 andi =2, respectively, thus forcing a parallel
execution okP {,V.> and<P,,V,>, which we have shown not to be zero-knowledge.

6. ON THE ROUND COMPLEXITY OF ZERO-KNOWLEDGE PROOFS

In this section we present lower bounds on the round complexity of black-box simu-
lation zero-knowledge interactive proofs. We show that only languages in BPP have
constant-round Arthur-Merlin interactive proofs which dskack-box simulation zero-
knowledge (For a definition of black-box simulation zero-knowledge and Arthur-Merlin
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interactive proofs see Section 2). We have the following theorem.

Theorem 6.1: A languagel has a constant-round Arthur-Merlin interactive proof which
is black-box simulation zero-knowledge if and onlyLif1BPP.

In section 6.1 we present a proof for a special case of this theorem, namely, for the case
of a three-round Arthur-Merlin protocol. The general case is proved in section 6.2 using
careful extensions of the ideas presented for this special case.

The three-round case can also be extended to general interactive proof systems.
That is, we also have the following theorem, proved in section 6.3.

Theorem 6.2: A languagelL has a three-round interactive proof which is black-box
simulation zero-knowledge if and onlylif 0] BPP.

(We remark that [GO, Ore] show that two-round (auxiliary-input) zero-knowledge proofs
- not necessarily black-box simulation - exist only for BPP languages).

Our results are optimal in the sense that there exist Arthur-Merlin interactive proofs,
for languages believed to be outside BPP, with unbounded number of rounds and which
are black-box simulation zero-knowledge. Similarly, there exist four-round interactive
proof protocols (using private coins) which are also black-box simulation zero-
knowledge. For further details about these protocols, and some consequences concerning
the hierarchy of languages having zero-knowledge Arthur-Merlin proofs, see Section 1.

It is interesting to note that our results hold also for a weaker notion of black-box
simulation zero-knowledge. Namely, one which only requires the existence of a black-
box simulator which succeed in simulating conversations wd#terministic (non-
uniform) verifiers. The sufficiency of this condition follow from the proofs below. Also,
the formulation of the completeness condition of an interactive proof (see Section 2) can
be relaxed in the following way. We have defined the completeness condition by requir-
ing that the prover can convince the verifier of accepting an input in the language with
probability almostl (i.e. 1 minus a negligible fraction). For the correctness of our results
it suffices to require just a non-negligible probability. (In this section we use this weaker
formulation of the completeness condition). On the other hand, the requirement of a
negligible probability of convincing the verifier to accept an input not in the language
(the soundness condition) is essential. (For example, 3-round zero-knowledge protocols
exist for all languages in NP, if the soundness condition is formulated with probalsility
[GMW1]). Finally, our results hold also in the setting ioteractive argumentfBCC],

i.e. "interactive proofs" in which the prover is limited to probabilistic polynomial-time
computations, possibly getting an auxiliary input.
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6.1 The case AM(3)

The protocol <P,V>: Consider an Arthur-Merlin protocctP , V> for a language
L, consisting of three rounds. We use the following notation. Denotetbg input for the
protocol, and by the length of this input. The first message in the interaction is sent by
the prover. We denote it by. The second round is far which sends a strin@. The third
(and last) message is from and we denote it by. The predicate computed by the
verifier V in order to accept or reject the inpxis denoted by, and we consider it, for
convenience, as a deterministic functipgp(x, a,B,y). (For the general case see Remark
6.2). We will also assume, without loss of generality, the existence of a polynogmjal
such thatja | =|B| =I(n).

The simulation process: Let this three-round Arthur-Merlin protoceiP ,V> be
black-box simulation zero-knowledge. Denote Iy the guaranteed probabilistic
expected polynomial-time black-box simulator which given access to the black-box
simulates<P,Vv*>. The process of simulation consists of several "tries" or calls to the
interacting verifielv” ("the black-box"). In each such call the simulakbfeeds the argu-
ments forv". These arguments are the ingufwhich may be different from the "true"
input x), the random coins fov”, and a stringx representing the message sent by the
proverP. In our case, it suffices for our results to consider a simulator that is just able to
simulate conversations witkdeterministic (non-uniform) verifiersin particular, this
simulator does not care about feeding the black-hox with random coins. This
simplifies our proof by avoiding any reference to these random coinsvigrand
strengthen our result (since it holds even under the sole existence of this weak kind of
simulator).

After completing its tries the simulator outputs a conversagyom,(,y).

We shall make some further simplifying assumptions on the behavior of the simmator
which will not restrict the generality. In particular, we assume that some cases, which
may arise with only negligible probability, do not happen at all. This cannot significantly
effect the success probability of the simulator. In other words, any black-box simulator
which successfully simulatesP,V*> conversations of deterministic verifieys can be
changed into another simulator for which the following conventions hold and has a the
same success probability as the original simulator, except for a possibly negligible differ-
ence. We assume that

e the conversations output by have always the fornx, a,B,y), i.e.y=x, and that the
string B equals the message output ¥y when fed with inputsc anda. Note that
these conditions always hold for the real conversations generated by the prover
and the (deterministic) verifiear”. Therefore, the simulator must almost always do
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the same. (Otherwise, a distinguisher which has access tavould distinguish
between the simulator’s output and the original conversations).

e the simulatorM explicitly tries, in one of its calls to/", the argumentx and o
appearing in the output conversation. (For example, once the simulator decides on
the output conversation with a specific parametgit explicitely feedsv™ with x
and this value ofr - regardless of whether it askedbefore or not. In any case the
answer of the deterministi¢” to the pair(x,a) will be always the same).

e the simulator runs (strictly) polynomial-time. (In Remark 6.1 below we show how
to handle the general case in which the simulator rexggectedoolynomial-time).
We denote by(n) a polynomial bounding the number of calls tried Mybefore out-
putting a conversation.

The simulator as a subroutine: Our goal is to present a BPP algorithm for the
languagel. The idea is to use the simulatbrin order to distinguish between inputs in
and outside.. For that, we use the simulator itself as a subroutine of the algorithm. We
do not make any assumption on the internal behaviour of this simulator, but just use the
following observationThe behavior of the simulatod, interacting with a verifiel”, is
completely determined by the inpythe random tap&, used byMm and the strings out-
put byV" (in response to the arguments fed by the simulator during its tri€agrefore,
in order to operat®, we just need to feed it with an inpyta tape of random coins, and
a sequence of responses to its messageBelow we formally describe a computation
process that used as a subroutine. (We stress that in this process there explicit
verifier present).

Fix an inputx of lengthn, a stringRy, (of lengthq(n), whereq() is a polynomial bound-
ing the number of random coins used Myon inputs of lengtin) andt =t(n) (arbitrary)
stringsp®,p@, ... ,pY, each of length (n). Activate M on inputx with its random tape
containingRy,. For eachy anda tried by M, respond with a messa@drom the above list
W @ .. BY according to the following rule. (This rule depends on the strindit
not ony). To the firsta presented by respond withp®. For subsequent’s check
whether the same string was presented before by. If so, respond with sam@ as in
that case, if it is the first time this is presented then respond with the first unug€dn
the list. That is, ifa is thei-th differentstring presented by then we respond witp®.
We denote thé-th differenta by a®. Clearly,a® is uniquely determined by, Ry and
the i -1 strings p®, ... 07D, i.e., there exists a deterministic functiag, such that
a® =ay(x,Ru,BY, ... .p0™Y). We denote bycony,(x,Ry,pY, ....BY) =(x,a,B,y), the
conversation output by the simulatdrwhen activated with these parameters (notice that
t strings ") always suffice for answering all tries ®f). By our convention on the
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simulatorM, there exist$, 1<i <t such thatt=a® andp=p®".
Definition: We say that a vector (x,Ry,pY,...,p0) is M-good if
conyy (%, Ru,BY, ... ,BY) is an accepting conversation for the (honest) verifier
Namely, if conyy(x,Ry,BY, ... .pY) = (x,a,B,y) andpy(x, a,B,y) =ACCEPT We say that
(x,Rw,.BY, ... ,BY) is (M,i)-good (or i-good for shortness) if it isM-good anda=a®,
B=p".

The main property oM-good strings is stated in the following Lemma.
Lemma 6.3: Let<P,V> be a 3-round Arthur-Merlin protocol for a language Suppose
<P,V > is black-box simulation zero-knowledge, and Mtbe a black-box simulator as
above. Then,

(1) For stringsx outsideL, only a negligible portion of the vecto(s,Ry,B%, ... ,pY)
areM-good.

(2) For strings x in L there exists a non-negligible portion of the vectors
(x,Ru,BY, ... ,pY) that arem-good.
(This non-negligible portion is at least one half of the completeness probability of
the protocokP,V >, i.e. the probability thaP convincesv to accepk).

Before proving this key lemma, we use it to prove Theorem 6.1 for the case of three-
round Arthur-Merlin interactive proof.

Proof of Theorem 6.1 (for the case AM(3)): By Lemma 6.3 we get the following BPP
algorithm for the language. On inputx:

* select at random a vectdRy, ™, ... ,pM).

* acceptx if and only if (x,Ry,BY, . .. ,BY) is M-good.
The complexity of this algorithm is as the complexity of testing fgoodness. The
later is polynomial-time since it involves running the simulatbmwhich is polynomial-

time, and evaluating the predicape which is also polynomial-time computable. The
success probability of the algorithm is given by Lemma 3.

Proof of Lemma 6.3;

Part (1) Assume that the portion ofi-good vectorgx,R,p®, ... V) for xX's not inL is
not negligible. This means that there exist infinitely manjyL for which the portion of
M-good vectors is non-negligible. For each suglthere exists an inded, 1<ig<t, for
which a non-negligible fraction of the vectarsR,p®, . .., ) areiy-good (since there
are only polynomially many possible values fgj. Thus, there exists a non-negligible
number of prefixegx,R,B, ... p"™), each with a non-negligible number igfgood
continuations(p"?, ... ,p®) (i.e., such thaix R,p®, ... g™ gl . B0y arei,-
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good). Let(x,R,p®, ... p"™) be such a prefix, and lef'” =ay (x,R,8Y, . .. ,p'™).

For eachig-good continuation(B(iO), ...,BY) machine M outputs a conversation
(x, oo, [3(“’) ,y) for which pV(x,a(i“) : B(i°> ,Y) =ACCEPT In particular, there exists a
non-negligible number qi(if’) for which this happens.

In other words, for eack as above there exists a string (:a(iO)) for which the set
B(x,0y) ={B: Oy, pv (X, ay,B,y) =ACCEPT} is of non-negligible size among all possible
stringsB. Consider now a ("cheating") prover that sends thiss its first message. \f
responds withBOB(x,ay), the prover sends the correspondipghat convincesv to
accept. Sinc# selects its messaggst random, then the probability of being convinced
by the above prover is (at least) as the relative sizB (@fa,), i.e. non-negligible. Con-
cluding, we have shown the existence of a prover that for infinitely ménputsideL,
convincesV to accept with non-negligible probability. This contradicts the soundness
condition of the protocotP,V >, and this part of the Lemma follows.

Part (2): We show that for stringx in L a non-negligible portion of the vectors
(x,Rw,BY, ... ,BY) areM-good. We do it by considering the behavior of the simulator
when receiving "random like" responses from the verifier. This behaviour is analyzed by
introducing a particular family of "cheating" verifiers, each of them associated to a dif-
ferent hash function from a a family ofn)-wise independent hash function§het(n)-

wise independence (wherén) is the bound on the number of simulator’s tries) achieves
the necessary randomness from the verifiers responses.

Let x OL and letn denote its length. Consider a family of hash functiétjswhich map

| (n)-bit strings intol (n)-bit strings, such that the locations assigned to the strings by a
randomly selected hash function are uniformly distributed &mjwise independent.
(Recall that (n) is the length of messagesandp in the Arthur-Merlin protocokP , V>

for L, while t(n) is the bound on the number bfs tries). For properties and implemen-
tation of such functions see e.g. [Jof, WC, CG]; in particular, we observe that such func-
tions can be described by a string of lenggh)-l (n), i.e. polynomial im.

For each hash function O H, we associate a (deterministic non-uniform) verifigy,
which responds to the prover’'s messagwith the stringB=h(a) ( Vi, has wired in the
description oth). Consider the simulation &P , V};,> conversations by the simulat.
Fixing an inputx, a random tap&,, for M, and a functiorh O H,,, the whole simulation is
determined. In particular, this (uniquely) defines a sequeneésatried by the simula-
tor, and the corresponding respongesf V. We denote bya® , a®, . . ., a®, the dif-
ferent values ofa in these tries. In case that<t, we complete this sequence to
a®, ..., a® o a®, by addingt -s stringsa in some canonical way, such that
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the resultanta®,...,a® are all different. Let ¥ =h(a®), 1<i<t, and define
v(x,Ry,h)=(x,Ry,BY,...,pY). Part (2) of the lemma follows from the following two
claims.

Claim 1: For xOL, there is a non-negligible portion of the pa{R,, h) for which the
vectorv(x, Ry , h) isM-good.

Proof: For any inputx to the protocokP,V >, let p, denote the probability that the prover
P convincesV (the honest verifier) to accept In other wordsp, is the probability, over
the coin sequence®> of the proverP, and (random) choiceB of V, that the resultant
conversation(x, a(x,Rp), B, Y(x,Rp,B)) is accepting. By the completeness property of the
protocol<P,V >, we get that fox’s in L the probabilitieg, are non-negligible.

Let xOL and consider the interaction between the real prévand the verifiers/,, on

the inputx. Each coin sequendg> determines the message and the corresponding
responsé (a) by Vi,. By the uniformity property of the familyd,, we get that for every,

all B’'s are equi-probable as the resulttofo). Therefore, the probability tha and Vi,

(for h uniformly chosen fronH,,) output an accepting conversation is exactly the same as
the probability p,, thatP andV output such a conversation.

Finally, since the simulatavl succeeds in simulatingP , Vi,> conversations for all func-
tionsh OH,, we get that for each the probability thatv outputs an accepting conversa-
tion when interacting withv}, is almost the same (up to a negligible difference) as the
probability thatP and V}, output an accepting conversation. This last probability, for
hOrH,, ispx. We conclude that the probability, over rand&y andh, thatv(x, Ry, h)

is M-good is almosp,, and thus non-negligible. The claim follows]

Claim 2: For all stringsx andRy;, and forh chosen with uniform probability frord,,, the
vector V(X, Ry, h) is uniformly distributed over the set
{(x,Ru,pD,....pY):g0 0{0,1}'™}

Proof: Recall the functiom, introduced above. Observe that

V(X, Ry, h)=(x,Ru,BY, ..., BY)

if and only if for everyi , 1<i <t,

h(om(xRu,BY, . . ., D)) =g

On the other hand, by the uniformity am¢h)-independence property of the famity,,

we have that for anydifferentelementsa,, . . . ,a in the domain of the functionsH,,

the sequencé(a;),...,h(a) is uniformly distributed over all the possible sequences
by, ...,b for b in the range of the functions,.
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Thus, for all stringx andRy,, and for fixedd®™, . .. .80, the probability (forh OgH,,) that
v(x, Ry, h)=(x,Ru,BY,...,pY)) equals the probability that for every1<i<t, h maps
a® =apy(xRu,pY, ... .8 ™Y) into ). Since, by definition, alk)’s are different, then
we can use the above property of the fantly to get that the latter probability is the
same for every sequeng, ... Y (i.e. we puta =a®) andb, =p"). The claim fol-
lows. O

Claim 2 states that for aniy, the value ofv(x, Ry, h) is uniformly distributed over all
possible vector$x, Ry, BY, ... ,pM). On the other hand, by Claim 1, a non-negligible
portion ofv(x, Ry, h) areM-good, and then we get that a non-negligible portion of the
vectors(x, Ry, BY, . .. ,p®) areM-good.

The Lemma follows.m

Remark 6.1 (expected polynomial-time simulatorlor simplicity we have assumed that
the given simulatorM, for the protocol<P,V> runs in (strictly) polynomial-time.
Nevertheless, in the definition of zero-knowledge we allow this simulator t@xpected
polynomial-time. We show that our results hold also in this general case by transforming
a given expected polynomial-time simulatdrinto a strictly polynomial-time simulator

M’, and showing that Lemma 6.3 holds for this new simulator. Then, we can use the
modified simulatoM’ in the BPP algorithm for the language

The simulatoM’ behaves aBl, but its running time is truncated after some (fixed) poly-
nomial number of steps, denote¢h). We show how to choose this polynomsgh). Let
T(n) be a polynomial bounding thexpectedunning time ofM, and letp(n) be a (lower)
bound on the probability that the proverconvinces the (honest) verifigtrto accept an
input in L of lengthn. We defines(n) to be2-T(n)/p(n). Sincel/p(n) is polynomially
bounded (by the completeness condition of the proteégV/ >), thens(n) is polynomi-
ally bounded. With this modification ofl the proof of Lemma 6.3 remains valid, except
for a more delicate argument in the proof of Claim 1. The required changes follow.

In that proof we claimed that "for eadithe probability thatM outputs an accepting
conversation when interacting witj, is almost the same (up to a negligible difference)
as the probability thaP andVj, output an accepting conversation”. This is true for the
original simulatorM, but not necessarily favi’. Since we cut the running of afters(n)
steps, then there exist cases in whikhdoes not complete the original behavior \f
Nevertheless, by the choice sfn), the probability (over the coin tosses if) that this
happens (i.e. the running time bf exceeds(n)) is at mostp(n)/2. Thus, for anyh, the
probability that the truncated simulata¥)’, outputs an accepting conversation when
interacting withvj, differs from the probability thalP andV;, output an accepting conver-
sation by at mosp(n)/2. For hOgH,, this last probability was shown (in the original
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proof of Claim 1) to be at leagt(n), and then we get that the probability, over random
Rw andh, thatv(x, Ry, h) isM’-good is (up to a negligible difference) larger tham)/2,
and then non-negligible. Therefore, Claim 1 follows also in this case.

Remark 6.2 (ranomizedpy): We have assumed that the only coin tosses of the (honest)
verifier V during the Arthur-Merlin protocokP,V > are the the bits corresponding to the
stringB sent to the prover, and that no additional coin tosses are used in order to compute
the accepting/rejectingredicatepy. This restriction can be removed from the above
proof by using finer arguments as done in our treatment of the general IP(3) case (Section
6.3).

More generally, any AM{) protocol in which the predicatp, depends on the whole
conversation and some additional random string, can be transformed into ak+&M(
protocol in which no such additional string is used: Simply, let the verifier send this ran-
dom string as its last message. Hence, since we prove our result for any constant-round
AM protocol, we can assume thay is deterministic.]

Remark 6.3 (interactive arguments)We now show how to generalize the above proof

of the case AM(3) in order to prove the same result in the setting of interactive argu-
ments, i.e. "interactive proofs" in which the soundness condition is required only with
respect to provers limited to probabilistic polynomial-time computations, possibly get-
ting an auxiliary-input. We have to prove Lemma 6.3 in this setting. Notice that part (2)
of the lemma relies on the completeness and zero-knowledge properties of the interactive
proof, but these properties are not influenced by the soundness condition. Therefore, this
part of the proofautomaticallyholds for interactive arguments. The other part, part (1),
relies on the soundness of the interactive proof, thus, a modification is required in the
proof to deal with provers having just polynomial power.

In that proof we showed, by contradiction, the existence of infinitely mésyot in L

for which a cheating prover can convince the verifier to aceepth non-negligible pro-
bability. The success of this prover was shown by proving, for eachsubke existence

of a messagea, that for non-negligibly manyp's a string y exists such that
pv(X,0y,B,y) = ACCEPT In the interactive arguments setting the sole existence of such an
a, is not sufficient. The limited prover should find in probabilistic polynomial-time this
string and the corresponding responde the messagp sent byV. We describe such a
proverP” that uses the simulatov in order to find the required strings. It begins by

choosing i Og{1,...,t}, and random stringsRy, BY,...,B¢ V. Then it computes
a=ay(xRu,pY, ... ,pI™), and sends this to V. OnceV responds witlg, the prover”
choosest-i random strings3*V, ... Y and computes (using the simulat®t) the

conversatiorcony, (x,Ry,f®, - - -, 3,0+ ... BV, and sends t& the message
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appearing in this conversation. If the chosen vectorgeod then thisy convincesv to
accept the conversation. We analyze the probability of such event.

There exists a non-negligible probability tht choses, 1<i <t, for which the number

of i-good vectors is non-negligible (we saw that such exists). On the other hand, the
whole vector(x,Ry,pY, - - -,¢D B,pM*D, - .. W), is chosen at random (except fo):

the B component by the verifier (the protocol is Arthur-Merlin!) and the other com-
ponents byP*. Therefore, there is a non-negligible probability that the resultant vector is
i-good, in which cas¥ accepts. This wayP” works in polynomial-time and has a non-
negligible probability to convinc® of acceptingk from what we derive the required con-
tradiction. OJ

6.2 The case AM(k): Secret Coins Help Zero-Knowledge

In this section we consider constant-round Arthur-Merlin interactive proofs. We
show that a language having such an interactive proof which is also black-box simulation
zero-knowledge belongs to BPP, thus proving Theorem 6.1. We present this proof based
on the proof for the particular case of AM(3) as given in section 6.1. The basic ideas are
similar but theirimplementationis technically more involved in this general case. We
highly recommend familiarity with section 6.1 before going through the present section.

The protocol <P,V>: Let <P,V> be ak-round Arthur-Merlin protocol for a
languagel. For simplicity of the exposition we make some assumptions on the form of
the protocol without restricting the generality of the proof. We consider protocols in
which both the first and last messages are sent by the prover. By adding dummy mes-
sages any protocol can be converted into one of this form. Notice that in such a protocol,
the number of rounds is always an odd numkep-m+1. The proverP sendam+1 mes-
sages which we denote hy, ... ,qa,,, andy, respectively. Then messages by are
denotedBq, . .. ,Bn. The input to the protocol is denoted kyand its length byn. The
predicate computed by the verifigrin order to accept or reject the inpxis denoted by
py, and we assume it to be a deterministic function of the conversation
pv(X,01,B1, . . . ,0m:Bm,Y). (Our results hold also for interactive proofs in whigk
depends on an additional random string. See Remark 6.2). We need the following techn-
ical convention. We assume that all prover messages in the protocol have a form that
allows, by only seeing thieth message;, to uniguely reconstruct all previous messages
sent by the prover during the conversation. This is easily achieved by simple concatena-
tion of previous messages (using a delimiter or some length convention). We also
assume the existence of a polynomi@l) such that all prover and verifier's messages on
an n-length input have length(n) (e.g. using dummy padding). Finally, we let the
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verifier V check whether the received messages conform to the above conventions, and
reject the conversation conversation if not.

The simulation process: We denote by the black-box simulator for the protocol
<P,V>. The simulation process consists of several tries by the simul&toEach try
involves feeding the verifiev” (i.e. the black-box representing it) with a valyas the
input to the protocol, and the messagesl <i <m, that simulate the messages senPby
(Again, we do not care about random coins¥or we just need a simulator that is able to
simulate conversations with deterministic verifiers). The simulstchooses these argu-
ments, in the successive tries, depending on the randonRtgapad the responses out-
put by the black-box/" during the current and previous tries. After each try the simula-
tor may decide to output a conversation of the fdgm,,B4, . . . ,0m,Bm,Yy) Or to perform
a new try. We assume that the output conversatiornylas i.e. the input component in
the conversation corresponds to the actual input being simulated; that tiessages
appearing in the output conversation fit our convention on the form of the prover’'s mes-
sages; and that the simulator explicitly tries the output conversation. Namely, it operates
(in one of the tries) the black-box™ on inputx anday, . . . ,a,, as appearing in the output
conversation, and respectively gets as respons¥s tife strings,, . . . ,pr, also appear-
ing in this conversation. These assumptions are apparently restricting ones since the
simulator is allowed to output conversations that are not "legal conversations” between
the proverP and the simulated verifier”. Nevertheless, a simulator that succeeds simu-
lating the<P,V*> conversations, will output such illegal conversations with only negligi-
ble probability (otherwise the simulated conversations can be easily distinguished from
the true ones). Finally, we consider, for the sake of simplicity, only simulators that run
(strictly) polynomial-time. The necessary changes in the proof for handling the general
case in which the simulator rurexpectedpolynomial-time are analogous to the ones
described in Remark 6.1 for the case AM(3). We denoté(bya polynomial bounding
the number of calls tov® tried by M before outputting a conversation, and put
t(n) =m-t(n) (notice thatt (n) constitutes an upper bound on the total number of messages
a tried byM during the whole simulation).

The simulator as a subroutine: Our goal is to present a BPP algorithm for the
language. and we use the simulatdf for achieving it. The waw is used is similar to
the way we used the simulator in the AM(3) case (see Section 6.1). In the present case,
the behavior of the simulatav, when "interacting” with a verifiev”, is determined by
the inputx to the protocol, the random tage, and the strings$3 output by V" as
responses to the strings fed kBiyduring the different tries. Also here we define a compu-
tational process that usssas a subroutine.
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Fix an inputx of lengthn, a stringR,, andt =t(n) stringsp®,p®@, ... Y, each of length

I (n). Activate M on inputx with its random tape containing,,. For each message
presented by, respond in the following way. (The responses will depend on the strings
a, but not ony). If a is "illegal” then respond with a special "reject-message". By illegal
we mean a messagethat does not fit our above conventions on the form of the prover’s
messages. For legals we respond (impersonating a black-box verifier) with one of the
B's from the above lisp®), ... Y according to the following rule. If the samewas
previously presented by (i.e. during a previous try), respond with the sapnas in that
case. Ifa is thei-th different (legal) string presented byl since the beginning of the
simulation then respond witg{). We denote théth differenta by a®). Clearly,a® is
uniquely determined by, Ry and thei -1 stringsp®, ... B¢V, That is, there exists a
deterministic functionay such thata® =ay(x,Ry,fY, ... ,8™). We denote by
conviy (%, Ry, BY, ... .BD)Y = (y, a1,B1s - - . ,0m,Bm:Y) the conversation output by the simula-
tor M when activated with these parameters (notice thstingsp®) always suffice for
answering all tries oM). By our convention on the simulatéf and on the form of the
prover’'s messages it follows that there exists a sequence of intlicigs<i , <--<ip <t
such that for eachy;, B;,j =1,...m, appearing in the output conversatian,=a’’ and
B;=p"". This is true since the simulator always outputs a conversation which was expli-
citly generated in one of its tries. The increasing property of the sequence of indises
enforced by the special form of the "legal" messagesiamely, by the fact that we
respond to message only if we had previously responded to the messages. . ,a;_;.

In the present setting we use the following definitiorMsfjood vectors.

Definition: We say that a vector (x,Ry,pY,...,p®) is M-good if
conyy (%, Ry,BY, ... ,BY) is an accepting conversation for the (honest) verifielVe say
that (x,Ry,BY, ... ,BY) is (i1,is,...,im)-goodif it is M-good and the corresponding
conversation has; =q andp; =[3(i"), forj=1,..m.
The following Lemma is analogous to Lemma 6.3.
Lemma 6.4: Letk=2'm+1 be a constant and leP,V> be ak-round Arthur-Merlin pro-
tocol for a languagé. SupposeP,V> is black-box simulation zero-knowledge, and let
M be a black-box simulator as above. Then,
(1) For stringsx outsideL, only a negligible portion of the vecto(s,Ry,BY, ... ,pY)
areM-good.
(2) For strings x in L there exists a non-negligible portion of the vectors
(x,Rw,BY, ... ") that arem-good.
(This non-negligible portion is at least one half of the completeness probability of
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the protocokP,V >, i.e. the probability thalP convincesy to accepk).

Proof of Theorem 6.1: Using Lemma 6.4 we get that the algorithm described in the
proof of Theorem 6.1 for the special case of AM(3) (see section 6.1) is a BPP algorithm
for the languagée. =

Proof of Lemma 6.4: This proof is essentially analogous to the proof of Lemma 6.3,
although some delicate modifications are required.

Part (1):Assume that the portion ofi-good vectorgx,R,Y, ... ,BY) for Xs not inL is
not negligible. This means that there exist infinitely manjyL for which the portion of
M-good vectors is non-negligible. Observe that there are only polynomially many dif-

. t .
ferent sequencet<i <i,<-<ip<t (i.e.( ﬁ:) ), andmis a constant), and then for each

as above, there exists a seque(igei,, ' - -, i) for which non-negligibly many vectors
(x,Rv,BY, - .BDYare(i,,is, - -+, im)-good. Next, we describe a provei which con-
vinces the (honest) verifiaf to accept any of the above inpw§gl L with non-negligible
probability, thus contradicting the soundness condition of the protdeo >.

The proverP” begins by choosing a sequen(e,i,, - -,iy) at random. Then, it
chooses random  stringsRy,B®, ---,g"*™ and uses them to compute
ag =apm(%Ru,BY, - -, ™). It sendsy; to v and receives back the respoiseNow P*
chooses random plad . gz and computes

oo =0y (% Ry, BY, - - B By, g0 - g2y After receiving the responsg from

the verifier, P* selects new random stringg'2™®, --- %™ and computes

az =0y Ry, BY, - - BN By, g0 - - gz g, g2 ... gUs™y - This process con-
tinues until all messages, B;, 1<i <m, are computed and exchanged. In case that the
resultant vectotx,Ry,B, - - -,V B, g, - BUEV By L BOY IS (i, im)-
good then computing the functicsony, on this vector results in an accepting (fdy
conversation(x,a,Bs, - . . ,am,Bm.Y) (With a;, B;, as defined above). But then by sending
this y the proverP™ convincesV to accept. The probability that this happens equals the
probability that the above vectox,Ry,pY, - - -, ™ B, "™, - -+ plz Y B,, ... BV is
(i1,i2, -, im)-good. Since this sequence of indices and all the vector components
(excludingx) are chosen at random (recall thathooses its messages, - - -,Bm, at ran-
dom!) then this probability is non-negligible.

Part (2): The proof of this part is analogous to the corresponding proof in Lemma 6.3.
We use a seH, of t(n)-independent hash functions(f) as defined in this section) to
define a family of verifiers/;,. For allh OH,, the verifierv;, responds to a legal message

a sent by the prover witth(a), and with a rejection message df is illegal. The
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statements for Claims 1 and 2 remain the same, as well as the proof of Claim 2. The
proof of Claim 1 needs a more delicate argument, as follows. As in the AM(3) case we
consider the interaction between the proResind a verifien;,, but now this interaction
generates a conversation of the fogxyu,,B4, . . . ,am,Bm.Y). In particular, for eacth and
random tapeRs for P a unique sequence of messages . . B, (the responses of},) is
determined. We have to show that for every t&peall sequences$,, ... ,B, are equi-
probable forh Ogx H,. The proof of this property uses a similar argument as the proof of
claim 2: observe that the paR- andh generates the responggs. . . .3, if and only if

for everyi, 1<i<m, h(ap(X,Rp,B1, - - - ,Bi-1))=Bi. (Hereop stands for the function com-
puted byP in order to determine its next message Thus, the probability (foh Oz H,,)

that a given sequencpy, ... ,Bn IS generated is as the probability that for every
1<i<m, h mapsap(x,Rp,B1, . . .,Bi-1) into B;. Since the functionsl,, are mindependent

(by definition they are(n)-independent, bun<t(n)), and the messages, . . . ,a,, output

by P are all different by convention, we get that the latter probability is the same for
every sequencgy, . . . ,Bm.

From this property of the pair®> andh we conclude that the the probability thand

Vy, (for h Og H,) output an accepting conversation is exactly the same as the probability
thatP and the honest output such a conversation.

The rest of the proof follows as in Claim 1 of Lemma 68.

Remark 6.4: Notice that the proveP” described in the proof of part (1) of Lemma 6.4

is a polynomial-time prover. The other parts of the proof of Theorem 6.1 also hold for
such provers and then we get that our result remains valid also in the setting of interac-
tive arguments.

6.3 The case IP(3)

In the setting of general interactive proofs the (honest) verifier is not restricted to
choose all its messages at random, but can compute them based on the an@ridom
("secret") stringr and the previous messages of the prover. In the case of 3 rounds this
means that the only message sentvbgiuring the protocol is computed by means of a
(deterministic) functiorBy(xr,a), wherea is the first message sent 1By Also, in this
caseV accepts or rejects a conversation based on a predigéte, a,y) (v is the last mes-
sage sent bp).

Here we outline the proof of Theorem 6.2, based on the proof presented in section
6.1 for the AM(3) case.
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Proof of Theorem 6.2(outline): LetL be a language having a 3-round interactive proof
which is black-box simulation zero-knowledge. Lé®,V > be such a protocol and |ét

be the corresponding black-box simulator. The simulation process consists of several
tries, in each of them the simulator feeds the black-Woxwvith arguments (the input)

anda (the prover's message), and gets an angivieom V*. (Again, it suffices to con-
sider a simulator just able to simulate conversations with deterministic verifiers, so this
simulator does not feed” with a random tape). We assume the same conventions on the
simulator as the ones described in section 6.1 for the proof of the AM(3) case:

e The simulator always outputs a conversation of the fogm,3,y), wherex anda are
fed into the black-box/™ in one of the simulator tries, arglis the response of" to
these arguments.

e  The simulator runs in strictly polynomial-time. In particulagn) stands for the
polynomial bound on the number of tries madeNbpn inputs of lengtim during the
simulation process (the case of expected polynomial-time simulators is handled
exactly as in Remark 6.1).

The main modification with respect to the proof of the AM(3) case is in the way we use
the simulatorM as a subroutine for constructing the BPP algorithm for the language
Recall that the whole simulation process is completely determined by the input to the
protocol,x, the contents oM’s random tapery,, and the responses by the verifier. This
was true for the AM(3) case and remains true here. In the former case weMuasd
subroutine by feeding it witlk and a randomly chosen strimRy,. Then, we used=t(n)
random string$®, . . . ,B® as the responses of the virtual verifier. In the present case we
choose a stringry, as before, and random strings denoted?, . .. r®, each of length

I (n), wherel(n) is a (polynomial) bound on the number of random bits used by the
(honest) verifier in the IP(3) protoceP,V>. The idea is to use these strings as the ran-
dom coins of the virtual verifier for respondimgs tries. More precisely, for each try by
the simulator, consisting of an inpytto the protocol and a message we compute
B=py(y,r,a), and feed it intav as the verifier's response to For each new try we use

a newr® (in increasing order of), except in the case in which the presemvas also
presented in a previous try. If so, we use saffleas in that case.

Note that a unique conversation is determinedxpRy, and thet stringsr®, ... r O,
Thus, as in the case AM(3), we can defiauy,(x,Ry,rY, ... r®) to be the conversa-
tion output byM when the described process is finished. Also we denotibyhei-th
differenta output byM during the simulation. Clearlyg® is uniquely determined by
x,Ry, and the strings®, . .. ,r(79, thus we denota® =ay (x,Ry,r®, ... ,ri=),

By our convention oM, if cony(x,Ry,r®, ....r®)=(x,a,B,y) thenM explicitly tried the
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arguments anda during the simulation, and got as response the stinghis means
that there exists (at least onie)l<i <t, such tha=py(x,r,a). This fact is used in the
following definition.

Definiton: We say that a vector (x,Ry,r®,...,r®) is M-good if
convx,Ry,r®, ... .r®)=(x,a,B,y) and py(x,r?, a,y)=ACCEPT wherei is minimal for
which B=By(xr¥,a). According to this value of, we call the conversatio(M,i)-good
(ori-goodfor short).

Using this re-definition of the notion &fi-goodness, Lemma 6.3 of section 6.1 also holds
in the present (IP(3)) case, by just changing in the formulation of the lemnf Ximeta-

tion by r®. Theorem 6.2 then follows by using the BPP algorithm as described in the
proof of the AM(3) case. For the proof of Lemma 6.3 in the present case we note the fol-
lowing simple modifications. In the proof of part (1) we use the same reasoning as in the
corresponding proof in section 6.1 but applied to the strifgsnstead ofg®). We note

that the soundness probability of the protocol is now defined over the random coins used
by vV, i.e. over the choices"). For the proof of the other part of the lemma we slightly
modify the definition of the verifiers},. We still use the same family of hash functions,
but the verifierv;, works as follows: on messagesent by the provel;, responds with
B=Bv(x,h(a),0), i.e. it computeP as the honest verifier does, but usim@) as the ran-

dom coins ofV. The rest of the proof (including Claims 1 and 2) remains essentially
unchanged (up to the replacement of "respopé&sby "random coins ©"). m

Remark 6.5: As in the previous cases also the IP(3) case extends to the setting of
interactive arguments. The modifications in the proof are analogous to the ones described
in Remark 6.3.

7. CONCLUDING REMARKS

Although the results presented in this paper are negative in nature, we believe that
they have played a positive role in the development of the field.

We believe that sequential composition is a fundamental requirement of zero-
knowledge protocols. It is analogous to requiring that adding two algebraic expressions,
each evaluating to zero, yields an expression which evaluates to zero. Furthermore,
sequential composition is required when using zero-knowledge proofs as tools in the
design of cryptographic protocols (an application which is the primary motivation of
zero-knowledge).The fact that the original formulation of zero-knowledge is not closed
under sequential composition establishes the importance of augmenting this formulation
by an auxiliary input(cf. [GO, Ore, TW, Gol]). It should be stressed, of course, that all
known zero-knowledge proofs satisfy also the augmented formulation.



-31-

Parallel composition is the key to improving the efficiency (in terms of number of
rounds) of zero-knowledge protocols, but we do not believe that it is a fundamental
requirement. Carrying the analogy of the previous paragraph, one cannot require that
“Interleaving” two expressions (each evaluating to zero) yields an expression which
evaluates to zero.The fact that all known formulations of (computational) zero-
knowledge are not closed under parallel composition motivates the introduction of
weaker notions such agitness indistinguishability [FS2Jhich suffice for many applica-
tions. Namely, instead of strengthening the hypothesis of the alleged “Parallel Composi-
tion Theorem” (as done in the case of Sequential Composition), one relaxes the conclu-
sion of the “Parallel Composition Theorem” (and this weaker conclusion turns to suffice
in many applications).

The fact that (“non-trivial”) black-box zero-knowledge proofs cannot be both of
AM type and of constant number of rounds establishes the importance of “private coins”
in the design of constant-round zero-knowledge proofs. In other words, in the process of
such proofs, the verifier must “commit” (and later “decommit”) to some pieces of
information. In fact, such commitments are the core of the constant-round zero-
knowledge proofs (and arguments) for any languageRmpresented in [BCY, FS1, GK]
(relying on various reasonablatractability assumptions) and in the (unconditional)
zero-knowledge proof for Graph Isomorphism presented in [BMO1].
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APPENDIX: Proof of existence of P/poly-evasive pseudorandom ensembles
In this appendix we present the proof of Theorem 3.2.

Theorem 3.2.There exists a P/poly-evasive ensem8f8, S? ... with Q(n)=4n, such
that for everyn, eachs™ is a (2", 2"*)-pseudorandom set of cardinali®}. Further-
more, there exists a Turing machine which on inpubutputs the collectios™.

Proof: For any integen, we denote byR™ the collection of sets1{0,1}*" of cardinal-
ity 2" which are(2"*, 2"*)-pseudorandom; and b§™ the set of (deterministic) circuits
of size2" havingn inputs andin outputs.

We prove the theorem by showing, for any large enoughhe existence o" sets
Sy,....Sn from R™ such that for any circuitcOC™, and iOg{1,...,2",
Prob(C(i)0S )< 2™, Denoting this collection of" sets byS™, we get that the resul-

tant sequenc&?, S? ... is a P/poly-evasive ensemble that satisfies the conditions of
Theorem 3.2. We stress that considering only deterministic circuits does not restrict the
generality, since we can wire in such a circuit a sequence of "random coins" that maxim-
izes the probabilityrob (C(i)0S).

We turn to show the existence of a collection of sets as described above. We do it by
proving that there exists a positive probability to randomly cha#fssetssS;, ... ,Sx
from R™ with the above evasivity property.

For a fixed cOC™ and a fixedi,1<i<2", consider the probability, denoted
Probs(C(i)OS), that the elemenC(i) belongs to thes, for S uniformly chosen over all
subsets 0f0,1}*" of size2". Clearly,

-1

Prob(C(i)DS):l—(szn—) _2 1

( 2”) 24n o2
We call a setSO{0,1}*", |S|=2", C-bad if there exists some, 1<i<2" such that
C(i)OS Fixing a circuitC, we have that forS uniformly chosen over all subsets of
{0,1}%" of size2",

Probg( S is C-bad) < §ProbS(C(i) 0S) < 2n22n =27,
i=1
In [GK] it is proven that the measure &™ (i.e. the proportion of set§ which are
(2" 2"4)-pseudorandom) is at least-272"". Therefore, for each circuic JC™ the
probability, hereafter denoted pg, to uniformly choose fronR™ a setSwhich isC-bad
is
o

n/4
-2

pc = Probg( S is C-bad | SOR™) <
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We now proceed to compute the probability that for a fixed cireuitC™, a collection
of 2" randomly chosen sets froR™ contain a significant portion of-bad sets. We
define as "significant” a fractign: +93,. (The quantityd, will be determined later). Lt

be a random variable assuming as its value the fractiairlmdd sets on a random sample
of 2" sets fromR™. Clearly, the expected value pfis pc. Using Hoeffding’s inequality
[Hoe] (see also [GK]) we get that

_ 2
Prob(p=pc+9d,)<e 220

i.e. this quantity bounds the probability of choosing at rand8rsets fromR™ among
which the fraction ofc-bad sets is larger than. +95,.

Recall that we are interested to cho@8esets that are evasive fafl the circuitsC 0 C™.
That is, we require that faany C, the number ofc-bad sets among tl#28 sets we choose
is negligible. In order to bound the probability th2lt randomly selected setdo not

satisfy this condition, we multiply the above probability, computed for a single circuit, by

2—n/4
. Puttingd,=—— we
g0y 5

n/2

the total number of circuits i€™ which is at mosp@")’ = 22

get

n

R - 2 2 _ 2t 2 _onk2
22” e 22n5n=22n e 2202 :22n e 2" <1.

We conclude that there exists a positive probability #iagetsS,, . .. ,S» chosen at ran-
dom fromR™ have the property that for any circu@t0C™ the fraction ofC-bad sets
amongs,, . ..,Sx is less thamc +5,. Therefore, such a collection of sets does exist.

Finally, we bound, for this fixed collectio8,, . ..,S;, and for any circuitc OC™, the
probabilityProb (C(i) O'S), fori randomly chosen frort, . . . ,2"}. We have

Pro(C(i)dS) =Proh(C(i)dS|S is C-bad)-Proh (S is C-bad)
+Prob(C(i) 0S| is not C-bad)-Prol (S is not C-bad)

2N 2—n 14

<1 +d,) + 0 < +
(pC n) 1_2_2n/4 \/2

Therefore, we have shown for every circgibf size2" thatProb (C(i) 0S) < 24, thus
proving the required properties of the s&is. .. ,Sx.

Such a collection can be generated by a Turing machine by considering all possible col-
lections{S;, . ..,Sx} and checking whether they evade all the circuits in theC§®t



