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h 15, 2010Abstra
tZero-knowledge proofs are proofs that are both 
onvin
ing and yet yield nothing beyond thevalidity of the assertion being proved. Their dire
t appli
ations in 
ryptography are numerous,where they are typi
ally used to for
e mali
ious parties to behave a

ording to a predeterminedproto
ol. In addition, zero-knowledge proofs serve as an ex
ellent ben
h-mark for the study ofvarious problems regarding 
ryptographi
 proto
ols.The �rst part of this tutorial reviews the basi
 de�nitional approa
h and its variants as wellas the main results regarding the power of zero-knowledge proofs. The se
ond part reviewsseveral advan
ed topi
s in
luding (1) the 
omposeability of zero-knowledge proofs and (2) theuse of the adversary's program within the proof of se
urity (i.e., non-bla
k-box simulation).
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1 Introdu
tionZero-Knowledge proofs, introdu
ed by Goldwasser, Mi
ali and Ra
ko� [68℄, are fas
inating andextremely useful 
onstru
ts. Their fas
inating nature is due to their seemingly 
ontradi
tory de�-nition; zero-knowledge proofs are both 
onvin
ing and yet yield nothing beyond the validity of theassertion being proved. Their appli
ability in the domain of 
ryptography is vast; they are typi
allyused to for
e mali
ious parties to behave a

ording to a predetermined proto
ol. In addition totheir dire
t appli
ability in Cryptography, zero-knowledge proofs serve as a good ben
h-mark forthe study of various problems regarding 
ryptographi
 proto
ols (e.g., the \preservation of se
urityunder various forms of proto
ol 
omposition" and the \use of of the adversary's program withinthe proof of se
urity").In this tutorial we present the basi
 de�nitions and results regarding zero-knowledge proto
ols aswell as some relatively advan
ed topi
s. The rest of the introdu
tion provides a high-level summaryof the tutorial.
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Figure 1: Zero-knowledge proofs { an illustration.1.1 The Basi
sLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity of theassertion. That is, a veri�er obtaining su
h a proof only gains 
onvi
tion in the validity of the asser-tion. This is formulated by saying that anything that is feasibly 
omputable from a zero-knowledgeproof is also feasibly 
omputable from the (valid) assertion itself (by a so-
alled simulator). Variantson the basi
 de�nition in
lude:� Consideration of auxiliary inputs.� Mandating of universal and bla
k-box simulations.� Restri
ting attention to honest (or rather semi-honest) veri�ers.� The level of similarity required of the simulation.It is well-known that zero-knowledge proofs exist for any NP-set, provided that one-way fun
tionsexist. This result is a powerful tool in the design of 
ryptographi
 proto
ols, be
ause it enables tofor
e parties to behave a

ording to a predetermined proto
ol (i.e., the proto
ol requires partiesto provide zero-knowledge proofs of the 
orre
tness of their se
ret-based a
tions, without revealingthese se
rets). 1



Organization of Part 1: We start with some preliminaries (Se
tion 2), whi
h are 
entral tothe \mind-set" of the notion of zero-knowledge. In parti
ular, we review the de�nitions of inter-a
tive proofs and arguments as well as the de�nitions of 
omputational indistinguishability (whi
hunderlies the de�nition of general zero-knowledge) and of one-way fun
tions (whi
h are used in
onstru
tions). We then turn to the de�nitional treatment of zero-knowledge itself (Se
tion 3).Finally, we dis
uss the 
onstru
tibility and appli
ability of zero-knowledge proofs (Se
tion 4).1.2 Advan
ed Topi
sWe start with two basi
 problems regarding zero-knowledge, whi
h a
tually arise also with respe
tto the se
urity of other 
ryptographi
 primitives. The �rst question refers to the preservation ofse
urity (i.e., zero-knowledge in our 
ase) under various types of 
omposition operations. We surveythe known results regarding sequential, parallel and 
on
urrent exe
ution of (arbitrary and/orspe
i�
) zero-knowledge proto
ols. The main fa
ts are:� Zero-knowledge (with respe
t to auxiliary inputs) is 
losed under sequential 
omposition.� In general, zero-knowledge is not 
losed under parallel 
omposition. Yet, some zero-knowledgeproofs (for NP) preserve their se
urity when many 
opies are exe
uted in parallel. Further-more, some of these proto
ol use a 
onstant number of rounds.� Some zero-knowledge proofs (for NP) preserve their se
urity when many 
opies are exe
uted
on
urrently, but su
h a result is not known for 
onstant-round proto
ols.The se
ond basi
 question regarding zero-knowledge refers to the usage of the adversary's programwithin the proof of se
urity (i.e., demonstration of the zero-knowledge property). For 15 years, allknown proofs of se
urity used the adversary's program as a bla
k-box (i.e., a universal simulatorwas presented using the adversary's program as an ora
le). Furthermore, it was believed thatthere is no advantage in having a

ess to the 
ode of the adversary's program. Consequently it was
onje
tured that negative results regarding bla
k-box simulation represent an inherent limitation ofzero-knowledge. This belief was later refuted by the presentation of a zero-knowledge argument (forNP) that has important properties that are una
hievable by bla
k-box simulation. For example,this zero-knowledge argument uses a 
onstant number of rounds and preserves its se
urity when an(a-priori �xed polynomial) number of 
opies are exe
uted 
on
urrently.1Organization of Part 2: The 
omposeability of zero-knowledge proofs is dis
ussed in Se
tion 5and the use of the adversary's program within the proof of se
urity is dis
ussed in Se
tion 6. Othertopi
s treated in the se
ond part of this tutorial in
lude proofs of knowledge (Se
tion 7), Non-Intera
tive Zero-Knowledge proofs (Se
tion 8), Statisti
al Zero-Knowledge (Se
tion 9), KnowledgeComplexity (Se
tion 10), and resettability of a party's random-tape (Se
tion 11).1.3 CommentsThe notion of zero-knowledge has had a vast impa
t on the development of 
ryptography. Inparti
ular, zero-knowledge proofs of various types were expli
itly used (as a tool) in a variety ofappli
ations. We wish to highlight also the indire
t impa
t of zero-knowledge on the de�nitional1 This result falls short of a
hieving a fully 
on
urrent zero-knowledge argument, be
ause the number of 
on
urrent
opies must be �xed before the proto
ol is presented. Spe
i�
ally, the proto
ol uses messages that are longer thanthe allowed number of 
on
urrent 
opies. 2



approa
h underlying the foundations of 
ryptography (
f. Se
tion 3.1).2 In addition, as mentionedabove, zero-knowledge proto
ols have served as a ben
h-mark for the study of various problemsregarding 
ryptographi
 proto
ols (
f. Se
tions 5 and 6).A Brief Histori
al A

ount: The 
on
ept of zero-knowledge was introdu
ed by Goldwasser,Mi
ali, and Ra
ko� [68℄. Although their work, whi
h also introdu
ed intera
tive proof systems, has�rst appeared in STOC85, early versions of it have existed as early as in 1982 (and were reje
tedthree times from major 
onferen
es; i.e., FOCS83, STOC84, and FOCS84). The wide appli
abilityof zero-knowledge proofs was �rst demonstrated by Goldrei
h, Mi
ali and Wigderson, who showedhow to 
onstru
t zero-knowledge proof systems for any NP-set, using any 
ommitment s
heme [59℄.An important te
hnique for the design of zero-knowledge was introdu
ed by Feige, Lapidot andShamir [39℄, based on the notion of witness indistinguishability (whi
h was introdu
ed by Feigeand Shamir [40℄). Important 
ontributions to the study of the sequential, parallel and 
on
urrent
omposition of zero-knowledge proto
ols were presented in [57, 61℄, [57, 51℄ and [35, 85, 28, 74, 7℄,respe
tively. The power of non-bla
k-box simulators was dis
overed by Barak [7℄.Suggestions for further reading: For further details regarding most of the material, the in-terested reader is referred to [49, Chap. 4℄. For a wider perspe
tive on probabilisti
 proof systems,the reader is referred to [52, Chap. 9℄.Part IThe Basi
s2 PreliminariesModern Cryptography, is 
on
erned with the 
onstru
tion of eÆ
ient s
hemes for whi
h it is in-feasible to violate the se
urity feature. The same 
on
ern underlies the main de�nitions of zero-knowledge. Thus, for starters, we need a notion of eÆ
ient 
omputations as well as a notion ofinfeasible ones. The 
omputations of the legitimate users of the s
heme ought be eÆ
ient, whereasviolating the se
urity features (via an adversary) ought to be infeasible.EÆ
ient 
omputations are 
ommonly modeled by 
omputations that are polynomial-time in these
urity parameter. The polynomial bounding the running-time of the legitimate user's strategy is�xed and typi
ally expli
it (and small). Here (i.e., when referring to the 
omplexity of the legitimateusers) we are in the same situation as in any algorithmi
 setting. Things are di�erent when referringto our assumptions regarding the 
omputational resour
es of the adversary. A 
ommon approa
h isto postulate that the latter are polynomial-time too, where the polynomial is not a-priori spe
i�ed.In other words, the adversary is restri
ted to the 
lass of eÆ
ient 
omputations and anything beyondthis is 
onsidered to be infeasible. Although many de�nitions expli
itly refer to this 
onvention,this 
onvention is inessential to any of the results known in the area. In all 
ases, a more generalstatement 
an be made by referring to adversaries of running-time bounded by any super-polynomialfun
tion (or 
lass of fun
tions). Still, for sake of 
on
reteness and 
larity, we shall use the former
onvention in our treatment.A
tually, in order to simplify our exposition, we will often 
onsider as infeasible any 
omputationthat 
annot be 
ondu
ted by a (possibly non-uniform) family of polynomial-size 
ir
uits. For2In addition, zero-knowledge has served as a sour
e of inspiration for 
omplexity theory.3



simpli
ity we 
onsider families of 
ir
uits fCng, where for some polynomials p and q, ea
h Cn hasexa
tly p(n) input bits and has size at most q(n).Randomized 
omputations play a 
entral role in the de�nition of zero-knowledge (as well as in
ryptography at large). That is, we allow the legitimate users to employ randomized 
omputations,and likewise we 
onsider adversaries that employ randomized 
omputations.3 This brings up theissue of su

ess probability: typi
ally, we require that legitimate users su

eed (in ful�lling theirlegitimate goals) with probability 1 (or negligibly 
lose to this), whereas adversaries su

eed (inviolating the se
urity features) with negligible probability. Thus, the notion of a negligible probabilityplays an important role in our exposition. One feature required of the de�nition of negligibleprobability is to yield a robust notion of rareness: A rare event should o

ur rarely even if werepeat the experiment for a feasible number of times. Likewise, we 
onsider two events to o

ur\as frequently" if the absolute di�eren
e between their 
orresponding o

urren
e probabilities isnegligible. For 
on
reteness, we 
onsider as negligible any fun
tion � :N! [0; 1℄ that vanishes fasterthan the re
ipro
al of any polynomial (i.e., for every positive polynomial p and all suÆ
iently bign, it holds that �(n) < 1=p(n)).2.1 Intera
tive proofs and argument systemsBefore de�ning zero-knowledge proofs, we have to de�ne proofs. The standard notion of stati
 (i.e.,non-intera
tive) proofs will not do, be
ause stati
 zero-knowledge proofs exist only for sets thatare easy to de
ide (i.e, are in BPP) [61℄ whereas we are interested in zero-knowledge proofs forarbitrary NP-sets. Instead, we use the notion of an intera
tive proof (introdu
ed exa
tly for thatreason by Goldwasser, Mi
ali and Ra
ko� [68℄). That is, here a proof is a (multi-round) randomizedproto
ol for two parties, 
alled veri�er and prover, in whi
h the prover wishes to 
onvin
e the veri�erof the validity of a given assertion. Su
h an intera
tive proof should allow the prover to 
onvin
ethe veri�er of the validity of any true assertion, whereas no prover strategy may fool the veri�erto a

ept false assertions. Both the foregoing 
ompleteness and soundness 
onditions should holdwith high probability (i.e., a negligible error probability is allowed).We 
omment that intera
tive proofs emerge naturally when asso
iating the notion of eÆ-
ient veri�
ation, whi
h underlies the notion of a proof system, with probabilisti
 and intera
tivepolynomial-time 
omputations. This asso
iation is quite natural in light of the growing a

eptabil-ity of randomized and distributed 
omputations. Thus, a \proof" in this 
ontext is not a �xed andstati
 obje
t, but rather a randomized and dynami
 (i.e., intera
tive) pro
ess in whi
h the veri�erintera
ts with the prover. Intuitively, one may think of this intera
tion as 
onsisting of \tri
ky"questions asked by the veri�er, to whi
h the prover has to reply \
onvin
ingly". The above dis
us-sion, as well as the following de�nition, makes expli
it referen
e to a prover, whereas a prover isonly impli
it in the traditional de�nitions of proof systems (e.g., NP-proofs).Loosely speaking, an intera
tive proof is a game between a 
omputationally bounded veri�erand a 
omputationally unbounded prover whose goal is to 
onvin
e the veri�er of the validity ofsome assertion. Spe
i�
ally, the veri�er is probabilisti
 polynomial-time. It is required that if theassertion holds then the veri�er always a

epts (i.e., when intera
ting with an appropriate proverstrategy). On the other hand, if the assertion is false then the veri�er must reje
t with \noti
eable"probability, no matter what strategy is being employed by the prover. Indeed, the error probability(in the soundness 
ondition) 
an be redu
ed by (either sequential or parallel) repetitions.3 Typi
ally, when adversaries are modeled by (non-uniform) families of polynomial-size 
ir
uits, it is not ne
essaryto allow the latter to toss 
oins (be
ause the best 
oin-tossing sequen
e 
an be hard-wired in the 
ir
uit). Still, alsoin this 
ase we employ a probabilisti
 treatment, where the probability spa
e refers to the a
tions of the legitimateusers. 4



De�nition 1 (Intera
tive Proof systems and the 
omplexity 
lass IP [68℄): An intera
tive proofsystem for a set S is a two-party game, between a veri�er exe
uting a probabilisti
 polynomial-timestrategy (denoted V ) and a prover whi
h exe
utes a 
omputationally unbounded strategy (denotedP ), satisfying� Completeness: For every x 2 S the veri�er V always a

epts after intera
ting with the proverP on 
ommon input x.� Soundness: For some polynomial p, it holds that for every x 62 S and every potential strat-egy P �, the veri�er V reje
ts with probability at least 1=p(jxj), after intera
ting with P � on
ommon input x.The 
lass of problems having intera
tive proof systems is denoted IP.Note that by repeating su
h a proof system for O(p(jxj)2) times, we may de
rease the probabilitythat V a

epts a false statement (from 1�(1=p(jxj))) to 2�p(jxj). Thus, when 
onstru
ting intera
tiveproofs we sometimes fo
us on obtaining a noti
eable reje
tion probability for no-instan
es (i.e.,obtaining soundness error bounded away from 1), whereas when using intera
tive proofs we typi
allyassume that their soundness error is negligible.Variants: A restri
ted 
lass of intera
tive proof systems, 
alled publi
-
oin proofs (a.k.a Arthur-Merlin games), 
onsists of systems in whi
h the veri�er must send the out
ome of any 
oin it tosses(and thus need not send any other information). Yet, as shown in [69℄, this restri
ted 
ase (intro-du
ed by Babai [4℄) has essentially the same power as the general 
ase (introdu
ed by Goldwasser,Mi
ali and Ra
ko� [68℄). Thus, in the 
ontext of intera
tive proof systems, asking random ques-tions is as powerful as asking \tri
ky" questions. (As we shall see, this does not ne
essarily holdin the 
ontext of zero-knowledge proofs.) Also, in some sour
es intera
tive proofs are de�ned sothat two-sided error probability is allowed (rather than requiring \perfe
t 
ompleteness" as doneabove); yet, this does not in
rease their power [45℄.Arguments (or Computational Soundness): A fundamental variant on the notion of inter-a
tive proofs was introdu
ed by Brassard, Chaum and Cr�epeau [21℄, who relaxed the soundness
ondition so that it only refers to feasible ways of trying to fool the veri�er (rather than to allpossible ways). Spe
i�
ally, the soundness 
ondition was repla
ed by the following 
omputationalsoundness 
ondition that asserts that it is infeasible to fool the veri�er into a

epting false state-ments.For every polynomial p, every prover strategy that is implementable by a family ofpolynomial-size 
ir
uits fCng, and every suÆ
iently large x 2 f0; 1g�nS, the probabilitythat V a

epts x when intera
ting with Cjxj is less than 1=p(jxj).We warn that although the 
omputational-soundness error 
an always be redu
ed by sequentialrepetitions, it is not true that this error 
an always be redu
ed by parallel repetitions (
f. [14℄).4Proto
ols that satisfy the 
omputational-soundness 
ondition are 
alled arguments.5 We mentionthat argument systems may be more eÆ
ient than intera
tive proofs (see [72, 55℄).4See updated dis
ussion in [29℄.5 A related notion not dis
ussed here is that of CS-proofs, introdu
ed by Mi
ali [77℄.5



Terminology. Whenever we wish to blur the distin
tion between proofs and arguments, we willuse the term proto
ols. We will 
onsider su
h a proto
ol trivial if it establishes membership in aBPP-set (be
ause membership in su
h a set 
an be determined by the veri�er itself). On the otherhand, we will sometimes talk about proto
ols for NP , when what we a
tually mean is proto
olsfor ea
h set in NP. (This terminology is quite 
ommon in the area.)62.2 Computational DiÆ
ulty and One-Way Fun
tionsMost positive results regarding zero-knowledge proofs are based on intra
tability assumptions.Furthermore, the very notion of a zero-knowledge proof is interesting only in 
ase the assertionbeing proved to be valid is hard to verify in probabilisti
 polynomial-time. Thus, our dis
ussionalways assumes (at least impli
itly) that IP is not 
ontained in BPP , and often we expli
itlyassume more than that.In general, Modern Cryptography is 
on
erned with the 
onstru
tion of s
hemes that are easy tooperate (properly) but hard to foil. Thus, a 
omplexity gap (i.e., between the 
omplexity of properusage and the 
omplexity of defeating the pres
ribed fun
tionality) lies in the heart of ModernCryptography. However, gaps as required for Modern Cryptography are not known to exist; theyare only widely believed to exist. Indeed, almost all of Modern Cryptography rises or falls withthe question of whether one-way fun
tions exist. One-way fun
tions are fun
tions that are easy toevaluate but hard (on the average) to invert (
f. [33℄). That is, a fun
tion f : f0; 1g� !f0; 1g� is
alled one-way if there is an eÆ
ient algorithm that on input x outputs f(x), whereas any feasiblealgorithm that tries to �nd a preimage of f(x) under f may su

eed only with negligible probability(where the probability is taken uniformly over the 
hoi
es of x and the algorithm's 
oin tosses).Asso
iating feasible 
omputations with (possibly non-uniform) families of polynomial-size 
ir
uits,we obtain the following de�nition.De�nition 2 (one-way fun
tions): A fun
tion f :f0; 1g�!f0; 1g� is 
alled one-way if the followingtwo 
onditions hold:1. easy to evaluate: There exist a polynomial-time algorithm A su
h that A(x) = f(x) for everyx 2 f0; 1g�.2. hard to invert: For every family of polynomial-size 
ir
uits fCng, every polynomial p, and allsuÆ
iently large n, Pr[Cn(f(x)) 2 f�1(f(x))℄ < 1p(n)where the probability is taken uniformly over all the possible 
hoi
es of x 2 f0; 1gn.Some of the most popular 
andidates for one-way fun
tions are based on the 
onje
tured intra
tabil-ity of 
omputational problems in number theory. One su
h 
onje
ture is that it is infeasible to fa
torlarge integers. Consequently, the fun
tion that takes as input two (equal length) primes and outputstheir produ
t is widely believed to be a one-way fun
tion.76 See [9℄ for further dis
ussion of the distin
tion.7 Indeed, the above des
ription is slightly impre
ise. The fun
tion should be de�ned as partitioning its input intotwo parts, using ea
h part to generate a prime number of 
ertain length (via an adequate algorithm), and multiplyingthese two primes to obtain the said out
ome. The aforementioned 
onje
ture asserts that polynomial-size 
ir
uits
annot fa
tor integers that are the produ
t of two equal-length primes, and the aforementioned algorithm generatesrandom primes when fed with random input. 6



Terminology. Some of the (positive) results mentioned below require stronger forms of one-wayfun
tions (e.g., one-way permutations with (or without) trapdoor [49, Se
. 2.4.4℄ and 
law-freepermutation pairs [49, Se
. 2.4.5℄). Whenever we wish to avoid the spe
i�
 details, we will talkabout standard intra
tability assumptions. In all 
ases, the 
onje
tured intra
tability of fa
toringwill suÆ
e.2.3 Computational IndistinguishabilityA 
entral notion in Modern Cryptography is that of \e�e
tive similarity" (introdu
ed by Gold-wasser, Mi
ali and Yao [67, 91℄). The underlying thesis is that we do not 
are whether or notobje
ts are equal, all we 
are is whether or not a di�eren
e between the obje
ts 
an be observed bya feasible 
omputation. In 
ase the answer is negative, the two obje
ts are equivalent as far as anypra
ti
al appli
ation is 
on
erned. Indeed, like in many other 
ryptographi
 de�nitions, in the def-inition of general/
omputational zero-knowledge we will freely inter
hange su
h (
omputationallyindistinguishable) obje
ts.The asymptoti
 formulation of 
omputational indistinguishability refers to (pairs of) probabil-ity ensembles, whi
h are in�nite sequen
es of �nite distributions, rather than to (pairs of) �nitedistributions. Spe
i�
ally, we 
onsider sequen
es indexed by strings (rather than by integers (inunary representation)). For S � f0; 1g�, we 
onsider the probability ensembles X = fX�g�2Sand Y = fY�g�2S , where ea
h X� (resp., Y�) is a distribution that ranges over strings of lengthpolynomial in j�j. We say that X and Y are 
omputationally indistinguishable if for every feasiblealgorithm A the di�eren
e dA(n) def= max�2f0;1gnfjPr[A(X�) = 1℄ � Pr[A(Y�) = 1℄jg is a negligiblefun
tion in j�j. That is:De�nition 3 (
omputational indistinguishability [67, 91℄): We say that X = fX�g�2S and Y =fY�g�2S are 
omputationally indistinguishable if for every family of polynomial-size 
ir
uits fDng,every polynomial p, all suÆ
iently large n and every � 2 f0; 1gn \ S,jPr[Dn(X�)=1℄ � Pr[Dn(Y�)=1℄j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn).That is, we think of D = fDng as of somebody who wishes to distinguish two distributions (basedon a sample given to it), and think of 1 as of D's verdi
t that the sample was drawn a

ordingto the �rst distribution. Saying that the two distributions are 
omputationally indistinguishablemeans that if D is an eÆ
ient pro
edure then its verdi
t is not really meaningful (be
ause theverdi
t is almost as often 1 when the input is drawn from the �rst distribution as when the inputis drawn from the se
ond distribution).We 
omment that indistinguishability by a single sample (as de�ned above) implies indistin-guishability by multiple samples. Also note that the de�nition would not have been stronger if wewere to provide the distinguisher (i.e., D) with the index (i.e., �) of the distribution-pair beingtested.88 Furthermore, the de�nition would not have been stronger if we were to 
onsider a spe
ialized polynomial-size
ir
uit per ea
h � 2 S (i.e., 
onsider the di�eren
e jPr[D�(X�) = 1℄ � Pr[D�(Y�) = 1℄j for any set of 
ir
uitsD = fD�g�2S su
h that the size of D� is polynomial in j�j).
7



3 De�nitional IssuesLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity of theassertion. That is, a veri�er obtaining su
h a proof only gains 
onvi
tion in the validity of theassertion. This is formulated by saying that anything that 
an be feasibly obtained from a zero-knowledge proof is also feasibly 
omputable from the (valid) assertion itself. The latter formulationfollows the simulation paradigm, whi
h is dis
ussed next.3.1 The Simulation ParadigmIn de�ning zero-knowledge proofs, we view the veri�er as a potential adversary that tries to gainknowledge from the (pres
ribed) prover. We wish to state that no (feasible) adversary strategy forthe veri�er 
an gain anything from the prover (beyond 
onvi
tion in the validity of the assertion).Let us 
onsider the desired formulation from a wide perspe
tive.A key question regarding the modeling of se
urity 
on
erns is how to express the intuitive re-quirement that an adversary \gains nothing substantial" by deviating from the pres
ribed behaviorof an honest user. Our approa
h is that the adversary gains nothing if whatever it 
an obtainby unrestri
ted adversarial behavior 
an be obtained within essentially the same 
omputationale�ort by a benign behavior. The de�nition of the \benign behavior" 
aptures what we want toa
hieve in terms of se
urity, and is spe
i�
 to the se
urity 
on
ern to be addressed. For example,in the previous paragraph, we said that a proof is zero-knowledge if it yields nothing beyond thevalidity of the assertion (i.e., the benign behavior is any 
omputation that is based (only) on theassertion itself, while assuming that the latter is valid). Thus, in a zero-knowledge proof no feasibleadversarial strategy for the veri�er 
an obtain more than a \benign veri�er", whi
h believes theassertion, 
an obtain from the assertion itself. We 
omment that the simulation paradigm, whi
hwas �rst developed in the 
ontext of zero-knowledge [68℄, is pivotal also to the de�nition of these
urity of en
ryption s
hemes (
f. [50, Chap. 5℄) and 
ryptographi
 proto
ols (
f. [24, 48℄).A notable property of de�ning se
urity (or zero-knowledge) via the simulation paradigm is thatthis approa
h is \overly liberal" with respe
t to its view of the abilities of the adversary as well asto what might 
onstitute a gain for the adversary. Thus, the approa
h may be 
onsidered overly
autious, be
ause it prohibits also \non-harmful" gains of some \far fet
hed" adversaries. Wewarn against this impression. Firstly, there is nothing more dangerous in 
ryptography than to
onsider \reasonable" adversaries (a notion whi
h is almost a 
ontradi
tion in terms): typi
ally, theadversaries will try exa
tly what the system designer has dis
arded as \far fet
hed". Se
ondly, itseems impossible to 
ome up with de�nitions of se
urity that distinguish \breaking the s
heme in aharmful way" from \breaking it in a non-harmful way": what is harmful is appli
ation-dependent,whereas a good de�nition of se
urity ought to be appli
ation-independent (as otherwise using thes
heme in any new appli
ation will require a full re-evaluation of its se
urity). Furthermore, evenwith respe
t to a spe
i�
 appli
ation, it is typi
ally very hard to 
lassify the set of \harmfulbreakings".3.2 The Basi
 De�nitionZero-knowledge is a property of some prover strategies. More generally, zero-knowledge is a propertyof some intera
tive ma
hines. Fixing an intera
tive ma
hine (e.g., a pres
ribed prover), we 
onsiderwhat 
an be 
omputed by an arbitrary feasible adversary (e.g., a veri�er) that intera
ts withthe �xed ma
hine on a 
ommon input taken from a predetermined set (in our 
ase the set of validassertions). This is 
ompared against what 
an be 
omputed by an arbitrary feasible algorithm that8



is only given the input itself. An intera
tive strategy A is zero-knowledge on (inputs from) the set Sif, for every feasible (intera
tive) strategy B�, there exists a feasible (non-intera
tive) 
omputationC� su
h that the following two probability ensembles are 
omputationally indistinguishable:1. f(A;B�)(x)gx2S def= the output of B� after intera
ting with A on 
ommon input x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.We stress that the �rst ensemble represents an a
tual exe
ution of an intera
tive proto
ol, whereasthe se
ond ensemble represents the 
omputation of a stand-alone pro
edure (
alled the \simulator"),whi
h does not intera
t with anybody. Thus, whatever 
an be feasibly extra
ted from intera
tionwith A on input x 2 S, 
an also be feasibly extra
ted from x itself. This means that nothing wasgained by the intera
tion itself (beyond 
on�den
e in the assertion x 2 S).The above de�nition does not a

ount for auxiliary information that an adversary may haveprior to entering the intera
tion. A

ounting for su
h auxiliary information is essential for usingzero-knowledge proofs as sub-proto
ols inside larger proto
ols (see [57, 61℄). This is taken 
are ofby a more stri
t notion 
alled auxiliary-input zero-knowledge.9De�nition 4 (zero-knowledge [68℄, revisited [61℄): A strategy A is auxiliary-input zero-knowledgeon inputs from S if for every probabilisti
 polynomial-time strategy B� and every polynomial p thereexists a probabilisti
 polynomial-time algorithm C� su
h that the following two probability ensemblesare 
omputationally indistinguishable:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and inter-a
ting with A on 
ommon input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2 f0; 1gp(jxj).An intera
tive proof (resp., an argument) system for S is 
alled auxiliary-input zero-knowledge if thepres
ribed prover strategy is auxiliary-input zero-knowledge on inputs from S.The more basi
 de�nition of zero-knowledge is obtained by eliminating the auxiliary-input z fromDe�nition 4. We 
omment that almost all known zero-knowledge proofs are in fa
t auxiliary-inputzero-knowledge. (Notable ex
eptions are zero-knowledge proofs 
onstru
ted on purpose in orderto show a separation between these two notions (e.g., in [57℄) and proto
ols having only \nonbla
k-box simulators" (see warm-up in [7℄).)We stress that the zero-knowledge property of an intera
tive proof (resp., argument) refers to allfeasible adversarial strategies that the veri�er may employ (in attempt to extra
t knowledge fromthe pres
ribed prover that tries to 
onvin
e the veri�er to a

ept a valid assertion).10 In 
ontrast,9 We note that the following de�nition seems stronger than merely allowing the veri�er and simulator to bearbitrary polynomial-size 
ir
uits. The issue is that the latter formulation does not guarantee that the simulator 
anbe easily derived from the 
heating veri�er nor that the length of the simulator's des
ription is related to the length ofthe des
ription of the veri�er. Both issues are important when trying to use zero-knowledge proofs as sub-proto
olsinside larger proto
ols or to 
ompose them (even sequentially). For further dis
ussion, see Se
tion 5.10 In parti
ular, the notion of auxiliary-input zero-knowledge refers to an auxiliary input that may be available tomali
ious veri�ers. Sin
e the pres
ribed veri�er strategy does not refer to an auxiliary-input, we may think of thisstrategy as ignoring su
h an input. In 
ontrast, typi
ally, the pres
ribed prover strategy does refer to an auxiliary-input (and makes extensive use of it in order to perform eÆ
iently the pres
ribed steps). Spe
i�
ally, in order to beof pra
ti
al value, the pres
ribed prover strategy has to be implemented by a probabilisti
 polynomial-time algorithmthat is given an auxiliary input (e.g., an NP-witness, whi
h is not given to the veri�er).9



the soundness property of an intera
tive proof (resp., the 
omputational-soundness property of anargument) refers to all possible (resp., feasible) adversarial strategies that the prover may employ(in attempt to fool the pres
ribed veri�er to a

ept a false assertion). Finally, the 
ompletenessproperty (only) refers to the behavior of both pres
ribed strategies (when given, as 
ommon input,a valid assertion).3.3 VariantsThe reader may skip the 
urrent subse
tion and return to it whenever en
ountering (espe
ially inthe se
ond part of this tutorial) a notion that was not de�ned above.3.3.1 Universal and bla
k-box simulationWe have already dis
ussed two variants on the basi
 de�nition (i.e., with or without auxiliary-inputs). Further strengthening of De�nition 4 is obtained by requiring the existen
e of a universalsimulator, denoted C, that is given the program of the veri�er (i.e., B�) as an auxiliary-input; thatis, in terms of De�nition 4, one should repla
e C�(x; z) by C(x; z; hB�i), where hB�i denotes thedes
ription of the program of B� (whi
h may depend on x and on z).11 That is, we e�e
tivelyrestri
t the simulation by requiring that it be a uniform (feasible) fun
tion of the veri�er's program(rather than arbitrarily depend on it). This restri
tion is very natural, be
ause it seems hard toenvision an alternative way of establishing the zero-knowledge property of a given proto
ol.Taking another step, one may argue that sin
e it seems infeasible to reverse-engineer programs,the simulator may as well just use the veri�er strategy as an ora
le (or as a \bla
k-box"). Thisreasoning gave rise to the notion of bla
k-box simulation, whi
h was introdu
ed and advo
ated in [57℄and further studied in numerous works (see, e.g., [28℄). The belief was that impossibility resultsregarding bla
k-box simulation represent inherent limitations of zero-knowledge itself. However,this belief was refuted by Barak [7℄. For further dis
ussion, see Se
tion 6.3.3.2 Honest veri�er versus general 
heating veri�erThe (general) de�nition of zero-knowledge (i.e., De�nition 4) refers to all feasible veri�er strategies.This 
hoi
e is most natural sin
e zero-knowledge is supposed to 
apture the robustness of the proverunder any feasible (i.e., adversarial) attempt to gain something by intera
ting with it. Thus, wetypi
ally view the veri�er as an adversary that is trying to 
heat.A weaker and still interesting notion of zero-knowledge refers to what 
an be gained by an\honest veri�er" (or rather a semi-honest veri�er)12 that intera
ts with the prover as dire
ted, withthe ex
eption that it may maintain (and output) a re
ord of the entire intera
tion (i.e., even ifdire
ted to erase all re
ords of the intera
tion). Although su
h a weaker notion is not satisfa
toryfor standard 
ryptographi
 appli
ations, it yields a fas
inating notion from a 
on
eptual as well asa 
omplexity-theoreti
 point of view. Furthermore, as shown in [64, 90℄, every publi
-
oin proofsystem that is zero-knowledge with respe
t to the honest-veri�er 
an be transformed into a standardzero-knowledge proof that maintains many of the properties of the original proto
ol (and withoutin
reasing the prover's powers or using any intra
tability assumptions).11 A
tually, we may in
orporate x and z in hB�i, and thus repla
e C(x; z; hB�i) by C(hB�i).12 The term \honest veri�er" is more appealing when 
onsidering an alternative (equivalent) formulation of Def-inition 4. In the alternative de�nition, the simulator is \only" required to generate the veri�er's view of the realintera
tion, when the veri�er's view in
ludes its inputs, the out
ome of its 
oin tosses, and all messages it has re
eived.10



We stress that the de�nition of zero-knowledge with respe
t to the honest-veri�er V is derivedfrom De�nition 4 by 
onsidering a single veri�er strategy B that is equal to V ex
ept that B alsomaintains a re
ord of the entire intera
tion (in
luding its own 
oin tosses) and outputs this re
ord atthe end of the intera
tion. (In parti
ular, the messages sent by B are identi
al to the 
orrespondingmessages that would have been sent by V .)3.3.3 Statisti
al versus Computational Zero-KnowledgeRe
all that the de�nition of zero-knowledge postulates that for every probability ensemble of onetype (i.e., representing the veri�er's output after intera
tion with the prover) there exists a \similar"ensemble of a se
ond type (i.e., representing the simulator's output). One key parameter is theinterpretation of \similarity". Three interpretations, yielding di�erent notions of zero-knowledge,have been 
ommonly 
onsidered in the literature (
f., [68, 43℄):1. Perfe
t Zero-Knowledge (PZK) requires that the two probability ensembles be identi
al.132. Statisti
al Zero-Knowledge (SZK) requires that these probability ensembles be statisti
ally
lose (i.e., the variation distan
e between them is negligible).3. Computational (or rather general) Zero-Knowledge (CZK) requires that these probability en-sembles be 
omputationally indistinguishable.Indeed, Computational Zero-Knowledge (CZK) is the most liberal notion, and is the notion 
onsid-ered in De�nition 4 as well as in most of this tutorial. (In parti
ular, whenever we fail to qualify thetype of zero-knowledge, we mean 
omputational zero-knowledge.) The only ex
eption is Se
tion 9,whi
h is devoted to a dis
ussion of Statisti
al (or Almost-Perfe
t) Zero-Knowledge (SZK). We notethat the 
lass SZK 
ontains several problems that are 
onsidered intra
table.3.3.4 Stri
t versus expe
ted probabilisti
 polynomial-timeSo far, we did not spe
ify what we exa
tly mean by the term probabilisti
 polynomial-time. Two
ommon interpretations are:1. Stri
t probabilisti
 polynomial-time. That is, there exist a (polynomial in the length of theinput) bound on the number of steps in ea
h possible run of the ma
hine, regardless of theout
ome of its 
oin tosses.2. Expe
ted probabilisti
 polynomial-time. The standard approa
h is to look at the running-timeas a random variable and bound its expe
tation (by a polynomial in the length of the input).As observed by Levin [75℄ (
f. [47℄), this de�nitional approa
h is quite problemati
 (e.g., it isnot model-independent and is not 
losed under algorithmi
 
omposition), and an alternativetreatment of this random variable is preferable.1413 The a
tual de�nition of PZK allows the simulator to fail (while outputting a spe
ial symbol) with some probabilitythat is bounded away from 1, and the output distribution of the simulator is 
onditioned on its not failing.14 Spe
i�
ally, it is preferable to de�ne expe
ted polynomial-time as having running time that is polynomially-related to a fun
tion that has linear expe
tation. That is, rather than requiring that E[Xn℄ = poly(n), one requiresthat for some Yn it holds that Xn = poly(Yn) and E[Yn℄ = O(n). The advantage of the latter approa
h is that if Xnis deemed polynomial on the average then so is X2n, whi
h is not the 
ase under the former approa
h (e.g., Xn = 2nwith probability 2�n and Xn = n otherwise). 11



Consequently, the notion of expe
ted polynomial-time raises a variety of 
on
eptual and te
hni
alproblems. For that reason, whenever possible, one should prefer to use the more robust (andrestri
ted) notion of stri
t (probabilisti
) polynomial-time. Thus, with the ex
eption of 
onstant-round zero-knowledge proto
ols, whenever we talk of a probabilisti
 polynomial-time veri�er (resp.,simulator) we mean one in the stri
t sense. In 
ontrast, with the ex
eption of [7, 11℄,15 all resultsregarding 
onstant-round zero-knowledge proto
ols refer to a stri
t polynomial-time veri�er andan expe
ted polynomial-time simulator, whi
h is indeed a small 
heat. For further dis
ussion, theinterested reader is referred to [11, 53℄.4 Zero-Knowledge Proofs for every NP-setA question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every set in P (orrather in BPP)16 has a \trivial" zero-knowledge proof (in whi
h the veri�er determines membershipby itself); however, what we seek is zero-knowledge proofs for statements that the veri�er 
annotde
ide by itself.4.1 Constru
ting Zero-Knowledge Proofs for NP-setsAssuming the existen
e of 
ommitment s
hemes17, whi
h in turn exist if one-way fun
tions ex-ist [78, 70℄, there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set (i.e.,sets having eÆ
iently veri�able stati
 proofs of membership). These zero-knowledge proofs, �rst
onstru
ted by Goldrei
h, Mi
ali and Wigderson [59℄ (and depi
ted in Figure 2), have the followingimportant property: the pres
ribed prover strategy is eÆ
ient, provided it is given as auxiliary-inputan NP-witness to the assertion (to be proved).18 That is:Theorem 5 ([59℄, using [70, 78℄): If one-way fun
tions exist then every set S 2 NP has a zero-knowledge intera
tive proof. Furthermore, the pres
ribed prover strategy 
an be implemented inprobabilisti
 polynomial-time, provided it is given as auxiliary-input an NP-witness for membershipof the 
ommon input in S.Theorem 5 makes zero-knowledge a very powerful tool in the design of 
ryptographi
 s
hemes andproto
ols (see below). We 
omment that the intra
tability assumption used in Theorem 5 seemsessential; see [81, 90℄. We also mention that statisti
al zero-knowledge arguments for every NP-setexist under the same assumption [79℄, but the 
urrently known 
onstru
tion is fairly involved.15 Spe
i�
ally, in [7, 11℄ both the veri�er and the simulator run in stri
t polynomial-time. We 
omment that, asshown in [11℄, the use of non-bla
k-box is ne
essary for the non-triviality of 
onstant-round zero-knowledge proto
olsunder the stri
t de�nition.16 Trivial zero-knowledge proofs for sets in BPP n 
oRP require modifying the de�nition of intera
tive proofs su
hthat to allow a negligible error also in the 
ompleteness 
ondition. Alternatively, zero-knowledge proofs for sets inBPP 
an be 
onstru
ted by having the prover send a single message that is distributed almost uniformly (
f. [45℄).17 Loosely speaking, 
ommitment s
hemes are digital analogues of non-transparent sealed envelopes. See furtherdis
ussion in Figure 2, and [49, Se
. 4.4.1℄ for more details.18 The auxiliary-input given to the pres
ribed prover (in order to allow for an eÆ
ient implementation of its strategy)is not to be 
onfused with the auxiliary-input that is given to mali
ious veri�ers (in the de�nition of auxiliary-inputzero-knowledge). The former is typi
ally an NP-witness for the 
ommon input, whi
h is available to the user thatinvokes the prover strategy (
f. the generi
 appli
ation in Se
tion 4.2). In 
ontrast, the auxiliary-input that is givento mali
ious veri�ers models arbitrary possible partial information that may be available to the adversary.
12



Commitment s
hemes are digital analogies of sealed envelopes (or, better, lo
ked boxes). Sendinga 
ommitment means sending a string that binds the sender to a unique value without revealingthis value to the re
eiver (as when getting a lo
ked box). De
ommitting to the value means sendingsome auxiliary information that allows to read the uniquely 
ommitted value (as when sending thekey to the lo
k).Common Input: A graph G(V;E). Suppose that V � f1; :::; ng for n def= jV j.Auxiliary Input (to the prover): A 3-
oloring � : V ! f1; 2; 3g.The following 4 steps are repeated t � jEj many times so to obtain soundness error exp(�t).Prover's �rst step (P1): Sele
t uniformly a permutation � over f1; 2; 3g. For i = 1 to n, sendthe veri�er a 
ommitment to the value �(�(i)).Veri�er's �rst step (V1): Sele
t uniformly an edge e 2 E and send it to the prover.Prover's se
ond step (P2): Upon re
eiving e = (i; j) 2 E, de
ommit to the ith and jth valuessent in Step (P1).Veri�er's se
ond step (V2): Che
k whether or not the de
ommitted values are di�erent ele-ments of f1; 2; 3g and whether or not they mat
h the 
ommitments re
eived in Step (P1).Figure 2: The zero-knowledge proof of Graph 3-Colorability (of [59℄). Zero-knowledgeproofs for other NP-sets 
an be obtained using the standard redu
tions.Analyzing the proto
ol of Figure 2. Let us 
onsider a single exe
ution of the main loop.Clearly, the pres
ribed prover is implemented in probabilisti
 polynomial-time, and always 
on-vin
es the veri�er (provided that it is given a valid 3-
oloring of the 
ommon input graph). In 
asethe graph is not 3-
olorable then, no matter how the prover behaves, the veri�er will reje
t withprobability at least 1=jEj (be
ause at least one of the edges must be improperly 
olored by theprover). We stress that the veri�er sele
ts uniformly whi
h edge to inspe
t after the prover has
ommitted to the 
olors of all verti
es. Thus, Figure 2 depi
ts an intera
tive proof system for Graph3-Colorability. As 
an be expe
ted, the zero-knowledge property is the hardest to establish, and wewill 
on�ne ourselves to presenting a simulator (whi
h we hope will 
onvin
e the reader without adetailed analysis). We start with three simplifying 
onventions (whi
h are useful in general):1. Without loss of generality, we may assume that the 
heating veri�er strategy is implementedby a deterministi
 polynomial-size 
ir
uit (or, equivalently, by a polynomial-time algorithmwith an auxiliary input). This is justi�ed by �xing any out
ome of the veri�er's 
oins, andobserving that our (uniform) simulation of the various (residual) deterministi
 strategies yieldsa simulation of the original probabilisti
 strategy.2. Without loss of generality, it suÆ
es to 
onsider 
heating veri�ers that (only) output theirview of the intera
tion (i.e., their input, 
oin tosses, and the messages the re
eived). This isjusti�ed by observing that the output of the original veri�er 
an be 
omputed by an algorithmof 
omparable 
omplexity that is given the veri�er's view of the intera
tion. Thus, it suÆ
esto simulate the view of that 
heating veri�ers have of the real intera
tion.3. Without loss of generality, it suÆ
es to 
onstru
t a \weak simulator" that produ
es outputwith some noti
eable probability. This is the 
ase be
ause, by repeatedly invoking this weaksimulator (polynomially) many times, we may obtain a simulator that fails to produ
e an13



output with negligible probability, whereas the latter yields a simulator that never fails (asrequired).The simulator starts by sele
ting uniformly and independently a random 
olor (i.e., element off1; 2; 3g) for ea
h vertex, and feeding the veri�er strategy with random 
ommitments to theserandom 
olors. Indeed, the simulator feeds the veri�er with a distribution that is very di�erentfrom the distribution that the veri�er sees in a real intera
tion with the prover. However, being
omputationally-restri
ted the veri�er 
annot tell these distributions apart (or else we obtain a
ontradi
tion to the se
urity of the 
ommitment s
heme in use). Now, if the veri�er asks to inspe
tan edge that is properly 
olored then the simulator performs the proper de
ommitment a
tion andoutputs the trans
ript of this intera
tion. Otherwise, the simulator halts pro
laiming failure. We
laim that failure o

urs with probability approximately 1=3 (or else we obtain a 
ontradi
tion tothe se
urity of the 
ommitment s
heme in use). Furthermore, based on the same hypothesis (but viaa more 
omplex proof), 
onditioned on not failing, the output of the simulator is 
omputationallyindistinguishable from the veri�er's view of the real intera
tion.Zero-knowledge proofs for other NP-sets. By using the standard Karp-redu
tions to 3-Colorability, the proto
ol of Figure 2 
an be used for 
onstru
ting zero-knowledge proofs for anyset inNP . We 
omment that this is probably the �rst time that an NP-
ompleteness result was usedin a \positive" way (i.e., in order to 
onstru
t something rather than in order to derive a hardnessresult). Subsequent positive uses of 
ompleteness results have appeared in the 
ontext of intera
tiveproofs [76, 88℄, probabilisti
ally 
he
kable proofs [5, 37, 3, 2℄, \hardness versus randomness trade-o�s" [6℄, and statisti
al zero-knowledge [87℄.EÆ
ien
y 
onsiderations. The proto
ol in Figure 2 
alls for invoking some 
onstant-roundproto
ol for a non-
onstant number of times. At �rst glan
e, it seems that one 
an derive a
onstant-round zero-knowledge proof system (of negligible soundness error) by performing theseinvo
ations in parallel (rather than sequentially). Unfortunately, as demonstrated in [57℄, thisintuition is not sound. See further dis
ussions in Se
tions 5 and 6. We 
omment that the numberof rounds in a proto
ol is 
ommonly 
onsidered the most important eÆ
ien
y 
riteria (or 
omplexitymeasure), and typi
ally one desires to have it be a 
onstant. We mention that, under standardintra
tability assumptions (e.g., the intra
tability of fa
toring), 
onstant-round zero-knowledgeproofs (of negligible soundness error) exists for every set in NP (
f. [56℄).4.2 Using Zero-Knowledge Proofs for NP-setsWe stress two important aspe
ts regarding Theorem 5: Firstly, it provides a zero-knowledgeproof for every NP-set, and se
ondly the pres
ribed prover 
an be implemented in probabilisti
polynomial-time when given an adequate NP-witness.A generi
 appli
ation. In a typi
al 
ryptographi
 setting, a user referred to as U , has a se
retand is supposed to take some a
tion depending on its se
ret. The question is how 
an otherusers verify that U indeed took the 
orre
t a
tion (as determined by U 's se
ret and the publi
lyknown information). Indeed, if U dis
loses its se
ret then anybody 
an verify that U took the
orre
t a
tion. However, U does not want to reveal its se
ret. Using zero-knowledge proofs we
an satisfy both 
on
i
ting requirements (i.e., having other users verify that U took the 
orre
ta
tion without violating U 's interest in not revealing its se
rets). That is, U 
an prove in zero-knowledge that it took the 
orre
t a
tion. Note that U 's 
laim to having taken the 
orre
t a
tion14



is an NP-assertion (sin
e U 's legal a
tion is determined as a polynomial-time fun
tion of its se
retand the publi
 information), and that U has an NP-witness to its validity (i.e., the se
ret is anNP-witness to the 
laim that the a
tion �ts the publi
 information). Thus, by Theorem 5, it ispossible for U to eÆ
iently prove the 
orre
tness of its a
tion without yielding anything about itsse
ret. Consequently, it is fair to ask U to prove (in zero-knowledge) that it behaves properly, andso to for
e U to behave properly. Indeed, \for
ing proper behavior" is the 
anoni
al appli
ation ofzero-knowledge proofs (see [60℄ and [50, Se
. 7.4℄).Zero-knowledge proofs for all IP. For the sake of elegan
e, we mention that under the sameassumption used in 
ase of NP, it holds that any set that has an intera
tive proof also has azero-knowledge intera
tive proof (
f. [71, 15℄).Part IIAdvan
ed Topi
s5 Composing zero-knowledge proto
olsA natural question regarding zero-knowledge proofs (and arguments) is whether the zero-knowledge
ondition is preserved under a variety of 
omposition operations. Three types of 
ompositionoperation have been 
onsidered in the literature: sequential 
omposition, parallel 
omposition and
on
urrent 
omposition. We note that the preservation of zero-knowledge under these forms of
omposition is not only interesting on its own sake, but rather also sheds light of the preservationof the se
urity of general proto
ols under these forms of 
omposition.We stress that when we talk of 
omposition of proto
ols (or proof systems) we mean that thehonest users are supposed to follow the pres
ribed program (spe
i�ed in the proto
ol des
ription)that refers to a single exe
ution. That is, the a
tions of honest parties in ea
h exe
ution are inde-pendent of the messages they re
eived in other exe
utions. The adversary, however, may 
oordinatethe a
tions it takes in the various exe
utions, and in parti
ular its a
tions in one exe
ution maydepend also on messages it re
eived in other exe
utions.Let us motivate the asymmetry between the independen
e of exe
utions assumed of honestparties but not of the adversary. Coordinating a
tions in di�erent exe
utions is typi
ally diÆ
ultbut not impossible. Thus, it is desirable to use 
omposition (as de�ned above) rather than to useproto
ols that in
lude inter-exe
ution 
oordination-a
tions, whi
h require users to keep tra
k ofall exe
utions that they perform. A
tually, trying to 
oordinate honest exe
utions is even moreproblemati
 than it seems be
ause one may need to 
oordinate exe
utions of di�erent honest parties(e.g., all employees of a big 
ooperation or an agen
y under atta
k), whi
h in many 
ases is highlyunrealisti
. On the other hand, the adversary atta
king the system may be willing to go into theextra trouble of 
oordinating its atta
k in the various exe
utions of the proto
ol.For T 2 fsequential; parallel; 
on
urrentg, we say that a proto
ol is T -zero-knowledgeif it is zero-knowledge under a 
omposition of type T . The de�nitions of T -zero-knowledge arederived from De�nition 4 by 
onsidering appropriate adversaries (i.e., adversarial veri�ers); thatis, adversaries that 
an initiate a polynomial number of intera
tions with the prover, where theseintera
tions are s
heduled a

ording to the type T .19 The 
orresponding simulator (whi
h, as usual,19 Without loss of generality, we may assume that the adversary never violates the s
heduling 
ondition; it mayinstead send an illegal message at the latest possible adequate time. Furthermore, without loss of generality, we may15



intera
ts with nobody) is required to produ
e an output that is 
omputationally indistinguishablefrom the output of su
h a type T adversary.5.1 Sequential CompositionIn this 
ase, the proto
ol is invoked (polynomially) many times, where ea
h invo
ation followsthe termination of the previous one. At the very least, se
urity (e.g., zero-knowledge) should bepreserved under sequential 
omposition, or else the appli
ability of the proto
ol is highly limited(be
ause one 
annot safely use it more than on
e).Referring to De�nition 4, we mention that whereas the \simpli�ed" version (i.e., without aux-iliary inputs) is not 
losed under sequential 
omposition (
f. [57℄), the a
tual version (i.e., withauxiliary inputs) is 
losed under sequential 
omposition (
f. [61℄). We 
omment that the same phe-nomena arises when trying to use a zero-knowledge proof as a sub-proto
ol inside larger proto
ols.Indeed, it is for these reasons that the augmentation of the \most basi
" de�nition by auxiliaryinputs was adopted in all subsequent works.20Bottom-line: Every proto
ol that is zero-knowledge (under De�nition 4) is sequential-zero-knowledge.5.2 Parallel CompositionIn this 
ase, (polynomially) many instan
es of the proto
ol are invoked at the same time andpro
eed at the same pa
e. That is, we assume a syn
hronous model of 
ommuni
ation, and 
onsider(polynomially) many exe
utions that are totally syn
hronized so that the ith message in all instan
esis sent exa
tly (or approximately) at the same time. (Natural variants on this model are dis
ussedbelow as well as at the end of Se
tion 5.3.)It turns out that, in general, zero-knowledge is not 
losed under parallel 
omposition. A simple
ounter-example (to the \parallel 
omposition 
onje
ture") is depi
ted in Figure 3. This 
ounter-example, whi
h is adapted from [57℄, 
onsists of a simple proto
ol that is zero-knowledge (in astrong sense), but is not 
losed under parallel 
omposition (not even in a very weak sense).We 
omment that, at the 1980's, the study of parallel 
omposition was interpreted mainly in the
ontext of round-eÆ
ient error redu
tion (
f. [40, 57℄); that is, the 
onstru
tion of full-
edge zero-knowledge proofs (of negligible soundness error) by 
omposing (in parallel) a basi
 zero-knowledgeproto
ol of high (but bounded away from 1) soundness error. Sin
e alternative ways of 
onstru
ting
onstant-round zero-knowledge proofs (and arguments) were found (
f. [56, 41, 23℄), interest inparallel 
omposition (of zero-knowledge proto
ols) has died. In retrospe
t, this was a 
on
eptualmistake, be
ause parallel 
omposition (and mild extensions of this notion) 
apture the preservationof se
urity in a fully syn
hronous (or almost-fully syn
hronous) 
ommuni
ation network. We notethat the almost-fully syn
hronous 
ommuni
ation model is quite realisti
 in many settings, althoughit is 
ertainly preferable not to assume even weak syn
hronism.Although, in general, zero-knowledge is not 
losed under parallel 
omposition, under standardintra
tability assumptions (e.g., the intra
tability of fa
toring), there exists zero-knowledge pro-to
ols for NP that are 
losed under parallel 
omposition. Furthermore, these proto
ols have aassume that all the adversary's messages are delivered at the latest possible adequate time.20 Interestingly, the preliminary version of Goldwasser, Mi
ali and Ra
ko�'s work [68℄ used the \most basi
"de�nition, whereas the �nal version of this work used the augmented de�nition. In some works, the \most basi
"de�nition is used for simpli
ity, but typi
ally one a
tually needs and means the augmented de�nition.16



Consider a party P holding a random (or rather pseudorandom) fun
tion f : f0; 1g2n ! f0; 1gn, andwilling to parti
ipate in the following proto
ol (with respe
t to se
urity parameter n). The other party,
alled A for adversary, is supposed to send P a binary value v 2 f1; 2g spe
ifying whi
h of the following
ases to exe
ute:For v = 1: Party P uniformly sele
ts � 2 f0; 1gn, and sends it to A, whi
h is supposed to reply witha pair of n-bit long strings, denoted (�; 
). Party P 
he
ks whether or not f(��) = 
. In 
aseequality holds, P sends A some se
ret information.For v = 2: Party A is supposed to uniformly sele
t � 2 f0; 1gn, and sends it to P , whi
h sele
tsuniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy is zero-knowledge (even w.r.t auxiliary-inputs as de�ned in De�nition 4):Intuitively, if the adversary A 
hooses the 
ase v = 1, then it is infeasible for A to guess a passing pair(�; 
) with respe
t to the random � sele
ted by P . Thus, ex
ept with negligible probability (when itmay get se
ret information), A does not obtain anything from the intera
tion. On the other hand, ifthe adversary A 
hooses the 
ase v = 2, then it obtains a pair that is indistinguishable from a uniformlysele
ted pair of n-bit long strings (be
ause � is sele
ted uniformly by P , and for any � the value f(��)looks random to A).In 
ontrast, if the adversary A 
an 
ondu
t two 
on
urrenta exe
utions with P , then it may learn thedesired se
ret information: In one session, A sends v = 1 while in the other it sends v = 2. Uponre
eiving P 's message, denoted �, in the �rst session, A sends � as its own message in the se
ondsession, obtaining a pair (�; f(��)) from P 's exe
ution of the se
ond session. Now, A sends the pair(�; f(��)) to the �rst session of P , this pair passes the 
he
k, and so A obtains the desired se
ret.aDummy messages may be added (in both 
ases) in order to make the above s
heduling �t the perfe
tly parallel 
ase.Figure 3: A 
ounter-example (adapted from [57℄) to the parallel repetition 
onje
turefor zero-knowledge proto
ols.
onstant number of rounds (
f. [51℄ for proofs and [35℄ for arguments).21 Both results extend alsoto 
on
urrent 
omposition in a syn
hronous 
ommuni
ation model, where the extension is in al-lowing proto
ol invo
ations to start at di�erent (syn
hronous) times (and in parti
ular exe
utionsmay overlap but not run simultaneously).We 
omment that parallel 
omposition is problemati
 also in the 
ontext of redu
ing the sound-ness error of arguments (
f. [14℄), but our fo
us here is on the zero-knowledge aspe
t of proto
olsregardless if they are proofs, arguments or neither.Bottom-line: Under standard intra
tability assumptions, every NP-set has a 
onstant-roundparallel-zero-knowledge proof.5.3 Con
urrent Composition (with and without timing)Con
urrent 
omposition generalizes both sequential and parallel 
omposition. Here (polynomially)many instan
es of the proto
ol are invoked at arbitrary times and pro
eed at arbitrary pa
e. Thatis, we assume an asyn
hronous (rather than syn
hronous) model of 
ommuni
ation.In the 1990's, when extensive two-party (and multi-party) 
omputations be
ame a reality (ratherthan a vision), it be
ame 
lear that it is (at least) desirable that 
ryptographi
 proto
ols maintain21 In 
ase of parallel-zero-knowledge proofs, there is no need to spe
ify the soundness error be
ause it 
an alwaysbe redu
ed via parallel 
omposition. As mentioned above, this is not the 
ase with respe
t to arguments, whi
h weretherefore de�ned to have negligible soundness error. 17



their se
urity under 
on
urrent 
omposition (
f. [34℄). In the 
ontext of zero-knowledge, 
on
urrent
omposition was �rst 
onsidered by Dwork, Naor and Sahai [35℄. A
tually, two models of 
on
urrent
omposition were 
onsidered in the literature, depending on the underlying model of 
ommuni
ation(i.e., a purely asyn
hronous model and an asyn
hronous model with timing). Both models 
oversequential and parallel 
omposition as spe
ial 
ases.Con
urrent 
omposition in the pure asyn
hronous model. Here we refer to the standardmodel of asyn
hronous 
ommuni
ation. In 
omparison to the timing model, the pure asyn
hronousmodel is a simpler model and using it requires no assumptions about the underlying 
ommuni
ation
hannels. However, it seems harder to 
onstru
t 
on
urrent zero-knowledge proto
ols for this model.In parti
ular, for a while it was not known whether 
on
urrent zero-knowledge proofs for NPexist at all (in this model). Under standard intra
tability assumptions (e.g., the intra
tability offa
toring), this question was aÆrmatively resolved by Ri
hardson and Kilian [85℄. Following theirwork, resear
h has fo
used on determining the round-
omplexity of 
on
urrent zero-knowledgeproofs for NP. This question is still opened, and the 
urrent state of the art regarding it is asfollows:� Under standard intra
tability assumptions, every language in NP has a 
on
urrent zero-knowledge proof with almost-logarithmi
ally many rounds (
f. [84℄, building upon [74℄, whi
hin turn builds over [85℄). Furthermore, the zero-knowledge property 
an be demonstratedusing a bla
k-box simulator (see de�nition in Se
tions 3.3.1 and 6).� Bla
k-box simulators 
annot demonstrate the 
on
urrent zero-knowledge property of non-trivial proofs (or arguments) having signi�
antly less than logarithmi
ally-many rounds (
f.Canetti et. al. [28℄).22� Re
ently, Barak [7℄ demonstrated that the \bla
k-box simulation barrier" 
an be bypassed.With respe
t to 
on
urrent zero-knowledge he only obtains partial results: 
onstant-roundzero-knowledge arguments (rather than proofs) for NP that maintain se
urity as long as ana-priori bounded (polynomial) number of exe
utions take pla
e 
on
urrently. (The length ofthe messages in his proto
ol grows linearly with this a-priori bound, whereas the number ofmessages remains �xed.)Thus, it is 
urrently unknown whether or not 
onstant-round proto
ols for NP may be 
on
urrentzero-knowledge (in the pure asyn
hronous model).Con
urrent 
omposition under the timing model: A model of naturally-limited asyn-
hronousness (whi
h 
ertainly 
overs the 
ase of parallel 
omposition) was introdu
ed by Dwork,Naor and Sahai [35℄. Essentially, they assume that ea
h party holds a lo
al 
lo
k su
h that therelative 
lo
k rates are bounded by an a-priori known 
onstant, and 
onsider proto
ols that em-ploy time-driven operations (i.e., time-out in-
oming messages and delay out-going messages).The bene�t of the timing model is that it is known how to 
onstru
t 
on
urrent zero-knowledgeproto
ols for it. Spe
i�
ally, using standard intra
tability assumptions, 
onstant-round argumentsand proofs that are 
on
urrent zero-knowledge under the timing model do exist (
f. [35℄ and [51℄,respe
tively). The disadvantages of the timing model are dis
ussed next.22 By non-trivial proof systems we mean ones for languages outside BPP, whereas by signi�
antly less thanlogarithmi
 we mean any fun
tion f :N!N satisfying f(n) = o(log n= log log n). In 
ontrast, by almost-logarithmi
we mean any fun
tion f satisfying f(n) = !(log n). 18



The timing model 
onsists of the assumption that talking about the a
tual timing of events ismeaningful (at least in a weak sense) and of the introdu
tion of time-driven operations. The timingassumption amounts to postulating that ea
h party holds a lo
al 
lo
k and knows a global bound,denoted � � 1, on the relative rates of the lo
al 
lo
ks.23 Furthermore, it is postulated that theparties know a (pessimisti
) bound, denoted �, on the message-delivery time (whi
h also in
ludesthe lo
al 
omputation and handling times). In our opinion, these timing assumptions are most rea-sonable, and are unlikely to restri
t the s
ope of appli
ations for whi
h 
on
urrent zero-knowledgeis relevant. We are more 
on
erned about the e�e
t of the time-driven operations introdu
ed inthe timing model. Re
all that these operations are the time-out of in-
oming messages and thedelay of out-going messages. Furthermore, it seems that the delay period should be related to thetime-out period, whi
h in turn is at least � (i.e., the time-out period must be at least as long as thepessimisti
 bound on message-delivery time so not to disrupt the proper operation of the proto
ol).This means that the use of these time-driven operations yields slowing down the exe
ution of theproto
ol (i.e., running it at the rate that is slower than the rate of the a
tual message-delivery time).However, as shown in [82℄, this slow-down 
an be signi�
antly smaller than the obvious bound of�. Indeed, various trade-o�s between the exe
ution slow-down and the tighteness of the se
urityguarantee are provided in [82℄, in
luding the possibility of using adaptive delays that \penalize"exe
utions that are slow anyhow. (We 
omment that other alternatives to the timing-model in
ludevarious set-up assumptions; 
f. [26, 30℄.)Ba
k to parallel 
omposition: Given our opinion about the timing model, it is not surprisingthat we 
onsider the problem of parallel 
omposition almost as important as the problem of 
on
ur-rent 
omposition in the timing model. Firstly, it is quite reasonable to assume that the parties' lo
al
lo
ks have approximately the same rate, and that drifting is 
orre
ted by o

asional 
lo
k syn-
hronization. Thus, it is reasonable to assume that the parties have approximately good estimatesof some global time. Furthermore, the global time may be partitioned into phases, ea
h 
onsistingof a 
onstant number of rounds, so that ea
h party wishing to exe
ute the proto
ol just delaysits invo
ation to the beginning of the next phase. Thus, 
on
urrent exe
ution of (
onstant-round)proto
ols in this setting amounts to a sequen
e of (time-disjoint) almost-parallel exe
utions of theproto
ol. Consequently, proving that the proto
ol is parallel zero-knowledge suÆ
es for 
on
urrent
omposition in this setting.Relation to resettable zero-knowledge. Going to the other extreme, we mention that thereexist a natural model of zero-knowledge that is even stronger than 
on
urrent zero-knowledge (evenin the pure asyn
hronous model). Spe
i�
ally, \resettable zero-knowledge" as de�ned in Se
tion 11,implies 
on
urrent zero-knowledge.6 Using the adversary's program in the proof of se
urityAs dis
ussed in the �rst part of this tutorial, zero-knowledge is de�ned by following the simulationparadigm, whi
h in turn underlies many other 
entral de�nitions in 
ryptography. Re
all thatthe de�nition of zero-knowledge proofs states that whatever an eÆ
ient adversary 
an 
omputeafter intera
ting with the prover, 
an a
tually be eÆ
iently 
omputed from s
rat
h by a so-
alledsimulator (whi
h works without intera
ting with the prover). Although the simulator may depend23 The rate should be 
omputed with respe
t to reasonable intervals of time; for example, for � as de�ned below, onemay assume that a time period of � units is measured as �0 units of time on the lo
al 
lo
k, where �=� � �0 � ��.19



arbitrarily on the adversary, the need to present a simulator for ea
h feasible adversary seems torequire the presentation of a universal simulator that is given the adversary's strategy (or program)as another auxiliary input. The question addressed in this se
tion is how 
an the universal simulatoruse the adversary's program.The adversary's program (or strategy) is a
tually a fun
tion determining for ea
h possible viewof the adversary (i.e., its input, random 
hoi
es and the message it has re
eived so far) whi
h messagewill be sent next. Thus, we identify the adversary's program with this next-message fun
tion. Asstated in Se
tion 3.3.1, until 2000, all universal simulators (
onstru
ted towards demonstrating zero-knowledge properties) have used the adversary's program (or rather its next-message fun
tion) asa bla
k-box (i.e., the simulator invoked the next-message fun
tion on a sequen
e of arguments ofits 
hoi
e). Furthermore, in view of the presumed diÆ
ulty of \reverse engineering" programs, itwas 
ommonly believed that nothing is lost by restri
ting attention to simulators, 
alled bla
k-boxsimulators, that only make bla
k-box usage of the adversary's program. Consequently, Goldrei
hand Kraw
zyk 
onje
tured that impossibility results regarding bla
k-box simulation represent inherentlimitations of zero-knowledge itself, and studied the limitations of the former [57℄. In parti
ular,they showed that parallel 
omposition of the proto
ol of Figure 2 (as well as of any 
onstant-roundpubli
-
oin proto
ol) 
annot be proved to be zero-knowledge using a bla
k-box simulator, unless thelanguage (i.e., 3-Colorability) is in BPP . In fa
t their result refers to any 
onstant-round publi
-
oinproto
ol with negligible soundness error, regardless of how su
h a proto
ol is obtained. This resultwas taken as strong eviden
e towards the 
onje
ture that 
onstant-round publi
-
oin proto
ol withnegligible soundness error 
annot be zero-knowledge (unless the language is in BPP). Similarly, asmentioned in Se
tion 5.3, it was shown that proto
ols of sub-logarithmi
 number of rounds 
annotbe proved to be 
on
urrent zero-knowledge via a bla
k-box simulator [28℄, and this was taken aseviden
e towards the 
onje
ture that su
h proto
ols 
annot be 
on
urrent zero-knowledge.In 
ontrast to these 
onje
tures and supportive eviden
e, Barak showed how to 
onstru
t non-bla
k-box simulators and obtained several results that were known to be una
hievable via bla
k-boxsimulators [7℄. In parti
ular, under standard intra
tability assumptions (see also [9℄), he presented
onstant-round publi
-
oin zero-knowledge arguments with negligible soundness error for any lan-guage in NP. (Moreover, the simulator runs in stri
t polynomial-time, whi
h is impossible forbla
k-box simulators of non-trivial 
onstant-round proto
ols [11℄.) Furthermore, this proto
ol pre-serves zero-knowledge under a �xed24 polynomial number of 
on
urrent exe
utions, in 
ontrast tothe result of [28℄ (regarding bla
k-box simulators) that holds also in that restri
ted 
ase. Thus,Barak's result 
alls for the re-evaluation of many 
ommon beliefs. Most 
on
retely, it says thatresults regarding bla
k-box simulators do not re
e
t inherent limitations of zero-knowledge (butrather an inherent limitation of a natural way of demonstrating the zero-knowledge property). Mostabstra
tly, it says that there are meaningful ways of using a program other than merely invokingit as a bla
k-box.Does this means that a method was found to \reverse engineer" programs or to \understand"them? We believe that the answer is negative. Barak [7℄ is using the adversary's program in asigni�
ant way (i.e., more signi�
ant than just invoking it), without \understanding" it. So howdoes he use the program?The key idea underlying Barak's proto
ol [7℄ is to have the prover prove that either the originalNP-assertion is valid or that he (i.e., the prover) \knows the veri�er's residual strategy" (in the sensethat it 
an predi
t the next veri�er message). Indeed, in a real intera
tion (with the honest veri�er),24 The proto
ol depends on the polynomial bounding the number of exe
utions, and thus is not known to be
on
urrent zero-knowledge (be
ause the latter requires us to �x the proto
ol and then 
onsider any polynomialnumber of 
on
urrent exe
utions). 20



it is infeasible for the prover to predi
t the next veri�er message, and so 
omputational-soundnessof the proto
ol follows. However, a simulator that is given the 
ode of the veri�er's strategy (andnot merely ora
le a

ess to that 
ode), 
an produ
e a valid proof of the disjun
tion by properlyexe
uting the sub-proto
ol using its knowledge of an NP-witness for the se
ond disjun
tive. Thesimulation is 
omputationally indistinguishable from the real exe
ution, provided that one 
annotdistinguish an exe
ution of the sub-proto
ol in whi
h one NP-witness (i.e., an NP-witness for theoriginal assertion) is used from an exe
ution in whi
h the se
ond NP-witness (i.e., an NP-witnessfor the auxiliary assertion) is used. That is, the sub-proto
ol should be a witness indistinguishableargument system (see further dis
ussion below). We warn the reader that the a
tual implementationof the above idea requires over
oming several te
hni
al diÆ
ulties (
f. [7, 9℄).Perspe
tive. In retrospe
t, taking a wide perspe
tive, it should not 
ome as a surprise that theprogram's 
ode yields extra power beyond bla
k-box a

ess to it. Feeding a program with its own
ode (or part of it) is the essen
e of the diagonalization te
hnique, and this too is done without\reverse engineering". Furthermore, various non-bla
k-box te
hniques have appeared before in the
ryptographi
 setting, but they were used in the more natural 
ontext of devising an atta
k onan (arti�
ial) inse
ure s
heme (e.g., towards proving the failure of the \Random Ora
le Methodol-ogy" [27℄ and the impossibility of software obfus
ation [10℄). In 
ontrast, in [7℄ (and [8℄) the 
odeof the adversary is being used within a sophisti
ated proof of se
urity. What we wish to highlighthere is that non-bla
k-box usage of programs is relevant also to proving (rather than to disproving)the se
urity of systems.Digest: Witness Indistinguishability and the FLS-Te
hniqueThe above des
ription (of [7℄), as well as several other sophisti
ated 
onstru
tions of zero-knowledgeproto
ols (e.g., [39, 85℄), makes 
ru
ial use of a te
hnique introdu
ed by Feige, Lapidot andShamir [39℄, whi
h in turn is based on the notion of witness indistinguishability (introdu
ed byFeige and Shamir [40℄).Loosely speaking, for any NP-relation R, an argument system for the 
orresponding language(i.e., LR) is 
alled witness indistinguishable if no feasible veri�er may distinguish the 
ase in whi
h theprover uses one NP-witness to x (i.e., w1 su
h that (x;w1) 2 R) from the 
ase in whi
h the proveris using a di�erent NP-witness to the same input x (i.e., w2 su
h that (x;w2) 2 R). Clearly, anyzero-knowledge proto
ol is witness indistinguishable, but the 
onverse does not ne
essarily hold andit seems that witness indistinguishable proto
ols are easier to 
onstru
t than zero-knowledge ones.(We mention that witness indistinguishable proto
ols are 
losed under parallel 
omposition [40℄,whereas this does not hold in general for zero-knowledge proto
ols.)Following is a sket
hy des
ription of a spe
ial 
ase of the FLS-te
hnique, whereas the afore-mentioned appli
ation uses a more general version (whi
h refers to proofs of knowledge, as de�nedin Se
tion 7).25 In this spe
ial 
ase, the te
hnique 
onsists of the following 
onstru
tion s
hema,whi
h uses witness indistinguishable proto
ols for NP in order to obtain zero-knowledge proto
olsfor NP . On 
ommon input x 2 L, where L = LR is the NP-set de�ned by the witness relation R,the following two steps are performed:25 In the general 
ase, the generation proto
ol may generate an instan
e x0 in L0, but it is infeasible for the proverto obtain a 
orresponding witness (i.e., a w0 su
h that (x0; w0) 2 R0). In the se
ond step, the sub-proto
ol in useought to be a proof of knowledge, and 
omputational-soundness of the main proto
ol will follows (be
ause otherwisethe prover, using a knowledge extra
tor, 
an obtain a witness for x0 2 L0).21



1. The parties generate an instan
e x0 for an auxiliary NP-set L0, where L0 is de�ned by a witnessrelation R0. The generation proto
ol in use must satisfy the following two 
onditions:(a) If the veri�er follows its pres
ribed strategy then no matter whi
h feasible strategy isused by the prover, with high probability, the proto
ol's out
ome is a no-instan
e of L0.(b) Loosely speaking, there exists an eÆ
ient (non-intera
tive) pro
edure for produ
ing a(random) trans
ript of the generation proto
ol along with an NP-witness for the 
orre-sponding out
ome su
h that the produ
ed trans
ript is 
omputationally indistinguishablefrom the trans
ript of a real exe
ution of the proto
ol.For example, L0 may 
onsist of all possible out
omes of a pseudorandom generator thatstret
hes its seed by a fa
tor of two, and the generation proto
ol may 
onsist of the twoparties iteratively invoking a 
oin tossing proto
ol to obtain a random string.26 Note thatthe out
ome of a real exe
ution will be an almost uniformly distributed string, whi
h is mostlikely a no-instan
e of L0, whereas it is easy to generate a (random) trans
ript 
orrespondingto any desired out
ome (provided that the parties use an adequate 
oin tossing proto
ol).2. The parties exe
ute a witness indistinguishable proto
ol for the set L00 de�ned by the witnessrelation R00 = f((�; �0); (�; �0)) : (�; �) 2 R _ (�0; �0) 2 R0g. The sub-proto
ol is su
h thatthe 
orresponding prover 
an be implemented in probabilisti
 polynomial-time given an NP-witness for (�; �0) 2 L00. The sub-proto
ol is invoked on 
ommon input (x; x0), where x0 isthe out
ome of Step 1, and the sub-prover is invoked with the 
orresponding NP-witness asauxiliary input (i.e., with (w; �), where w is the NP-witness for x given to the main prover).The 
omputational-soundness of the above proto
ol follows by Property (a) of the generation pro-to
ol (i.e., with high probability x0 62 L0, and so x 2 L follows by the soundness of the proto
ol usedin Step 2). To demonstrate the zero-knowledge property, we �rst generate a simulated trans
ript ofStep 1 (with out
ome x0 2 L0) along with an adequate NP-witness (i.e., w0 su
h that (x0; w0) 2 L0),and then emulate Step 2 by feeding the sub-prover strategy with the NP-witness (�;w0). Com-bining Property (b) of the generation proto
ol and the witness indistinguishability property of theproto
ol used in Step 2, the simulation is indistinguishable from the real exe
ution.7 Proofs of KnowledgeThis se
tion addresses the 
on
ept of \proofs of knowledge". Loosely speaking, these are proofs inwhi
h the prover asserts \knowledge" of some obje
t (e.g., a 3-
oloring of a graph), and not merelyits existen
e (e.g., the existen
e of a 3-
oloring of the graph, whi
h in turn implies that the graphis 3-
olorable). But what is meant by saying that a ma
hine knows something? Indeed the mainthrust of this se
tion is in addressing this question. Before doing so we point out that \proofs ofknowledge", and in parti
ular zero-knowledge \proofs of knowledge", have many appli
ations tothe design of 
ryptographi
 s
hemes and 
ryptographi
 proto
ols. In fa
t, we have already referredto \proofs of knowledge" in Se
tion 6.26 We note that this spe
i�
 example is not very useful sin
e it requires a highly iterative generation proto
ol.Indeed, in order to a
hieve a 
onstant-round zero-knowledge proto
ol using this s
hema, one must use a 
onstant-round generation proto
ol.
22



7.1 How to de�ne proofs of knowledgeWhat does it mean to say that a ma
hine knows something? Any standard di
tionary suggestsseveral meanings for the verb to know, and most meanings are phrased with referen
e to awareness,a notion whi
h is 
ertainly inappli
able in the 
ontext of ma
hines. We must look for a behavioristi
interpretation of the verb to know. Indeed, it is reasonable to link knowledge with ability to dosomething (e.g., the ability to write down whatever one knows). Hen
e, we will say that a ma
hineknows a string � if it 
an output the string �. But this seems as total non-sense too: a ma
hinehas a well de�ned output { either the output equals � or it does not. So what 
an be meant bysaying that a ma
hine 
an do something? Loosely speaking, it may mean that the ma
hine 
an beeasily modi�ed so that it does whatever is 
laimed. More pre
isely, it may mean that there existsan eÆ
ient ma
hine that, using the original ma
hine as a bla
k-box (or given its 
ode as an input),outputs whatever is 
laimed.So mu
h for de�ning the \knowledge of ma
hines". Yet, whatever a ma
hine knows or does notknow is \its own business". What 
an be of interest and referen
e to the outside is the question ofwhat 
an be dedu
ed about the knowledge of a ma
hine after intera
ting with it. Hen
e, we areinterested in proofs of knowledge (rather than in mere knowledge).For sake of simpli
ity let us 
onsider a 
on
rete question: how 
an a ma
hine prove that it knowsa 3-
oloring of a graph? An obvious way is just to send the 3-
oloring to the veri�er. Yet, we 
laimthat applying the proto
ol in Figure 2 (i.e., the zero-knowledge proof system for 3-Colorability) isan alternative way of proving knowledge of a 3-
oloring of the graph.Loosely speaking, we may say that an intera
tive ma
hine, V , 
onstitutes a veri�er for knowledgeof 3-
oloring if the probability that the veri�er is 
onvin
ed by a ma
hine P to a

ept the graph Gis inversely proportional to the diÆ
ulty of extra
ting a 3-
oloring of G when using ma
hine P asa \bla
k box".27 Namely, the extra
tion of the 3-
oloring is done by an ora
le ma
hine, 
alled anextra
tor, that is given a

ess to a fun
tion spe
ifying the behavior P (i.e., the messages it sendsin response to parti
ular messages it may re
eive). We require that the (expe
ted) running time ofthe extra
tor, on input G and a

ess to an ora
le spe
ifying P 's messages, be inversely related (bya fa
tor polynomial in jGj) to the probability that P 
onvin
es V to a

ept G. In 
ase P always
onvin
es V to a

ept G, the extra
tor runs in expe
ted polynomial-time. The same holds in 
aseP 
onvin
es V to a

ept with noti
eable probability. (We stress that the latter spe
ial 
ases do notsuÆ
e for a satisfa
tory de�nition; see dis
ussion in [49, Se
. 4.7.1℄.)28We mention that the 
on
ept of proofs of knowledge was �rst introdu
ed in [68℄, but the aboveformulation is based mostly on [13℄. A famous appli
ation of zero-knowledge proofs of knowledgeis to the 
onstru
tion of identi�
ation s
hemes (e.g., the Fiat-Shamir s
heme [42℄).7.2 How to 
onstru
t proofs of knowledgeAs hinted above, many of the known proof systems are in fa
t proofs of knowledge. Furthermore,some (but not all) known zero-knowledge proofs (resp., arguments) are in fa
t proofs (resp., argu-27 Indeed, as hinted above, one may 
onsider also non-bla
k-box extra
tors as done in [11℄. However, this limitsthe appli
ability of the de�nitions to provers that are implemented by polynomial-size 
ir
uits.28 In parti
ular, note that the latter probability (i.e., of being 
onvin
ed) may be neither noti
eable (i.e., boundedbelow by the re
ipro
al of some polynomial) nor negligible (i.e., bounded above by the re
ipro
al of every polynomial).Note that events that o

ur with probability that is neither noti
eable nor negligible, 
an neither be ignored nor beused (be
ause using them requires having them o

ur with high probability when the experiment is repeated for ana-priori bounded polynomial number of times). 23



ments) of knowledge.29 Indeed, a notable example is the zero-knowledge proof depi
ted in Figure 2.For further dis
ussion, see [49, Se
. 4.7℄ and [11℄.8 Non-Intera
tive Zero-KnowledgeIn this se
tion we 
onsider non-intera
tive zero-knowledge proof systems. The model, introdu
edin [18℄, 
onsists of three entities: a prover, a veri�er and a uniformly sele
ted referen
e string(whi
h 
an be thought of as being sele
ted by a trusted third party). Both veri�er and prover 
anread the referen
e string, and ea
h 
an toss additional 
oins. The intera
tion 
onsists of a singlemessage sent from the prover to the veri�er, who then is left with the �nal de
ision (whether toa

ept or not). The (basi
) zero-knowledge requirement refers to a simulator that outputs pairsthat should be 
omputationally indistinguishable from the distribution (of pairs 
onsisting of auniformly sele
ted referen
e string and a random prover message) seen in the real model.30 Non-intera
tive zero-knowledge proof systems have numerous appli
ations (e.g., to the 
onstru
tion ofpubli
-key en
ryption and signature s
hemes, where the referen
e string may be in
orporated in thepubli
-key). Several di�erent de�nitions of non-intera
tive zero-knowledge proofs were 
onsideredin the literature.� In the basi
 de�nition, one 
onsiders proving a single assertion of a-priori bounded length,where this length may be smaller than the length of the referen
e string.� A natural extension, required in many appli
ations, is the ability to prove multiple assertionsof varying length, where the total length of these assertions may ex
eed the length of thereferen
e string (as long as the total length is polynomial in the length of the referen
estring). This de�nition is sometimes referred to as the unbounded de�nition, be
ause thetotal length of the assertions to be proved is not a-priori bounded.� Other natural extensions refer to the preservation of se
urity (i.e., both soundness and zero-knowledge) when the assertions to be proved are sele
ted adaptivity (based on the referen
estring and possibly even based on previous proofs).� Finally, we mention the notion of simulation-soundness, whi
h is related to non-malleability.This extension, whi
h mixes the zero-knowledge and soundness 
onditions, refers to the sound-ness of proofs presented by an adversary after it obtains proofs of assertions of its own 
hoi
e(with respe
t to the same referen
e string). This notion is important in appli
ations of non-intera
tive zero-knowledge proofs to the 
onstru
tion of publi
-key en
ryption s
hemes se
ureagainst 
hosen 
iphertext atta
ks (see [50, Se
. 5.4.4.4℄).Constru
ting non-intera
tive zero-knowledge proofs seems more diÆ
ult than 
onstru
ting intera
-tive zero-knowledge proofs. Still, based on standard intra
tability assumptions (e.g., intra
tabilityof fa
toring), it is known how to 
onstru
t a non-intera
tive zero-knowledge proof (even in theadaptive and non-malleable sense) for any NP-set.29 Arguments of knowledge are de�ned analogous to proofs of knowledge, while limiting the extra
tion requirementto provers that are implemented by polynomial-size 
ir
uits. In this 
ase, it is natural to allow also non-bla
k-boxextra
tion, as dis
ussed in Footnote 27.30 Note that the veri�er does not e�e
t the distribution seen in the real model, and so the basi
 de�nition ofzero-knowledge does not refer to it. The veri�er (or rather a pro
ess of adaptively sele
ting assertions to be proved)will be referred to in the adaptive variants of the de�nition.24



Suggestions for further reading: For a de�nitional treatment of the basi
, unbounded andadaptive de�nitions see [49, Se
. 4.10℄. In
reasingly stronger variants of the non-malleable de�nitionare presented in [50, Se
. 5.4.4.4℄ and [32℄. A relatively simple 
onstru
tion for the basi
 model ispresented in [39℄ (see also [49, Se
. 4.10.2℄). (A more eÆ
ient 
onstru
tion 
an be found in [73℄.)A transformation of systems for the basi
 model into systems for the unbounded model is alsopresented in [39℄ (and [49, Se
. 4.10.3℄). Constru
tions for in
reasingly stronger variants of the(adaptive) non-malleable de�nition are presented in [50, Se
. 5.4.4.4℄ and [32℄.9 Statisti
al Zero-KnowledgeRe
all that statisti
al zero-knowledge proto
ols are su
h in whi
h the distribution ensembles referredto in De�nition 4 are required to be statisti
ally indistinguishable (rather than 
omputationallyindistinguishable). Assuming that one-way fun
tions exist, every NP-set has a statisti
al zero-knowledge argument (see [79℄, whi
h imporoves over [21℄). On the other hand, it is unlikely that allNP-sets have statisti
al zero-knowledge proofs [43, 1℄. Note that the same intra
tability assump-tion is used for 
onstru
ting statisti
al zero-knowledge arguments (for NP) and for 
onstru
ting
omputational zero-knowledge proofs (for NP). Ignoring the 
urrent dis
repan
y between the 
om-plexities of the known 
onstru
tions, the natural question of whi
h 
onstru
t to use, arises. Theanswer depends on the appli
ation; that is, on whether it is more important, in this appli
ation,to prote
t the prover's se
rets or to prote
t the veri�er from being 
onvin
ed of false assertions. In
ontrast, Statisti
al zero-knowledge proofs, whenever they exist, free us from this dilemma. Indeed,this is one out of several reasons for studying these obje
ts. That is:� Statisti
al zero-knowledge proofs o�er information-theoreti
 se
urity to both parties. Thus,whenever they exist, statisti
al zero-knowledge proofs should typi
ally be preferred over 
om-putational zero-knowledge proofs (whi
h only o�er 
omputational se
urity to the prover) andover statisti
al zero-knowledge arguments (whi
h only o�er 
omputational se
urity to theveri�er).� Statisti
al zero-knowledge proofs provide a 
lean model for the study of various questionsregarding zero-knowledge. Often, this study results in te
hniques that are appli
able also for
omputational zero-knowledge; one example is mentioned below.� The 
lass of problems having statisti
al zero-knowledge proofs is interesting from a 
omplex-ity theoreti
 point of view. On one hand, this 
lass is likely to be a proper superset of BPP(e.g., it 
ontains seemingly hard problems su
h as Quadrati
 Resideousity [68℄, Graph Iso-morphism [59℄, and a promise problem equivalent to the Dis
rete Logarithm Problem [58℄).On the other hand, this 
lass is 
ontained in AM\ 
oAM (
f. [1, 43℄), whi
h is believed notto extend mu
h beyond NP \ 
oNP . (AM is the 
lass of sets having two-round publi
-
oinintera
tive proofs.)In the rest of this se
tion, we survey the main results regarding the internal stru
ture of the
lass of sets having statisti
al zero-knowledge proofs. This study was initiated to a large extentby Okamoto [80℄. We �rst present transformations that, when applied to 
ertain statisti
al zero-knowledge proto
ols, yield proto
ols with additional properties. Next, we 
onsider several stru
turalproperties of the 
lass, most notably the existen
e of natural 
omplete problems (dis
overed by Sahaiand Vadhan [87℄). For further details see [89℄. 25



9.1 TransformationsThe �rst transformation takes any publi
-
oin intera
tive proof that is statisti
al zero-knowledgewith respe
t to the honest veri�er, and returns a (publi
-
oin) statisti
al zero-knowledge proof [64℄.When applied to a publi
-
oin intera
tive proof that is (
omputational) zero-knowledge with respe
tto the honest veri�er, the transformation yields a (
omputational) zero-knowledge proof. Thus,this transformation \ampli�es the se
urity" of (publi
-
oin) proto
ols, from leaking nothing to thepres
ribed veri�er into leaking nothing to any 
heating veri�er.The heart of the transformation is a suitable random sele
tion proto
ol, whi
h is used to emulatethe veri�er's messages in the original proto
ol. Loosely speaking, the random sele
tion proto
ol iszero-knowledge in a strong sense, and the e�e
t of ea
h of the parties on the proto
ol's out
ome isadequately bounded. For example, it is impossible for the veri�er to e�e
t the proto
ol's out
ome(by more than a negligible amount), whereas the prover 
annot in
rease the probability that theout
ome hits any set by more than some spe
i�
 (super-polynomial) fa
tor.The �rst transformation 
alls our attention to publi
-
oin intera
tive proofs that are statisti
alzero-knowledge (with respe
t to the honest veri�er). In general, publi
-
oin intera
tive proofs areeasier to manipulate than general intera
tive proofs. The se
ond transformation takes any statisti
alzero-knowledge (with respe
t to the honest veri�er) proof and returns one that is of the publi
-
ointype (see [66℄, whi
h builds on [80℄). Unfortunately, the se
ond transformation, whi
h is analogousto a previously known result regarding intera
tive proofs [69℄, does not extend to 
omputationalzero-knowledge,Combined together, the two transformations imply that the 
lass of sets (or promise problems)having intera
tive proofs that are statisti
al zero-knowledge with respe
t to the honest veri�erequals the 
lass of sets having (general) statisti
al zero-knowledge proofs.9.2 Complete problems and stru
tural propertiesIn the rest of this se
tion we 
onsider 
lasses of promise problems (rather than 
lasses of de
isionproblems or sets). Spe
i�
ally, we denote by SZK the 
lass of problems having a statisti
al zero-knowledge proof. Re
all that BPP � SZK � AM\ 
oAM, and that the �rst in
lusion is believedto be stri
t.One remarkable property of the 
lass SZK is that it has natural 
omplete problems (i.e.,problems in SZK su
h that any problem in SZK is Karp-redu
ible to them). One su
h problemis to distinguish pairs of distributions (given via sampling 
ir
uits) that are statisti
ally 
lose frompairs that are statisti
ally far apart [87℄. Another su
h problem is, given two distributions ofsuÆ
iently di�erent entropy, to tell whi
h has higher entropy [66℄. It is indeed interesting that \the
lass statisti
al zero-knowledge is all about statisti
s (or probability)".Another remarkable property of SZK is the fa
t that it is 
losed under 
omplementation(see [87℄, whi
h builds on [80℄). In fa
t, SZK is 
losed under NC1-truth-table redu
tions [87℄.Non-Intera
tive SZK. A systemati
 study of Non-Intera
tive Statisti
al Zero-Knowledge proofsystems was 
ondu
ted in [65℄. The main result is eviden
e for the non-triviality of the 
lass (i.e.,it 
ontains sets outside BPP if and only if SZK 6= BPP).10 Knowledge ComplexityOne of the many 
ontributions of the seminal paper of Goldwasser, Mi
ali and Ra
ko� [68℄ isthe introdu
tion of the 
on
ept of knowledge 
omplexity. Knowledge 
omplexity is intended to26



measure the 
omputational advantage gained by intera
tion. Hen
e, something that 
an be obtainedwithout intera
tion is not 
onsidered knowledge. The latter phrase is somewhat qualitative andsupplies the intuition underlying the de�nition of zero-knowledge (i.e., knowledge 
omplexity zero)as surveyed above. Quantifying the amount of knowledge gained by intera
tion, in 
ase it is notzero, is more problemati
.31 We stress that the de�nition of zero-knowledge does not depend onthe formulation of the amount of knowledge gained, be
ause this de�nition addresses the 
ase inwhi
h no knowledge is gained.Several de�nitions of knowledge 
omplexity have appeared in the literature, where some are
losely related and quite robust (
f. [63℄). Here we survey one de�nitional approa
h, whi
h we
onsider most satisfa
tory. A

ording to this approa
h the amount of knowledge gained in anintera
tion is bounded by the number of bits that are 
ommuni
ated in an alternative intera
tionthat allows to simulate the original intera
tion. That is, party P is said to yield at most k(�)bits of knowledge (on inputs in S) if whatever 
an be eÆ
iently 
omputed through an intera
tionwith P on 
ommon input x 2 S, 
an also be eÆ
iently 
omputed through an intera
tion (onthe same 
ommon input x) with an alternative ma
hine P 0 that sends at most k(jxj) bits. Thisformulation 
an be applied with respe
t to various types of simulations, extending the varioustypes of zero-knowledge. Our fo
us is on the extension of statisti
al zero-knowledge proofs (be
ause,under standard intra
tability assumptions, any language in IP has a 
omputational zero-knowledgeproof). We note that, without loss of generality, the \knowledge-giving-ma
hine" 
an be madememoryless and deterministi
 (i.e., by providing it with all previous messages and with 
oin tosses).Hen
e, the \knowledge-giving-ma
hine" is merely an ora
le (and we may think of the simulationas being performed by an ora
le ma
hine and 
ount the number of its binary queries). For furtherdis
ussion of this and other de�nitions, the reader is referred to [63℄.A natural resear
h proje
t is to 
hara
terize languages a

ording to the (statisti
al) knowledge-
omplexity of their intera
tive proof systems. The main result known (for the above de�nition)is that languages with logarithmi
 statisti
al knowledge-
omplexity are in AM\ 
oAM (
f. [83℄,building on [1℄ and [62℄). Thus, unless the polynomial time hierar
hy 
ollapses (
f. [20℄), NP-
omplete set have super-logarithmi
 statisti
al knowledge-
omplexity.11 Resettability of a party's random-tape (rZK and rsZK)Having gained a reasonable understanding of the se
urity of 
ryptographi
 s
hemes and proto
olsas stand-alone, 
ryptographi
 resear
h is moving towards the study of stronger notions of se
urity.Examples in
lude the e�e
t of exe
uting several instan
es of the same proto
ol 
on
urrently (e.g.,the malleability of an individual proto
ol [34℄) as well as the e�e
t of exe
uting the proto
ol 
on-
urrently to any other a
tivity (or set of proto
ols) [25℄. Another example of a stronger notion ofse
urity, whi
h is of theoreti
al and pra
ti
al interest, is the se
urity of proto
ols under a \resetting"atta
k. In su
h an atta
k a party may be for
ed to exe
ute a proto
ol several times while using thesame random-tape and without 
oordinating these exe
utions (e.g., by maintaining a joint state).The theoreti
al interest in this notion stems from the fa
t that randomness plays a pivotal role in
ryptography, and thus the question of whether one needs fresh randomness in ea
h invo
ation ofa 
ryptographi
 proto
ol is very natural. The pra
ti
al importan
e is due to the fa
t that in manysettings it is impossible or undesirable to generate fresh randomness on the 
y (or to maintain astate between exe
utions).31 In general, it seems that quantitative notions are harder to handle than qualitative ones.27



Resettable Zero-Knowledge (rZK). Resettability of players in a 
ryptographi
 proto
ol was�rst 
onsidered in [26℄, whi
h studies what happens to the se
urity of zero-knowledge intera
tiveproofs and arguments when the veri�er 
an reset the prover to use the same random tape in multiple
on
urrent exe
utions. Proto
ols that remain zero-knowledge against su
h a veri�er, are 
alledresettable zero-knowledge (rZK). Put di�erently, the question of prover resettability, is whetherzero-knowledge is a
hievable when the prover 
annot use fresh randomness in new intera
tions,but is rather restri
ted to (re-)using a �xed number of 
oins. Resettability implies se
urity under
on
urrent exe
utions: As shown in [26℄, any rZK proto
ol 
onstitutes a 
on
urrent zero-knowledgeproto
ol. The opposite dire
tion does not hold (in general), and indeed it was not a-priori 
learwhether (non-trivial) rZK proto
ols may at all exist. Under standard intra
tability assumptions,it was shown that resettable zero-knowledge intera
tive proofs for any NP-set do exist [26℄. (Forrelated models and eÆ
ien
y improvements, see [26℄ and [74℄, respe
tively.)Resettably-Sound Zero-Knowledge (rsZK). Resettably-sound proofs and arguments main-tain soundness even when the prover 
an reset the veri�er to use the same random 
oins in repeatedexe
utions of the proto
ol. This notion was studied in [12℄, who obtained the following results: Onone hand, under standard intra
tability assumptions, any NP-set has a (
onstant-round) resettably-sound zero-knowledge argument. On the other hand, resettably-sound zero-knowledge proofs arepossible only for languages in P=poly.We mention a re
ent result of [31℄ by whi
h every NP-set has an argument system that is bothresettably-sound and resettably-zero-knowledge.12 Zero-knowledge in other modelsAs stated above, zero-knowledge is a property of some intera
tive strategies, regardless of the goal(or other properties) of these strategies. We have seen that zero-knowledge 
an be meaningfullyapplied in the 
ontext of intera
tive proofs and arguments. Here we brie
y dis
uss the appli
abilityof zero-knowledge to other settings in whi
h, as in the 
ase of arguments, there are restri
tionson the type of prover strategies. We stress that the restri
tions dis
ussed here refer to the strate-gies employed by the prover both in 
ase it tries to prove valid assertions (i.e., the 
ompleteness
ondition) and in 
ase it tries to fool the veri�er to believe false statements (i.e., the soundness
ondition). Thus, the validity of the veri�er de
ision (
on
erning false statements) depends onwhether this restri
tion (
on
erning potential \
heating" prover strategies) really holds. The rea-son to 
onsider these restri
ted models is that they enable us to a
hieve results that are not possiblein the general model of intera
tive proofs (
f., [16, 21, 72, 77℄). We 
onsider restri
tions of twotypes: 
omputational and physi
al. We start with the latter.Multi-Prover Intera
tive Proofs (MIP). In themulti-prover intera
tive proof model, denotedMIP (
f., [16℄), the prover is split into several (say, two) entities and the restri
tion (or assumption)is that these entities 
annot intera
t with ea
h other. A
tually, the formulation allows them to
oordinate their strategies prior to intera
ting with the veri�er32 but it is 
ru
ial that they don'tex
hange messages among themselves while intera
ting with the veri�er. The multi-prover modelis reminis
ent of the 
ommon poli
e pro
edure of isolating 
ollaborating suspe
ts and interrogatingea
h of them separately. A typi
al appli
ation in whi
h the two-prover model may be assumedis an ATM that veri�es the validity of a pair of smart-
ards inserted in two isolated slots of the32 This is impli
it in the universal quanti�er used in the soundness 
ondition.28



ATM. The advantage in using su
h a split system is that it enables the presentation of (perfe
t)zero-knowledge proof systems for any set in NP , while using no intra
tability assumptions [16℄.Stri
t Computational-Soundness (a.k.a Timed-ZK). Re
all that we have already dis
ussedone model of 
omputational-soundness; that is, the model of arguments refers to prover strategiesthat are implementable by probabilisti
 polynomial-time ma
hines with adequate auxiliary input.33A more stri
t restri
tion, studied in [36℄, refers to prover strategies that are implementable withinan a-priori �xed number of 
omputation steps (where this number is a �xed polynomial in thelength of the 
ommon input). In reality, the prover's a
tual running-time is monitored by theveri�er that may run for a longer time, and the prover's utility is due to an auxiliary input thatit has. (An analogous model, where the length of the auxiliary input is a-priori �xed, was also
onsidered in [36℄.)13 A sour
e of inspiration for 
omplexity theoryThroughout the years, zero-knowledge has served as a sour
e of inspiration for models and te
h-niques in 
omplexity theory. The �rst su
h 
ase is the very introdu
tion of intera
tive proofs, whi
hwas motivated by the notion of zero-knowledge.The story begins with Goldwasser, Mi
ali and Ra
ko� who sought a general setting for theirnovel notion of zero-knowledge [68℄. The 
hoi
e fell on proof systems as 
apturing a fundamentala
tivity that takes pla
e in a 
ryptographi
 proto
ol. Motivated by the desire to formulate the mostgeneral type of \proofs" that may be used within 
ryptographi
 proto
ols, Goldwasser, Mi
ali andRa
ko� introdu
ed the notion of an intera
tive proof system [68℄. Although the main fo
us of theirpaper is on zero-knowledge, the possibility that intera
tive proof systems may be more powerfulthan NP-proof systems was pointed out in [68℄.Similarly, the main motivation for the introdu
tion of multi-prover intera
tive proofs (in [16℄)
ame from zero-knowledge; spe
i�
ally, introdu
ing multi-prover zero-knowledge proofs for NPwithout relying on intra
tability assumptions. Again, the 
omplexity theoreti
 prospe
ts of thenew 
lass, denoted MIP, have not been ignored. A more appealing, to our taste, formulationof the 
lass MIP was subsequently presented in [44℄. The latter formulation 
oin
ides with theformulation 
urrently known as probabilisti
ally 
he
kable proofs (i.e., PCP).Getting more te
hni
al, we mention that the notion of zero-knowledge as well as known zero-knowledge proof systems have inspired 
onstru
tions that seem unrelated to zero-knowledge. Anotable example is the PCP 
onstru
tion of [38℄, whi
h was tailored towards obtaining tight inap-proximability results for the 
hromati
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