Chapter 6

Zero-Knowledge Proof Systems

In this chapter we discuss zero-knowledge proof systems. Loosely speaking, such proof
systems have the remarkable property of being convincing and yielding nothing (beyond
the validity of the assertion). The main result presented is a method to generate zero-
knowledge proof systems for every language in NP. This method can be implemented using
any bit commitment scheme, which in turn can be implemented using any pseudorandom
generator. In addition, we discuss more refined aspects of the concept of zero-knowledge
and their affect on the applicability of this concept.

6.1 Zero-Knowledge Proofs: Motivation

An archetypical “cryptographic” problem consists of providing mutually distrustful parties
with a means of “exchanging” (predetermined) “pieces of information”. The setting consists
of several parties, each wishing to obtain some predetermined partial information concerning
the secrets of the other parties. Yet each party wishes to reveal as little information as
possible about its own secret. To clarify the issue, let us consider a specific example.

Suppose that all users in a system keep backups of their entire file system,
encrypted using their public-key encryption, in a publicly accessible storage
media. Suppose that at some point, one user, called Alice, wishes to reveal to
another user, called Bob, the cleartext of one of her files (which appears in one of
her backups). A trivial “solution” is for Alice just to send the (cleartext) file to
Bob. The problem with this “solution” is that Bob has no way of verifying that
Alice really sent him a file from her public backup, rather than just sending
him an arbitrary file. Alice can simply prove that she sends the correct file by
revealing to Bob her private encryption key. However, doing so, will reveal to
Bob the contents of all her files, which is certainly something that Alice does

143

144 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

not want to happen. The question is whether Alice can convince Bob that she
indeed revealed the correct file without yielding any additional “knowledge”.

An analogous question can be phrased formally as follows. Let f be a one-way
permutation, and b a hard-core predicate with respect to f. Suppose that one
party, A, has a string z, whereas another party, denoted B, only has f(z).
Furthermore, suppose that A wishes to reveal b(z) to party B, without yielding
any further information. The trivial “solution” is to let A send b(z) to B, but,
as explained above, B will have no way of verifying whether A has really sent
the correct bit (and not its complement). Party A can indeed prove that it sends
the correct bit (i.e., b(x)) by sending z as well, but revealing to B is much
more than what A had originally in mind. Again, the question is whether A can
convince B that it indeed revealed the correct bit (i.e., b(x)) without yielding
any additional “knowledge”.

In general, the question is whether it is possible to prove a statement without yielding
anything beyond its validity. Such proofs, whenever they exist, are called zero-knowledge,
and play a central role (as we shall see in the subsequent chapter) in the construction of
“cryptographic” protocols.

Loosely speaking, zero-knowledge proofs are proofs that yield nothing (i.e., “no knowl-
edge”) beyond the validity of the assertion. In the rest of this introductory section, we
discuss the notion of a “proof” and a possible meaning of the phrase “yield nothing (i.e.,
no knowledge) beyond something”.

6.1.1 The Notion of a Proof

We discuss the notion of a proof with the intention of uncovering some of its underlying
aspects.

A Proof as a fixed sequence or as an interactive process

Traditionally in mathematics, a “proof” is a fized sequence consisting of statements which
are either self-evident or are derived from previous statements via self-evident rules. Actu-
ally, it is more accurate to substitute the phrase “self-evident” by the phrase “commonly
agreed”. In fact, in the formal study of proofs (i.e., logic), the commonly agreed statements
are called azioms, whereas the commonly agreed rules are referred to as derivation rules.
We wish to stress two properties of mathematics proofs:

1. proofs are viewed as fixed objects;

2. proofs are considered at least as fundamental as their consequence (i.e., the theorem).

6.1. ZERO-KNOWLEDGE PROOFS: MOTIVATION 145

However, in other areas of human activity, the notion of a “proof” has a much wider
interpretation. In particular, a proof is not a fixed object but rather a process by which
the validity of an assertion is established. For example, the cross-examination of a witness
in court is considered a proof in law, and failure to answer a rival’s claim is considered a
proof in philosophical, political and sometimes even technical discussions. In addition, in
real-life situations, proofs are considered secondary (in importance) to their consequence.

To summarize, in “canonical” mathematics proofs have a static nature (e.g., they are
“written”), whereas in real-life situations proofs have a dynamic nature (i.e., they are es-
tablished via an interaction). The dynamic interpretation of the notion of a proof is more
adequate to our setting in which proofs are used as tools (i.e., subprotocols) inside “cryp-
tographic” protocols. Furthermore, the dynamic interpretation (at least in a weak sense) is
essential to the non-triviality of the notion of a zero-knowledge proof.

Prover and Verifier

The notion of a prover is implicit in all discussions of proofs, be it in mathematics or in
real-life situations. Instead, the emphasis is placed on the wverification process, or in other
words on (the role of) the verifier. Both in mathematics and in real-life situations, proofs
are defined in terms of the verification procedure. Typically, the verification procedure is
considered to be relatively simple, and the burden is placed on the party/person supplying
the proof (i.e., the prover).

The asymmetry between the complexity of the verification and the theorem-proving
tasks is captured by the complexity class AP, which can be viewed as a class of proof
systems. Each language I € AP has an efficient verification procedure for proofs of state-
ments of the form “z € L”. Recall that each L € NP is characterized by a polynomial-time
recognizable relation Ry, so that

L=A{z:3ys.t.(z,y)€RL}

and (z,y) € Ry, only if |y| < poly(|z|). Hence, the verification procedure for membership
claims of the form “z € L” consists of applying the (polynomial-time) algorithm for rec-
ognizing Ry, to the claim (encoded by) x and a prospective proof denoted y. Hence, any
y satisfying (z,y) € Ry is considered a proof of membership of # € L. Hence, correct
statements (i.e., z € L) and only them have proofs in this proof system. Note that the ver-
ification procedure is “easy” (i.e., polynomial-time), whereas coming up with proofs may

be “difficult”.

It is worthwhile to stress the distrustful attitude towards the prover in any proof system.
If the verifier trusts the prover then no proof is needed. Hence, whenever discussing a proof
system one considers a setting in which the verifier is not trusting the prover and furthermore
is skeptic of anything the prover says.

146 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

Completeness and Validity

Two fundamental properties of a proof system (i.e., a verification procedure) are its validity
and completeness. The validity property asserts that the verification procedure cannot be
“tricked” into accepting false statements. In other words, validity captures the verifier
ability of protecting itself from being convinced of false statements (no matter what the
prover does in order to fool it). On the other hand, completeness captures the ability of
some prover to convince the verifier of true statements (belonging to some predetermined
set of true statements). Note that both properties are essential to the very notion of a proof
system.

We remark here that not every set of true statements has a “reasonable” proof system
in which each of these statements can be proven (while no false statement can be “proven”).
This fundamental fact is given a precise meaning in results such as Godel’s Incompleteness
Theorem and Turing’s proof of the unsolvability of the Halting Problem. We stress that in
this chapter we confine ourself to the class of sets that do have “efficient proof systems”.
In fact, Section 6.2 is devoted to discussing and formulating the concept of “efficient proof
systems”. Jumping ahead, we hint that the efficiency of a proof system will be associated
with the efficiency of its verification procedure.

6.1.2 Gaining Knowledge

Recall that we have motivated zero-knowledge proofs as proofs by which the verifier gains
“no knowledge” (beyond the validity of the assertion). The reader may rightfully wonder
what is knowledge and what is a gain of knowledge. When discussing zero-knowledge proofs,
we avoid the first question (which is quite complex), and treat the second question directly.
Namely, without presenting a definition of knowledge, we present a generic case in which it
is certainly justified to say that no knowledge is gained. Fortunately, this “conservative”
approach seems to suffice as far as cryptography is concerned.

To motivate the definition of zero-knowledge consider a conversation between two par-
ties, Alice and Bob. Assume first that this conversation is unidirectional, specifically Alice
only talks and Bob only listens. Clearly, we can say that Alice gains no knowledge from
the conversation. On the other hand, Bob may or may not gain knowledge from the con-
versation (depending on what Alice says). For example, if all that Alice saysis 1+ 1 =2
then clearly Bob gains no knowledge from the conversation since he knows this fact himself.
If, on the other hand, Alice tells Bob a proof of Fermat’s Theorem then certainly he gained
knowledge from the conversation.

To give a better flavour of the definition, we now consider a conversation between Alice
and Bob in which Bob asks Alice questions about a large graph (that is known to both of
them). Consider first the case in which Bob asks Alice whether the graph is Eulerian or
not. Clearly, we say that Bob gains no knowledge from Alice’s answer, since he could have

6.1. ZERO-KNOWLEDGE PROOFS: MOTIVATION 147

determined the answer easily by himself (e.g., by using Euler’s Theorem which asserts that
a graph is Eulerian if and only if all its vertices have even degree). On the other hand, if
Bob asks Alice whether the graph is Hamiltonian or not, and Alice (somehow) answers
this question then we cannot say that Bob gained no knowledge (since we do not know of
an efficient procedure by which Bob can determine the answer by himself, and assuming
P # NP no such efficient procedure exists). Hence, we say that Bob gained knowledge
from the interaction if his computational ability, concerning the publicly known graph, has
increased (i.e., if after the interaction he can easily compute something that he could not
have efficiently computed before the interaction). On the other hand, if whatever Bob can
efficiently compute about the graph after interacting with Alice, he can also efficiently
compute by himself (from the graph) then we say that Bob gained no knowledge from the
interaction. Hence, Bob gains knowledge only if he receives the result of a computation which
is infeasible for Bob. The question of how could Alice conduct this infeasible computation
(e.g., answer Bob’s question of whether the graph is Hamiltonian) has been ignored so far.
Jumping ahead, we remark that Alice may be a mere abstraction or may be in possession
of additional hints, that enables to efficiently conduct computations that are otherwise
infeasible (and in particular are infeasible for Bob who does not have these hints). (Yet,
these hints are not necessarily “information” in the information theoretic sense as they may
be determined by the common input, but not efficiently computed from it.)

Knowledge vs. information

We wish to stress that knowledge (as discussed above) is very different from information (in
the sense of information theory).

e Knowledge is related to computational difficulty, whereas information is not. In the
above examples, there was a different between the knowledge revealed in case Alice
answers questions of the form “is the graph Fulerian” and the case she answers ques-
tions of the form “is the graph Hamilton”. From an information theoretic point of view
there is no difference between the two cases (i.e., in both Bob gets no information).

e Knowledge relates mainly to publicly known objects, whereas information relates
mainly to objects on which only partial information is publicly known. Consider the
case in which Alice answers each question by flipping an unbiased coin and telling
Bob the outcome. From an information theoretic point of view, Bob gets from Alice
information concerning an event. However, we say that Bob gains no knowledge from
Alice, since he can toss coins by himself.

148 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

6.2 Interactive Proof Systems

In this section we introduce the notion of an interactive proof system, and present a non-
trivial example of such a system (specifically to claims of the form “the following two
graphs are not isomorphic”). The presentation is directed towards the introduction of zero-
knowledge interactive proofs. Interactive proof systems are interesting for their own sake,
and have important complexity theoretic applications, that are discussed in Chapter 8.

6.2.1 Definition

The definition of an interactive proof system refers explicitly to the two computational tasks
related to a proof system: “producing” a proof and verifying the validity of a proof. These
tasks are performed by two different parties, called the prover and the verifier, which interact
with one another. The interaction may be very simple and in particular unidirectional (i.e.,
the prover sends a text, called the proof, to the verifier). In general the interaction may be
more complex, and may take the form of the verifier interrogating the prover.

Interaction

Interaction between two parties is defined in the natural manner. The only point worth
noting is that the interaction is parameterized by a common input (given to both parties).
In the context of interactive proof systems, the common input represents the statement
to be proven. We first define the notion of an interactive machine, and next the notion
of interaction between two such machines. The reader may skip to the next part of this
subsection (titled “Conventions regarding interactive machines”) with little loss (if at all).

Definition 6.1 (an interactive machine):

e An interactive Turing machine (ITM) is a (deterministic) multi-tape Turing machine.
The tapes consists of a read-only input-tape, a read-only random-tape, a read-and-
write work-tape, a write-only output-tape, a pair of communication-tapes, and a
read-and-write switch-tape consisting of a single cell initiated to contents 0. One
communication-tape is read-only and the other is write-only.

e Fach ITM is associated a single bit o € {0,1}, called its identity. An ITM is said
to be active, in a configuration, if the contents of its switch-tape equals the machine’s
wdentity. Otherwise the machine is said to be idle. While being idle, the state of
the machine, the location of its heads on the various tapes, and the contents of the
writeable tapes of the I'TM is not modified.

6.2. INTERACTIVE PROOF SYSTEMS 149

e The contents of the input-tape is called input, the contents of the random-tape is called
random-input, and the contents of the output-tape at termination is called output.
The contents written on the write-only communication-tape during a (time) period
in which the machine is active is called the message sent at this period. Likewise,
the contents read from the read-only communication-tape during an active period is
called the message received (at that period). (Without loss of generality the machine
movements on both communication-tapes are only in one direction, say left to right).

The above definition, taken by itself, seems quite nonintuitive. In particular, one may
say that once being idle the machine never becomes active again. One may also wonder
what is the point of distinguishing the read-only communication-tape from the input-tape
(and respectively distinguishing the write-only communication-tape from the output-tape).
The point is that we are never going to consider a single interactive machine, but rather a
pair of machines combined together so that some of their tapes coincide. Intuitively, the
messages sent by an interactive machine are received by a second machine which shares its
communication-tapes (so that the read-only communication-tape of one machine coincides
with the write-only tape of the other machine). The active machine may become idle by
changing the contents of the shared switch-tape and by doing so the other machine (having
opposite identity) becomes active. The computation of such a pair of machines consists of
the machines alternatingly sending messages to one another, based on their initial (common)
input, their (distinct) random-inputs, and the messages each machine has received so far.

Definition 6.2 (joint computation of two ITMs):

o Two interactive machines are said to be linked if they have opposite identities, their
input-tapes coincide, their switch-tapes coincide, and the read-only communication-
tape of one machine coincides with the write-only communication-tape of the other
machine, and vice versa. We stress that the other tapes of both machines (i.e., the
random-tape, the work-tape, and the output-tape) are distinct.

e The joint computation of a linked pair of ITMs, on a common input x, is a sequence
of pairs. Fach pair consists of the local configuration of each of the machines. In each
such pair of local configurations, one machine (not necessarily the same one) is active
while the other machine is idle.

e If one machine halts while the switch-tape still holds its identity the we say that both
machines have halted.

At this point, the reader may object to the above definition, saying that the individual
machines are deprived of individual local inputs (and observing that they are given indi-
vidual and unshared random-tapes). This restriction is removed in Subsection 6.2.3, and in

150 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

fact removing it is quite important (at least as far as practical purposes are concerned). Yet,
for a first presentation of interactive proofs, as well as for demonstrating the power of this
concept, we prefer the above simpler definition. The convention of individual random-tapes
is however essential to the power of interactive proofs (see Exercise 4).

Conventions regarding interactive machines

Typically, we consider executions when the contents of the random-tape of each machine is
uniformly and independently chosen (among all infinite bit sequences). The convention of
having an infinite sequence of internal coin tosses should not bother the reader since during
a finite computation only a finite prefix is read (and matters). The contents of each of these
random-tapes can be viewed as internal coin tosses of the corresponding machine (as in the
definition of ordinary probabilistic machines, presented in Chapter 1). Hence, interactive
machines are in fact probabilistic.

Notation: Let A and B be a linked pair of I'TMs, and suppose that all possible interactions
of A and B on each common input terminate in a finite number of steps. We denote by
(A, B)(z) the random variable representing the (local) output of B when interacting with
machine A on common input x, when the random-input to each machine is uniformly and
independently chosen.

Another important convention is to consider the time-complexity of an interactive ma-
chine as a function of its input only.

Definition 6.3 (the complexity of an interactive machine): We say that an interactive
machine A has time complexity ¢ : N — N if for every interactive machine B and every
string x, it holds that when interacting with machine B, on common input x, machine A
always (i.e., regardless of the contents of its random-tape and B’s random-tape) halts within
t(|z|) steps.

We stress that the time complexity, so defined, is independent of the contents of the
messages that machine A receives. In other word, it is an upper bound which holds for all
possible incoming messages. In particular, an interactive machine with time complexity #(-)
reads, on input x, only a prefix of total length #(|z|) of the messages sent to it.

Proof systems

In general, proof systems are defined in terms of the verification procedure (which may be
viewed as one entity called the verifier). A “proof” to a specific claim is always considered
as coming from the outside (which can be viewed as another entity called the prover). The

6.2. INTERACTIVE PROOF SYSTEMS 151

verification procedure itself, does not generate “proofs”, but merely verifies their validity.
Interactive proof systems are intended to capture whatever can be efficiently verified via
interaction with the outside. In general, the interaction with the outside may be very
complex and may consist of many message exchanges, as long as the total time spent by
the verifier is polynomial.

In light of the association of efficient procedures with probabilistic polynomial-time
algorithms, it is natural to consider probabilistic polynomial-time verifiers. Furthermore,
the verifier’s verdict of whether to accept or reject the claim is probabilistic, and a bounded
error probability is allowed. (The error can of course be decreased to be negligible by
repeating the verification procedure sufficiently many times.) Loosely speaking, we require
that the prover can convince the verifier of the validity of valid statement, while nobody can
fool the verifier into believing false statements. In fact, it is only required that the verifier
accepts valid statements with “high” probability, whereas the probability that it accepts
a false statement is “small” (regardless of the machine with which the verifier interacts).
In the following definition, the verifier’s output is interpreted as its decision on whether to
accept or reject the common input. Output 1 is interpreted as ‘accept’, whereas output 0
is interpreted as ‘reject’.

Definition 6.4 (interactive proof system): A pair of interactive machines, (P,V'), is called
an interactive proof system for a language L if machine V' is polynomial-time and the following
two conditions hold

o Completeness: For every x € L

Prob ((P,V)(z)=1) >

Wl N

e Soundness: For every x € L and every interactive machine B

Prob ((B,V)(z)=1) <

W =

Some remarks are in place. We first stress that the soundness condition refers to all
potential “provers” whereas the completeness condition refers only to the prescribed prover
P. Secondly, the verifier is required to be (probabilistic) polynomial-time, while no re-
source bounds are placed on the computing power of the prover (in either completeness or
soundness conditions!). Thirdly, as in the case of BPP, the error probability in the above
definition can be made exponentially small by repeating the interaction (polynomially)
many times (see below).

Every language in AP has an interactive proof system. Specifically, let I € NP and
let Ry, be a witness relation associated with the language L (i.e., Ry is recognizable in

152 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

polynomial-time and L equals the set {a : Jy s.t. |y| = poly(z) A (2,y) € Rr.}). Then,
an interactive proof for the language L consists of a prover that on input « € L sends a
witness y (as above), and a verifier that upon receiving y (on common input z) outputs
1if |y| = poly(|z|) and (z,y) € Ry, (and 0 otherwise). Clearly, when interacting with the
prescribed prover, this verifier will always accept inputs in the language. On the other hand,
no matter what a cheating “prover” does, this verifier will never accept inputs not in the
language. We point out that in this proof system both parties are deterministic (i.e., make
no use of their random-tape). It is easy to see that only languages in A'P have interactive
proof systems in which both parties are deterministic (see Exercise 2).

In other words, NP can be viewed as a a class of interactive proof systems in which
the interaction is unidirectional (i.e., from the prover to the verifier) and the verifier is
deterministic (and never errs). In general interactive proofs, both restrictions are waived:
the interaction is bidirectional and the verifier is probabilistic (and may err with some small
probability). Both bidirectional interaction and randomization seem essential to the power
of interactive proof systems (see further discussion in Chapter 8).

Definition 6.5 (the class ZP): The class TP consists of all languages having interactive
proof systems.

By the above discussion NP C ZP. Since languages in BPP can be viewed as having a
verifier (that decides on membership without any interaction), it follows that BPPUNP C
IP. We remind the reader that it is not known whether BPP C AP.

We stress that the definition of the class ZP remains invariant if one replaced the
(constant) bounds in the completeness and soundness conditions by two functions c,s :

N — N satisfying c(n) < 1 —27PW () g(n) > 27P() "and c(n) > s(n)+ m. Namely,

Definition 6.6 (generalized interactive proof): Let c,s: N — N be functions satisfying
c(n) > s(n)+ ﬁ, for some polynomial p(-). An interactive pair (P,V') is called a (gen-
eralized) interactive proof system for the language L, with completeness bound c(-) and
soundness bound s(-), if

e (modified) completeness: For every z € L
Prob ((P,V)(z)=1) > c(|z|)
e (modified) soundness: For every @ ¢ L and every interactive machine B

Prob ((B.V)(x)=1) < s(]a|)

The function g(-), where g(n) ef c(n)—s(n), is called the acceptance gap of (P,V); and the
function e(-), where e(n) def max{l — c(n),s(n)}, is called the error probability of (P, V).

6.2. INTERACTIVE PROOF SYSTEMS 153

Proposition 6.7 The following three conditions are equivalent

1. L € TP. Namely, there exists a interactive proof system, with completeness bound %
and soundness bound %, for the language L;

2. L has very strong interactive proof systems: For every polynomial p(-), there exists

an interactive proof system for the language L, with error probability bounded above
by 2-0),

3. L has a very weak interactive proof: There exists a polynomial p(-), and a generalized
interactive proof system for the language L, with acceptance gap bounded below by
1/p(+). Furthermore, completeness and soundness bounds for this system, namely the
values c(n) and s(n), can be computed in time polynomial in n.

Clearly either of the first two items imply the third one (including the requirement for
efficiently computable bounds). The ability to efficiently compute completeness and sound-
ness bounds is used in proving the opposite (non-trivial) direction. The proof is left as an
exercise (i.e., Exercise 1).

6.2.2 An Example (Graph Non-Isomorphism in IP)

All examples of interactive proof systems presented so far were degenerate (e.g., the in-
teraction, if at all, was unidirectional). We now present an example of a non-degenerate
interactive proof system. Furthermore, we present an interactive proof system for a lan-
guage not known to be in BPP U NP. Specifically, the language is the set of pairs of
non-isomorphic graphs, denoted GNI.

Two graphs, G =(V1, Fy) and Gy =(Vz, Fs), are called isomorphic if there exists a 1-1
and onto mapping, 7, from the vertex set V; to the vertex set V5 so that (u,v) € Ey if and
only if (m(v),7(u)) € F3. The mapping =, if existing, is called an isomorphism between the
graphs.

Construction 6.8 (Interactive proof system for Graph Non-Isomorphism):

e Common Input: A pair of two graphs, G1 = (V1, E1) and Gy = (Va, E2). Suppose,
without loss of generality, that Vi = {1,2,....|Vi|}, and similarly for V3.

e Verifier’s first Step (V1): The verifier selects at random one of the two input graphs,
and sends to the prover a random isomorphic copy of this graph. Namely, the verifier
selects uniformly o € {1,2}, and a random permutation © from the set of permutations
over the vertex set V,. The verifier constructs a graph with vertex set V, and edge set

def
F=A(m(u),m(0): (u,0) € B}
and sends (V,, I') to the prover.

154 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

o Motivating Remark: If the input graphs are non-isomorphic, as the prover claims,
then the prover should be able to distinguish (not necessarily by an efficient algorithm)
isomorphic copies of one graph from isomorphic copies of the other graph. Howewver,
if the input graphs are isomorphic then a random isomorphic copy of one graph is
distributed identically to a random isomorphic copy of the other graph.

e Prover’s first Step (P1): Upon receiving a graph, G' = (V', E'), from the verifier, the
prover finds a T € {1,2} so that the graph G' is isomorphic to the input graph G .. (If
both T =1,2 satisfy the condition then T is selected arbitrarily. In case no T € {1,2}
satisfies the condition, T is set to 0). The prover sends T to the verifier.

e Verifier’s second Step (V2): If the message, T, received from the prover equals o
(chosen in Step V1) then the verifier outputs 1 (i.e., accepts the common input).
Otherwise the verifier outputs 0 (i.e., rejects the common input).

The verifier program presented above is easily implemented in probabilistic polynomial-
time. We do not known of a probabilistic polynomial-time implementation of the prover’s
program, but this is not required. We now show that the above pair of interactive machines
constitutes an interactive proof system (in the general sense) for the language GNI (Graph
Non-Isomorphism).

Proposition 6.9 The language GN I is in the class TP. Furthermore, the programs speci-
fied in Construction 6.8 constitute a generalized interactive proof system for GNI. Namely,

1. If Gy and Gy are not isomorphic (i.e., (G1,G32) € GNI) then the verifier always
accept (when interacting with the prover).

2. If Gy and Gy are isomorphic (i.e., (G1,G3) ¢ GNI) then, no matter with what
machine the verifier interacts, it rejects the input with probability at least %

proof: Clearly, if G and G5 are not isomorphic then no graph can be isomorphic to both
(1 and Gy. It follows that there exists a unique 7 such that the graph G’ (received by the
prover in Step P1) is isomorphic to the input graph G';. Hence, 7 found by the prover in
Step (P1) always equals o chosen in Step (V1). Part (1) follows.

On the other hand, if Gy and G5 are isomorphic then the graph G’ is isomorphic to
both input graphs. Furthermore, we will show that in this case the graph G’ yields no
information about o, and consequently no machine can (on input Gy, Gz and G') set T so
that it equal o, with probability greater than % Details follow.

Let m be a permutation on the vertex set of a graph GG =(V, F). Then, we denote by
7(G) the graph with vertex set V and edge set {(7(u),n(v)) : (u,v) € £'}. Let £ be a

6.2. INTERACTIVE PROOF SYSTEMS 1585

random variable uniformly distributed over {1,2}, and II be a random variable uniformly
distributed over the permutations of the set V. We stress that these two random variable
are independent. We are interested in the distribution of the random variable II(G¢). We
are going to show that, although II(G¢) is determined by the random variables 1I and £,
the random variables £ and II(G¢) are statistically independent. In fact we show

Claim 6.9.1: If the graphs Gy and G5 are isomorphic then for every graph G’ it holds that

Prob (¢=1[I1(G¢) =) = Prob (€=2|1I(Ge)=G) =

proof: We first claim that the sets §; {rm : 7(G1) = G") and 95, ef {r : 7(Gy) = G")
are of equal cardinality. This follows from the observation that there is a 1-1 and onto
correspondence between the set 57 and the set Sy (the correspondence is given by the
isomorphism between the graphs Gy and G'3). Hence,

(Gy)=G")
ITesy)

ITesy)

II(Ge) =G| =2)

Prob (II(G¢)=G"'|€=1) = Prob
= Prob

Prob

= Prob

e~ o~

Using Bayes Rule, the claim follows.O

Using Claim 6.9.1, it follows that for every pair, (G, G3), of isomorphic graphs and for
every randomized process, R, (possibly depending on this pair) it holds that

Prob (R(II(Gg))=€) =) _Prob (Il(Ge))=G") - Prob (R(G")) =¢[1I(Ge) =)
&

= > Prob (Il(Gy))=G")

G
- Y~ Prob(R(G'))=b) - Prob (b=¢[l(G¢)=G")
be{1,2}
1
— Y Prob (I(Ge)) =) - Prob (R(G) € {1.2)) -
G/
1
< Z
- 2
with equality in case R always outputs an element in the set {1,2}. Part (2) of the propo-
sition follows. I

156 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

Remarks concerning Construction 6.8

In the proof system of Construction 6.8, the verifier always accepts inputs in the language
(i.e., the error probability in these cases equals zero). All interactive proof systems we shall
consider will share this property. In fact it can be shown that every interactive proof system
can be transformed into an interactive proof system (for the same language) in which the
verifier always accepts inputs in the language. On the other hand, as shown in Exercise 5,
only languages in AP have interactive proof system in which the verifier always rejects
inputs not in the language.

The fact that GNI € P, whereas it is not known whether GNI € NP, is an indi-
cation to the power of interaction and randomness in the context of theorem proving. A
much stronger indication is provided by the fact that every language in PSPACE has an
interactive proof system (in fact ZP equals PSPACE). For further discussion see Chapter 8.

6.2.3 Augmentation to the Model

For purposes that will become more clear in the sequel we augment the basic definition of
an interactive proof system by allowing each of the parties to have a private input (in addi-
tion to the common input). Loosely speaking, these inputs are used to capture additional
information available to each of the parties. Specifically, when using interactive proof sys-
tems as subprotocols inside larger protocols, the private inputs are associated with the local
configurations of the machines before entering the subprotocol. In particular, the private
input of the prover may contain information which enables an efficient implementation of
the prover’s task.

Definition 6.10 (interactive proof systems - revisited):

o An interactive machine s defined as in Definition 6.1, except that the machine has
an additional read-only tape called the auxiliary-input-tape. The contents of this tape
1s call auxiliary input.

o The complexity of such an interactive machine is still measured as a function of the
(common) input. Namely, the interactive machine A has time complexity ¢: N — N
if for every interactive machine B and every string x, it holds that when interacting
with machine B, on common input x, machine A always (i.e., regardless of contents
of its random-tape and its auziliary-input-tape as well as the contents of B’s tapes)
halts within t(|z|) steps.

o We denote by (A(y), B(z))(x) the random variable representing the (local) output of
B when interacting with machine A on common input x, when the random-input to
each machine is uniformly and independently chosen, and A (resp., B) has auxiliary

input y (resp., z).

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 157

e A pair of interactive machines, (P,V), is called an interactive proof system for a
language L if machine V' is polynomial-time and the following two conditions hold

— Completeness: For every @ € L, there exists a string y such that for every
z€{0,1}*

Prob ((P(y), V(2))(z)=1) >

Wl N

— Soundness: For every x ¢ L, every interactive machine B, and every y,z €
{0,1}~
Prob ({B(y), V(2))(z)=1) <

W =

We stress that when saying that an interactive machine is polynomial-time, we mean
that its running-time is polynomial in the length of the common input. Consequently, it is
not guaranteed that such a machine has enough time to read its entire auxiliary input.

6.3 Zero-Knowledge Proofs: Definitions

In this section we introduce the notion of a zero-knowledge interactive proof system, and
present a non-trivial example of such a system (specifically to claims of the form “the
following two graphs are isomorphic”).

6.3.1 Perfect and Computational Zero-Knowledge

Loosely speaking, we say that an interactive proof system, (P, V'), for a language L is zero-
knowledge if whatever can be efficiently computed after interacting with P on input « € L,
can also be efficiently computed from z (without any interaction). We stress that the above
holds with respect to any efficient way of interacting with P, not necessarily the way defined
by the verifier program V. Actually, zero-knowledge is a property of the prescribed prover
P. It captures P’s robustness against attempts to gain knowledge by interacting with it. A
straightforward way of capturing the informal discussion follows.

Let (P,V) be an interactive proof system for some language L. We say that
(P, V), actually P, is perfect zero-knowledge if for every probabilistic polynomial-
time interactive machine V* there exists an (ordinary) probabilistic polynomial-
time algorithm M™ so that for every x € L the following two random variables
are identically distributed

o (P, V*)(z) (i.e., the output of the interactive machine V* after interacting
with the interactive machine P on common input z);

158 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

e M*(z) (i.e., the output of machine M™ on input z).

Machine M™* is called a simulator for the interaction of V* with P.

We stress that we require that for every V* interacting with P, not merely for V.
there exists a (“perfect”) simulator M*. This simulator, although not having access to the
interactive machine P, is able to simulate the interaction of V* with P. This fact is taken
as evidence to the claim that V* did not gain any knowledge from P (since the same output
could have been generated without any access to P).

Note that every language in BPP has a perfect zero-knowledge proof system in which
the prover does nothing (and the verifier checks by itself whether to accept the common
input or not). To demonstrate the zero-knowledge property of this “dummy prover”, one
may present for every verifier V* a simulator M* which is essentially identical to V* (except
that the communication tapes of V* are considered as ordinary work tapes of M*).

Unfortunately, the above formulation of perfect zero-knowledge is slightly too strict to be
useful. We relax the formulation by allowing the simulator to fail, with bounded probability,
to produce an interaction.

Definition 6.11 (perfect zero-knowledge): Let (P, V) be an interactive proof system for
some language L. We say that (P,V') is perfect zero-knowledge if for every probabilistic
polynomial-time interactive machine V* there exists a probabilistic polynomial-time algo-
rithm M™ so that for every x € L the following two conditions hold:

1. With probability at most %, on input x, machine M* outputs a special symbol denoted

L (i.e., Prob(M=(z)=1) < 1).
2. Let m*(z) be a random variable describing the distribution of M*(z) conditioned on

M*(z) # L (i.e., Prob(m*(z) =a) = Prob(M*(z)= a|M*(z) # L), for every a €
{0,1}*). Then the following random variables are identically distributed

o (P, V*)(x) (i.e., the output of the interactive machine V* after interacting with
the interactive machine P on common input z);

e m*(x) (i.e., the output of machine M* on input &, conditioned on not being L);

Machine M* is called a perfect simulator for the interaction of V* with P.

Condition 1 (above) can be replaced by a stronger condition requiring that M™ outputs
the special symbol (i.e., L) only with negligible probability. For example, one can require
that on input z machine M* outputs L with probability bounded above by 272D for
any polynomial p(-); see Exercise 6. Consequently, the statistical difference between the

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 159

random variables (P, V*)(z) and M*(z) can be made negligible (in |z|); see Exercise 7.
Hence, whatever the verifier efficiently computes after interacting with the prover, can be
efficiently computed (up to an overwhelmingly small error) by the simulator (and hence by
the verifier himself).

Following the spirit of Chapters 3 and 4, we observe that for practical purposes there
is no need to be able to “perfectly simulate” the output of V™ after interacting with P.
Instead, it suffices to generate a probability distribution which is computationally indis-
tinguishable from the output of V* after interacting with P. The relaxation is consistent
with our original requirement that “whatever can be efficiently computed after interacting
with P on input z € L, can also be efficiently computed from z (without any interaction)”.
The reason being that we consider computationally indistinguishable ensembles as being
the same. Before presenting the relaxed definition of general zero-knowledge, we recall the
definition of computationally indistinguishable ensembles. Here we consider ensembles in-
dexed by strings from a language, L. We say that the ensembles {R,}.cr, and {9, }.cr are
computationally indistinguishable if for every probabilistic polynomial-time algorithm, D,
for every polynomial p(-) and all sufficiently long & € L it holds that

[Prob(D(a,) =1) = Prob(D(z, $2)=1)] < -

Definition 6.12 (computational zero-knowledge): Let (P,V') be an interactive proof sys-
tem for some language L. We say that (P,V') is computational zero-knowledge (or just
zero-knowledge) if for every probabilistic polynomial-time interactive machine V* there ex-
ists a probabilistic polynomial-time algorithm M™* so that the following two ensembles are
computationally indistinguishable

o {(P,V*)(x)}uer (i.e., the output of the interactive machine V* after interacting with
the interactive machine P on common input z);

o {M*(2)}rer (i-e., the output of machine M* on input z).

Machine M* is called a simulator for the interaction of V* with P.

The reader can easily verify (see Exercise 9) that allowing the simulator to output
the symbol L (with probability bounded above by, say, %) and considering the conditional
output distribution (as done in Definition 6.11), does not add to the power of Definition 6.12.

We stress that both definitions of zero-knowledge apply to interactive proof systems in
the general sense (i.e., having any non-negligible gap in the acceptance probabilities for
inputs inside and outside the language). In fact, the definitions of zero-knowledge apply to

160 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

any pair of interactive machines (actually to each interactive machine). Namely, we may
say that the interactive machine A is zero-knowledge on L if whatever can be efficiently
computed after interacting with A on common input € L, can also be efficiently computed
from z itself.

An alternative formulation of zero-knowledge

An alternative formulation of zero-knowledge considers the verifier’s view of the interaction
with the prover, rather than only the output of the verifier after such an interaction. By the
“verifier’s view of the interaction” we mean the entire sequence of the local configurations of
the verifier during an interaction (execution) with the prover. Clearly, it suffices to consider
only the contents of the random-tape of the verifier and the sequence of messages that the
verifier has received from the prover during the execution (since the entire sequence of local
configurations as well as the final output are determine by these objects).

Definition 6.13 (zero-knowledge — alternative formulation): Let (P,V), L and V* be as
in Definition 6.12. We denote by VieW‘];*(x) a random variable describing the contents of
the random-tape of V* and the messages V* receives from P during a joint computation on
common input x. We say that (P, V') is zero-knowledge if for every probabilistic polynomial-
time interactive machine V* there exists a probabilistic polynomial-time algorithm M™ so
that the ensembles {viewl (2)}zer, and {M*(2)} e, are computationally indistinguishable.

A few remarks are in place. Definition 6.13 is obtained from Definition 6.12 by replac-
ing (P, V*)(z) for view}.(2z). The simulator M* used in Definition 6.13 is related, but not
equal, to the simulator used in Definition 6.12 (yet, this fact is not reflected in the text of
these definitions). Clearly, V*(2) can be computed in (deterministic) polynomial-time from
View‘];*(x), for every V*. Although the opposite direction is not always true, Definition 6.13
is equivalent to Definition 6.12 (see Exercise 10). The latter fact justifies the use of Def-
inition 6.13, which is more convenient to work with, although it seems less natural than
Definition 6.12. An alternative formulation of perfect zero-knowledge is straightforward,
and clearly it is equivalent to Definition 6.11.

* Complexity classes based on Zero-Knowledge

Definition 6.14 (class of languages having zero-knowledge proofs): We denote by ZK
(also CZK) the class of languages having (computational) zero-knowledge interactive proof
systems. Likewise, PZK denotes the class of languages having perfect zero-knowledge in-
teractive proof systems.

Clearly, BPP C PZK C CZK C IP. We believe that the first two inclusions are
strict. Assuming the existence of (non-uniformly) one-way functions, the last inclusion is
an equality (i.e., CZK = ZP). See Proposition 6.24 and Theorems 3.29 and 6.30.

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 161

* Expected polynomial-time simulators

The formulation of perfect zero-knowledge presented in Definition 6.11 is different from
the standard definition used in the literature. The standard definition requires that the
simulator always outputs a legal transcript (which has to be distributed identically to the
real interaction) yet it allows the simulator to run in expected polynomial-time rather than
in strictly polynomial-time time. We stress that the expectation is taken over the coin
tosses of the simulator (whereas the input to the simulator is fixed).

Definition 6.15 (perfect zero-knowledge — liberal formulation): We say that (P, V') is per-
fect zero-knowledge in the liberal sense if for every probabilistic polynomial-time interactive
machine V= there exists an expected polynomial-time algorithm M™ so that for every xz € L
the random variables (P,V*)(x) and M*(z) are identically distributed.

We stress that by probabilistic polynomial-time we mean a strict bound on the run-
ning time in all possible executions, whereas by exzpected polynomial-time we allow non-
polynomial-time executions but require that the running-time is “polynomial on the aver-
age”. Clearly, Definition 6.11 implies Definition 6.15 — see Exercise 8. Interestingly, there
exists interactive proofs which are perfect zero-knowledge with respect to the liberal defini-
tion but not known to be perfect zero-knowledge with respect to Definition 6.11. We prefer
to adopt Definition 6.11, rather than Definition 6.15, because we wanted to avoid the notion
of expected polynomial-time that is much more subtle than one realizes at first glance.

A parenthetical remark concerning the notion of average polynomial-time: The
naive interpretation of expected polynomial-time is having average running-time
that is bounded by a polynomialin the input length. This definition of expected
polynomial-time is unsatisfactory since it is not closed under reductions and is
(too) machine dependent. Both aggravating phenomenon follow from the fact
that a function may have an average (say over {0,1}") that is bounded by
polynomial (in n) and yet squaring the function yields a function which is not
bounded by a polynomial (in n). Hence, a better interpretation of expected
polynomial-time is having running-time that is bounded by a polynomial in «a
function which has average linear growing rate.

Furthermore, the correspondence between average polynomial-time and efficient computa-
tions is more controversial than the more standard association of strict polynomial-time
with efficient computations.

An analogous discussion applies also to computational zero-knowledge. More specifically,
Definition 6.12 requires that the simulator works in polynomial-time, whereas a more liberal
notion allows it to work in expected polynomial-time.

162

CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

For sake of elegancy, it is customary to modify the definitions allowing exzpected polynomial-

time simulators, by requiring that such simulators exist also for the interaction of expected
polynomial-time verifiers with the prover.

6.3.2 An Example (Graph Isomorphism in PZK)

As mentioned above, every language in BPP has a trivial (i.e., degenerate) zero-knowledge
proof system. We now present an example of a non-degenerate zero-knowledge proof system.
Furthermore, we present a zero-knowledge proof system for a language not known to be in
BPP. Specifically, the language is the set of pairs of isomorphic graphs, denoted G1I (see
definition in Section 6.2).

Construction 6.16 (Perfect Zero-Knowledge proof for Graph Isomorphism):

e Common Input: A pair of two graphs, G1=(V1, E1) and Gy = (Va, Eq). Let ¢ be an

isomorphism between the input graphs, namely ¢ is a 1-1 and onto mapping of the
vertex set Vi to the vertex set Vy so that (u,v) € Ey if and only if (7(v),m(u)) € Es.

Prover’s first Step (P1): The prover selects a random isomorphic copy of G, and
sends it to the verifier. Namely, the prover selects at random, with uniform probability
distribution, a permutation © from the set of permutations over the vertex set Vo, and
constructs a graph with vertex set Vo and edge set

F = {(r(u),n(v)): (u,v) € Ea}

The prover sends (Va, F') to the verifier.

Motivating Remark: If the input graphs are isomorphic, as the prover claims, then
the graph sent in step P1 is isomorphic to both input graphs. However, if the input
graphs are not isomorphic then no graph can be isomorphic to both of them.

e Verifier’s first Step (V1): Upon receiving a graph, G' = (V' E'), from the prover, the

verifiers asks the prover to show an isomorphism between G' and one of the input
graph, chosen at random by the verifier. Namely, the verifier uniformly selects o €
{1,2}, and sends it to the prover (who is supposed to answer with an isomorphism

between G, and G').

Prover’s second Step (P2): If the message, o, received from the verifier equals 2 then

the prover sends w to the verifier. Otherwise (i.e., o # 2), the prover sends wo¢ (i.e.,

the composition of © on ¢, defined as 7o ¢(v) def T(p(v))) to the verifier. (Remark:

the prover treats any ¢ #2 as o =1.)

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 163

e Verifier’s second Step (V2): If the message, denoted 1, received from the prover is an
isomorphism between G, and G' then the verifier outputs 1, otherwise it outputs 0.

Let use denote the prover’s program by Pgr.

The verifier program presented above is easily implemented in probabilistic polynomial-
time. In case the proveris given an isomorphism between the input graphs as auxiliary input,
also the prover’s program can be implemented in probabilistic polynomial-time. We now
show that the above pair of interactive machines constitutes a zero-knowledge interactive
proof system (in the general sense) for the language G'I (Graph Isomorphism).

Proposition 6.17 The language GI has a perfect zero-knowledge interactive proof system.
Furthermore, the programs specified in Construction 6.16 satisfy

1. If G1 and Gy are isomorphic (i.e., (G1,G3) € GI) then the verifier always accepts
(when interacting with the prover).

2. If G and Gy are not isomorphic (i.e., (G1,G3) ¢ GI) then, no matter with what
machine the verifier interacts, it rejects the input with probability at least %

3. The above prover (i.e., Pgr) is perfect zero-knowledge. Namely, for every probabilistic
polynomial-time interactive machine V* there exists a probabilistic polynomial-time
algorithm M™ outputting L with probability at most % so that for every x def (Gh,G4) €
G the following two random variables are identically distributed

o View‘ljff(x) (i.e., the view of V* after interacting with Py, on common input z);

o m*(x) (i.e., the output of machine M*, on input x, conditioned on not being L).

A zero-knowledge interactive proof system for GT with error probability 27% (only in the
soundness condition) can be derived by executing the above protocol, sequentially, k times.
We stress that in each repetition, of the above protocol, both (the prescribed) prover and
verifier use coin tosses which are independent of the coins used in the other repetitions of the
protocol. For further discussion see Section 6.3.4. We remark that k parallel executions will
decrease the error in the soundness condition to 27% as well, but the resulting interactive
proof is not known to be zero-knowledge in case k grows faster than logarithmic in the input
length. In fact, we believe that such an interactive proof is not zero-knowledge. For further
discussion see Section 6.5.

We stress that it is not known whether GI € BPP. Hence, Proposition 6.17 asserts the
existence of perfect zero-knowledge proofs for languages not known to be in BPP.

proof: We first show that the above programsindeed constitute a (general) interactive proof
system for GI. Clearly, if the input graphs, Gy and G5, are isomorphic then the graph G’

164 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

constructed in step (P1) is isomorphic to both of them. Hence, if each party follows its
prescribed program then the verifier always accepts (i.e., outputs 1). Part (1) follows. On
the other hand, if Gy and G5 are not isomorphic then no graph can be isomorphic to both
(/1 and (. It follows that no matter how the (possibly cheating) prover constructs G’ there
exists o € {1,2} so that G’ and G, are not isomorphic. Hence, when the verifier follows its
program, the verifier rejects (i.e., outputs 0) with probability at least % Part (2) follows.

It remains to show that Pgy is indeed perfect zero-knowledge on G'I. This is indeed the
difficult part of the entire proof. It is easy to simulate the output of the verifier specified
in Construction 6.16 (since its output is identically 1 on inputs in the language GT). It is
also not hard to simulate the output of a verifier which follows the program specified in
Construction 6.16, except that at termination it output the entire transcript of its interac-
tion with Pgy — see Exercise 11. The difficult part is to simulate the output of an efficient
verifier which deviates arbitrarily from the specified program.

We will use here the alternative formulation of (perfect) zero-knowledge, and show how
to simulate V*’s view of the interaction with Pgy, for every probabilistic polynomial-time
interactive machine V*. As mentioned above it is not hard to simulate the verifier’s view
of the interaction with Pgy in case the verifier follows the specified program. However, we
need to simulate the view of the verifier in the general case (in which it uses an arbitrary
polynomial-time interactive program). Following is an overview of our simulation (i.e., of
our construction of a simulator, M*, for each V*).

The simulator M* incorporates the code of the interactive program V*. On input
(G1,G3), the simulator M* first selects at random one of the input graphs (i.e., either
(i1 or (G2) and generates a random isomorphic copy, denoted G”, of this input graph. In
doing so, the simulator behaves differently from Pgr, but the graph generated (i.e., G”) is
distributed identically to the message sent in step (P1) of the interactive proof. Say that
the simulator has generated G” by randomly permuting Gy. Then, if V* asks to see the
isomorphism between 1 and G, the simulator can indeed answer correctly and in doing
so it completes a simulation of the verifier’s view of the interaction with Fg;. However,
if V* asks to see the isomorphism between G5 and G”, then the simulator (which, unlike
Pgr, does not “know” ¢) has no way to answer correctly, and we let it halt with output
1. We stress that the simulator “has no way of knowing” whether V* will ask to see an
isomorphism to G5 or G5. The point is that the simulator can try one of the possibilities
at random and if it is lucky (which happens with probability exactly %) then it can output
a distribution which is identical to the view of V* when interacting with Pg; (on common
input (G1,G2)). A detailed description of the simulator follows.

Simulator M*. On input z def (G,), simulator M™ proceeds as follows:

1. Setting the random-tape of V*: Let ¢(-) denote a polynomial bounding the running-
time of V*. The simulator M* starts by uniformly selecting a string r € {0, 1}q(|x|),
to be used as the contents of the random-tape of V*.

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 165

2. Simulating the prover’s first step (P1): The simulator M™* selects at random, with
uniform probability distribution, a “bit” 7 € {1,2} and a permutation % from the set
of permutations over the vertex set V,. It then constructs a graph with vertex set V;

and edge set
def

F=A{((u), $(v) : (u,0) € Er}
Set G €' (v,).

3. Simulating the verifier’s first step (V1): The simulator M* initiates an execution of
V* by placing @ on V*’s common-input-tape, placing r (selected in step (1) above) on
V*’s random-tape, and placing G” (constructed in step (2) above) on V*’s incoming
message-tape. After executing a polynomial number of steps of V*, the simulator can
read the outgoing message of V*, denoted o. To simplify the rest of the description,
we normalize o by setting 0 = 1 if ¢ # 2 (and leave o unchanged if o = 2).

4. Simulating the prover’s second step (P2): If ¢ = 7 then the simulator halts with
output (x,r,G",).

5. Failure of the simulation: Otherwise (i.e., ¢ # 7), the simulator halts with output L.

Using the hypothesis that V* is polynomial-time, it follows that so is the simulator M™.
It is left to show that AM* outputs L with probability at most %, and that, conditioned
on not outputting L, the simulator’s output is distributed as the verifier’s view in a “real
interaction with Pgp”. The following claim is the key to the proof of both claims.

Claim 6.17.1: Suppose that the graphs Gy and G4 are isomorphic. Let £ be a random
variable uniformly distributed in {1,2}, and 1I(G) be a random variable (independent of
¢) describing the graph obtained from the graph G by randomly relabelling its nodes (cf.
Claim 6.9.1). Then, for every graph G”, it holds that

Prob (£ =1|II(G¢)=G") = Prob (£ =2|1[(G¢)=G")

Claim 6.17.1 is identical to Claim 6.9.1 (used to demonstrate that Construction 6.8 consti-
tutes an interactive proof for GNT). As in the rest of the proof of Proposition 6.9, it follows
that any random process with output in {1,2}, given l[(G¢), outputs & with probability
exactly % Hence, given G” (constructed by the simulator in step (2)), the verifier’s program
yields (normalized) ¢ so that o # 7 with probability exactly % We conclude that the simu-
lator outputs L with probability % It remains to prove that, conditioned on not outputting
L, the simulator’s output is identical to “V*’s view of real interactions”. Namely,

Claim 6.17.2: Let @ = (G1,G3) € GI. Then, for every string r, graph H, and permutation
1, it holds that

Prob (View‘];fj(x):(w,r, H,zb)) = Prob(M*(z)=(a,r, H,)| M™(2)# 1)

166 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

proof: Let m*(x) describe M*(z) conditioned on its not being L. We first observe that both
m*(x) and View‘];i”(x) are distributed over quadruples of the form (z,r,-,), with uniformly
distributed » € {0,1}902D, Let v(z,7) be a random variable describing the last two elements
of View‘];i”(x) conditioned on the second element equals 7. Similarly, let p(z,) describe the
last two elements of m*(z) (conditioned on the second element equals r). Clearly, it suffices
to show that v(x,r) and p(z,r) are identically distributed, for every 2 and r. Observe that
once r is fixed the message sent by V* on common input z, random-tape r, and incoming
message H, is uniquely defined. Let us denote this message by v*(x,r, H). We show that
both v(z,r) and p(z,r) are uniformly distributed over the set

def
Cx,r =

(H7 ¢) H = Qb(GU*(l’,T,H))}

where (') denotes the graph obtained from G' by relabelling the vertices using the per-
mutation ¢ (i.e., if G=(V, E) then ¢(G) = (V, F) so that (u,v) € E iff (¢p(u),¥(v)) € F).
The proof of this statement is rather tedious and unrelated to the subjects of this book
(and hence can be skipped with no damage).

The proof is slightly non-trivial because it relates (at least implicitly) to the
automorphism group of the graph G5 (i.e., the set of permutations 7 for which
7(Gy) is identical, not just isomorphic, to G'3). For simplicity, consider first
the special case in which the automorphism group of G5 consists of merely the
identity permutation (i.e., Gy =m(Gy) if and only if 7 is the identity permuta-
tion). In this case, (H,v) € C,, if and only if H is isomorphic to (both G4
and) G5 and 9 is the isomorphism between H and Gyt (z,r,1)- Hence, Cy . con-
tains exactly |V|! pairs, each containing a different graph H as the first element.
In the general case, (H,4) € Cy, if and only if H is isomorphic to (both G4
and) Gy and 7 is an isomorphism between H and Gyt (z,r, i) We stress that
v*(x,r, H)is the same in all pairs containing H. Let aut(Gy) denotes the size
of the automorphism group of Gi3. Then, each H (isomorphic to G3) appears in
exactly aut(G'y) pairs of Cy , and each such pair contain a different isomorphism
between H and Gy« (z, 1)-

We first consider the random variable p(x, r) (describing the suffix of m*(z)).
Recall that p(z,r) is defined by the following two step random process. In the
first step, one selects uniformly a pair (7,1), over the set of pairs {1,2}-times-
permutation, and sets H = ¢(G;). In the second step, one outputs (i.e., sets
wlz,r) to) (W(Gr),) if v*(x,r, H)=7 (and ignores the (7,) pair otherwise).
Hence, each graph H (isomorphic to (G3) is generated, at the first step, by exactly
aut(Gy) different (1, -)-pairs (i.e., the pairs (1,) satisfying H =(G1)), and by
exactly aut(Gy) different (2, -)-pairs (i.e., the pairs (2,) satisfying H = (Gy)).
All these 2 - aut(Gy) pairs yield the same graph H, and hence lead to the same
value of v*(z,r, H). It follows that out of the 2 - aut(G'y) pairs, (7,%), yielding

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 167

the graph H =1(G;), only the pairs satisfying 7=v*(x, r, H) lead to an output.
Hence, for each H (which is isomorphic to G3), the probability that u(z,r)=
(H,-) equals aut(Gq)/(|Ve]!). Furthermore, for each H (which is isomorphic to
G2),

|V1—2|! if H:¢(Gv*(x,r,H))

0 otherwise

Prob (u(z,r) = (H.4)) = {

Hence p(x,r) is uniformly distributed over C, .

We now consider the random variable v(z,r) (describing the suffix of the
verifier’s view in a “real interaction” with the prover). Recall that v(z,r) is
defined by selecting uniformly a permutation 7 (over the set V3), and setting
v(z,r)=(r(Ge),m) if v*(z,r,7(G2))=2 and v(z,r)=(7(Gg), 7 o ¢) otherwise,
where ¢ is the isomorphism between 1 and G3. Clearly, for each H (which is
isomorphic to (), the probability that v(z,r)=(H,-) equals aut(Gq)/(|Va]!).
Furthermore, for each H (which is isomorphic to G3),

Prob(y(x,r):(H7¢)):{ i = o gy e

0 otherwise

Observing that H = ¢(G yx(y,,my) if and only if p=mo p2=v (@ H) we conclude
that p(z,r) and v(z,r) are identically distributed.

The claim follows. O

This completes the proof of Part (3) of the proposition. I

6.3.3 Zero-Knowledge w.r.t. Auxiliary Inputs

The definitions of zero-knowledge presented above fall short of what is required in practical
applications and consequently a minor modification should be used. We recall that these
definitions guarantee that whatever can be efficiently computed after interaction with the
prover on any common input, can be efficiently computed from the input itself. However,
in typical applications (e.g., when an interactive proof is used as a sub-protocol inside a
bigger protocol) the verifier interacting with the prover, on common input z, may have
some additional a-priori information, encoded by a string z, which may assist it in its
attempts to “extract knowledge” from the prover. This danger may become even more
acute in the likely case in which z is related to . (For example, consider the protocol of
Construction 6.16 and the case where the verifier has a-priori information concerning an
isomorphism between the input graphs.) What is typically required is that whatever can be
efficiently computed from x and z after interaction with the prover on any common input
z, can be efficiently computed from z and z (without any interaction with the prover). This
requirement is formulated below using the augmented notion of interactive proofs presented
in Definition 6.10.

168 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

Definition 6.18 (zero-knowledge — revisited): Let (P, V') be an interactive proof for a lan-
guage L (as in Definition 6.10). Denote by Pr(z) the set of strings y satisfying the complete-
ness condition with respect to x € L (i.e., for every z € {0,1}* Prob ((P(y),V(z))(z)=1) >
%) We say that (P, V') is zero-knowledge with respect to auxiliary input (auxiliary input zero-
knowledge) if for every probabilistic polynomial-time interactive machine V* there exists a
probabilistic algorithm M™, running in time polynomial in the length of its first input, so that
the following two ensembles are computationally indistinguishable (when the distinguishing
gap is considered as a function of |x|)

. {<P(y)7V*(Z)>(x)}xEL,yEPL(x),ZE{O,I}*
. {M*(xvz)}xGL,ZG{O,I}*
Namely, for every probabilistic algorithm, D, with running-time polynomial in length of

the first input, every polynomial p(-), and all sufficiently long v € L, all y € Pr(z) and
z € {0,1}*, it holds that

|Pr0b(D($,2’7 <P(y),V*(Z)>($)):1) — Prob(D(x,Z,M*($,Z)):1)| < p(|$|)

In the above definition y represents a-priori information to the prover, whereas z repre-
sents a-priori information to the verifier. Both y and 2z may depend on the common input
x. We stress that the local inputs (i.e., y and z) may not be known, even in part, to the
counterpart. We also stress that the auxiliary input z is also given to the distinguishing
algorithm (which may be thought of as an extension of the verifier).

Recall that by Definition 6.10, saying that the interactive machine V* is probabilistic
polynomial-time means that its running-time is bounded by a polynomial in the length
of the common input. Hence, the verifier program, the simulator, and the distinguishing
algorithm, all run in time polynomial in the length of # (and not in time polynomial in the
total length of all their inputs). This convention is essential in many respects. For example,
having allowed even one of these machines to run in time proportional to the length of
the auxiliary input would have collapsed computational zero-knowledge to perfect zero-
knowledge (e.g., by considering verifiers which run in time polynomial in the common-input
yet have huge auxiliary inputs of length exponential in the common-input).

Definition 6.18 refers to computational zero-knowledge. A formulation of perfect zero-
knowledge with respect to auxiliary input is straightforward. We remark that the perfect
zero-knowledge proof for Graph Isomorphism, presented in Construction 6.16, is in fact
perfect zero-knowledge with respect to auxiliary input. This fact follows easily by a minor
augmentation to the simulator constructed in the proof of Proposition 6.17 (i.e., when
invoking the verifier, the simulator should provide it with the auxiliary input which is
given to the simulator). In general, a demonstration of zero-knowledge can be extended

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 169

to yield zero-knowledge with respect to auxiliary input, provided that the simulator used
in the original demonstration works by invoking the verifier’s program as a black box. All
simulators presented in this book have this property.

* Implicit non-uniformity in Definition 6.18

The non-uniform nature of Definition 6.18 is captured by the fact that the simulator gets
an auxiliary input. It is true that this auxiliary input is also given to both the verifier
program and the simulator, however if it is sufficiently long then only the distinguisher
can make any use of its suffix. It follows that the simulator guaranteed in Definition 6.18
produces output that is indistinguishable from the real interactions also by non-uniform
polynomial-size machines. Namely, for every (even non-uniform) polynomial-size circuit
family, {C.}, N, every polynomial p(-), and all sufficiently large n’s, all » € L N {0,1}",
all y € Pr(x) and z € {0,1}*,

|Prob(Cy (2, z, (P(y), V" (2))(z))=1) — Prob(Cp(z, 2, M™ (2, 2))=1)| <

p(lz])

Following is a sketch of the proof. We assume, to the contrary, that there exists a polynomial-
size circuit family, {C}, g, such that for infinitely many n’s there exists triples (z,y, 2)
for which ', has a non-negligible distinguishing gap. We derive a contradiction by incorpo-
rating the description of (), together with the auxiliary input z into a longer auxiliary input,
denoted z’. This is done in a way that both V* and M* have no sufficient time to reach
the description of C,. For example, let ¢(-) be a polynomial bounding the running-time of
both V* and M*, as well as the size of C,,. Then, we let 2’ be the string which results by
padding z with blanks to a total length of ¢(n) and appending the description of the circuit
C, at its end (i.e., if |z| > ¢(n) then z’ is a prefix of z). Clearly, M*(z,z") = M*(z,z2)
and (P(y), V*(2"))(z) = (P(y),V*(2))(z). On the other hand, by using a circuit evaluat-
ing algorithm, we get an algorithm D such that D(z,7',a) = C, (2,), and contradiction
follows.

6.3.4 Sequential Composition of Zero-Knowledge Proofs

An intuitive requirement that a definition of zero-knowledge proofs must satisfy is that
zero-knowledge proofs are closed under sequential composition. Namely, if one executes one
zero-knowledge proof after another then the composed execution must be zero-knowledge.
The same should remain valid even if one executes polynomially many proofs one after
the other. Indeed, as we will shortly see, the revised definition of zero-knowledge (i.e.,
Definition 6.18) satisfies this requirement. Interestingly, zero-knowledge proofs as defined
in Definition 6.12 are not closed under sequential composition, and this fact is indeed another
indication to the necessity of augmenting this definition (as done in Definition 6.18).

170 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

In addition to its conceptual importance, the Sequential Composition Lemma is an
important tool in the design of zero-knowledge proof systems. Typically, these proof system
consists of many repetitions of a atomic zero-knowledge proof. Loosely speaking, the atomic
proof provides some (but not much) statistical evidence to the validity of the claim. By
repeating the atomic proof sufficiently many times the confidence in the validity of the claim
is increased. More precisely, the atomic proof offers a gap between the accepting probability
of string in the language and strings outside the language. For example, in Construction 6.16
pairs of isomorphic graphs (i.e., inputs in 1) are accepted with probability 1, whereas pairs
of non-isomorphic graphs (i.e., inputs not in GI) are accepted with probability at most %
By repeating the atomic proof the gap between the two probabilities is further increased.
For example, repeating the proof of Construction 6.16 for k times yields a new interactive
proof in which inputs in G are still accepted with probability 1 whereas inputs not in GI
are accepted with probability at most zik The Sequential Composition Lemma guarantees
that if the atomic proof system is zero-knowledge then so is the proof system resulting by
repeating the atomic proof polynomially many times.

Before we state the Sequential Composition Lemma, we remind the reader that the
zero-knowledge property of an interactive proof is actually a property of the prover. Also,
the prover is required to be zero-knowledge only on inputs in the language. Finally, we
stress that when talking on zero-knowledge with respect to auxiliary input we refer to all
possible auxiliary inputs for the verifier.

Lemma 6.19 (Sequential Composition Lemma): Let P be an interactive machine (i.e.,
a prover) which is zero-knowledge with respect to auxiliary input on some language L.
Suppose that the last message sent by P, on input x, bears a special “end of proof” symbol.
Let Q(-) be a polynomial, and let Pg be an interactive machine that, on common input
x, proceeds in Q(|z|) phases, each of them consisting of running P on common input z.
(We stress that in case P is probabilistic, the interactive machine Py uses independent coin
tosses for each of the Q(|x|) phases.) Then Pg is zero-knowledge (with respect to auziliary
input) on L. Furthermore, if P is perfect zero-knowledge (with respect to auziliary input)
then so is Pg.

The convention concerning “end of proof” is introduced for technical purposes (and is re-
dundant in all known provers for which the number of messages sent is easily computed from
the length of the common input). Clearly, every machine P can be easily modified so that
its last message bears an appropriate symbol (as assumed above), and doing so preserves
the zero-knowledge properties of P (as well as completeness and soundness conditions).

The Lemma remain valid also if one allows auxiliary input to the prover. The extension
is straightforward. The lemma ignores other aspects of repeating an interactive proof several
times; specifically, the effect on the gap between the accepting probability of inputs inside
and outside of the language. This aspect of repetition is discussed in the previous section
(see also Exercise 1).

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 171

Proof: Let V* be an arbitrary probabilistic polynomial-time interactive machine interacting
with the composed prover Py. Our task is to construct a (polynomial-time) simulator,
M*, which simulates the real interactions of V* with Pg. Following is a very high level
description of the simulation. The key idea is to simulate the real interaction on common
input z in Q(|z|) phases corresponding to the phases of the operation of Py. Each phase
of the operation of Py is simulated using the simulator guaranteed for the atomic prover
P. The information accumulated by the verifier in each phase is passed to the next phase
using the auxiliary input.

The first step in carrying-out the above plan is to partition the execution of an arbitrary
interactive machine V* into phases. The partition may not exist in the code of the program
V*, and yet it can be imposed on the executions of this program. This is done using the
phase structure of the prescribed prover Pg, which is induced by the “end of proof” symbols.
Hence, we claim that no matter how V* operates, the interaction of V* with Py on common
input z, can be captured by Q(|z|) successive interaction of a related machine, denoted V**,
with P. Namely,

Claim 6.19.1: There exists a probabilistic polynomial-time V** so that for every common
input z and auxiliary input z it holds that

(P, V7(2))(a) = 710D
where 70 def > and zZU+D dof (P, V**(Z(i))>(x)

Namely, Z(@(#D) is a random variable describing the output of V** after Q(]z]) successive
interactions with P, on common input z, where the auxiliary input of V** in the ¢ + 15¢
interaction equals the output of V** after the i*" interaction (i.e., Z(Z)).

proof: Consider an interaction of V*(z) with Py, on common input 2. Machine V* can be
slightly modified so that it starts its execution by reading the common-input, the random-
input and the auxiliary-input into special regions in its work-tape, and never accesses the
above read-only tapes again. Likewise, V* is modified so that it starts each active period
by reading the current incoming message from the communication-tape to a special region
in the work tape (and never accesses the incoming message-tape again during this period).
Actually, the above description should be modified so that V* copies only a polynomially
long (in the common input) prefix of each of these tapes, the polynomial being the one
bounding the running time of V*.

Considering the contents of the work-tape of V* at the end of each of the Q(|z|) phases
(of interactions with Py), naturally leads us to the construction of V**. Namely, on common
input # and auxiliary input z’, machine V** starts by copying z’ into the work-tape of V*.
Next, machine V** simulates a single phase of the interaction of V* with Py (on input z)
starting with the above contents of the work-tape of V* (instead of starting with an empty
work-tape). The invoked machine V* regards the communication-tapes of machine V** as

172 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

its own communication-tapes. Finally, V** terminates by outputting the current contents
of the work-tape of V*. Actually, the above description should be slightly modified to
deal differently with the first phase in the interaction with Py. Specifically, V** copies 2’
into the work-tape of V* only if 2z’ encodes a contents of the work-tape of V* (we assume,
w.l.0.g., that the contents of the work-tape of V* is encoded differently from the encoding
of an auxiliary input for V*). In case z’ encodes an auxiliary input to V*, machine V**
invokes V* on an empty work-tape, and V* regards the readable tapes of V** (i.e., common-
input-tape, the random-input-tape and the auxiliary-input-tape) as its own. Observe that
7(1) & (P,V**(2))(x) describes the contents of the work-tape of V* after one phase, and
Z() &f (P,V=*(Z(=1))(x) describes the contents of the work-tape of V* after i phases.
The claim follows. O

Since V** is a polynomial-time interactive machine (with auxiliary input) interacting
with P, it follows by the lemma’s hypothesis that there exists a probabilistic machine which
simulates these interactions in time polynomial in the length of the first input. Let M™**
denote this simulator. We may assume, without loss of generality, that with overwhelmingly
high probability M™* halts with output (as we can increase the probability of output by
successive applications of M**). Furthermore, for sake of simplicity, we assume in the rest of
this proof that M™** always halts with output. Namely, for every probabilistic polynomial-
time (in 2) algorithm D, every polynomial p(-), all sufficiently long € L and all z € {0,1}*,
we have

[Prob(D(e, 2 (PV"(2))(2)) = 1) = Prob(D(e, 2 M (z,2) = D] < 15

We are now ready to present the construction of a simulator, M™*, that simulates the
“real” output of V* after interaction with Pgp. Machine M* uses the above guaranteed
simulator M**. On input (z,z), machine M* sets =) = = and proceeds in Q(]z]) phases.
In the ™" phase, machine M* computes z(9) by running machine M** on input (z, z(i_l)).
After Q(|z|) phases are completed, machine M* stops outputting 2(@(=]),

Clearly, machine M*, constructed above, runs in time polynomial in its first input. (For
non-constant Q(-) it is crucial here that the running-time of M* is polynomial in the length
of the first input, rather than being polynomial in the length of both inputs.) It is left
to show that machine M* indeed produces output which is polynomially indistinguishable
from the output of V* (after interacting with Pg). Namely,

Claim 6.19.2: For every probabilistic algorithm D, with running-time polynomial in its first
input, every polynomial p(-), all sufficiently long = € L and all z € {0, 1}*, we have

|Prob(D(z, z,(Pg, V*(2))(z)) = 1) — Prob(D(z, 2z, M*(z,2)) = 1)| <

p(lz])

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 173

proof sketch: We use a hybrid argument. In particular, we define the following Q(|z|) 4+ 1
hybrids. The *h hybrid, 0 <7 < Q(|z|), corresponds to the following random process. We
first let V** interact with P for ¢ phases, starting with common input & and auxiliary input
z, and denote by Z() the output of V** after the i*h phase. We next repeatedly iterate M**
for the remaining ¢)(m)— k phases. In both cases, we use the output of the previous phase
as auxiliary input to the new phase. Formally, the hybrid H () is defined as follows.

HO,z) € M5, (e, 20)

where 70 % > and zU+H & (P,V(ZD))(2)
Mz,) ¥ (2,7') and M (x,2") o M (x, M™ (2, 2"))
Using Claim 6.19.1, the Q(|=)*" hybrid (i.e., H@UeD)(z, 2)) equals { Py, V*(2))(z)). On the
other hand, recalling the construction of M*, we see that the zero hybrid (i.e., H(O)(ac, z))
equals M*(z,z)). Hence, all that is required to complete the proof is to show that every two
adjacent hybrids are polynomially indistinguishable (as this would imply that the extreme
hybrids, H@™) and H(©, are indistinguishable too). To this end, we rewrite the " and
i — 1% hybrids as follows.
HO(2,2) = My
H(i_l)(w,z) = Mc*g*(

il (P V(20D ()
|)—i($v M**(xv Z(i_l)))

|z

|z

where Z{=1) is as defined above (in the definition of the hybrids).

Using an averaging argument, it follows that if an algorithm, D, distinguishes the hy-
brids H®(z,2) and H=Y(z,z) then there exists a 2’ so that algorithm D distinguishes
the random variables Mc*g*(|x|)—i($v (P,V**(2'))(z)) and Mé*(|x|)_i(x,M**(x,z’)) at least as
well. Incorporating algorithm M™** into D, we get a new algorithm D', with running time
polynomially related to the former algorithms, which distinguishes the random variables
(z, 2, (P,V**(z))(x)) and (2, 2', M**(z,2")) at least as well. (Further details are presented

below.) Contradiction (to the hypothesis that M** simulates (P, V**)) follows. O

The lemma follows. I}

Further details concerning the proof of Claim 6.19.2: The proof of Claim 6.19.2 is
rather sketchy. The main thing which is missing are details concerning the way in which
an algorithm contradicting the hypothesis that M** is a simulator for (P, V**) is derived
from an algorithm contradicting the statement of Claim 6.19.2. These details are presented
below, and the reader is encouraged not to skip them.

Let us start with the non-problematic part. We assume, to the contradiction, that
there exists a probabilistic polynomial-time algorithm, D, and a polynomial p(-), so that

174 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

for infinitely many « € L there exists z € {0, 1}" such that

1
p(lz])

It follows that for every such & and z, there exists an ¢ € {1,...,Q(]z|)} such that

|Prob(D(z, z,(Pg,V*(2))(z)) = 1) — Prob(D(z, 2z, M*(z,2)) = 1)| >

TO T,z (i)$ZI — Pro T,z (i—1)$2: ;
[ProbUpte, 2, T, 20) = 1) = Prob{D(es 2 e, 2) = 1> Gy o7l

Denote ¢(n) ef 1/(Q(n)-p(n)). Combining the definition of the i*h and 7 — 15* hybrids with
an averaging argument, it follows that for each such x, z and 7, there exists a 2/, in the
support of Z(=1) (defined as above), such that

|Prob(D(z, 2/, Mc*g*(|x|)—i<Pv V()N (x)) = 1)
—Prob(D(z, 7, MZ?*WD_Z»(M**(JU,Z’))) = 1) > €(|z|)

This almost leads to the desired contradiction. Namely, the random variables (z, 2/, (P, V**(2'))(2))
and (a,z', M**(x,2")) can be distinguished using algorithms D and M**, provided we
“know” ¢. The problem is resolved using the fact, pointed out at the end of Subsection 6.3.3,

that the output of M™ is undistinguished from the interactions of V** with the prover even

with respect to non-uniform polynomial-size circuits. Details follow.

We construct a polynomial-size circuit family, denoted {C), }, which distinguishes (z, 2/, (P, V**(2"))(z))
and (a,z', M**(x,2")), for the above-mentioned (z,z’) pairs. On input 2 (supposedly
in LN {0,1}") and o« (supposedly in either (z,2', (P, V**(z"))(z)) or (z, 2, M**(z,2"))),
the circuit €, incorporating (the above-mentioned) 7, uses algorithm M** to compute
B = Mg(z))-i(z,a). Next C,, using algorithm D, computes ¢ = D((z,2'),3) and halts
outputting ¢. Contradiction (to the hypothesis that M** is a simulator for (P, V**)) fol-
lows. O

And what about parallel composition?

Unfortunately, we cannot prove that zero-knowledge (even with respect to auxiliary input)
is preserved under parallel composition. Furthermore, there exist zero-knowledge proofs
that when played twice in parallel do yield knowledge (to a “cheating verifier”). For further
details see Subsection 6.5.

The fact that zero-knowledge is not preserved under parallel composition of protocols
is indeed bad news. One may even think that this fact is a conceptually annoying phe-
nomenon. We disagree with this feeling. Our feeling is that the behaviour of protocols
and “games” under parallel composition is, in general (i.e., not only in the context of zero-
knowledge), a much more complex issue than the behaviour under sequential composition.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 175

Furthermore, the only advantage of parallel composition over sequential composition is in
efficiency. Hence, we don’t consider the non-closure under parallel composition to be a
conceptual weakness of the formulation of zero-knowledge. Yet, the “non-closure” of zero-
knowledge motivates the search for either weaker or stronger notions which are preserved
under parallel composition. For further details, the reader is referred to Sections 6.9 and 6.6.

6.4 Zero-Knowledge Proofs for NP

This section presents the main thrust of the entire chapter; namely, a method for construct-
ing zero-knowledge proofs for every language in N'P. The importance of this method stems
from its generality, which is the key to its many applications. Specifically, we observe that
almost all statements one wish to prove in practice can be encoded as claims concerning
membership in languages in N'P.

The method, for constructing zero-knowledge proofs for NP-languages, makes essential
use of the concept of bit commitment. Hence, we start with a presentation of this concept.

6.4.1 Commitment Schemes

Commitment schemes are a basic ingredient in many cryptographic protocols. The are used
to enable a party to commit itself to a value while keeping it secret. In a latter stage the
commitment is “opened” and it is guaranteed that the “opening” can yield only a single
value determined in the committing phase. Commitment schemes are the digital analogue
of nontransparent sealed envelopes. By putting a note in such an envelope a party commits
itself to the contents of the note while keeping it secret.

Definition

Loosely speaking, a commitment scheme is an efficient two-phase two-party protocol through
which one party, called the sender, can commit itself to a value so the following two con-
flicting requirements are satisfied.

1. Secrecy: At the end of the first phase, the other party, called the receiver, does not
gain any knowledge of the sender’s value. This requirement has to be satisfied even if
the receiver tries to cheat.

2. Unambiguity: Given the transcript of the interaction in the first phase, there exists
at most one value which the receiver may later (i.e., in the second phase) accept as a
legal “opening” of the commitment. This requirement has to be satisfied even if the
sender tries to cheat.

176 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

In addition, one should require that the protocol is viable in the sense that if both parties
follow it then, at the end of the second phase, the receiver gets the value committed to
by the sender. The first phase is called the commit phase, and the second phase is called
the reveal phase. We are requiring that the commit phase yield no knowledge (at least
not of the sender’s value) to the receiver, whereas the commit phase does “commit” the
sender to a unique value (in the sense that in the reveal phase the receiver may accept only
this value). We stress that the protocol is efficient in the sense that the predetermined
programs of both parties can be implemented in probabilistic, polynomial-time. Without
loss of generality, the reveal phase may consist of merely letting the sender send, to the
receiver, the original value and the sequence of random coin tosses that it has used during
the commit phase. The receiver will accept the value if and only if the supplied information
matches its transcript of the interaction in the commit phase. The latter convention leads
to the following definition (which refers explicitly only to the commit phase).

Definition 6.20 (bit commitment scheme): A bit commitment scheme is a pair of prob-
abilistic polynomial-time interactive machines, denoted (S, R) (for sender and receiver),
satisfying:

e Input Specification: The common input is an integer n presented in unary (serving
as the security parameter). The private input to the sender is a bit v.

e Secrecy: The receiver (even when deviating arbitrarily from the protocol) cannot dis-
tinguish a commitment to 0 from a commitment to 1. Namely, for every probabilis-
tic polynomial-time machine R* interacting with 5, the random variables describing
the output of R* in the two cases, namely (5(0), R*)(1") and (S(1), R*)(1"), are
polynomially-indistinguishable.

e Unambiguity:
Preliminaries

— A receiver’s view of an interaction with the sender, denoted (r,T), consists of
the random coins used by the receiver (r) and the sequence of messages received
from the sender (T).

— Let 0 € {0,1}. We say that a receiver’s view (of such interaction), (r,m), is a
possible o-commitment if there exists a string s such that m describes the messages
received by R when R uses local coins r and interacts with machine S which uses

local coins s and has input (0,1™). (Using the notation of Definition 6.13, the
S(U,l",s))

condition may be expressed as T = VieWpin)

— We say that the receiver’s view (r,7) is ambiguous if it is both a possible 0-
commitment and a possible 1-commitment.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 177

The unambiguity requirement asserts that, for all but a negligible fraction of the coin
tosses of the receiver, there exists no sequence of messages (from the sender) which
together with these coin tosses forms an ambiguous receiver view. Namely, that for
all but a negligible fraction of the r € {0, 1} there is no m such that (r,7) is
ambiguous.

The secrecy requirement (above) is analogous to the definition of indistinguishability of en-
cryptions (i.e., Definition [missing(enc-indist.def)]). An equivalent formulation analo-
gous to semantic security (i.e., Definition [missing(enc-semant.def)])can be presented,
but is less useful in typical applications of commitment schemes. In any case, the secrecy re-
quirement is a computational one. On the other hand, the unambiguity requirement has an
information theoretic flavour (i.e., it does not refer to computational powers). A dual def-
inition, requiring information theoretic secrecy and computational unfeasibility of creating
ambiguities, is presented in Subsection 6.8.2.

The secrecy requirement refers explicitly to the situation at the end of the commit phase.
On the other hand, we stress that the unambiguity requirement implicitly assumes that the
reveal phase takes the following form:

1. the sender sends to the receiver its initial private input, v, and the random coins, s,
it has used in the commit phase;

2. the receiver verifies that v and s (together with the coins (7) used by R in the commit
phase) indeed yield the messages that R has received in the commit phase. Verification
is done in polynomial-time (by running the programs S and R).

Note that the viability requirement (i.e., asserting that if both parties follow the protocol
then, at the end of the reveal phase, the receiver gets v) is implicitly satisfied by the above
convention.

Construction based on any one-way permutation

Some public-key encryption scheme can be used as a commitment scheme. This can be
done by having the sender generate a pair of keys and use the public-key together with the
encryption of a value as its commitment to the value. In order to satisfy the unambiguity
requirement, the underlying public-key scheme needs to satisfy additional requirements (e.g.,
the set of legitimate public-keys should be efficiently recognizable). In any case, public-
key encryption schemes have additional properties not required of commitment schemes
and their existence seems to require stronger intractability assumptions. An alternative
construction, presented below, uses any one-way permutation. Specifically, we use a one-
way permutation, denoted f, and a hard-core predicate for it, denoted b (see Section 2.5).

178 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

Construction 6.21 (simple bit commitment): Let f:{0,1}* — {0,1}* be a function, and
b:4{0,1}*+— {0,1} be a predicate.

1. commit phase: To commit to value v € {0, 1} (using security parameter n), the sender
uniformly selects s € {0,1}" and sends the pair (f(s),b(s)® v) to the receiver.

2. reveal phase: In the reveal phase, the sender reveals the string s used in the commit
phase. The receiver accepts the value v if f(s) = a and b(s) & v = o, where (a,0) is
the receiver’s view of the commit phase.

Proposition 6.22 Let f:{0,1}* — {0,1}* be a length preserving 1-1 one-way function,
and b : {0,1}* — {0,1} be a hard-core predicate of f. Then, the protocol presented in
Construction 6.21 constitutes a bit commitment scheme.

Proof: The secrecy requirement follows directly from the fact that b is a hard-core of f.
The unambiguity requirement follows from the 1-1 property of f. In fact, there exists no
ambiguous receiver view. Namely, for each receiver view (a, o), there is a unique s € {0, 1}'“'
so that f(s) = a and hence a unique v € {0,1} so that b(s) v =0. W

Construction based on any one-way function

We now present a construction of a bit commitment scheme which is based on the weakest
assumption possible: the existence of one-way function. Proving the that the assumption is
indeed minimal is left as an exercise (i.e., Exercise 12). On the other hand, by the results in
Chapter 3 (specifically, Theorems 3.11 and 3.29), the existence of one-way functions imply
the existence of pseudorandom generators expanding n-bit strings into 3n-bit strings. We
will use such a pseudorandom generator in the construction presented below.

We start by motivating the construction. Let G be a pseudorandom generator satisfying
|G(s)| = 3 -|s|. Assume that G has the property that the sets {G(s) : s € {0,1}"} and
{G(s)® 1°" : s € {0,1}"} are disjoint, were o (& 3 denote the bit-by-bit exclusive-or of the
strings a and 3. Then, the sender may commit itself to the bit » by uniformly selecting
s € {0,1}" and sending the message G(s) @ v>" (v* denotes the all-v’s k-bit long string).
Unfortunately, the above assumption cannot be justified, in general, and a slightly more
complex variant is required. The key observation is that for most strings 8 € {0,1}3"
the sets {G(s) : s € {0,1}"} and {G(s)® f : s € {0,1}"} are disjoint. Such a string
[is called good. This observation suggests the following protocol. The receiver uniformly
selects 3 € {0,1}°", hoping that it is good, and the sender commits to the bit v by uniformly
selecting s € {0,1}" and sending the message G/(s) if v = 0 and G(s) & § otherwise.

Construction 6.23 (bit commitment under general assumptions): Let G' : {0,1}* +—
{0,1}* be a function so that |G(s)| =3 -|s| for all s € {0,1}*.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 179

1. commit phase: To receive a commitment to a bit (using security parameter n), the
receiver uniformly selects r € {0,1}3" and sends it to the sender. Upon receiving the
message v (from the receiver), the sender commits to value v € {0,1} by uniformly
selecting s € {0,1}" and sending G(s) if v =0 and G(s) & r otherwise.

2. reveal phase: In the reveal phase, the sender reveals the string s used in the commit
phase. The receiver accepts the value 0 if G(s) = o and the value 1 if G(s) & r = «,
where (r,a) is the receiver’s view of the commit phase.

Proposition 6.24 If G is a pseudorandom generator, then the protocol presented in Con-
struction 6.23 constitutes a bit commitment scheme.

Proof: The secrecy requirement follows the fact that G is a pseudorandom generator.
Specifically, let Uy denote the random variable uniformly distributed on strings of length
k. Then for every r € {0,1}3", the random variables Us, and Us, @ r are identically dis-
tributed. Hence, if it is feasible to find an r € {0,1}*" such that G(U,) and G(U,) & r
are computationally distinguishable then either Us, and G(U,) are computationally dis-
tinguishable or Us, & r and G(U,) & r are computationally distinguishable. In either case
contradiction to the pseudorandomness of G follows.

We now turn to the unambiguity requirement. Following the motivating discussion,
we call 8 € {0,1}°" good if the sets {G(s) : s € {0,1}"} and {G(s)® B : s € {0,1}"}
are disjoint. We say that 8 € {0,1}>" yields a collision between the seeds sy and sy if
G(s1) = G(s2) @ p. Clearly, 3 is good if it does not yield a collision between any pair of
seeds. On the other hand, there is a unique string S which yields a collision between a
given pair of seeds (i.e., 3 = G(s1) & G(sz2)). Since there are 2° possible pairs of seeds,
at most 22" strings yield collisions between seeds and all the other 3n-bit long strings are
good. It follows that with probability at least 1 — 22"73" the receiver selects a good string.
The unambiguity requirement follows. [l

Extensions

The definition and the constructions of bit commitment schemes are easily extended to
general commitment schemes enabling the sender to commit to a string rather than to a
single bit. When defining the secrecy of such schemes the reader is advised to consult
Definition [missing(enc-indist.def)]). For the purposes of the rest of this section we
need a commitment scheme by which one can commit to a ternary value. Extending the
definition and the constructions to deal with this case is even more straightforward.

In the rest of this section we will need commitment schemes with a seemingly stronger
secrecy requirement than defined above. Specifically, instead of requiring secrecy with

180 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

respect to all polynomial-time machines, we will require secrecy with respect to all (not
necessarily uniform) families of polynomial-size circuits. Assuming the existence of non-
uniformly one-way functions (see Definition 2.6 in Section 2.2) commitment schemes with
nonuniform secrecy can be constructed, following the same constructions used in the uniform
case.

6.4.2 Zero-Knowledge proof of Graph Coloring

Presenting a zero-knowledge proof system for one A/P-complete language implies the exis-
tence of a zero-knowledge proof system for every language in A'P. This intuitively appealing
statement does require a proof which we postpone to a later stage. In the current subsec-
tion we present a zero-knowledge proof system for one A/P-complete language, specifically
Graph 3-Colorability. This choice is indeed arbitrary.

The language Graph 3-Coloring, denoted G3C', consists of all simple graphs (i.e., no
parallel edges or self-loops) that can be vertez-colored using 3 colors so that no two adjacent

vertices are given the same color. Formally, a graph G =(V, E), is 3-colorable, if there exists
a mapping ¢ : V — {1,2,3} so that ¢(u) # ¢(v) for every (u,v) € E.

Motivating discussion

The idea underlying the zero-knowledge proof system for G3C' is to break the proof of the
claim that a graph is 3-colorable into polynomially many pieces arranged in templates so
that each template by itself yields no knowledge and yet all the templates put together
guarantee the validity of the main claim. Suppose that the prover generates such pieces
of information, places each of them in a separate sealed and nontransparent envelope, and
allows the verifier to open and inspect the pieces participating in one of the templates. Then
certainly the verifier gains no knowledge in the process, yet his confidence in the validity
of the claim (that the graph is 3-colorable) increases. A concrete implementation of this
abstract scheme follows.

To prove that the graph G' = (V, F) is 3-colorable, the prover generates a random 3-
coloring of the graph, denoted ¢ (actually a random relabelling of a fixed coloring will do).
The color of each single vertex constitutes a piece of information concerning the 3-coloring.
The set of templates corresponds to the set of edges (i.e., each pair (¢(u), 4(v)), (u,v) € F,
constitutes a template to the claim that G is 3-colorable). Each single template (being
merely a random pair of distinct elements in {1,2,3}) yield no knowledge. However, if all
the templates are OK then the graph must be 3-colorable. Consequently, graphs which are
not 3-colorable must contain at least one bad template and hence are rejected with non-
negligible probability. Following is an abstract description of the resulting zero-knowledge
interactive proof system for G3C'.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 181

e Common Input: A simple graph G=(V, F).

o Prover’s first step: Let 1 be a 3-coloring of G. The prover selects a random per-
mutation, 7, over {1,2,3}, and sets ¢(v) def 7((v)), for each v € V. Hence, the
prover forms a random relabelling of the 3-coloring 1. The prover sends the verifier

a sequence of |V| locked and nontransparent boxes so that the v*h box contains the

value ¢(v);

o Verifier’s first step: The verifier uniformly selects an edge (u,v) € F, and sends it to
the prover;

o Motivating Remark: The verifier asks to inspect the colors of vertices u and v;
e Prover’s second step: The prover sends to the verifier the keys to boxes u and v;

o Verifier’s second step: The verifier opens boxes u and v, and accepts if and only if
they contain two different elements in {1, 2, 3};

Clearly, if the input graph is 3-colorable then the prover can cause the verifier to accept
always. On the other hand, if the input graph is not 3-colorable then any contents placed in
the boxes must be invalid on at least one edge, and consequently the verifier will reject with
probability at least 1/|FE|. Hence, the above protocol exhibits a non-negligible gap in the
accepting probabilities between the case of inputs in G3C and inputs not in G3C'. The zero-
knowledge property follows easily, in this abstract setting, since one can simulate the real
interaction by placing a random pair of different colors in the boxes indicated by the verifier.
We stress that this simple argument will not be possible in the digital implementation since
the boxes are not totally ineffected by their contents (but are rather effected, yet in an
indistinguishable manner). Finally, we remark that the confidence in the validity of the
claim (that the input graph is 3-colorable) may be increased by sequentially applying the
above proof sufficient many times. (In fact if the boxes are perfect as assumed above then
one can also use parallel repetitions.)

The interactive proof

We now turn to the digital implementation of the above abstract protocol. In this imple-
mentation the boxes are implemented by a commitment scheme. Namely, for each box we
invoke an independent execution of the commitment scheme. This will enable us to exe-
cute the reveal phase in only some of the commitments, a property that is crucial to our
scheme. For simplicity of exposition, we use the simple commitment scheme presented in
Construction 6.21 (or, more generally, any one-way interaction commitment scheme). We
denote by Cs(o) the commitment of the sender, using coins s, to the (ternary) value o.

Construction 6.25 (A zero-knowledge proof for Graph 3-Coloring):

182 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

e Common Input: A simple (3-colorable) graph G = (V,F). Let n def V] and V =

{1,...,n}.
o Auxiliary Input to the Prover: A 3-coloring of GG, denoted 1.

e Prover’s first step (P1): The prover selects a random permutation, w, over {1,2,3},

and sets ¢(v) def T((v)), for each v € V. The prover uses the commitment scheme
to commit itself to the color of each of the vertices. Namely, the prover uniformly and
independently selects sy, ..., s, € {0,1}", computes ¢; = Cs,($(1)), for each i € V', and
sends ¢y, ..., ¢, to the verifier;

e Verifier’s first step (V1): The verifier uniformly selects an edge (u,v) € F, and sends
it to the prover;

o Motivating Remark: The verifier asks to inspect the colors of vertices u and v;

e Prover’s second step (P2): Without loss of generality, we may assume that the message
received for the verifier is an edge, denoted (u,v). (Otherwise, the prover sets (u,v) to
be some predetermined edge of GG.) The prover uses the reveal phase of the commitment
scheme in order to reveal the colors of vertices u and v to the verifier. Namely, the
prover sends (s,,¢(u)) and (s,,d(v)) to the verifier;

e Verifier’s second step (V2): The verifier checks whether the values corresponding to
commitments u and v were revealed correctly and whether these values are different.
Namely, upon receiving (s,0) and (s',7), the verifier checks whether ¢, = Cy(0),
¢, = Co(7), and 0 # 7 (and both in {1,2,3}). If all conditions hold then the verifier

accepts. Otherwise it rejects.

Let us denote the above prover’s program by Pgsc.

We stress that both the programs of the verifier and of the prover can be implemented in
probabilistic polynomial-time. In case of the prover’s program this property is made possible
by the use of the auxiliary input to the prover. As we will shortly see, the above protocol
constitutes a weak interactive proof for G3C. As usual, the confidence can be increased
(i.e., the error probability can be decreased) by sufficiently many successive applications.
However, the mere existence of an interactive proof for G3C is obvious (since G3C €
N'P). The punch-line is that the above protocol is zero-knowledge (also with respect to
auxiliary input). Using the Sequential Composition Lemma (Lemma 6.19), it follows that
also polynomially many sequential applications of this protocol preserve the zero-knowledge

property.

Proposition 6.26 Suppose that the commitment scheme used in Construction 6.25 satis-
fies the (nonuniform) secrecy and the unambiguity requirements. Then Construction 6.25
constitutes an auziliary input zero-knowledge (generalized) interactive proof for G3C'.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 183

For further discussion of Construction 6.25 see remarks at the end of the current subsection.

Proof of Proposition 6.26

We first prove that Construction 6.25 constitutes a weak interactive proof for G3C'. Assume
first that the input graph is indeed 3-colorable. Then if the prover follows the program in
the construction then the verifier will always accept (i.e., accept with probability 1). On
the other hand, if the input graph is not 3-colorable then, no matter what the prover
does, the n commitments sent in Step (P1) cannot “correspond” to a 3-coloring of the
graph (since such coloring does not exists). We stress that the unique correspondence
of commitments to values is guaranteed by the unambiguity property of the commitment
scheme. It follows that there must exists an edge (u,v) € F so that ¢, and ¢,, sent in step
(P1), are not commitments to two different elements of {1,2,3}. Hence, no matter how
the prover behaves, the verifier will reject with probability at least 1/|F|. Hence there is
a non-negligible (in the input length) gap between the accepting probabilities in case the
input is in G3C and in case it is not.

We now turn to show that Pgsco, the prover in Construction 6.25, is indeed zero-
knowledge for G3C. The claim is proven without reference to auxiliary input (to the
verifier), yet extending the argument to auxiliary input zero-knowledge is straightforward.
Again, we will use the alternative formulation of zero-knowledge (i.e., Definition 6.13),
and show how to simulate V*’s view of the interaction with Pgsc, for every probabilistic
polynomial-time interactive machine V*. As in the case of the Graph Isomorphism proof
system (i.e., Construction 6.16) it is quite easy to simulate the verifier’s view of the in-
teraction with Pgso, provided that the verifier follows the specified program. However, we
need to simulate the view of the verifier in the general case (in which it uses an arbitrary
polynomial-time interactive program). Following is an overview of our simulation (i.e., of
our construction of a simulator, M*, for an arbitrary V*).

The simulator M™ incorporates the code of the interactive program V*. On input a
graph G =(V, E), the simulator M* (not having access to a 3-coloring of () first uniformly
and independently selects n values eq,...,e, € {1,2,3}, and constructs a commitment to
each of them. These e;’s constitute a “pseudo-coloring” of the graph, in which the end-points
of each edge are colored differently with probability % In doing so, the simulator behaves
very differently from Pgsc, but nevertheless the sequence of commitments so generated is
computationally indistinguishable from the sequence of commitments to a valid 3-coloring
sent by Pgsc in step (P1). If V*, when given the commitments generated by the simulator,
asks to inspect an edge (u, v) so that e, # €, then the simulator can indeed answer correctly,
and doing so it completes a simulation of the verifier’s view of the interaction with Pgsc.
However, if V* asks to inspect an edge (u,v) so that e, = e, then the simulator has no way
to answer correctly, and we let it halt with output L. We stress that we don’t assume that
the simulator a-priori “knows” which edge the verifier V* will ask to inspect. The validity

184 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

of the simulator stems from a different source. If the verifier’s request were oblivious of the
prover’s commitment then with probability % the verifier would have asked to inspect an
edge which is properly colored. Using the secrecy property of the commitment scheme it
follows that the verifier’s request is “almost oblivious” of the values in the commitments.
The zero-knowledge claim follows (yet, with some effort). Further detail follow. We start
with a detailed description of the simulator.

Simulator M*. On input a graph G'=(V, F), the simulator M™* proceeds as follows:

1. Setting the random tape of V*: Let ¢(-) denote a polynomial bounding the running-
time of V*. The simulator M* starts by uniformly selecting a string r € {0, 1}q(|x|),
to be used as the contents of the local random tape of V*.

2. Simulating the prover’s first step (P1): The simulator M* uniformly and indepen-
dently selects n values eq,...,e, € {1,2,3} and n random strings sq,...,s, € {0,1}"
to be used for committing to these values. The simulator computes, for each ¢ € V', a
commitment d; = Cj,(¢;).

3. Simulating the verifier’s first step (V1): The simulator M* initiates an execution of
V* by placing G’ on V*’s “common input tape”, placing r (selected in step (1) above)
on V*’s “local random tape”, and placing the sequence (dy, ...,d,) (constructed in step
(2) above) on V*’s “incoming message tape”. After executing a polynomial number
of steps of V*, the simulator can read the outgoing message of V*, denoted m. Again,
we assume without loss of generality that m € E and let (u,v) = m. (Actually m ¢ E
is treated as in step (P2) in Pgsc; namely, (u,v) is set to be some predetermined edge

of G.)

4. Simulating the prover’s second step (P2): If e, # e, then the simulator halts with
output (G, 7, (dy,....dn), (Su, €y, Sy, €4))-

5. Failure of the simulation: Otherwise (i.e., e, = €,), the simulator halts with output
L.

Using the hypothesis that V* is polynomial-time, it follows that so is the simulator M*.
It is left to show that AM™* outputs L with probability at most %, and that, conditioned
on not outputting L, the simulator’s output is computationally indistinguishable from the
verifier’s view in a “real interaction with Pgsc”. The proposition will follow by running the
above simulator n times and outputting the first output different from 1. We now turn to

prove the above two claims.

Claim 6.26.1: For every sufficiently large graph, G'=(V, I), the probability that M*(G) = L
is bounded above by %

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 185

proof: As above, n will denote the cardinality of the vertex set of G. Let us denote by
Puv(G,7,(€1,...,€,)) the probability, taken over all the choices of the sq,...,s, € {0,1}",
that V*, on input &, random coins r, and prover message (Cy, (e1), ..., Cs, (€,,)), replies with
the message (u,v). We assume, for simplicity, that V* always answers with an edge of GG
(since otherwise its message is anyhow treated as if it were an edge of). We first claim
that for every sufficiently large graph, G =(V, E), every r € {0,1}7"), every edge (u, v) € E,
and every two sequences «, 8 € {1,2,3}", it holds that

— <
|pu,v(Gvrva) pu,v(GvrvﬁN = 2|E|

Actually, we can prove the following.

Request Obliviousness Subclaim: For every polynomial p(-), every sufficiently large graph,
G = (V,E), every r € {0,1}9("), every edge (u,v) € E, and every two sequences a, 3 €
{1,2,3}", it holds that
1

pu,v G7 r,a)— pu,v G7 Tvﬁ S N

sl Gr.) = (G)] €~
The Request Obliviousness Subclaim is proven using the non-uniform secrecy of the com-
mitment scheme. The reader should be able to fill-up the details of such a proof at this
stage. Nevertheless, a proof of the subclaim follows.

Proof of the Request Obliviousness Subclaim: Assume on the contrary that there
exists a polynomial p(-), and an infinite sequence of integers such that for each
integer n (in the sequence) there exists an n-vertices graph, G, = (V,,, F,),
a string r, € {0,1}99, an edge (u,,v,) € E,, and two sequences a,, 3, €
{1,2,3}" so that

1
pun,vn Gn,Tn,Oén _pun,vn Gnvrnvﬁn > —
[Pran) (>

We construct a circuit family, {A,}, by letting A, incorporate the interactive
machine V*, the graph G, and 7., uy,, vy, oy, By, all being as in the contradic-
tion hypothesis. On input, y (supposedly a commitment to either «, or f,),
circuit A, runs V* (on input G, coins 7, and prover’s message y), and out-
puts 1 if and only if V* replies with (wu,,v,). Clearly, {A,} is a (non-uniform)
family of polynomial-size circuits. The key observation is that A, distinguishes
commitments to a, from commitments to 3,, since

PrOb(An(CUnz (1) =1) = Pup oo (Guy Ty 7)

where Uy denotes, as usual, a random variable uniformly distributed over {0, 1},
Contradiction to the (non-uniform) secrecy of the commitment scheme follows by
a standard hybrid argument (which relates the indistinguishability of sequences
to the indistinguishability of single commitments).

186 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

Returning to the proof of Claim 6.26.1, we now use the above subclaim to upper bound
the probability that the simulator outputs L. The intuition is simple. Since the requests
of V* are almost oblivious of the values to which the simulator has committed itself, it is
unlikely that V* will request to inspect an illegally colored edge more often than if he would
have made the request without looking at the commitment. A formal (but straightforward)
analysis follows.

Let M(G) denote the output of machine M™ on input G, conditioned on the event
that it chooses the string r in step (1). We remind the reader that M*(G) = L only in
case the verifier on input &, random tape r, and a commitment to some pseudo-coloring

(e1,...,€,), asks to inspect an edge (u,v) which is illegally colored (i.e., e, = e,). Let
Ee,.....e) denote the set of edges (u,v) € F that are illegally colored (i.e., satisfy e, = e,)
with respect to (eq,...,e,). Then, fixing an arbitrary r and considering all possible choices

of (e1,...,e,) € {1,2,3}",

PI’Ob(M:(G) = J_) = Z 3% ° Z pu,v(Gvrvg)

ee{1,2,3}n (w,v)€EZ

(Recall that p, (G, r,€) denotes the probability that the verifier asks to inspect (u,v) when
given a sequence of random commitments to the values €.) Define B, , to be the set of n-
tuples (eq,...,e,) € {1,2,3}" satisfying e, = e,. Clearly, |B,,| = 3"~!. By straightforward
calculation we get

1

PrOb(M;f(G) - J_) = 3_n) Z Z pu,U(G7 T7 E)
(uw)EEEEBY »
1 1
< an Z |Bu,v| : (Pu,u(G,T, (1, . 1)) + —)
! 2[E|
(upv)eE
1 1
= ctg 2 (G (L)
(upv)eE
o1l
T 63

The claim follows. O

For simplicity, we assume in the sequel that on common input G' € G3C, the prover gets
the lexicographically first 3-coloring of GG as auxiliary input. This enables us to omit the
auxiliary input to Pgsc (which is now implicit in the common input) from the notation.
The argument is easily extended to the general case where P3¢ gets an arbitrary 3-coloring
of G as auxiliary input.

Claim 6.26.2: The ensemble consisting of the output of M* on input G'=(V, F) € G3C,
conditioned on it not being L, is computationally indistinguishable from the ensemble

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 187

{VieW‘];ESC(G)}Geggc. Namely, for every probabilistic polynomial-time algorithm, A, every

polynomial p(-), and all sufficiently large graph G'=(V, F),

1
p(IV])

IProb(A(M*(G)) = 1|M*(G) # L) — Prob(A(view/5*°(G)) = 1)| <

We stress that these ensembles are very different (i.e., the statistical distance between them
is very close to the maximum possible), and yet they are computationally indistinguishable.
Actually, we can prove that these ensembles are indistinguishable also by (non-uniform)
families of polynomial-size circuits. In first glance it seems that Claim 6.26.2 follows easily
from the secrecy property of the commitment scheme. Indeed, Claim 6.26.2 is proven
using the secrecy property of the commitment scheme, yet the proof is more complex than
one anticipates (at first glance). The difficulty lies in the fact that the above ensembles
consist not only of commitments to values, but also of an opening of some of the values.
Furthermore, the choice of which commitments are to be opened depends on the entire
sequence of commitments.

proof: Given a graph G'=(V, V), we define for each edge (u,v) € F two random variables
describing, respectively, the output of M™* and the view of V* in a real interaction, in case
the verifier asked to inspect the edge (u,v). Specifically

o /i, (G) describes M*((G') conditioned on M*((') containing the “reveal information”
for vertices u and v.

e 1, ,(G) describes VieW‘];C*;SC(G) conditioned on VieW‘];C*;SC(G) containing the “reveal

information” for vertices u and v.

Let py,»(G) denote the probability that M*(G') contains “reveal information” for vertices
w and v, conditioned on M*(G) # L. Similarly, let ¢, ,(G) denote the probability that

. P
view 5% (G) contains “reveal information” for vertices v and v.

Assume, in the contrary to the claim, that the ensembles mentioned in the claim are
computationally distinguishable. Then one of the following cases must occur.

Case 1: There is a noticeable difference between the probabilistic profile of the requests
of V* when interacting with PG3(C and the requests of V* when invoked by M™*.
Formally, there exists a polynomial p(-) and an infinite sequence of integers such that
for each integer n (in the sequence) there exists an n-vertices graph G, = (V,, L,,),
and an edge (u,,v,) € E,, so that

punyvn GTL - (Zun,vn Gn > —
Prn) =)] >

188 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

Case 2: An algorithm distinguishing the above ensembles does so also conditioned on
V* asking for a particular edge. Furthermore, this request occurs with noticeable
probability which is about the same in both ensembles. Formally, there exists a
probabilistic polynomial-time algorithm A, a polynomial p(-) and an infinite sequence
of integers such that for each integer n (in the sequence) there exists an n-vertices
graph G, =(V,,, F,)), and an edge (u,,v,) € F,, so that the following conditions hold

o Qun,vn(Gn) > ﬁ
o [Punn(Gn) = G 0 (G| < 5z

o [Prob(A(fu, ., (Gn)) = 1) = Prob(A(vu, ., (Gn) = 1) > 7

Case 1 can be immediately discarded since it leads easily to contradiction (to the non-
uniform secrecy of the commitment scheme). The idea is to use the Request Obliviousness
Subclaim appearing in the proof of Claim 6.26.1. Details are omitted. We are thus left with
Case 2.

We are now going to show that also Case 2 leads to contradiction. To this end we will
construct a circuit family that will distinguish commitments to different sequences of values.
Interestingly, neither of these sequences will equal the sequence of commitments generated
by either the prover or by the simulator. Following is an overview of the construction.
The ntt circuit gets a sequence of 3n commitments and produces from it a sequence of n
commitments (part of which is a subsequence of the input). When the input sequence to the
circuit is taken from one distribution the circuit generates a subsequence corresponding to
the sequence of commitments generated by the prover. Likewise, when the input sequence
(to the circuit) is taken from the other distribution the circuit will generate a subsequence
corresponding to the sequence of commitments generated by the simulator. We stress that
the circuit does so without knowing from which distribution the input is taken. After
generated an n-long sequence, the circuit feeds it to V*, and depending on V*’s behaviour
the circuit may feed part of the sequence to algorithm A (mentioned in Case 2). Following
is a detailed description of the circuit family.

Let us denote by 1, the (lexicographically first) 3-coloring of (7, used by the prover.
We construct a circuit family, denoted {A,}, by letting A, incorporate the interactive
machine V*, the “distinguishing” algorithm A, the graph G, the 3-coloring ,, and the
edge (un, v,), all being those guaranteed in Case 2. The input to circuit A,, will be a sequence
of commitments to 3n values, each in {1,2,3}. The circuit will distinguish commitments
to a uniformly chosen 3n-long sequence from commitments to the fixed sequence 17273
(i.e., the sequence consisting of n 1-values, followed by n 2-values, followed by n 3-values).
Following is a description of the operation of A,,.

On input, y = (y1,...,Y3n) (where each y; is supposedly a commitment to an element of
{1,2,3}), the circuit A,, proceeds as follows.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 189

e A, first selects uniformly a permutation 7 over {1, 2,3}, and computes ¢(i) = w(10,,(¢)),
for each i € V,.

o For each @ € Vi, — {uu, v}, the circuit sets ¢; = yYy(i)ponyi (-0, ¢ = y; if (i) = 1,
¢ = Ynai if @(i) = 2, and ¢; = Yo if ¢(¢) = 3). Note that each y; is used at most
once, and 2n + 2 of the y;’s are not used at all.

o The circuit uniformly selects s,,s, € {0,1}", and sets ¢,,, = C;, (¢(u,)) and ¢,, =

C.Svn (¢(vn))

e The circuit initiates an execution of V* by placing G, on V*’s “common input tape”,
placing a uniformly selected r € {0, 1}‘1(”) on V*’s “local random tape”, and placing
the sequence (¢q,...,¢,) (constructed above) on V*’s “incoming message tape”. The
circuit reads the outgoing message of V*, denoted m.

o If m # (uy,,v,) then the circuit outputs 1.

e Otherwise (i.e., m = (u,,v,)), the circuit invokes algorithm A and outputs

A(Gn, T, (Cl, ey Cn), (Sunv ¢(un)7 Sup s ¢(vn)))

Clearly the size of A, is polynomial in n. We now evaluate the distinguishing ability of
A,. Let us first consider the probability that circuit A, outputs 1 on input a random com-
mitment to the sequence 172"3". The reader can easily verify that the sequence (cq, ..., ¢,)
constructed by circuit A, is distributed identically to the sequence sent by the prover in
step (P1). Hence, letting C(7) denote a random commitment to a sequence v € {1,2,3}"
we get

Prob(A,(C(1"2"3") =1) = (1= quy ., (Gn))
G on (Gr) - Prob(A(vy,, 4, (Gr)) = 1)

On the other hand, we consider the probability that circuit A, outputs 1 on input a
random commitment to a uniformly chosen 3n-long sequence over {1,2,3}. The reader can
easily verify that the sequence (¢q, ..., ¢,) constructed by circuit A, is distributed identically
to the sequence (d, ..., d,,) generated by the simulator in step (2), conditioned on d,,,, # d,,.
Letting T3, denote a random variable uniformly distributed over {1,2,3}3", we get

Prob(A,(C(Ts,) = 1) = (1= puyw,(Gn))
+Pupon (Gr) - Prob(A(pu, v, (Gr)) = 1)

Using the conditions of Case 2, and omitting ¢, from the notation, we get

IProb(A,(C(17273™)) = 1) — Prob(A,(C(Ts,) = 1)

190 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

Z quny'Un ' |Pr0b(A(l/un7Un) = 1) - PrOb(A(Iu“unyvn) = 1)| -2 |pun7Un - qunyvn|
S 1 1 9 1
p(n) p(n) 3 p(n)?

Hence, the circuit family {A,} distinguishes commitments to {172"3"} from commitments
to {T3,}. Combining an averaging argument with a hybrid argument, we conclude that there
exists a polynomial-size circuit family which distinguishes commitments. This contradicts
the non-uniform secrecy of the commitment scheme.

Having reached contradiction in both cases, Claim 6.26.2. O

Combining Claims 6.26.1 and 6.26.2, the zero-knowledge property of Pgsc follows. This
completes the proof of the proposition. [

Concluding remarks

Construction 6.25 has been presented using a unidirectional commitment scheme. A funda-
mental property of such schemes is that their secrecy is preserved also in case (polynomi-
ally) many instances are invoked simultaneously. The proof of Proposition 6.26 indeed took
advantage on this property. We remark that Construction 6.23 also possesses this simulta-
neous secrecy property, and hence the proof of Proposition 6.26 can be carried out also if
the commitment scheme in used is the one of Construction 6.23 (see Exercise 14). We recall
that this latter construction constitutes a commitment scheme if and only if such schemes
exist at all (since Construction 6.23 is based on any one-way function and the existence of
one-way functions is implied by the existence of commitment schemes).

Proposition 6.26 assumes the existence of a nonuniformly secure commitment scheme.
The proof of the proposition makes essential use of the nonuniform security by incorpo-
rating instances on which the zero-knowledge property fails into circuits which contradict
the security hypothesis. We stress that the sequence of “bad” instances is not necessar-
ily constructible by efficient (uniform) machines. Put in other words, the zero-knowledge
requirement has some nonuniform flavour. A uniform analogue of zero-knowledge would
require only that it is infeasible to find instances on which a verifier gains knowledge (and
not that such instances do not exist at all). Using a uniformly secure commitment scheme,
Construction 6.25 can be shown to be uniformly zero-knowledge.

By itself, Construction 6.25 has little practical value, since it offers very moderate accep-
tance gap (between inputs inside and outside of the language). Yet, repeating the protocol,
on common input G = (V, F), for k- |F| times (and letting the verifier accept only if all
iterations are accepting) yields an interactive proof for G3C with error probability bounded

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 191

by e, where e ~ 2.718 is the natural logarithm base. Namely, on common input G' € G3C
the verifier always accepts, whereas on common input G ¢ G3C' the verifier accepts with
probability bounded above by e=* (no matter what the prover does). We stress that, by
virtue of the Sequential Composition Lemma (Lemma 6.19), if these iterations are per-
formed sequentially then the resulting (strong) interactive proof is zero-knowledge as well.
Setting k to be any super-logarithmic function of |G| (e.g., k = |G|), the error probability of
the resulting interactive proof is negligible. We remark that it is unlikely that one can prove
an analogous statement with respect to the interactive proof which results by performing
these iteration in parallel. See Section 6.5.

An important property of Construction 6.25 is that the prescribed prover (i.e., Pgac)
can be implemented in probabilistic polynomial-time, provided that it is given as auxiliary
input a 3-coloring of the common input graph. As we shall see, this property is essential to
the applications of Construction 6.25 to the design of cryptographic protocols.

As admitted in the beginning of the current subsection, the choice of G3C" as a boot-
strapping N'P-complete language is totally arbitrary. It is quite easy to design analogous
zero-knowledge proofs for other popular A/P-complete languages. Such constructions will
use the same underlying ideas as those presented in the motivating discussion.

6.4.3 The General Result and Some Applications

The theoretical and practical importance of a zero-knowledge proof for Graph 3-Coloring
(e.g., Construction 6.25) follows from the fact that it can be applied to prove, in zero-
knowledge, any statement having a short proof that can be efficiently verified. More pre-
cisely, a zero-knowledge proof system for a specific NP-complete language (e.g., Construc-
tion 6.25) can be used to present zero-knowledge proof systems for every language in N'P.

Before presenting zero-knowledge proof systems for every language in AP, let us recall
some conventions and facts concerning N'P. We first recall that every language I € NP is
characterized by a binary relation R satisfying the following properties

e There exists a polynomial p(-) such that for every (z,y) € R it holds |y| < p(|z]).

e There exists a polynomial-time algorithm for deciding membership in K.

o L=A{z:3Jws.t. (z,w)€ R}
Actually, each language in NP can be characterized by infinitely many such relations.
Yet, for each I, € NP we fix and consider one characterizing relation, denoted Rj. Sec-

ondly, since G3C' is N'P-complete, we know that L is polynomial-time reducible (i.e., Karp-
reducible) to G'3C. Namely, there exists a polynomial-time computable function, f, such

192 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

that € L if and only if f(z) € G3C. Thirdly, we observe that the standard reduction of
L to G3C', denoted fr, has the following additional property:

There exists a polynomial-time computable function, denoted ¢y, such that for
every (z,w) € Ry, it holds that gr(w) is a 3-coloring of fr(z).

We stress that the above additional property is not required by the standard definition
of a Karp-reduction. Yet, it can be easily verified that the standard reduction fr (i.e.,
the composition of the generic reduction of L to SAT, the standard reductions of SAT to
35 AT, and the standard reduction of 35AT to (G3C') does have such a corresponding ¢y..
(See Exercise 16.) Using these conventions, we are ready to “reduce” the construction of
zero-knowledge proof for AP to a zero-knowledge proof system for G3C'.

Construction 6.27 (A zero-knowledge proof for a language L € N'P):

e Common Input: A string « (supposedly in L);

e Auxiliary Input to the Prover: A witness, w, for the membership of x € L (i.e., a
string w such that (z,w) € Rr,).

e Local pre-computation: Fach party computes G def fr(z). The prover computes def
gr(w).

e Invoking a zero-knowledge proof for G3C': The parties invoke a zero-knowledge proof
on common input G. The prover enters this proof with auxiliary input 1.

Proposition 6.28 Suppose that the subprotocol used in the last step of Construction 6.27 is
indeed an auxiliary input zero-knowledge proof for G3C'. Then Construction 6.27 constitutes
an auxiliary input zero-knowledge proof for L.

Proof: The fact that Construction 6.27 constitutes an interactive proof for L is immediate
from the validity of the reduction (and the fact that it uses an interactive proof for G3C').
In first glance it seems that the zero-knowledge property of Construction 6.27 follows as
immediately. There is however a minor issue that one should not ignore. The verifier in
the zero-knowledge proof for G3C, invoked in Construction 6.27, possesses not only the
common input graph G but also the original common input 2 which reduces to G. This
extra information might have helped this verifier to extract knowledge in the G3C interactive
proof, if it were not the case that this proof system is zero-knowledge also with respect to
auxiliary input. can be dealt with using auxiliary input to the verifier in Details follow.

Suppose we need to simulate the interaction of a machine V* with the prover, on common
input z. Without loss of generality we may assume that machine V* invokes an interactive

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 193

machine V** which interacts with the prover of the G3(C interactive proof, on common input
G = fr(z) and having auxiliary input z. Using the hypothesis that the G'3C interactive
proof is auxiliary input zero-knowledge, it follows that there exists a simulator M** that
on input (G, x) simulates the interaction of V** with the G'3C-prover (on common input
G and verifier’s auxiliary input z). Hence, the simulator for Construction 6.27, denoted

M*, operates as follows. On input z, the simulator M* computes G def fr(z) and outputs
M**(G, z). The proposition follows. W

We remark that an alternative way of resolving the minor difficulty addressed above is
to observe that the function fr, (i.e., the one induced by the standard reductions) can be
inverted in polynomial-time (see Exercise 17). In any case, we immediately get

Theorem 6.29 Suppose that there exists a commitment scheme satisfying the (nonuni-
form) secrecy and the unambiguity requirements. Then every language in NP has an auz-
iliary input zero-knowledge proof system. Furthermore, the prescribed prover in this system
can be implemented in probabilistic polynomial-time, provided it gets the corresponding N'P-
witness as auziliary input.

We remind the reader that the condition of the theorem is satisfied if (and only if) there ex-
ists (non-uniformly) one-way functions. See Theorem 3.29 (asserting that one-way functions
imply pseudorandom generators), Proposition 6.24 (asserting that pseudorandom genera-
tors imply commitment schemes), and Exercise 12 (asserting that commitment schemes
imply one-way functions).

An Example: Proving properties of secrets

A typical application of Theorem 6.29 is to enable one party to prove some property of
its secrets without revealing the secrets. For concreteness, consider a party, denoted 9,
sending encrypted messages (over a public channel) to various parties, denoted Ry, ..., Ry,
and wishing to prove to some other party, denoted V', that all the corresponding plaintext
messages are identical. Further suppose that the messages are sent to the receivers (i.e., the
R;’s) using a secure public-key encryption scheme, and let F;(-) denote the (probabilistic)
encryption employed when sending a message to R;. Namely, to send message M; to R;, the
sender uniformly chooses r; € {0,1}", computes the encryption F;(r;, M;), and transmits it
over the public channel. In order to prove that Cy = Fy(r1, M) and Cy = Fa(ry, M) both
encrypt the same message it suflices to reveal ry, ro and M. However, doing so reveals the
message M to the verifier. Instead, one can prove in zero-knowledge that there exists rq,
ro and M such that C7 = Fy(r1, M) and Cy = Fa(ry, M). The existence of such a zero-
knowledge proof follows from Theorem 6.29 and the fact that the statement to be proven
is of NP-type. Formally, we define a language

L d:ef {(01702) . E|T17T27M s.t. Cl = El(T17M) and 02 = EQ(TQ,M)}

194 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

Clearly, the language L is in NP, and hence Theorem 6.29 can be applied. Additional
examples are presented in Exercise 18.

Zero-Knowledge for any language in IP

Interestingly, the result of Theorem 6.29 can be extended “to the maximum?”; in the sense
that under the same conditions every language having an interactive proof system also has
a zero-knowledge proof system. Namely,

Theorem 6.30 Suppose that there exists a commitment scheme satisfying the (nonuni-
form) secrecy and unambiguity requirements. Then every language in IP has a zero-
knowledge proof system.

We believe that this extension does not have much practical significance. Theorem 6.30
is proven by first converting the interactive proof for L into one in which the verifier uses
only “public coins” (i.e., an Arthur-Merlin proof); see Chapter 8. Next, the verifier’s
coin tosses are forced to be almost unbiased by using a coin tossing protocols (see section
KHEKKT27). Finally, the prover’s replies are sent using a commitment scheme, At the end
of the interaction the prover proves in zero-knowledge that the original verifier would have
accepted the hidden transcript (this is an NP-statement).

6.4.4 Efficiency Considerations

When presenting zero-knowledge proof systems for every language in NP, we made no
attempt to present the most efficient construction possible. Our main concern was to
present a proof which is as simple to explain as possible. However, once we know that
zero-knowledge proofs for A'P exist, it is natural to ask how efficient can they be.

In order to establish common grounds for comparing zero-knowledge proofs, we have to
specify a desired measure of error probability (for these proofs). An instructive choice, used
in the sequel, is to consider the complexity of zero-knowledge proofs with error probability
27% where k is a parameter that may depend on the length of the common input. Another
issue to bear in mind when comparing zero-knowledge proof is under what assumptions (if
at all) are they valid. Throughout this entire subsection we stick to the assumption used
so far (i.e., the existence of one-way functions).

Standard efficiency measures

Natural and standard efficiency measures to consider are

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 195

e The communication complexity of the proof. The most important communication
measure is the round complexity (i.e., the number of message exchanges). The total
number of bits exchanged in the interaction is also an important consideration.

o The computational complexity of the proof. Specifically the number of elementary
steps taken by each of the parties.

Communication complexity seems more important than computational complexity, as long
as the trade-off between them is “reasonable”.

To demonstrate these measures we consider the zero-knowledge proof for G3C presented
in Construction 6.25. Recall that this proof system has very moderate acceptance gap,
specifically 1/|E|, on common input graph G' = (V, E). So Construction 6.25 has to be
applied sequentially k-|E|in order to result in a zero-knowledge proof with error probability
e *, where e ~ 2.718 is the natural logarithm base. Hence, the round complexity of the
resulting zero-knowledge proof is O(k - |F|), the bit complexity is O(k - |FE|-|V]?), and the
computational complexity is O(k-|E|-poly(|V])), where the polynomial poly(-) depends on
the commitment scheme in use.

Much more efficient zero-knowledge proof systems may be custom-made for specific
languages in A/P. Furthermore, even if one adopts the approach of reducing the construction
of zero-knowledge proof systems for AP languages to the construction of a zero-knowledge
proof system for a single A"P-complete language, efficiency improvements can be achieved.
For example, using Exercise 15, one can present zero-knowledge proofs for the Hamiltonian
Circuit Problem (again with error 27%) having round complexity O(k), bit complexity
O(k - |[V|**9), and computational complexity O(k - [V|>T9(9)), where € > 0 is a constant
depending on the desired security of the commitment scheme (in Construction 6.25 and
in Exercise 15 we chose € = 1). Note that complexities depending on the instance size
are effected by reductions among problems, and hence a fair comparison is obtained by
considering the complexities for the generic problem (i.e., Bounded Halting).

The round complexity of a protocol is a very important efficiency consideration and it
is desirable to reduce it as much as possible. In particular, it is desirable to have zero-
knowledge proofs with constant number of rounds and negligible error probability. This
goal is pursued in Section 6.9.

Knowledge Tightness: a particular efficiency measure

The above efficiency measures are general in the sense that they are applicable to any
protocol (independent on whether it is zero-knowledge or not). A particular measure of
efficiency applicable to zero-knowledge protocols is their knowledge tightness. Intuitively,
knowledge tightness is a refinement of zero-knowledge which is aimed at measuring the
“actual security” of the proof system. Namely, how much harder does the verifier need to

196 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS

work, when not interacting with the prover, in order to compute something which it can
computes after interacting with the prover. Thus, knowledge tightness is the ratio between
the (expected) running-time of the simulator and the running-time of the verifier in the
real interaction simulated by the simulator. Note that the simulators presented so far, as
well as all known simulator, operate by repeated random trials and hence an instructive
measure of tightness should consider their expected running-time (assuming they never err
(i.e., output the special L symbol)) rather than the worst case.

Definition 6.31 (knowledge tightness): Let¢: N — N be a function. We say that a zero-
knowledge proof for language L has knowledge tightness t(-) if there exists a polynomial p(-)
such that for every probabilistic polynomial-time verifier V* there exists a simulator M* (as
in Definition 6.12) such that for all sufficiently long € L we have

Timenr«(2) — p(jz])
Timey«(z)

< t(l2))

where Timeys«(x) denotes the expected running-time of M* on input z, and Timey«(z)
denotes the running time of V* on common input x.

We assume a model of computation allowing one machine to invoke another machine at
the cost of merely the running-time of the latter machine. The purpose of polynomial p(-),
in the above definition, is to take care of generic overhead created by the simulation (this is
important in case the verifier V* is extremely fast). We remark that the definition of zero-
knowledge does not guarantee that the knowledge tightness is polynomial. Yet, all known
zero-knowledge proof, and more generally all zero-knowledge properties demonstrated using
a single simulator with black-box access to V*, have polynomial knowledge tightness. In
particular, Construction 6.16 has knowledge tightness 2, whereas Construction 6.25 has
knowledge tightness 3/2. We believe that knowledge tightness is a very important efficiency
consideration and that it desirable to have it be a constant.

6.5 * Negative Results

In this section we review some negative results concerning zero-knowledge. These results
can be viewed as evidence to the belief that some of the shortcomings of the results and con-
structions presented in previous sections are unavoidable. Most importantly, Theorem 6.29
asserts the existence of (computational) zero-knowledge proof systems for NP, assuming
that one-way functions exist. Two natural questions arise

1. An unconditional result: Can one prove the existence of (computational) zero-knowledge
proof systems for AP, without making any assumptions?

