

Testing Monotone Continuous Distributions on High-dimensional Real Cubes

Artur Czumaj

Department of Computer Science & **DIMAP** (Centre for Discrete Maths and it Applications)

University of Warwick

Joint work with Michal Adamaszek & Christian Sohler

- General question:
 - Test if a given probability distribution has a given property

Distribution is available by accessing only samples drawn from the distribution

Examples:

- is given distribution uniform?
- are two distributions identical?
- are two distributions independent?

Lots of research in statistics

Some recent research in algorithms

- Typical result:
 - Given a probability distribution on n points, we can test if it's uniform after seeing $\sim \sqrt{n}$ random samples

[Batu et al '01]

Testing = distinguish between uniform distribution and distributions which are ϵ -far from uniform

e-far from uniform:

error probab. $\leq 1/3$

$$\sum_{x \in } |\Pr[x] - \frac{1}{n}| \ge \epsilon$$

- Typical result:
 - Given a probability distribution on n points, we can test if it's uniform after seeing $\sim \sqrt{n}$ random samples

[Batu et al '01]

- Similar bounds for testing
 - if a distribution is monotone
 - if two distributions are independent
 - ...

- Typical result:
 - Given a probability distribution on n points, we can test if it's uniform after seeing $\sim \sqrt{n}$ random samples

[Batu et al '01]

Many properties of distributions can be tested in time sublinear in the domain/support size (typically, with n^{O(1)} samples)

- Typical result:
 - Given a probability distribution on n points, we can test if it's uniform after seeing $\sim \sqrt{n}$ random samples

[Batu et al '01]

- What if distribution has infinite support?
- Continuous probability distributions?

Testing properties of continuous distributions

- Typical result:
 - Given a probability distribution on n points, we can test if it's uniform after seeing $\Theta(\sqrt{n})$ random samples
 - $-\Theta(\sqrt{n})$ random samples are necessary
 - Given a continuous probability distribution on [0,1], can we test if it's uniform?

- Impossible
 - Follows from lower bound for discrete case with $n \rightarrow \infty$

Testing properties of continuous distributions

What can be tested?

First question:

test if the distribution is indeed continuous

Testing properties of continuous distributions

- Dual question:
 - Test if a probability distribution is discrete
- Prob. distribution D on Ω is discrete on N points if there is a set X ⊆ Ω, |X| ≤ N, st. Pr_D[X]=1
- D is ϵ -far from discrete on N points if

$$\forall X \subseteq \Omega, |X| \leq N$$

$$Pr_{D}[X] \leq 1-\epsilon$$

- We repeatedly draw random points from D
- All what can we see:
 - Count frequency of each point
 - Count number of points drawn

For some D (eg, uniform or close):

• we need - (\sqrt{N}) to see first multiple occurrence

Gives a hope that can be solved in sublinear-time Shows that we cannot be better than – (\sqrt{N})

Raskhodnikova et al '07 (Valiant'08):

Distinct Elements Problem:

- D discrete with each element with prob. $\geq 1/N$
- Estimate the support size

 $\Omega(N^{1-o(1)})$ queries are needed to distinguish instances with $\leq N/100$ and $\geq N/11$ support size

Key property:

- two distributions that have identical first $\log^{\Theta(1)}$ N moments
- their expected frequencies up to $\log^{\Theta(1)}N$ are identical

Raskhodnikova et al '07 (Valiant'08):

Distinct Elements Problem:

- D discrete with each element with prob. $\geq 1/N$
- Estimate the support size

 $\Omega(N^{1-o(1)})$ queries are needed to distinguish instances with $\leq N/100$ and $\geq N/11$ support size

Corollary: Testing if a distribution is discrete on N points requires $\Omega(N^{1-o(1)})$ samples

- We repeatedly draw random points from D
- All what can we see:
 - Count frequency of each point
 - Count number of points drawn
- Can we get O(N) time?

Testing if a distribution is discrete on N points:

•Draw a sample $S = (s_1, ..., s_t)$ with $t = 2N/\epsilon$ •If S has more than N distinct elements then REJECT else ACCEPT

- If D is discrete on N points then we will accept D
- We only have to prove that
 - if D is ϵ -far from discrete on N points, then we will reject with probability >2/3

Testing if a distribution is discrete on N points:

•Draw a sample $S = (s_1, ..., s_t)$ with $t = 2N/\epsilon$ •If S has more than N distinct elements then REJECT else ACCEPT

D is ϵ -far from discrete on N points, then reject with prob >2/3

D is ϵ -far from discrete on N points \Rightarrow D is ϵ -far from discrete on N points iff $\forall X \subseteq -$, if $|X| \cdot N$ then $Pr_D[-\setminus X] \ge \epsilon$

• Assuming that we haven't chosen n points yet, we choose a new point with probability at least ϵ

After $(1 + o(1))N/\epsilon$ samples, we choose N + 1 points with prob. ≥ 0.99

Testing if a distribution is discrete on N points:

•Draw a sample $S = (s_1, ..., s_t)$ with $t = 2N/\epsilon$ •If S has more than N distinct elements then REJECT else ACCEPT

Can we do better (if we only count distinct elements)?

D: has 1 point with prob. 1-4 ϵ and 2N points with prob. 2 ϵ /N

D is ϵ -far from discrete on N points

We need $\Omega(N/\epsilon)$ samples to see at least N points

What is the complexity of testing if distribution is discrete on N points?

Upper bound: $O(N/\epsilon)$

Lower bound: $\Omega(N^{1-o(1)})$

Open problem: close the gap

Testing continuous probability distributions

- What can we test efficiently?
 - Complexity for discrete distributions should be "independent" on the support size
- Uniform distribution ... under some conditions

- Rubinfeld & Servedio'05:
 - testing monotone distributions for uniformity

Testing uniform distributions (discrete)

Rubinfeld & Servedio'05:

Testing monotone distributions for uniformity

D: distribution on n-dimensional cube; D: $\{0,1\}^n \to \mathbb{R}$

 $x,y \in \{0,1\}^n$, $x \leq y$ iff $\forall i : x_i \leq y_i$

D is monotone if $x \leq y \Rightarrow Pr[x] \leq Pr[y]$

Goal: test if a monotone distribution is uniform

Rubinfeld & Servedio'05:

Testing if a monotone distribution on n-dimensional binary cube is uniform:

- •Can be done with $O(n \log(1/\epsilon)/\epsilon^2)$ samples
- •Requires $\Omega(n/\log^2 n)$ samples

Testing continuous distributions

Rubinfeld & Servedio'05:

Testing monotone distributions for uniformity

D: distribution on n-dimensional cube; D: $\{0,1\}^n \to \mathbf{R}$

 $x,y \in \{0,1\}^n$, $x \leq y$ iff $\forall i : x_i \leq y_i$

D is monotone if $x \leq y \Rightarrow Pr[x] \leq Pr[y]$

Goal: test if a monotone distribution is uniform

D: distribution on n-dimensional cube;

density function $f:[0,1]^n \to \mathbb{R}$

 $x,y \in [0,1]^n$, $x \leq y$ iff $\forall i : x_i \leq y_i$

D is monotone if $x \leq y \Rightarrow f(x) \leq f(y)$

Testing continuous distributions

Lower bounds holds for n-dimensional real cubes Upper bound: ???

Rubinfeld & Servedio'05:

Testing if a monotone distribution on n-dimensional binary cube is uniform:

- •Can be done with $O(n \log(1/\epsilon)/\epsilon^2)$ samples
- •Requires $\Omega(n/\log^2 n)$ samples

D is ϵ -far from uniform if

$$\frac{1}{2} \int_{x \in I} |f(x) - 1| dx \ge \epsilon$$

 $\boldsymbol{L}_{\!\scriptscriptstyle 1}$ distance between f and uniform distribution

To test uniformity, we need to characterize monotone distributions that are ϵ -far from uniform

On the high level:

- we follow approach of Rubinfeld & Servedio'05;
- details are different

D is ϵ -far from uniform if

$$\frac{1}{2} \int_{x \in \cdot} |f(x) - 1| dx \ge \epsilon$$

Key Technical Lemma:

Let g:[0,1]ⁿ \to **R** be a monotone function with $\int_x g(x) dx = 0$ then

$$\int_{x} ||x||_{1} \cdot g(x)dx \ge \frac{1}{4} \int_{x} |g(x)|dx$$

Key Lemma follows from Key Technical Lemma with g(x) = f(x)-1

Key Lemma:

If D is a monotone distribution on $[0,1]^n$ with density function f and which is ϵ -far from uniform then

$$E_f[||x||_1] = \int_x ||x||_1 \cdot f(x) dx \ge \frac{n}{2} + \frac{\epsilon}{2}$$

Key Lemma:

If D is a monotone distribution on $[0,1]^n$ with density function f and which is ϵ -far from uniform then

$$E_f[||x||_1] = \int_x ||x||_1 \cdot f(x) dx \ge \frac{n}{2} + \frac{\epsilon}{2}$$

Uniform distribution:

If D is uniform on [0,1]ⁿ with density function f then

$$E_f[||x||_1] = \int_x ||x||_1 \cdot f(x) dx = \frac{n}{2}$$

Key Lemma:

If D is a monotone distribution on $[0,1]^n$ with density function f and which is ϵ -far from uniform then

$$E_f[||x||_1] = \int_x ||x||_1 \cdot f(x) dx \ge \frac{n}{2} + \frac{\epsilon}{2}$$

Theorem:

The algorithm below tests if D is uniform. Its complexity is $O(n/\epsilon^2)$.

Slightly better bound than the one by RS'05

```
\begin{array}{l} s = \text{cn}/\epsilon^2 \\ \text{Repeat 20 times} \\ \text{Draw a sample } S = (x_1, \dots, x_s) \text{ from } [0,1]^n \\ \text{If } \sum_i ||x_i||_1 \geq s \text{ (n/2+}\epsilon/4) \text{ then REJECT and exit} \\ \textit{ACCEPT} \end{array}
```


Lemma 1: If D is uniform then $Pr[\sum_{i} ||\mathbf{x}_{i}||_{1} \geq s(n/2+\epsilon/4)] \leq 0.01$

Easy application of Chernoff bound

Lemma 2: If D is ϵ -far from uniform then

$$\Pr[\sum_{i} ||x_{i}||_{1} < s(n/2 + \epsilon/4)] \le 12/13$$

By Key Lemma + Feige lemma

Key Technical Lemma:

Let $g:[0,1]^n \to \mathbb{R}$ be a monotone function with $\int_x g(x) dx = 0$ then

$$\left| \int_{x} ||x||_{1} \cdot g(x) dx \ge \frac{1}{4} \int_{x} |g(x)| dx \right|$$

Why such a bound:

Tight for
$$g(x) = sgn(x_1 - \frac{1}{2})$$

$$\int_{x:x_1>\frac{1}{2}} \|x\|_1 \cdot g(x) \ dx = \frac{1}{2} \int_{x:x_1>\frac{1}{2}} (x_1 + \ldots + x_n) \ dx = \frac{1}{2} \left(\frac{3}{4} + \frac{1}{2} + \ldots + \frac{1}{2}\right) \ dx = \frac{n}{4} + \frac{1}{8} \ .$$

Similarly,

$$\int_{x:x_1<\frac{1}{2}} \|x\|_1 \cdot g(x) \ dx = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{2} + \dots + \frac{1}{2} \right) = \frac{n}{4} - \frac{1}{8} ,$$

and hence,

$$\int_x \|x\|_1 \cdot g(x) \ dx = \int_{x: x_1 > \frac{1}{2}} \|x\|_1 \cdot g(x) \ dx - \int_{x: x_1 < \frac{1}{2}} \|x\|_1 \cdot g(x) \ dx = \frac{1}{4} = \frac{1}{4} \cdot \int_x |g(x)| \ dx .$$

Key Technical Lemma:

Let $g:[0,1]^n \to \mathbb{R}$ be a monotone function with $\int_x g(x) dx = 0$ then

$$\left| \int_{x} ||x||_{1} \cdot g(x) dx \ge \frac{1}{4} \int_{x} |g(x)| dx \right|$$

Let $P = \{\mathbf{x} : g(\mathbf{x}) \ge 0\}$ and $N = \{\mathbf{x} : g(\mathbf{x}) < 0\}$. Consider:

$$\int_{\mathbf{x}\in N} \int_{\mathbf{y}\in P} |g(\mathbf{x}) - g(\mathbf{y})| \ dy \ dx .$$

For $g(\mathbf{x}) < 0$ · $g(\mathbf{y})$, we have $|g(\mathbf{x}) - g(\mathbf{y})| = |g(\mathbf{x})| + |g(\mathbf{y})|$. Moreover $\int_{\mathbf{x} \in N} |g(\mathbf{x})| dx = \int_{\mathbf{y} \in P} |g(\mathbf{y})| dy = \frac{1}{2} \int_{\mathbf{x}} |g(\mathbf{x})| dx$. Hence:

$$= \int_{\mathbf{x} \in N} \int_{\mathbf{y} \in P} (|g(\mathbf{x})| + |g(\mathbf{y})|) = \int_{\mathbf{y} \in P} \int_{\mathbf{x} \in N} |g(\mathbf{x})| + \int_{\mathbf{x} \in N} \int_{\mathbf{y} \in P} |g(\mathbf{y})|$$

$$= \frac{1}{2} \int_{\mathbf{y} \in P} \int_{\mathbf{x}} |g(\mathbf{x})| + \frac{1}{2} \int_{\mathbf{x} \in N} \int_{\mathbf{y}} |g(\mathbf{y})| = \frac{1}{2} \int_{\mathbf{y}} \int_{\mathbf{x}} |g(\mathbf{x})| = \frac{1}{2} \int_{\mathbf{x}} |g(\mathbf{x})|.$$

Since every pair (\mathbf{x}, \mathbf{y}) can satisfy at most one of the conditions $(\mathbf{x}, \mathbf{y}) \in P \times N$ and $(\mathbf{x}, \mathbf{y}) \in N \times P$, we obtain:

$$\int_{\mathbf{x}\in N} \int_{\mathbf{y}\in P} |g(\mathbf{x}) - g(\mathbf{y})| \ dy \ dx \cdot \frac{1}{2} \int \int_{\mathbf{x},\mathbf{y}} |g(\mathbf{x}) - g(\mathbf{y})| \ dy \ dx \ .$$

Hence:

$$\frac{1}{2} \int_{\mathbf{x}} |g(\mathbf{x})| \, dx = \int_{\mathbf{x} \in N} \int_{\mathbf{y} \in P} |g(\mathbf{x}) - g(\mathbf{y})| \, dx \, dy \cdot \left(\frac{1}{2} \int \int_{\mathbf{x}, \mathbf{y}} |g(\mathbf{x}) - g(\mathbf{y})| \, dx \, dy \right).$$

By considering all the possible relative placements of \mathbf{x} and \mathbf{y} within $[0,1]^n$ and splitting the domain accordingly, one can prove that

$$\int \int_{\mathbf{x},\mathbf{y}} |g(\mathbf{x}) - g(\mathbf{y})| \ dy \ dx \cdot \int \int_{\mathbf{x} \prec \mathbf{y}} \left(\sum_{(\mathbf{u},\mathbf{v}) \in D(\mathbf{x},\mathbf{y})} |g(\mathbf{u}) - g(\mathbf{v})| \right) \ dy \ dx ,$$

where $D(\{0,1\}^n)$ is the set of all **main diagonals** of **discrete** cube $\{0,1\}^n$:

$$D(\{0,1\}^n) = \{(\mathbf{x}, \mathbf{y}) \in \{0,1\}^n \times \{0,1\}^n : x_i = 1 - y_i \text{ for every } i\}$$

Key Technical Lemma:

Let $g:[0,1]^n \to \mathbb{R}$ be a monotone function with $\int_x g(x) dx = 0$ then

$$\left| \int_{x} ||x||_{1} \cdot g(x) dx \ge \frac{1}{4} \int_{x} |g(x)| dx \right|$$

Key inequalities in the proof:

$$\frac{1}{4} \int_{\mathbf{x}} |g(\mathbf{x})| \ dx \quad \cdot \quad \frac{1}{4} \int_{\mathbf{x}, \mathbf{y}} |g(\mathbf{x}) - g(\mathbf{y})| dx dy$$

$$\cdot \frac{1}{4} \int \int_{\mathbf{x} \prec \mathbf{y}} \left(\sum_{(\mathbf{u}, \mathbf{v}) \in D(\mathbf{x}, \mathbf{y})} |g(\mathbf{u}) - g(\mathbf{v})| \right) dx dy$$

$$\cdot \frac{1}{2} \sum_{i=1}^{n} \int \int_{\mathbf{x} \prec \mathbf{y}} \left(\sum_{(\mathbf{u}, \mathbf{v}) \in E_{i}(\mathbf{x}, \mathbf{y})} |g(\mathbf{u}) - g(\mathbf{v})| \right) dxdy$$

$$\cdot \frac{1}{2} \sum_{i=1}^{n} \int_{\mathbf{x}} (2x_i - 1)g(\mathbf{x}) dx$$

$$\int_{\mathbf{x}} \|\mathbf{x}\|_1 g(\mathbf{x}) dx$$

Testing monotone continuous distributions

Rubinfeld & Servedio'05:

Testing if a monotone distribution on n-dimensional binary cube is uniform:

- •Can be done with $O(n \log(1/\epsilon)/\epsilon^2)$ samples
- •Requires $\Omega(n/\log^2 n)$ samples

Here:

Testing if a monotone distribution on n-dimensional continuous cube is uniform:

- •Can be done with $O(n/\epsilon^2)$ samples
- •(Requires $\Omega(n/\log^2 n)$ samples)

Testing monotone continuous distributions

Further extension/application:

Testing if a monotone distribution on n-dimensional discrete cube {0,1,2,...,k}ⁿ is uniform:

•Can be done with $O(n / \epsilon^2)$ samples

Here:

Testing if a monotone distribution on n-dimensional continuous cube is uniform:

- •Can be done with $O(n/\epsilon^2)$ samples
- •(Requires $\Omega(n/\log^2 n)$ samples)

Conclusions

- Testing distributions on infinite/uncountable support is different from testing discrete distributions
 - Continuous distributions are harder
- Challenge: understand when it's possible to test
 - Usually some additional conditions are to be imposed
- Tight(er) bounds?

- Continuous distributions are harder
- Is the L₁-norm the right one?
 - It doesn't work well for continuous distributions
- Earth mover norm?
 - How much mass has to be moved and how far to obtain a given distribution
 - Ba, Nguyen, Nguyen, Rubinfeld 2009:
 - Testing uniformity on [0,1] can be done in time $f(1/\epsilon)$
 - Framework (holds for a variety of properties): reduction to the problem on the support of size $f(1/\epsilon)$