
Testing Linear-Invariant Non-Linear Properties

Arnab Bhattacharyya∗ Victor Chen† Madhu Sudan‡ Ning Xie§

The rich collection of successes in property testing raises a natural question: Why are so many different
properties turning out to be locally testable? Are there some broad “features” of properties that make them
amenable to such tests? Our work is part of an attempt to answer such questions. Such questions are best
understood by laying out broad (infinite) classes of properties (hopefully some of them are new) and showing
them to be testable (or characterizing the testable properties within the class). In this work we introduce a
new such class of properties, and show that (1) they are locally testable, and (2) that they contain infinitely
many new properties that were not previously known to be testable.

The broad scope of properties we are interested in are properties that view their domain D as a vector
space and are invariant under linear transformations of the domain. Specifically, we consider the domain
D = {0, 1}n, the vector space of n-dimensional Boolean vectors, and the range R = {0, 1}. In this setting,
a property F is said to be linear-invariant if for every f ∈ F and linear map L : {0, 1}n → {0, 1}n we have
that f ◦ L ∈ F . Specific examples of linear-invariant properties that were previously studied (esp. in the
Boolean setting) include that of linearity, studied by Blum et al. [4] and Bellare et al. [2], and the property
of being a “moderate-degree” polynomial (aka Reed-Muller codeword) studied by Alon et al. [1]. While
the tests in the above mentioned works potentially used all features of the property being tested, Kaufman
and Sudan [7] show that the testability can be attributed principally to the linear-invariance of the property.
However their setting only considers linear properties, i.e., F itself is a vector space over {0, 1} and this
feature plays a key role in their results: It lends an algebraic flavor to all the properties being tested and
plays a central role in their analysis.

We thus ask the question: Does linear-invariance lead to testability even when the property F is not lin-
ear? The one previous work in the literature that gave examples of non-linear linear-invariant proper-
ties is Green [5] where a test for the property of being “triangle-free” was described. A function f :
{0, 1}n → {0, 1} is said to be triangle-free if for every x, y ∈ {0, 1}n it is the case that at least one of
f(x), f(y), f(x+y) does not equal 1. The property of being triangle-free is easily seen to be linear-invariant
and yet not linear. Green [5] showed that the natural test for this property does indeed work correctly, though
the analysis is quite different from that of typical algebraic tests and is more reminiscent of graph-property
testing. In particular, Green develops an algebraic regularity lemma to analyze this test. (We note that the
example above is not the principal objective of Green’s work, which is directed mostly at abelian groups D
and R. The above example with D = {0, 1}n and R = {0, 1} is used mainly as a motivating example.)

Motivated by the above example, we consider a broad class of properties that are linear-invariant and non-
linear. A property in our class is given by k vectors v1, . . . , vk in the k-dimensional space {0, 1}k. (Through-
out this paper we think of k as a constant.) These k vectors uniformly specify a family F = Fn;v1,...,vk
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every positive integer n, containing all functions that, for every linear map L : {0, 1}k → {0, 1}n take on
the value 0 on at least one of the points L(v1), . . . , L(vk). (In our work, we also consider an even more
generalized class of properties where the forbidden pattern of values for f is not 1k but some other string
and show a limited set of cases where we can test such properties.) To see that this extends the triangle-
freeness property, note that triangle-freeness is just the special case with k = 3 and v1 = 〈100〉, v2 = 〈010〉,
v3 = 〈110〉. Under different linear transforms, these three points get mapped to all the different triples of
the form x, y, x+ y and so Fn;v1,v2,v3 equals the class of triangle-free functions.

Before giving a name to our class of functions, we make a quick observation. Note that the property spec-
ified by v1, . . . , vk is equivalent to the property specified by T (v1), . . . , T (vk) where T is a non-singular
linear map from {0, 1}k → {0, 1}k. Thus the property is effectively specified by the dependencies among
v1, . . . , vk which are in turn captured by the matroid underlying v1, . . . , vk. This leads us to our nomencla-
ture:

Definition (M-freeness). Given a (binary, linear) matroidM represented by vectors v1, . . . , vk ∈ {0, 1}k,
the property of beingM-free is given by, for every positive integer n, the family

FM = {f : {0, 1}n → {0, 1} | ∀ linear L : {0, 1}k → {0, 1}n, 〈f(L(v1)), . . . , f(L(vk))〉 6= 1k}.

The property of beingM-free has a natural k-local test associated with it: Pick a random linear map L :
{0, 1}k → {0, 1}n and test that 〈f(L(v1)), . . . , f(L(vk))〉 6= 1k. Analyzing this test turns out to be non-
trivial, and indeed we only manage to analyze this in special cases.

Recall that a matroidM = {v1, . . . , vk}, vi ∈ {0, 1}k, forms a graphic matroid if there exists a graph G on
k edges with the edges being associated with the elements v1, . . . , vk such that a set S ⊆ {v1, . . . , vk} has
a linear dependency if and only if the associated set of edges contains a cycle. In this paper, we require that
the graph G be simple, that is, without any self-loops or parallel edges. Our main theorem shows that the
property F associated with a graphic matroid v1, . . . , vk ∈ {0, 1}k is testable.

Theorem. For a graphic matroid M, the property of being M-free is locally testable. Specifically, let
M = {v1, . . . , vk} be a graphic matroid. Then, there exists a function τ : R+ → R+ and a k-query tester
that accepts members of M-free functions with probability one and rejects functions that are ε-far from
beingM-free with probability at least τ(ε).

Our bound on τ is quite weak. We let W (t) denote a tower of twos with height dte. Our proof only
guarantees that τ(ε) ≥ W (poly(1/ε))−1, a rather fast vanishing function. We do not know if such a weak
bound is required for any property we consider.

We describe the techniques used to prove this theorem shortly (which shed light on why our bound on τ is
so weak) but first comment on the implications of the theorem . First, note that for a graphic matroid it is
more natural to associate the property with the underlying graph. We thus use the phrase G-free to denote
the property of beingM-free whereM is the graphic matroid of G. This terminology recovers the notion
of being triangle-free, as in [5], and extends to cover the case of being k-cycle free (also considered in [5]).
But it includes every other graph too!

Syntactically, the above theorem seems to include infinitely many new properties (other than being k-cycle
free). However, this may not be true semantically. For instance the property of being triangle-free is essen-
tially the same as beingG-free for everyGwhose biconnected components are triangles. Indeed, prior to our
work, it was not even explicitly noted whether beingCk-free is essentially different from being triangle-free.
(By “essentially”, we ask if there exist triangle-free functions that are far from being Ck-free.) It actually
requires careful analysis to conclude that the family of properties being tested include (infinitely-many) new
ones. Our second theorem addresses this point.
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Theorem. The class of G-free properties include infinitely many distinct ones. In particular:

1. For every odd k, if f is Ck+2-free, then it is also Ck-free. Conversely, there exist functions g that are
Ck-free but far from being Ck+2-free.

2. If k ≤ ` and f is Kk-free, then it is also K`-free. On the other hand, if k ≥ 3 and ` ≥
(
k
2

)
+ 2 then

there exists a function g that is K`-free but far from being Kk-free.

Techniques: Our testability proof is based on Green’s analysis of the triangle-free case [5]. To analyze
the triangle-free case, Green develops a “regularity” lemma for groups, which is analogous to Szemerédi’s
regularity lemma for graphs. In our setting, Green’s regularity lemma shows how, given any function f :
{0, 1}n → {0, 1}, one can find a subgroup H of {0, 1}n such that the restriction of f to almost all cosets of
H is “regular”, where “regularity” is defined based on the “Fourier coefficients” of f .

This lemma continues to play a central role in our work as well, but we need to work further on this. In
particular, a priori it is not clear how to use this lemma to analyzeM-freeness for arbitrary matroidsM. To
extract a large feasible class of matroids we use a notion from a work of Green and Tao [6] of the complexity
of a linear system (or matroids, as we refer to them). The “least complex” matroids have complexity 1, and
we show that the regularity lemma can be applied to all matroids of complexity 1 to show that they are
testable.

The notion of a 1-complex matroid is somewhat intricate, and a priori it may not even be clear that this
introduces new testable properties. We show that these properties actually capture all graphic matroids
which is already promising. Yet this is not a definite proof of novelty, and so in we investigate properties of
graphic matroids and give some techniques to show that they are “essentially” different. Our proofs show
that if two (binary) matroids are not “homomorphically” equivalent (in a sense that we define) then there is
an essential difference between the properties represented by them.

Significance of problems/results: We now return to the motivation for studyingM-free properties. Our
interest in these families is mathematical. We are interested in broad classes of properties that are testable;
and invariance seems to be a central notion in explaining the testability of many interesting properties.
Intuitively, it makes sense that the symmetries of a property could lead to testability, since this somehow
suggests that the value of a function at any one point of the domain is no more important than its values at any
other point. Furthermore this intuition is backed up in many special cases like graph-property testing (where
the family is invariant under all permutations of the domain corresponding to relabelling the vertex names).
Indeed this was what led Kaufman and Sudan [7] to examine this notion explicitly in the context of algebraic
functions. They considered families that were linear-invariant and linear, and our work is motivated by the
quest to see if the latter part is essential.

In contrast to other combinatorial settings, linear-invariance counts on a (quantitatively) very restricted
collection of invariances. Indeed the set of linear transforms is only quasi-polynomially large in the do-
main (which may be contrasted with the exponentially large set of invariances that need to hold for graph-
properties). So ability to test properties based on this feature is mathematically interesting and leads to the
question: what kind of techniques are useful in these settings. Our work manages to highlight some of those
(in particular, Green’s regularity lemma).

Parallel works: After completing our work, we learned from Asaf Shapira that, independently of us,
M-freeness for an arbitrary matroidM has been shown to be testable in Shapira’s recent paper [10]. His
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result solved a question that we posed as open in an earlier version of this paper [3]. His result was built
on the work of Král’, Serra, and Vena in [8], where an alternate proof of Green’s cycle-freeness result was
provided. Essentially the authors in [8] demonstrated a reduction from testing freeness of the cycle matroid
in a function to testing freeness of the cycle subgraph in a graph, and then they applied regularity lemmas for
graphs to analyze the number of cycles in a function far from being cycle-free. In this manner, the authors
showed that our main testability theorem holds as well. By extending this method and utilizing hypergraph
regularity lemmas, Shapira [10] and Král’, Serra, and Vena in a followup work [9] showed that arbitrary
monotone matroid-freeness properties are testable.

We remark that our proofs are very different from those in [8], [9], and [10], and in particular, our view on
invariance leads us to develop techniques to show that syntactically different properties are indeed distinct.

Future work It would be nice to extend our results to the case where the pattern Σ is an arbitrary binary
string, as opposed to being monotone. We did manage to extend this in the special case whereM is a cyclic
matroid, but in this case the extension is not very interesting. We do feel that our proof techniques already
capture some non-trivial other cases, but are far from capturing all cases, even for graphic matroids.

Extending the patterns further, there is no real reason to view the range as a field element, so a major
generalization would be to consider matroids over arbitrary fields, and letting the range be some arbitrary
finite set R where the forbidden pattern Σ ∈ Rk. (We don’t believe there should be any major technical
barriers in this step, once we are able to handle arbitrary 0/1 patterns Σ.) Finally, all the above problems
consider the case of a single forbidden pattern (and its linear transformations).

These properties were specified by a matroid M on k elements and a pattern Σ ∈ {0, 1}k. However to
capture the full range of linear-invariant non-linear properties that allow one-sided error local tests, we
should also allow the conjunction of a constant number of constraints. We believe this could lead to a
characterization of all linear-invariant non-linear properties that allow one-sided error local tests.

In a different direction, we feel that it would also be interesting to develop richer techniques to show the
distinguishability of syntactically different properties. For instance, even for the graphic case we don’t have
a good understanding of when two different graphs represent essentially the same properties, and when they
are very different.
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