
On locally-characterized expander graphs (a survey)

Oded Goldreich*

March 13, 2024

Abstract

We consider the notion of a local-characterization of an infinite family of unlabeled bounded-
degree graphs. Such a local-characterization is defined in terms of a finite set of (marked) graphs
yielding a generalized notion of subgraph-freeness, which extends the standard notions of induced
and non-induced subgraph freeness.

We survey the work of Adler, Kohler and Peng (32nd SODA and 36th CCC, 2021), which is
pivoted at constructing locally-characterized expander graphs. The construction makes inherent
use of the iterative and local nature of the Zig-Zag construction of Reingold, Vadhan, and
Wigderson (41st FOCS, 2000). This yields a locally-characterizable graph property that cannot
be tested (in the bounded-degree graph model) within a number of queries that does not depend
on the size of the graph.

Contents

1 Overview 1

2 Background 2
2.1 Testing in the Bounded-Degree Graph Model . 2
2.2 Generalized Subgraph Freeness Properties . 3
2.3 The Zig-Zag Product . 5

3 On the Proof of Theorem 1.1 5

4 Digest and Afterthoughts 9

Bibliography 11

*Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:
oded.goldreich@weizmann.ac.il. This research was partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702).

1 Overview

We consider the notion of a local-characterization of an infinite family of unlabeled bounded-degree
graphs. Such a local-characterization is defined in terms of a finite set of (marked) graphs yielding
a generalized notion of subgraph-freeness, which extends the standard notions of induced and non-
induced subgraph freeness.1 Intuitively, this notion corresponds to forbidden neighbourhoods of
constant distance; that is, we consider the set of graphs such that each vertex in them has a
neighborhood that is not forbidden. In other words, a family of graphs G is locally-characterized
by a finite set of marked graphs F if G equals the set of F-free graphs (i.e., a graph G is in G if
and only if for every F ∈ F the graph G is F -free).

We stress that, for every F as above, the set of F-free graphs is a graph property; that is, it is
closed under isomorphism. We also mention that this definition is related both to expressibility by
first-order formula (cf. [1]) and to having a proximity-oblivious tester (cf. [5]). In light of this, one
would expect that such graph properties would be testable (in the bounded-degree graph model)
within query complexity that depends only on the proximity parameter; however, as shown by
Adler, Kohler, and Peng [1], this is not the case. The latter result is proved by constructing a
locally-characterizable graph property that consists solely of expander graphs (and using the fact
that such a property cannot be tested within query complexity that depends only on the proximity
parameter [2]). Actually, this graph property corresponds to an infinite sequence of unlabeled
graphs (equiv., all n-vertex graphs that have the property are isomorphic to a single n-vertex
graph).

Theorem 1.1 (a locally-characterizable sequence of expander graphs [1]): There exists a finite
collection of marked graphs, denoted F , such that the set of F-free graphs is an infinite set of
(bounded-degree) expander graphs. Furthermore, all n-vertex graphs that are F-free are isomorphic
to one another, and for some d ∈ N and each m ∈ N there exists an Θ(d4m)-vertex F-free graph.

The fact that the set of F-free n-vertex graphs are isomorphic to one another is quite striking, let
alone the fact that they are expanders (which in important for the application to property testing).

The proof of Theorem 1.1 is pivoted at the Zig-Zag construction of Reingold, Vadhan, and
Wigderson [10]. Recall that they presented a sequence of graphs, (Gi)i∈N, such that G1 = H2 for
some constant-size expander H (of degree d and second-eigenvalue d/4) and Gi = G2

i−1⃝z H, where
⃝z denotes the Zig-Zag product. Furthermore, each vertex in Gi−1 is replaced in Gi by a cloud of
vertices of the same size as H, and edges of G2

i−1 yield “connections” between the corresponding
clouds in Gi (where the edges of the Zig-Zag product correspond to three-step walks on a graph
that combine these connections with copies of H that are “placed” on each cloud). Now, loosely
speaking, for each m ∈ N, the proof of Theorem 1.1 (provided in [1]) identifies a graph that
consists of the graphs G1, ..., Gm along with edges that connect each vertex of Gi−1 to each vertex
in the corresponding cloud of Gi. In fact, the construction is first presented in terms of directed
edge-colored graphs, and gadgets are later used to yield undirected graphs (with no colors).

The point is that, while it is inconceivable that we can provide a local-characterization of Gi

itself, it is quite conceivable that we can provide a local-characterization of Gi in terms of Gi−1.
Indeed, the simple relation between Gi−1 and Gi, already capitalized by Reingold [9], is pivotal
here too. Furthermore, the relation between Gi−1 and Gi can be enforced by constraints that are

1This notion, defined in [5], is reviewed in Section 2.2.

1

independent of i. These facts are the basis for a local charaterization of a graph that has G1, ..., Gm

at its core. Needless to say, materializing this outline requires a careful implementation.

Application to property testing. We say that a property tester has size-oblivious (query)
complexity if the number of queries that it makes depends only on the proximity parameter. The
main result of [2] states that, in the bounded-degree graph model, every infinite property of graphs
that has a tester of size-oblivious query complexity must contain an infinite hyperfinite subproperty.
Recalling that hyperfinite graphs are the “extreme opposite” of expander graphs, it follows that
the property asserted in Theorem 1.1 does not have a tester of size-oblivious complexity. Hence,
we get

Corollary 1.2 (a locally-characterizable property that is not testable in the bounded degree graph
model within size-oblivious complexity [1]): There exists a finite collection of marked graphs, de-
noted F , such that the set of F-free graphs does not have a tester of size-oblivious query complexity
(in the bounded degree graph model). In particular, this set has no proximity-oblivious tester (in
the bounded degree graph model).

Recall that a proximity-oblivious tester is an oracle machine of constant query-complexity that
accepts each graph in the property with probability 1, and rejects each graph that is not in the
property with probability that is related to the (relative) distance of the graph from the property
(cf. [3, Def. 1.7]). Hence, a proximity-oblivious tester for a property yields a tester of size-oblivious
query complexity for that property (cf. [3, Thm. 1.9]).

Organization. After recalling the background (Section 2), we turn to the core of this survey
(Section 3), where we provide more details on the proof of Theorem 1.1. We end with some
afterthoughts (Section 4).

2 Background

Throughout this text, we focus on bounded-degree graphs. While the contents of Section 2.1 is well-
known and may be skipped, the notion of generalized subgraph freeness (reviewed in Section 2.2)
is likely to be unfamiliar to most readers. For sake of self-containment, we also review the Zig-Zag
construction (in Section 2.3).

2.1 Testing in the Bounded-Degree Graph Model

(This model was introduced in [4] and is reviewed in [3, Chap. 9].)
The bounded-degree graph model refers to a fixed (constant) degree bound, denoted d ≥ 2.

In this model, a graph G = (V,E) of maximum degree d is represented by the incidence function
g : V × [d] → V ∪ {⊥} such that g(v, j) = u ∈ V if u is the jth neighbor of v and g(v, j) = ⊥ ̸∈ V
if v has less than j neighbors.2 Distance between graphs is measured in terms of their foregoing
representation; that is, as the fraction of (the number of) different array entries (over d · |V |).

2For simplicity, we adopt the standard convention by which the neighbors of v appear in arbitrary order in the

sequence (g(v, 1), ..., g(v,deg(v))), where deg(v)
def
= |{j ∈ [d] : g(v, j) ̸= ⊥}|.

2

The tester is given oracle access to the representation of the input graph (i.e., to the incidence
function g), where for simplicity we assume that V = [n] for n ∈ N. In addition, the tester is also
given a proximity parameter ϵ and a size parameter (i.e., n). Recall that graph properties are sets
of graphs that are closed under isomorphism.

Definition 2.1 (property testing in the bounded-degree graph model): For a fixed d ∈ N, a tester
for the graph property Π is a probabilistic oracle machine T that, on input a proximity parameter
ϵ > 0 and size parameter n ∈ N, and when given oracle access to an incidence function g : [n]×[d] →
[n] ∪ {⊥}, outputs a binary verdict that satisfies the following two conditions:

1. The tester accepts each graph G = ([n], E) in Π with probability at least 2/3; that is, for
every g : [n] × [d] → [n] ∪ {⊥} representing a graph in Π (and every ϵ > 0), it holds that
Pr[T g(n, ϵ)=1] ≥ 2/3.

2. Given ϵ > 0 and oracle access to any graph G that is ϵ-far from Π, the tester rejects with
probability at least 2/3; that is, for every g : [n] × [d] → [n] ∪ {⊥} that represents a graph
that is ϵ-far from Π, it holds that Pr[T g,(n, ϵ)=0] ≥ 2/3, where the graph represented by g is
ϵ-far from Π if for every g′ : [n] × [d] → [n] ∪ {⊥} that represents a graph in Π it holds that
|{(v, j) ∈ V × [d] : g(v, j) ̸= g′(v, j)}| > ϵ · dn.

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for every
g : [n]×[d] → [n]∪{⊥} representing a graph in Π (and every ϵ > 0), it holds that Pr[T g(n, ϵ)=1] = 1.

The query complexity of a tester for Π is a function (of the parameters d, n and ϵ) that represents
the number of queries made by the tester on the worst-case n-vertex graph of maximum degree d,
when given the proximity parameter ϵ. Fixing d, we typically ignore its effect on the complexity
(equiv., treat d as a hidden constant). Our focus here is on cases in which the query complexity
depends only on the proximity parameter (i.e., size-oblivious query complexity).

2.2 Generalized Subgraph Freeness Properties

The notion of a generalized subgraph-freeness, which extends the standard notions of induced and
non-induced subgraph freeness, was introduced in [5]. It is aimed to capture what one can see
by exploring a constant-radius neighborhood of a vertex in a graph that has some predetermined
graph property. The issue is that some vertices are fully explored (i.e., the explorer sees all their
neighbors), whereas for other vertices (at the boundary of the exploration) the explorer may only
encounter them but not all their neighbors (since it has not traversed their incident edges).

We shall actually consider the set of subgraphs that the explorer cannot encounter when ex-
ploring a graph that has the property, where these forbidden subgraphs are represented by marked
graphs, which are graphs in which each vertex is marked either full or semi-full or partial.
Intuitively, the marking full represent a vertex that is not at the bondary of the exploration,
which means that all its incident edges were traversed. In contrast, vertices at the boundary are
marked as partial, whereas the marking semi-full is inessential (and is included for sake of
greater flexibility (see Footnote 3)).

Definition 2.2 (marked graphs, embedding, and generalized subgraph freeness): A marked graphs
is a pair consisting of a graph and a marking of its vertices such that each vertex is marked either
full or semi-full or partial. We say that a marked graph F = ([h], A) can be embedded in

3

a graph G = ([N], E) if there exists a 1-1 mapping ϕ : [h] → [N] such that for every i ∈ [h] the
following two conditions hold:

1. If i is marked full, then ϕ yields a bijection between the set of neighbors of i in F and the
set of neighbors of ϕ(i) in G. That is, in this case ΓG(ϕ(i)) = ϕ(ΓF (i)), where ΓX(v) denotes
the set of neighbors of v in the graph X, and ϕ(S) = {ϕ(v) : v∈S}.

2. If i is marked semi-full, then ϕ yields a bijection between the set of neighbors of i in F
and the set of neighbors of ϕ(i) in the subgraph of G induced by ϕ([h]). That is, in this case
ΓG(ϕ(i)) ∩ ϕ([h]) = ϕ(ΓF (i)).

3. If i is marked partial, then ϕ yields an injection of the set of neighbors of i in F to the set
of neighbors of ϕ(i) in G. That is, in this case ΓG(ϕ(i)) ⊇ ϕ(ΓF (i)).

The graph G is called F -free if F cannot be embedded in G (i.e., there is no embedding of F in G
that satisfies the foregoing conditions). For a set of marked graphs F , a graph G is called F-free if
for every F ∈ F the graph G is F -free.

Indeed, the standard notion of (non-induced) subgraph freeness is a special case of generalized
subgraph freeness, obtained by considering the corresponding marked graph in which all vertices are
marked partial. Similarly, the notion of induced subgraph freeness is a special case of generalized
subgraph freeness, obtained by considering the corresponding marked graph in which all vertices
are marked semi-full.3

Marking vertices as full introduces a new type of constraint; specifically, this constraint man-
dates the non-existence of neighbors that are outside the embedding of the marked subgraph. For
example, using vertices that are marked full, it is possible to disallow certain degrees in the graph
(see Example 2.3). Thus, the generalized notion of subgraph freeness includes properties that
are not hereditary (e.g., regular graphs), whereas induced and non-induced subgraph freeness are
hereditary.

Example 2.3 (disallowing certian degrees via generalized subgraph freeness): For every d′ ∈
{0, 1, ..., d}, we can disallow vertices of degree d′ by using a (d′ + 1)-vertex star in which the center
is marked full and the d′ leaves are marked partial.

The foregoing example as well as the next one are actually used in the proof of Theorem 1.1. The
following example refer to the case that we want to mandate that if the graph contains some fixed
subgraph H ′ then it actually contains additional edges (i.e., H \H ′) on the same vertices.

Example 2.4 (mandating some subgraph via generalized subgraph freeness): Let H ′ = ([h], A′)
be a subgraph of H = ([h], A), and suppose that we want to enforce that every induced subgraph of
G that contains H ′ also contains H. This can be obtained by requiring G to be F-free, where F is
the set of all marked h-vertex graphs that are consistent with H ′ but not with H. Specifically, F is
in F if F is embedded in every h-vertex graph that contains H ′ but not H.

3Indeed, the semi-full marking (resp., the partial marking) can be avoided by emulating marked graphs by
sets of mark graphs that use only full and partial (resp., semi-full) marking. Emulating the partial marking by
semi-full marking is analogous to the emulation of non-induced subgraph freeness by induced subgraph freeness. As
for emulating the semi-full marking, here we replace each marked graph F by a set of marked graphs F ′ such that
each F ′ ∈ F ′ consists of a copy of F in which all semi-full-marked vertices are replaced by full-marked vertices
and are connected to some auxiliary vertices, which are all marked partial. We stress that F ′ reflects all possible
ways of connecting the newly full-marked vertices with the auxiliary vertices.

4

For sake of completeness, we present the following definition, which we actually use only in headings.

Definition 2.5 (locally characterizable properties): A graph property Π is called locally character-
izable if there exists a finite set of marked graphs F such that Π equals the set of F-free graphs.

(We mention that Definition [5, Def. 5.2] is more general; it allows a different set of marked graphs
to be used for each graph size as long as there is a uniform bound on the size of all marked graphs
used.)

2.3 The Zig-Zag Product

(The Zig-Zag product was introduced and first studied in [10].)
Given a (big) D-regular graph G = (V,E), and a (small) d-regular graph H = ([D], F), their

Zig-Zag product, denoted G⃝z H, consists of the vertex set V × [D], which is partitioned to D-vertex
clouds such that the cloud that corresponds to vertex v ∈ V is the set of vertices Cv = {(v, i) : i∈
[D]}, and edges that correspond to certain 3-step walks (as detailed next).

Actually, it is instructive to first consider the graph, denoted G⃝r H, in which copies of H
are placed on the clouds (i.e., for every v ∈ V and {i, j} ∈ F we place the intra-cloud edge
{(v, i), (v, j)}), and edges of G connect the corresponding clouds by using corresponding edges;
that is, if {u, v} ∈ E is the ith (resp., jth) edge incident at u (resp., at v), then we place the
inter-cloud edge {(u, i), (v, j)}. Note that each vertex in G⃝r H has d intra-cloud edges and a single
inter-cloud edge. Now, the edges of G⃝z H correspond to 3-step walks in G⃝r H that start with an
intra-cloud edge, then take the (only available) inter-cloud edge, and lastly take some intra-cloud
edge; that is, such a generic walk has the form (v, i)→(v, j)→(w, k)→(w, ℓ), where {i, j}, {k, ℓ} ∈ F
and {(v, j), (w, k)} is an inter-cloud edge in G⃝r H (i.e., {v, w} ∈ E is the jth edge incident at v
and the kth edge incident at w).

We shall assume that both G and H are connected and are not bipartite. In that case, it is clear
that the graph G⃝r H is also connected and non-bipartite, and it can be shown that also G⃝z H has
these properties. The main technical result of [10] asserts that the convergence rate of a random
walk on G⃝z H (a.k.a the relative second eigenvalue of the graph) can be upper-bounded in terms
of the convergence rates of random walks on G and on H. A simple form of their bound asserts
that λ(G⃝z H) ≤ λ(G) + λ(H), where λ(X) denotes the convergence rate of a random walk on the
graph X. Using λ(H) ≤ 1/4, it follows that if λ(G) ≤ 1/2, then λ(G2⃝z H) ≤ 1/2.

3 On the Proof of Theorem 1.1

We shall first present a construction of a directed graph with edge-colors such that the corresponding
underlying graph is an expander. This construction will be presented in terms of local conditions
that the edges of the graph are required to satisfy, where the local conditions are enforced by
forbidden neighborhoods of constant distance (akin those in Examples 2.3 and 2.4). Indeed, the
forbidden neighborhoods correspond to directed and edge-colored versions of marked graphs, which
are defined analogously to the Definition 2.2.

Recall that, for each m ∈ N, the construction identifies a graph that consists of the graphs
G1, ..., Gm (of the Zig-Zag construction) along with edges that connect each vertex of Gi−1 to each
vertex in the corresponding cloud of Gi. Hence, the construction consists of two parts: (1) edges
that represent the edges of G1, ..., Gm, and (2) edges that form a d4-ary tree in which each vertex

5

in Gi−1 is connected to all vertices of the corresponding cloud of Gi. Below, we show how this
structure is enforced by postulates that can be expressed by local conditions.

The main part of the construction will be directed edges that represents the edge-rotation func-
tions of the graphs G1, ..., Gm in the Zig-Zag construction. Recall that the edge-rotation function
of an undirected graph extend its adjacency function such that the pair (u, α) is mapped to the
pair (v, β) if the αth outgoing edge of u equals the βth incoming edge of v (equiv., the αth port of
vertex u is connected to the βth port of vertex v). In such a case, we shall color the directed edge
(u, v) with the color (α, β).

Recall thatH is a d-regular d4-vertex graph and thatG1 = H2 andGi = G2
i−1⃝z H are d2-regular

d4i-vertex graphs. For every α, β ∈ [d2], we consider the edge-set Eα,β such that (u, v) ∈ Eα,β if
for some i there exists an edge in Gi that connects the αth port of vertex u to the βth port of
vertex v. Indeed, Eα,β is viewed as a set of directed edges that are colored (α, β), and we postulate

that (u, v) ∈ Eα,β if and only if (v, u) ∈ Eβ,α. Letting E
def
=

⋃
α,β∈[d2]Eα,β, we refer to (u, v) ∈ E

as an E-edge (and to (u, v) ∈ Eα,β as an Eα,β-edge). We stress that the foregoing anti-parallel
postulate is a very minimal one and far more substantial conditions will be postulated about the
E-edges by referring also to other edges that will induce a layered directed acyclic graph (with Gi

identified with the ith layer). Indeed, the actual structure of the graphs G1, ..., Gm will be enforced
by relating each Gi to Gi−1.

As a warm-up, suppose that we want to augment the graph with auxiliary (colored) edges
that will capture 2-step walks on the original graph. In such a case, we introduce, for every
α, β, γ, δ ∈ [d2], an edge-set E′

(α,γ),(δ,β) such that (u,w) ∈ E′
(α,γ),(δ,β) if and only if there exists v

such that (u, v) ∈ Eα,β and (v, w) ∈ Eγ,δ. (We stress that the latter condition is a local condition
about the edge-sets E′

(α,γ),(δ,β), Eα,β and Eγ,δ; actually, we will use E′ only as a shorthand.)4

As stated above, the structure of the graphs G1, ..., Gm is enforced by relating each Gi to Gi−1,
where we define G0 to be the graph consisting of a single vertex. The first step in enforcing this
relation is the association of vertices in Gi−1 with clouds of vertices in Gi such that each cloud
contains d4 vertices that are identified (equiv., ordered) within the cloud; that is, the d4 ports of each
vertex in G2

i−1 are associated with distinct vertices of the corresponding cloud. This association is
enforced by using edges that are directed from each vertex of Gi−1 to the corresponding cloud of Gi

such that these d4 edges are assigned different colors. Specifically, for each σ ∈ [d4], we introduce a
set of directed edges, denoted Pσ, and postulate that each vertex has at most one outgoing Pσ-edge

and at most one incoming P -edge, where P
def
=

⋃
σ∈[d4] Pσ. Indeed, (u, v) ∈ Pσ implies that v is the

σth vertex in the cloud associated with u, where u is the “parent” of v in the directed tree induced
by P . Additional postulates are added to identify the vertices of G0 and Gm; specifically:

1. Intutively, we postulate that there exists a single vertex with no incoming P -edges; the graph
G0 will consist of this vertex.

Actually, we postulate that there exists at most one vertex with no incoming P -edges; the
existence of such a vertex will follows from the tree structure of the P -edges (see below).

4An alternative presentation may use E′ explicitly. In such a presentation Gi = G2
i−1⃝z H is decomposed into

G′
i−1 = G2

i−1 and Gi = G′
i−1⃝z H. In this case (assuming we keep G1 = H2 at level 1), odd (resp., even) levels of the

tree will consist of copies of the Gi’s (resp., G
′
i’s), and tree edges of a different color will be used to connect vertices

of Gi to their copy in G′
i. Such an alternative presentation makes the postulates that related Gi to Gi−1 simpler,

but this comes at a cost of a slightly more complicated postulates regarding the tree edges (which are treated next).

6

2. We postulate that the P -outdegree of each vertex is either 0 or d4 (equiv., each vertex either
has no outgoing P -edges or has at least d4 outgoing P -edges).

3. Intuitively, we postulate that all vertices that have no outgoing P -edges belong to the same
Gi, and that i = m.

Actually, we postulate that vertices that are connected by E-edges have the same number of
outgoing P -edges (equiv., the same number of outgoing Pσ-edges, for every σ ∈ [d4]). The
fact that vertices with no outgoing P -edges are in Gm follows from the first item (i.e., for
i ≥ 1, the graph Gi cannot contain vertices with no incoming P -edges).

Combining the foregoing postulates with additional postulates that refer to E-edges, this implies
that the P -edges form a directed d4-ary tree such that all leaves are at the same distance from the
root. We warn that establishing this tree structure is the most complex part of the proof of [1,
Thm. 3.1].

Next, we postulate that the E-edges between the d4 vertices that neighbor the single vertex of
P -indegree 0 (i.e., the vertex of G0) form a copy of H2. Specifically, recalling that these vertices
are identified by their incoming P -edges, we postulate that (u, v) ∈ E if and only if there exist
σ, τ ∈ [d4] such that u (resp., v) has an incoming Pσ-edge (resp., Pτ -edge) from G0 and {σ, τ} is
an edge in H2. Furthermore, in this case (u, v) ∈ Eα,β if and only if the foregoing edge in H2 uses
the αth port of u and the βth port of v (for some α, β ∈ [d2]).

Figure 1: Vertex u (resp., v) is the σth (resp., τ th) vertex in the cloud Cu′ (resp., Cv′) that replaces
u′ (resp., v′); these clouds are connected by an edge colored σ′, τ ′.

The main issue is relating the E-edges of Gi = G2
i−1⃝z H to those of Gi−1, for i > 1. We stress

that i itself cannot and is not referred to in this enforcement. Instead, we refer to any (x, y) ∈ E
such that x and y have outgoing P -edges and introduce conditions on the opposite endpoints of
these P -edges; that is, we mandate E-edges among d of the P -neighbors of x (which reside in the
cloud that replaces x) and d vertices of the P -neighbors of y (which reside in the cloud that replaces
y). Specifically, for (j, k) ∈ [d]2 ≡ [d2], we postulate that (u, v) ∈ E(j,k),(k,j) if and only if there

7

exist σ, τ, σ′, τ ′ ∈ [d4] and (u′, v′) ∈ E′
σ′,τ ′ (i.e., u

′ and v′ are connected by a 2-path colored (σ′, τ ′)
(see warm-up)) such that

1. {σ, σ′} is an edge colored j in H.

2. {τ, τ ′} is an edge colored k in H.

3. (u′, u) ∈ Pσ and (v′, v) ∈ Pτ .

(See Figure 1.) Intuitively, these conditions imply that, for some i, the u′ and v′ are connected in
G2

i−1, whereas u and v are vertices in the corresponding clouds of Gi. Furthermore, u (resp., v) is
associated with the σth (resp., τ th) vertex of H, which in turn neighbor vertex σ′ (resp., τ ′) of H.
Moreover, for σ ≡ (α, γ) ∈ [d2]2, vertices u′ and v′ are connected in Gi−1 by a 2-path that uses the
port α ∈ [d2] of u′ and the port γ ∈ [d2] of the intermediate vertex (whereas τ ′ = (δ, β) such that
δ and β are the ports used in walking this 2-path in the opposite direction). Indeed, the 2-paths

referred to here are the edges of E′ def=
⋃

σ′,τ ′∈[d4]E
′
σ′,τ ′ , which were defined in the warm-up.

The foregoing description suggests that the P -edges of a graph that satisfies the listed postulates
form a d4-ary directed tree such that all leaves are at the same distance from the root, and that the
subgraph (of E-edges) induced by the set of vertices that are at distance i from the root equals Gi.
This is indeed the case, but proving the former fact (which refers to the P -edges) requires using
also the postulates that refer to the E-edges.5 This is core of the analysis provided in [1, Sec. 3.1].
Hence, we have

Lemma 3.1 (the postulated conditions determine a unique unlabeled directed n-vertex graph):
For n =

∑m
i=0 d

4i, an n-vertex (unlabeled edge-colored) directed graph satisfies the foregoing condi-
tions6 if and only if it consists of the graphs G0, G1, ..., Gm (such that G1 = H2 and Gi = G2

i−1⃝z H)
that are connected by P -edges as outlined above (i.e., each vertex in Gi−1 is connected by an Pσ-edge

5Specically, the postulates that refer to P -edges only enforce that the corresponding graph consists of at most
one directed tree and a collection of directed cycles such that each vertex on each cycle is a root of a directed tree.
However, the posulates that refer to E-edges imply that no such cycles exist, and so the graph consists of a single
directed tree.

6Following is a compilation of all the conditions.

� The edge-rotation (i.e., anti-parallel) condition: (u, v) ∈ Eα,β if and only if (v, u) ∈ Eβ,α

� The parental (i.e., P -edges) conditions:

– For every σ ∈ [d4] and every u, there exists at most one v such that (u, v) ∈ Pσ.

– For every v, there exists at most one u such that (u, v) ∈ P .

– There exists at most one v such that for every u it holds that (u, v) ̸∈ P .

– For every u, the set {v : (u, v) ∈ P} is either empty or has size d4, where in the latter case for every
σ ∈ [d4] there exists a unique v such that (u, v) ∈ Pσ.

– For every (u, u′) ∈ E it holds that |{v : (u, v) ∈ P}| = |{v′ : (u′, v′) ∈ P}|.

� The base graph (“level one”) condition: Let r denote the vertex that has no incoming P -edges, and vσ be such
that (r, vσ) ∈ Pσ (for σ ∈ [d4]). Then, (vσ, vτ) ∈ E(j,k),(k,j) if and only if there exists ρ ∈ [d4] such that {σ, ρ}
is an edge colored j in H and {ρ, τ} is an edge colored k in H.

� The Zig-Zag condition: For (j, k) ∈ [d]2 ≡ [d2], we postulate that (u, v) ∈ E(j,k),(k,j) if and only if there exist
σ, τ, σ′, τ ′ ∈ [d4] and (u′, v′) ∈ E′

σ′,τ ′ (i.e., u′ and v′ are connected by a 2-path colored (σ′, τ ′) (see warm-up))
such that {σ, σ′} is an edge colored j in H, {τ, τ ′} is an edge colored k in H, (u′, u) ∈ Pσ, and (v′, v) ∈ Pτ .

8

to the σth vertex in the corresponding cloud of Gi). If n > 1 is not of the foregoing form, then no
n-vertex graph satisfies these conditions.

We note that the foregoing conditions can be enforced by forbidden neighborhoods of constant
distance (akin those in Examples 2.3 and 2.4). Indeed, the forbidden neighborhoods correspond
to directed and edge-colored versions of marked graphs, which are defined analogously to the
Definition 2.2.

The foregoing n-vertex graph (consisting of G0, G1, ..., Gm and the P -edges) has constant degree.
We also observe that the corresponding undirected graph is an expander, by using the combinatorial
notion of expansion. This is the case because each of the Gi’s is an expander, whereas each vertex
in Gi−1 is connected to d4 different vertices in Gi. Hence, for every set of vertices S and each
i, letting Si denote the vertices of S that reside in the d4i-vertex graph Gi, we observe that if
|Si−1| ≤ d4(i−1)/2 then Si−1 contributes to the expansion inside Gi−1 and otherwise Si−1 neighbors
d4 · |Si−1| > d4i/2 vertices in Gi.

Lastly, we observe that the foregoing construction can be converted to the context of (simple)
undirected graphs (with no edge-colors). This is done by replacing each color class and edge-
direction by a different asymmetric gadget such that the gadgets are non-isomorphic and their
vertices can be distinguished from the original ones. In particular, we may use gadgets that contain
vertices of higher degree than the degree of the original vertices. The same transformation is applied
to the (direced and edge-colored) forbidden neighborhoods that enforce the conditions imposed on
the (direced and edge-colored) construction. This yields a corresponding finite set of marked graphs,
denoted F , that satisfies the following –

Proposition 3.2 (a locally-characterizable property of expander graphs): The set of F-free graphs
is an infinite set of expander graphs. Furthermore, this set contains a single unlabeled Θ(d4m)-vertex
graph for every m ∈ N.

We mention that, by using additional constraints, one can force these expanders to be regular
graphs. In fact, this is done in [1].

4 Digest and Afterthoughts

The proof of Lemma 3.1 does not refer to the fact that H and the Gi’s are expanders. It actually
uses only the fact that each of the Gi’s is a connected graph and that Gi is derived from Gi−1

by replacing vertices with clouds and replacing edges with specific bipartite graphs between the
corresponding clouds. Specifically, the σth vertex of the cloud of u′ is connected in Gi to the τ th

vertex of the cloud of v′ if and only if u′ and v′ are connected in G2
i−1 via ports σ

′ and τ ′ respectively,
and some condition regarding σ, τ, σ′, τ ′ ∈ [d4] holds. Hence, Lemma 3.1 remains valid also when
replacing the recursion Gi = G2

i−1⃝z H by the recursion Gi = f(Gi−1), provided that f satisfies the
following conditions:

1. For some constant c > 1, each vertex of G′ is mapped to a cloud of c vertices in G = f(G′),
and the vertices of these clouds are ordered (equiv., identified by indices in [c]).

We stress that each vertex of G belongs to a single cloud.

2. If G′ is connected, then so is G = f(G′).

9

3. Let u and v be vertices in G such that u (resp., v) is the σth vertex of the cloud u′ (resp., the
τ th vertex of the cloud v′). Then, there exists an edge between the αth port of u and the βth

port of v if and only if the (unlabeled) constant-distance neighborhoods of u′ and v′ (in G′)
satisfy a condition that depends on σ, τ, α and β only. (The condition may refer to the port
indices of additional vertices in G′, but not to the labels of these vertices.)

In addition, G1 may be an arbitrary constant-sized connected graph; if the number of vertices in
G1 is different from c, then the postulate regarding the outgoing P -edges of the root of the P -tree
should revised accordingly (i.e., the root of the P -tree would have a different degree (which matches
G1) than all internal vertices in the tree (which still have degree c)).

Note that the construction schema outlined above (which yields a graph consisting ofG0, G1, ..., Gm

and P -edges from vertices of Gi−1 to the corresponding clouds of Gi) always yields graphs of loga-
rithmic diameter (by virtue of the P -edges). In Section 3, we used G1 = H2 and f(G) = G2⃝z H,
for some c-vertex graph H (i.e., H is a sufficiently strong d-regular expander and c = d4). These
specific choices were important only for asserting that the Gi’s are (bounded-degree) expanders,
which was important for Proposition 3.2 and Corollary 1.2. Before turning to Corollary 1.2, we
present a couple of other incarnations of this construction schema.

Example 4.1 (using arbitrary d-regular connected graphs): For any d ≥ 2 and t ≥ 1, let G1 be an
arbitrary (d+1)-regular connected graph, and H be an arbitrary connected (d+1)t-vertex d-regular
graph. In particular, for d = 2 the graph H is a 3t-cycle, whereas for t = 1 the graph H is a
(d+1)-clique. Then, for any (d+1)-regular graph G, letting f(G) = Gt⃝r H, where ⃝r denotes the
replacement product (outlined in Section 2.3), satisfies the foregoing conditions.

We stress that Example 4.1 makes sense even for d = 2 and t = 1. More importantly, for adequate
choice of d,H and G1, even for t = 3, the corresponding Gi’s are expanders, and so the graph
resulting from the construction schema is an expander.7

Example 4.2 (using arbitrary d-regular connected graphs, take 2): For any d ≥ 3, let G1 be an
arbitrary d-regular connected graph, and H be an arbitrary connected h-vertex graph with h − d
vertices of degree d and d vertices of degree d − 1. In particular, H can be obtained by omitting a
single vertex from a d-regular (h+1)-vertex graph. For any d-regular graph G, let G⃝r′ H denote a
version of the replacement product in which only the low degree vertices of H are used as ports of
inter-cloud edges. Then, letting f(G) = G⃝r′ H, for any d-regular graph G, satisfies the foregoing
conditions.

Observe that for any admsissible choice of d,H and G1, the graph resulting from Example 4.2 is an
hyperfinite.8 This implies that the corresponding graph property is testable within size-oblivious
complexity (see [8]).

7We use λ(G⃝r H) ≤ 1− (1−λ(H)2)·(1−λ(G))
2

(see [7, Thm. 9.1 (iii)] and the comment at the bottom of [7, p. 510]).
8That is, for every ϵ > 0, omitting an ϵ fraction of the edges of the graph (which consists of G0, G1, ..., Gm and

the P -edges) yields a graph with connected components of size O(1/ϵ). Specifically, letting ℓ = logh(1/ϵ)+O(1), this
can be done by omitting all edges that are incidence at vertices in G0, G1, ..., Gm−ℓ (i.e., replacing these graphs by
isolated vertices) and replacing Gm−ℓ+1,, Gm with G′

m−ℓ+1, ..., G
′
m such that G′

m−ℓ+i = G′
m−ℓ+i−1⃝r′ H for every

i ∈ [ℓ] (and G′
m−ℓ consists of hm−ℓ isolated vertices). In other words, the only remaining edges are those that have

both endpoints in G′
m−ℓ+1, ..., G

′
m, whereas G′

m−ℓ+1 consists of isolated copies of H. Thus, these edges are internal
to the (

∑
i∈[ℓ] h

i)-sized connected components that evolve from the hm−ℓ solated vertices of Gm−ℓ.

10

Turning to Corollary 1.2, we recall that it was proved by combining Proposition 3.2 with the fact
that the corresponding graph property (which contains only expander graphs) does not contain an
infinite hyperfinite subproperty, and so cannot have a tester of size-oblivious query complexity [2].
It is quite conceivable that Corollary 1.2 can be proved also without relying on [2]. Specifically,
a potential tester of size-oblivious query complexity for the graph property that corresponds to
Lemma 3.1 cannot query most Gi’s, and so it may not be able to detect a mismatch between Gi

and Gi−1 for a random i ∈ [m]. This intuition must refer to some feature of the function f . In
addition, it should be established that such a mismatch yields a graph that is far from the property.
Needless to say, Example 4.2 has to be avoided.

Added in revision: Following the first posting of this survey, we proved a stronger result than
anticipated above, but the proof takes a slightly different strategy than the foregoing suggestion [6].

References

[1] Isolde Adler, Noleen Kohler and Pan Peng. On Testability of First-Order Proper-
ties in Bounded-Degree Graphs and Connections to Proximity-Oblivious Testing. In
arXiv:2304.03810 [cs.LO]. Combines preliminary versions that appeared in SODA21
and CCC21.

[2] Hendrik Fichtenberger, Pan Peng, and Christian Sohler. Every testable (infinite) property
of bounded-degree graphs contains an infinite hyperfinite subproperty. In 30th SODA,
pages 714–726, 2019.

[3] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[4] Oded Goldreich and Dana Ron. Property Testing in Bounded Degree Graphs. Algorith-
mica, Vol. 32 (2), pages 302–343, 2002.

[5] Oded Goldreich and Dana Ron. On Proximity Oblivious Testing. SIAM Journal on
Computing, Vol. 40, No. 2, pages 534–566, 2011.

[6] Oded Goldreich. On the query complexity of testing local graph properties in the bounded-
degree graph model. ECCC, TR24-047, 2024.

[7] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications
Bull. Amer. Math. Soc., Vol. 43, pages 439–561, 2006.

[8] Ilan Newman and Christian Sohler. Every Property of Hyperfinite Graphs Is Testable.
SIAM Journal on Computing, Vol. 42 (3), pages 1095–1112, 2013.

[9] Omer Reingold. Undirected ST-Connectivity in Log-Space. In Journal of the ACM,
Vol. 55 (4), pages17:1–17:24, 2008.

[10] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy Waves, the Zig-Zag Graph
Product, and New Constant-Degree Expanders and Extractors. Annals of Mathematics,
Vol. 155 (1), pages 157–187, 2001. Preliminary version in 41st FOCS, pages 3–13, 2000.

11

	Overview
	Background
	Testing in the Bounded-Degree Graph Model
	Generalized Subgraph Freeness Properties
	The Zig-Zag Product

	On the Proof of Theorem 1.1
	Digest and Afterthoughts
	Bibliography

