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Following Newman (2010), we initiate a study of testing properties of graphs that are presented as subgraphs

of a fixed (or an explicitly given) graph. The tester is given free access to a base graph𝐺 = ( [𝑛], 𝐸), and oracle

access to a function 𝑓 : 𝐸 → {0, 1} that represents a subgraph of 𝐺 . The tester is required to distinguish

between subgraphs that possess a predetermined property and subgraphs that are far from possessing this

property.

We focus on bounded-degree base graphs and on the relation between testing graph properties in the

subgraph model and testing the same properties in the bounded-degree graph model. We identify cases in

which testing is significantly easier in one model than in the other as well as cases in which testing has

approximately the same complexity in both models. Our proofs are based on the design and analysis of efficient

testers and on the establishment of query-complexity lower bounds.
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1 INTRODUCTION
Property testing refers to probabilistic algorithms of sub-linear complexity for deciding whether

a given object has a predetermined property or is far from any object having this property. Such

algorithms, called testers, obtain local views of the object by performing queries and their perfor-

mance guarantees are stated with respect to a distance measure that (combined with a distance

parameter) determines which objects are considered far from the property.

In the last couple of decades, the area of property testing has attracted significant attention (see,

e.g., [14]). Much of this attention was devoted to testing graph properties in a variety of models

ranging from the dense graph model [15], to the bounded-degree graph model [17], and to the

sparse and general graph models [24, 29].
1
These models differ in two main parameters: the types of

queries that potential testers can make, and the distance measure against which their performance

is measured. (In all cases and throughout this work, unless explicitly stated differently, we consider

undirected simple graphs (i.e., no self-loops and parallel edges).)

In all aforementioned models, the input graph is arbitrary, except for its size (and possibly its

degree, in the case of the bounded-degree graph model). While some prior works (see, e.g., [3, 5–7,

1
These models are surveyed in Chapters 8, 9, and 10 of the textbook [14].
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9, 20, 22, 28]) restrict the input graph in certain natural ways, the restrictions considered so far were

expressed in terms of general (“uniform”) graph properties (such as degree bound, hyperfiniteness,

planarity, etc). See further discussion in Section 1.5.1.

In contrast, we envision circumstances in which the input is restricted to be a subgraph of some

fixed graph that is known beforehand. For example, the fixed graph may represent an existing (or

planned) network, and the subgraph represents the links that are actually in operation (or actually

constructed). Alternatively, the graph may represent connections between data items that may

exist under some known constraints, and the edges of the subgraph represent connections that

actually exist. Either way, the input is a subgraph of some fixed graph, and the distance to having

the property is measured with respect to subgraphs of the same fixed graph.

1.1 The model
In accordance with the foregoing discussion, in the subgraph testing model, we consider a fixed base
graph, denoted 𝐺 = ( [𝑛], 𝐸), and the tester that is given oracle access to a function 𝑓 : 𝐸 → {0, 1},
which represents a subgraph of 𝐺 in the natural manner (i.e., 𝑓 represents the subgraph ( [𝑛], {𝑒 ∈
𝐸 : 𝑓 (𝑒)=1})). Alternatively, the base graph 𝐺 is not fixed, but the tester is given free access to 𝐺 .

Definition 1.1. (subgraph tester): Fixing 𝐺 = ( [𝑛], 𝐸) and Π𝐺 ⊆ F𝐺
def

= {𝑓 : 𝐸 → {0, 1}}, a
subgraph tester for Π𝐺 is a probabilistic oracle machine, denoted 𝑇 , that, on input a (proximity)

parameter 𝜖 , and oracle access to a function 𝑓 : 𝐸→{0, 1}, outputs a binary verdict that satisfies

the following two conditions.

(1) 𝑇 accepts inputs in Π𝐺 : For every 𝜖 > 0, and for every 𝑓 ∈ Π𝐺 , it holds that Pr[𝑇 𝑓 (𝜖)=1] ≥
2/3.

(2) 𝑇 rejects inputs that are 𝜖-far from Π𝐺 : For every 𝜖 > 0, and for every 𝑓 : 𝐸→{0, 1} that is
𝜖-far from Π𝐺 it holds that Pr[𝑇 𝑓 (𝜖)=0] ≥ 2/3, where 𝑓 is 𝜖-far from Π𝐺 if for every ℎ ∈ Π𝐺

it holds that |{𝑒 ∈𝐸 : 𝑓 (𝑒) ≠ ℎ(𝑒)}| > 𝜖 · |𝐸 |.
If the first condition holds with probability 1 (i.e., Pr[𝑇 𝑓 (𝜖)=1] = 1 for 𝑓 ∈ Π𝐺 ), then we say that

𝑇 has one-sided error; otherwise, we say that 𝑇 has two-sided error.

In the alternative formulation, the subgraph tester is given𝐺 as an explicit input (along with 𝜖).

In this case, the random variable being considered is 𝑇 𝑓 (𝐺, 𝜖).

Definition 1.1 falls within the framework of massively parameterized property testing (cf. [27]).

The massive parameter is the base graph 𝐺 = ( [𝑛], 𝐸), and the actual input is a function 𝑓 : 𝐸 →
{0, 1} (which represents a subgraph of 𝐺). Actually, Newman explicitly discusses the subgraph

testing model in [27, Sec. 1].
2

As usual in the area, our primary focus is on the query complexity of such testers, and our

secondary focus is on their time complexity. Both complexities are stated as a function of the

proximity parameter 𝜖 and the base graph 𝐺 . Indeed, the dependency of these complexities on 𝐺 ,

or rather on some parameters of 𝐺 , will be of major interest.

As an illustration, consider the problem of testing whether the subgraph is bipartite. If the base

graph is bipartite, then this problem is trivial (since every subgraph is bipartite). If the base graph is

M-minor free
3
, for any fixed family of graphs M, then testing (with distance parameter 𝜖) can be

done in poly(1/𝜖)-time (see Proposition 2.2). Lastly, if the base graph is of bounded-degree, then

2
Unfortunately, we forgot this historical fact when writing prior versions of this work, where we only attributed to Newman

the conceptualization of the general framework of massively parameterized property testing.

3
Recall that a graph𝑀 is a minor of graph𝐺 if𝑀 can be obtained from𝐺 by vertex deletions, edge deletions and edge

contractions; a graph𝐺 is M-minor free for a family of graphs M, if no graph in M is a minor of𝐺 .
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testing can be done in poly(1/𝜖) ·𝑂 (
√
𝑛)-time (see Theorem 1.2), and this result is optimal in general

(i.e., for arbitrary bounded-degree base graphs, see Theorem 1.4 in our technical report [19]).

Our main focus will be on the case that the base graph is sparse (e.g., of bounded-degree).

Furthermore, we shall focus on cases in which the subgraph testing model is different from other

testing models. Still, let us make a couple of comments regarding cases in which the subgraph

testing model coincides with other testing models.

The dense graph model is a special case of subgraph testing. As observed in [27, Sec. 1], for the

base graph 𝐺 = 𝐾𝑛 (i.e., the 𝑛-vertex clique), the subgraph testing model coincides with the dense

graph model. This is the case since adjacency queries (as in the dense graph model) correspond to

edges of the base graph 𝐺 , and the distance measure used in both models is the same.

General property testing (of Boolean functions) as a special case of subgraph testing. If the base
graph 𝐺 has 𝑐𝑛 edges for a constant 𝑐 ≥ 1, then the subgraph testing model captures property

testing (for Boolean functions) at large. This is shown as follows.

Consider in particular the case that 𝐺 = ( [𝑛], 𝐸) is a cycle with an edge between 𝑖 and 𝑖 + 1,
for every 1 ≤ 𝑖 ≤ 𝑛 − 1, as well as an edge between 𝑛 and 1. Then, any function ℎ : [𝑛] → {0, 1}
can be represented by a subgraph 𝐺ℎ

of 𝐺 that contains the edge between 𝑖 and 𝑖 + 1 (similarly,

(𝑖, 1) for 𝑖 = 𝑛) if and only if ℎ(𝑖) = 1. In such a case, any query to 𝐺ℎ
can be answered by a single

query to ℎ. For any property P of Boolean functions over [𝑛], let ΠP
𝐺
= {𝐺ℎ

: ℎ ∈ P}. Hence, for
any ℎ : [𝑛] → {0, 1}, the distance of ℎ to P equals the distance of 𝐺ℎ

to ΠP
𝐺
. Essentially the same

argument can be applied to any base graph 𝐺 = ( [𝑛], 𝐸), provided that |𝐸 | ≥ 𝑛 and |𝐸 | = 𝑂 (𝑛) (the
lower bound on 𝐸 allows to associate each 𝑖 ∈ ℎ−1 (1) with an edge in 𝐺 , and the upper bound

ensures that distances are maintained up to a constant).

Testing graph properties in the subgraph model. In general, a property of subgraphs of a base

graph 𝐺 (i.e., a property Π𝐺 ⊆ F𝐺 as in Definition 1.1) is not a graph property (i.e., it is not closed

under graph isomorphism).
4
Still, following [27, Sec. 1], we shall confine ourselves to the case that

Π𝐺 corresponds to the set of all subgraphs of 𝐺 that has some graph property Π. One reason for

this restriction is that it allows comparing the task of testing whether a subgraph is in Π𝐺 to the

task of testing Π in some other model (e.g., testing Π in the bounded-degree graph model). Abusing

notation, in these cases, we may write Π𝐺 = F𝐺 ∩ Π, and sometimes refer to Π𝐺 using the term

graph property.

The focus on the case that Π𝐺 = F𝐺 ∩ Π, for some graph property Π, calls for revisiting the

claim that any property of Boolean functions can be represented in the subgraph testing model.

The issue is that the property Π𝐺 presented above cannot be written as F𝐺 ∩ Π, for some graph

property Π. Still, a variant of it will do.
Specifically, for 𝑛 ≥ 6, consider an 𝑛-vertex graph 𝐺 ′

consisting of an 𝑛-vertex long path

augmented with the edge {𝑛 − 3, 𝑛 − 1} (see Figure 1). Observe that the only automorphism of

this graph is the identity permutation, and augment 𝐺 ′
with self-loops on each of the 𝑛 vertices,

deriving a base graph 𝐺 with 2𝑛 edges. (We note that the construction can be modified so that

self-loops are avoided, by replacing them with disjoint cycles of length 3.) We can associate any

4
In fact, Π𝐺 is a graph property only in pathological cases that include the case of Π𝐺 = ∅ and the case that𝐺 is either the

complete graph or the empty graph. Otherwise, the property Π𝐺 ⊆ F𝐺 is not a graph property, since it is not closed under

isomorphism (because𝐺 is not invariant under all possible relabelings of its vertex set). Note that the 𝑛-vertex complete

graph and the empty (𝑛-vertex) graph are the only 𝑛-vertex graphs that are invariant under all possible relabelings of [𝑛]. In
contrast, if𝐺 is neither empty nor complete, then it contains a vertex 𝑤 that has degree in [𝑛 − 2]; that is, 𝑤’s neighbor set,

denoted Γ𝐺 (𝑤) , is neither empty nor contains all other vertices in𝐺 . Picking 𝑢 ∈ Γ𝐺 (𝑤) and 𝑣 ∉ Γ𝐺 (𝑤) , observe that the
permutation 𝜋 that switches 𝑢 and 𝑣, while keeping all other vertices intact, does not preserve the graph𝐺 (i.e., 𝜋 (𝐺) ≠ 𝐺 ).
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Fig. 1. For 𝑛 ≥ 6, the 𝑛-vertex path is “oriented” by the additional edge {𝑛 − 3, 𝑛 − 1} (which breaks the
symmetry between vertex 1 and vertex 𝑛, and more generally between 𝑗 and 𝑛 − 𝑗 + 1).

function ℎ : [𝑛] → {0, 1} with a subgraph 𝐺ℎ
of 𝐺 that contains 𝐺 ′

as well as the self-loop on

vertices in ℎ−1 (1). Note that, by the asymmetry of𝐺 ′
, there is a bijection between the set of Boolean

functions over [𝑛] and the subgraphs of 𝐺 that contain 𝐺 ′
. Hence, for each property P of Boolean

functions, there exists a graph property Π such that there is a bijection between P and the set

F𝐺 ∩ Π = {𝐺ℎ
: ℎ ∈ P} (e.g., Π may contain all graphs that are isomorphic to some graph in

{𝐺ℎ
: ℎ ∈ P}).

A simplifying assumption. Throughout this paper, we assume that𝐺 contains no isolated vertices.

This can be assumed without loss of generality, because, for every graph 𝐺 ′
that is obtained from

the graph 𝐺 = ( [𝑛], 𝐸) by adding isolated vertices, it holds that F𝐺 = F𝐺′ , since in both cases the

subgraphs are represented by Boolean functions on the same edge-set (i.e., 𝐸).

1.2 Results
Throughout this paper, the base graph 𝐺 is viewed as a varying parameter, which may grow when

other parameters (e.g., the degree bound 𝑑) are fixed. We focus on bounded-degree base graphs

and on the relation between testing graph properties in the subgraph model and testing the same

properties in the bounded-degree graph (BDG) model.

Recall that in the BDG model [17], the tester is explicitly given three parameters: 𝑛, 𝑑 , and 𝜖 .

Its goal is to distinguish with probability at least 2/3 between the case that a graph 𝐺 = ( [𝑛], 𝐸)
(of maximum degree bounded by 𝑑) has a prespecified property Π, and the case that 𝐺 is 𝜖-far

from having the property Π. In this model a graph is said to be 𝜖-far from having Π if more than

𝜖 · 𝑑 · 𝑛/2 edge modifications (additions or removals) are required in order to obtain a graph (of

maximum degree bounded by 𝑑) that has Π. To this end the tester can perform queries of the form

“who is the 𝑖th neighbor of vertex 𝑣?”, for 𝑣 ∈ [𝑛] and 𝑖 ∈ [𝑑].5 Unless stated explicitly otherwise,

the degree bound 𝑑 is a constant.

Obviously, the relationship between the subgraph model and the BDG model depends on the

property being tested as well as on the base graph used in the subgraph model. We identify cases

in which testing is significantly easier in one model than in the other as well as cases in which

testing has approximately the same complexity in both models.

More specifically, we distinguish downward-monotone graph properties from other graph proper-

ties, where a graph property is said to be downward monotone if it is preserved under omission of

edges (i.e., if 𝐺 = ( [𝑛], 𝐸) has the property, then so does 𝐺 ′ = ( [𝑛], 𝐸 ′) for every 𝐸 ′ ⊂ 𝐸).

1.2.1 Downward-monotone properties. We first observe that, for every bounded-degree graph

𝐺 = ( [𝑛], 𝐸) and any downward-monotone graph property Π, testing Π ∩ F𝐺 in the subgraph

model (w.r.t. the base graph 𝐺) reduces to testing Π in the BDG model.

Theorem 1.2. (a general upper bound on the complexity of testing downward-monotone prop-

erties (see Section 2.1)): Let Π be a downward-monotone graph property that is testable with query
5
If 𝑣 has less than 𝑖 neighbors, then a special symbol is returned. It is sometimes assumed that the algorithm can also query

the degree of any vertex of its choice, but this assumption saves at most a multiplicative factor of log𝑑 in the complexity of

the algorithm.
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complexity 𝑄𝑑 (·, ·) in the bounded-degree graph model, where 𝑑 ≥ 2 denotes the degree bound, and
𝑄𝑑 is a function of the proximity parameter and (possibly) the size of the graph. Then, for every base
graph𝐺 = ( [𝑛], 𝐸) of maximum degree 𝑑 , testing whether a subgraph of𝐺 satisfies Π (with proximity

parameter 𝜖) can be done with query complexity 𝑑 ·𝑄𝑑 (𝜖 ′, 𝑛), where 𝜖 ′ = 𝜖/𝑑 . The same holds with
respect to the time complexity. Furthermore, one-sided error is preserved.

(Note that, for constant 𝑑 , it holds that 𝜖 ′ = Ω(𝜖).) Properties covered by Theorem 1.2 include

bipartiteness, cycle-freeness, and all subgraph-freeness and minor-freeness properties. Hence,

testers known for these properties in the BDG model (see [14, Chap. 9]) get translated to testers of

similar complexity for the subgraph testing model.

While Theorem 1.2 asserts that testing downward-monotone graph properties in the subgraph

model is not harder than testing these properties in the BDG model, it gives rise to the question of

whether the former task may be easier.

Testing in the subgraph model may be trivial. A trivial positive answer holds in case the base

graph itself has the property (i.e, 𝐺 ∈ Π). In this case, by the downward-monotonicity of Π, every
subgraph of 𝐺 has the property Π, which means that testing Π ∩ F𝐺 in the subgraph model (w.r.t.

the base graph 𝐺) is trivial.

Testing in the subgraph model may be easier (than in the BDG model). A more interesting case in

which testing in the subgraph model may be easier than in the BDG model occurs when the base

graph is not in Π, but has some suitable property Π′
that is not related to Π. In particular, if the base

graph is M-minor free, for some fixed set of graphs M, then, for any downward-monotone graph

property Π, testing Π ∩ F𝐺 in the subgraph model has complexity that is independent of the size of

the tested graph, whereas testing Π in the BDG model may require query complexity that depends

on the size of the tested graph. More generally, we consider hyperfinite families of graphs [8], where

an 𝑛-vertex graph𝐺 is 𝑡-hyperfinite for 𝑡 : (0, 1) → N if, for every 𝜖 > 0, removing at most 𝜖𝑛 edges

from 𝐺 results in a graph with no connected component of size exceeding 𝑡 (𝜖). We mention that

minor-free (bounded-degree) graphs are hyperfinite (with 𝑡 (𝜖) = 𝑂 (1/𝜖2)).

Theorem 1.3. (on the complexity of testing downward-monotone properties of subgraphs of

hyperfinite base graphs (see Section 2.2)): Let Π be a downward-monotone graph property and G be
a family of 𝑡-hyperfinite graphs. Then, for every bounded-degree base graph𝐺 = ( [𝑛], 𝐸) in G, testing
whether a subgraph of𝐺 satisfies Π can be done in time that depends only on the proximity parameter
𝜖 . Furthermore, if Π is additive (i.e., a graph is in Π if and only if all its connected components are in

Π), then its query complexity is 𝑂 (𝑡 (𝜖/4)/𝜖) and the tester has one-sided error.6

Note that by Theorem 1.3, testing bipartiteness of subgraphs of any (bounded-degree) planar

graph 𝐺 has complexity poly(1/𝜖), whereas (by [17]) testing bipartiteness of 𝑛-vertex graphs in

the BDG model has complexity Ω(
√
𝑛).7

Testing in the subgraph model may not be easier (than in the BDG model). On the other hand, there

are cases in which the testers provided by Theorem 1.2 are essentially the best possible. Indeed,

these cases correspond to base graphs that are not hyperfinite.

Theorem 1.4. (testing 3-colorability of subgraphs of general bounded-degree base graphs (see

Section 3)):

6
In general, the tester has two-sided error and the query complexity is at most exponential in𝑂 (𝑡 (𝜖/4)2) .

7
As discussed in Section 1.5.1, weaker results may be obtained by using testers for the BDG model that work under the

corresponding promise.
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(1) There exist bounded-degree graphs 𝐺 = ( [𝑛], 𝐸) such that testing whether a subgraph of 𝐺 is
3-colorable, with constant proximity parameter, requires Ω( |𝐸 |) = Ω(𝑛) queries.

(2) For every 𝑠 : N→ N such that 𝑠 (𝑛) ≤ 𝑛, there exist bounded-degree graphs𝐺 = ( [𝑛], 𝐸) such
that testing whether a subgraph of 𝐺 is 3-colorable, with constant proximity parameter, has
query complexity Θ(𝑠 (𝑛)). Furthermore, 𝐺 consists of connected components of size at most
𝑠 (𝑛).

Rephrasing Item 2 as referring to testing the set of 3-colorable𝑛-vertex graphs that have connected

components of size at most 𝑠 (𝑛) yields a property that has query complexity Θ(𝑠 (𝑛)) also in the

BDG model.

Item 2 replaces a more natural result that has appeared in prior versions of this work [19] and

stated that there exist explicit bounded-degree graphs 𝐺 = ( [𝑛], 𝐸) such that testing whether a

subgraph of 𝐺 is bipartite, with proximity parameter 1/poly(log |𝐸 |), requires Ω̃(
√
|𝐸 |) queries.

That result should be contrasted with the tester obtained by applying Theorem 1.2 to the known

Bipartiteness tester for the BDG model [16], where the derived tester has complexity poly(1/𝜖) ·
𝑂 (

√
|𝐸 |) (and, as usual, 𝜖 denotes the proximity parameter).

1.2.2 Other properties (i.e., non downward-monotone properties). When turning to graph properties

that are not downward monotone, the statement of Theorem 1.2 no longer holds. There exist

graph properties that are significantly harder to test in the subgraph model than in the BDG model.

Specifically:

Theorem 1.5. (testing in the subgraph model may be harder than in the BDG model (see

Section 4)): There exists a property of graphs Π for which the following holds. On the one hand, Π is
testable in 𝑂 (1/𝜖)-time in the bounded-degree graph model. On the other hand, there exist explicit
graphs 𝐺 = ( [𝑛], 𝐸) of constant degree such that testing whether a subgraph of 𝐺 satisfies Π requires
Ω(log log𝑛) queries. Furthermore, the property Π is upwards monotone, and the family of base graphs
is hyperfinite.8

The first part of the furthermore-clause implies that a result analogous to Theorem 1.2 does not

hold for upwards monotone (rather than downward-monotone) graph properties, where a graph

property is said to be upwards monotone if it is preserved under adding edges (i.e., if 𝐺 = ( [𝑛], 𝐸)
has the property, then so does𝐺 ′ = ( [𝑛], 𝐸 ′) for every 𝐸 ′ ⊃ 𝐸). The second part of the furthermore-

clause implies that also a result analogous to Theorem 1.3 does not hold for upwards monotone

graph properties. While Theorem 1.5 establishes a gap between testing in the subgraph and BDG

models, it leave open the question of whether a larger gap can be shown between these two models

(see Problem 4.5).

We comment that the property Π used in Theorem 1.5 is related to being Eulerian, and the base

graphs are related to a cyclic grid. Hence, it is interesting to note that testing whether subgraphs of

a cyclic grid are Eulerian can be done in complexity that only depends on the proximity parameters

(see Proposition 4.4).

Turning back to upwards monotone graph properties, we first note the trivial case in which the

base graph 𝐺 does not have the property (which implies that all its subgraphs lack this property as

well). A non-trivial case is that of testing minimum degree (see Proposition 2.1). A more interesting

case is that of connectivity (which has an 𝑂 (1/𝜖2)-query tester in the BDG model [17]).

Proposition 1.6. (testing connectivity in the subgraph model – see Section 2.1): For every base
graph 𝐺 = ( [𝑛], 𝐸) of maximum degree 𝑑 , testing whether a subgraph of 𝐺 is connected can be done
in poly(𝑑/𝜖)-time.
8
See the definition of hyperfinite graphs preceding Theorem 1.3.
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We mention that even the case of 2-edge connectivity, which has an efficient tester in the BDG

model, seems challenging in the subgraph testing model (see Problem 1.9).

A relatively general positive result. We next state a result for a class of properties that are not

downward-monotone (and not necessarily upwards monotone either). This result is of the flavor of

Theorem 1.2, but introduces an overhead that is logarithmic in the number of vertices. Specifically,

we refer to the class of all graph properties that have proximity-oblivious testers of constant

query complexity (in the BDG model) [18, Sec. 5]. We mention that such properties are “local”

in the sense that satisfying them can be expressed as the conjunction of conditions that refer to

constant-distance neighborhood in the graph (see Definition 2.4).

Theorem 1.7. (testing local properties in the subgraph model (see Section 2.3)): Let Π be a local
property and suppose that the base graph 𝐺 is outerplanar9 and of bounded degree. Then, testing
whether a subgraph of 𝐺 = ( [𝑛], 𝐸) has property Π can be done using 𝑂 (𝜖−1 log𝑛) queries.

The result stated in Theorem 1.7 extends to every graph having constant-size separating sets

(the dependence on the size of the separating sets is given explicitly in Theorem 2.5).

Testing in the subgraph model may be easier than in the BDG model. Lastly we note that moving

from the BDG model to the subgraph testing model makes the testing task potentially easier, since

the subgraph tester knows a priori the possible locations of edges. This is reflected by the following

result, which refers to any (bounded-degree) base graph.

Theorem 1.8. (a property that is extremely easier in the subgraph model): For every constant 𝑑 ,
there exists a graph property Π𝑑 that requires linear query complexity in the bounded-degree model
but can be tested using 𝑂 (1/𝜖) queries in the subgraph model w.r.t. every base graph of maximum
degree 𝑑 .

Since the proof of Theorem 1.8 is short and simple, we provide it next.

Proof. Fixing 𝑑 , let Π𝑑 be a set of 𝑑-regular graphs such that testing Π𝑑 in the BDG model (with

degree bound 𝑑) requires a linear number of queries (e.g., Π𝑑 is the set of 3-colorable 𝑑-regular

graphs [4]). To establish the upper bound in the subgraph model, observe that for any base graph𝐺

that has maximum degree 𝑑 , the only subgraph of 𝐺 that may be 𝑑-regular is 𝐺 itself. Therefore, if

the base graph𝐺 is not in Π𝑑 , then the subgraph-tester can reject without performing any queries. If

𝐺 ∈ Π𝑑 , then the subgraph-tester simply tests whether the subgraph of𝐺 is𝐺 itself (by performing

𝑂 (1/𝜖) queries).

The proof of Theorem 1.8 raises the question of whether the upper bound in the theorem holds

for downward-monotone properties, and more generally, which properties Π𝑑 can be tested using

𝑂 (1/𝜖) queries in the subgraph model w.r.t. every base graph of maximum degree 𝑑? Alternatively,
one may reverse the order of quantifiers and ask whether there exists a graph property Π that

satisfies the conclusion of Theorem 1.8 for any constant 𝑑 .

Digest. Assuming that the base graph is of bounded degree, the subgraph testing model and

the BDG model differ in two ways. On the one hand, in the subgraph model the tested graph is

guaranteed to be a subgraph of a known bounded degree graph, whereas in the BDGmodel the tested

graph is an arbitrary bounded degree graph. This makes testing in the subgraph model potentially

easier, as illustrated by Theorems 1.3 and 1.8. On the other hand, distances in the subgraph model

9
A graph is called outerplanar if it can be drawn in the plane without crossings in such a way that all its vertices belong to

the unbounded face of the drawing.
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may be significantly larger than in the BDG model, making testing potentially harder as illustrated

by Theorem 1.5. The latter phenomenon does not occur when testing a downward-monotone

property; this fact is the basis of Theorem 1.2.

1.3 Techniques
Some of the testers presented in this paper (e.g., those referred to in Theorems 1.3 and 1.7) are

based on structural properties of the base graph. In some cases (e.g., Theorem 1.3) these structural

properties, which are inherited by the subgraphs, make the testing task (in the subgraph model)

easier than in the BDG model. The proofs of the lower bounds constitute the more technically

challenging part of the paper. Typically, the challenge is emulating lower bounds obtained for other

testing models on the subgraph testing model. The brief overviews, especially those referring to

the lower bounds, are merely intended to give a flavor of the techniques (and are not supposed to

convince the reader of the validity of the claims).

1.3.1 Algorithms. The tester used in proving Theorem 1.2 is a simple emulation of the BDG-model

tester by the subgraph tester, and its analysis is based on the observation that the distance between

a graph 𝐺 ′
and a downward-monotone graph property Π equals the number of edges that should

be omitted from 𝐺 ′
in order to place the resulting graph in Π. Proposition 1.6 is also proved by a

simple emulation of the BDG-model tester, but the analysis of the resulting tester relies on special

features of connectivity (and does not extend to 2-connectivity; see Problem 1.9).

The proofs of Theorems 1.3 and 1.7 aremore interesting. In both cases we reduce testing subgraphs

of the base graph 𝐺 to testing subgraphs of a fixed subgraph 𝐺 ′
of 𝐺 such that 𝐺 ′

is close to 𝐺 and

testing subgraphs of 𝐺 ′
is (or seems) relatively easier. Such a reduction is valid since the property

that we test is downward monotone, and the subgraph 𝐺 ′
is found without making any queries.

In the proof of Theorem 1.3 the fixed subgraph 𝐺 ′
consists of small connected components.

Hence, in the special case of Theorem 1.3 (i.e., properties that are determined by their connected

components), it suffices to test that the subgraphs induced by the connected components of the

base graph have the relevant property. In the general case, we follow Newman and Sohler [28] in

estimating the frequency of the various graphs that are seen in these induced subgraphs. We stress

that, unlike in [28], we do not use a partition oracle of the tested graph (which may be implemented

based on standard queries (following Hassidim et al. [22])), but rather determine such a partition of
the base graph (without making any queries).

Theorem 1.7 is proved by applying a recursive decomposition of the base graph using constant-

size separating sets. Essentially, in addition to checking the local neighborhood of random vertices,

we also check the local neighborhoods of the vertices in the separating sets that correspond to the

path in the recursion tree (i.e., the tree of recursive decomposition) that isolates the chosen vertices.

Actually, we check that all these local neighborhoods are consistent with some subgraph that has

the property. These additional checks are used in the analysis in order to establish the consistency

of the various local neighborhoods (i.e., not only those examined in the same execution).

We highlight the fact that the foregoing testers are non-adaptive (i.e., their queries do not depend

on the answers to prior queries). This is worth remarking because the corresponding testers for

the BDG model (which in some cases are actually emulated by our testers) are inherently adaptive.

However, these “BDG-model testers” utilize their adaptivity only for conducting local searches

in the input graph, whereas in the subgraph testing model the input is a subgraph of a fixed (or

a priori known) graph, and so the queries that support these local searches can be determined

non-adaptively.

1.3.2 Lower bounds. The lower bound on testing 3-colorability of a subgraph (asserted in Part 1 of

Theorem 1.4) is proved by observing that the proof of Bogdanov, Obata, and Trevisan [4] asserting
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that, in the bounded-degree graph model, testing 3-coloring requires linear query complexity

can be extended to the subgraph model.
10
This assertion is based on two main observations. The

first observation is that, while [4, Thm. 14] asserts a local gap-preserving reduction from 3SAT to

3-Colorability (for bounded degree graphs), the reduction is actually from a set of 3CNF formulae
that have the same clause-structure (i.e., which variables appear in each of the clauses) and only
differ in the negation-pattern (i.e., which literal of each variable is used in each of the foregoing

occurrences),
11
whose hardness is established in [4, Sec. 6]. The second observation is that, for a

fixed clause-structure, the reduction applied in the proof of [4, Thm. 14] can be adapted to produce

subgraphs of the same fixed graph. Specifically, the negation-pattern of the given 3CNF determines

a sequence of binary choices such that each binary choice determines one edge out of a fixed pair

of edges (which is included in the tested subgraph). (Part 2 of Theorem 1.4 follows easily.)

The proof of Theorem 1.5 uses a reduction from testing Eulerian orientations of cyclic grids in

the orientation model (defined in Section 1.5.2). As discussed in Section 1.5.2, the orientation model

(presented by Halevy et al. [21]) is related to but different from the subgraph testing model. Our

reduction maps the (cyclic) grid, used in the lower bound of Fischer et al. [11], to a base graph that

looks like such a grid, except that edges are replaced by small gadgets. The orientations of edges in

the orientation model are mapped to choices of subgraphs of the corresponding gadgets. In this

case, it is easy to locally emulate a subgraph of the base graph by making queries to the orientation

oracle, and the claimed Ω(log log𝑛) lower bound follows (from the analogous lower bound of [11]).

On the other hand, the property at the image of the reduction is local, and so it is testable within

poly(1/𝜖) queries in the BDG model.

1.4 Some additional open problems
Moving from the BDG model to the subgraph testing model makes the testing task potentially

easier, since the subgraph tester knows a priori the possible locations of edges. But, when dealing

with properties that are not downward monotone, there is an opposite effect that arises from the

fact that the distance to the set of subgraphs (of𝐺) that have graph property Π may be much bigger

than the distance to the set of (bounded-degree) graphs that have property Π. This may require the

subgraph tester to reject the input (since its distance to Π ∩ F𝐺 is large), whereas the BDG model

tester may be allowed to accept the input (since its distance Π is small). This difficulty is reflected

in the following open problems.

Fig. 2. A subgraph of the 2-by-8 grid that misses 4 edges. The subgraph is marked by solid lines, the missing
edges by dashed lines, and an external edge that makes this subgraph 2-connected is dotted.

10
This replaces a flawed argument, presented in a preliminary version of this work, that supposedly showed a local reduction

from the problem of testing whether an input assignment satisfies a fixed 3CNF formula, for which a linear query complexity

lower bound was established by Ben-Sasson, Harsha, and Raskhodnikova [2].

11
The partition of 3SAT instances to clause-structure versus negation-pattern follows the more general framework of “factor

graphs” of CSPs introduced by Feige and Jozeph [10].
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Problem 1.9. (testing 2-connectivity of subgraphs): Is the query complexity of testing 2-edge-
connectivity in the subgraph testing model independent of the size of the graph? What about 𝑐-edge-
connectivity for any constant 𝑐 ∈ N?

Recall that 𝑐-connectivity is testable in the BDG model with complexity that depends only on

the proximity parameter [17].
12
We note that a straightforward emulation of the BDG-model tester

(for 2-connectivity) calls for trying to find a small 2-connected component that has a cut of size

at most 1 to the rest of the graph. But this approach fails when considering a base graph that is

a 2-by-𝑛 grid (since, as illustrated in Figure 2, any subgraph that misses at most one horizontal

edge of each vertex (of degree 4) is 𝑂 (1/𝑛)-close to being 2-connected but may be far from any

2-connected subgraph of the 2-by-𝑛 grid).

The straightforward emulation of the BDG-model tester also fails for testing whether a subgraph

of the 𝑛-cycle is a perfect matching (i.e., is 1-regular), but a tester that considers the locations of

edges in the subgraph does work (we discuss this shortly at the very end of Section 4). Testers of

complexity that does not depend on the graph size do exist for this property when the base graph

is a tree (since each tree has at most one perfect matching)
13
, but we do not know if they exist

when the graph is outerplanar.

Problem 1.10. (testing whether the subgraph is a perfect matching):What is the complexity of
testing 1-regularity when the base graph is outerplanar? What about the case that the base graph is
planar (e.g., a grid)? And what about testing degree-regularity?

Note that 𝑐-connectivity, degree-regularity, and Eulerianity are the only properties covered in [14,

Chap. 9] that are not downward monotone. Also note that Proposition 4.4 refers to the complexity

of testing the Eulerian property for a base graph that is a grid, and it is clear that the underlying

ideas apply to base graphs of “similar structure” (as arising in the proof of Proposition 4.4). But

what about going beyond that?

Problem 1.11. (testing whether the subgraph is Eulerian): What is the complexity of testing the
Eulerian property in any base graph of bounded degree?

The foregoing problems are all rooted in the difficulties that are introduced by the fact that

distances under the subgraph model may be significantly larger than under the BDG model, which

makes the task of the tester potentially harder. On the other hand, the fact that the base graph is

known to the tester makes its task potentially easier. Recalling that only the latter effect is relevant

in the case of downward monotone properties, gives rise to the following question.

Problem 1.12. (a property that is always easier in the subgraph model): Does there exist a
downward-monotone graph property Π such that testing Π in the bounded-degree model has higher
query complexity than testing Π in the subgraph model w.r.t. every base graph of bounded-degree?

Recall that Theorem 1.8 is proved using a property that is not downward-monotone (and depends

on the degree bound).

The foregoing problems are aimed at concretizing the abstract challenge of making better use of

the knowledge of the base graph that is available to the tester. Although Theorem 1.4 indicates that

this extra knowledge is not always helpful, other results point out to cases in which it is helpful.

We would like to see more such cases and more substantial use of the knowledge of the base graph.

12
The currently best upper-bound is due to [12].

13
This perfect matching is determined by a pruning process (started at the leaves), and the tester just checks that the

subgraph equals this perfect matching (if it exists). Note that, also in this case, the tester does not emulate the BDG-model

tester (which just samples vertices and checks their degree); such an emulation will fail poorly (even when the base graph is

a path).
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1.5 Related models
The subgraph testing model is related to two previously studied models: The model of testing graph

properties under a promise and the orientation model. These relations are discussed next.

1.5.1 Testing under a promise. As mentioned earlier, testing graph properties under the promise

that the tested graph has some (other) property was considered before (see discussion in [14,

Sec. 12.2]). In fact, the bounded-degree graph model itself may be viewed as postulating such a

promise. More conspicuous cases include the study of testing under the promise that the graph

is hyperfinite [28] or more specifically planar [3], or with bounded tree-width [7]. On the other

hand, the subgraph testing model is a special case of testing graph properties under a promise,

where the promise is that the tested graph is a subgraph of a fixed (base) graph. In continuation

to Theorem 1.2, we observe that testing downward-monotone graph properties in the subgraph

model can be reduced to testing the same property under a promise that contains the base graph.

Theorem 1.13. (a generalization of Theorem 1.2): Let G and Π be downward-monotone graph
properties such that G contains graphs of degree at most 𝑑 . Suppose that, when promised that the tested
graph is in G, the property Π is testable (in the bounded-degree graph model) with query complexity
𝑄G (·, ·), where 𝑄G is a function of the proximity parameter and (possibly) the size of the graph. Then,
for every base graph 𝐺 = ( [𝑛], 𝐸) in G, testing whether a subgraph of 𝐺 satisfies Π (with proximity

parameter 𝜖) can be done with query complexity 𝑑 ·𝑄G (𝜖 ′, 𝑛), where 𝜖 ′ = 𝜖/𝑑 .

Hence, results weaker than Theorem 1.3 may be obtained by combining Theorem 1.13 with the

tester provided in [28] (see discussion in Section 2.2). Indeed, the improved results are due to the

fact that in the subgraph model the tester is given the base graph for free. In the current case (of

hyperfinite graphs), the tester does not need to query the tested graph in order to obtain a partition

oracle of the tested graph; it may just use an adequate partition of the base graph. In general, a

main challenge in the study of the subgraph model is in how to utilize the knowledge of the base

graph in order to improve the complexity of testing.

1.5.2 The orientation model. The orientation model, introduced by Halevy et al. [21], is syntactically
related to the subgraph testing model. Similarly to the subgraph model, in the orientation model

there is a fixed (undirected) base graph𝐺 = ( [𝑛], 𝐸). However, the goal in the latter model is to test

properties of directed graphs (digraphs) that are defined by orientations of the edges of 𝐺 . That is,
for each edge {𝑢, 𝑣} ∈ 𝐸, either the edge is directed from 𝑢 to 𝑣 , or from 𝑣 to 𝑢, and the algorithm

may perform queries in order to obtain the orientation of edges of its choice. For a property Π of

digraphs, the algorithm should distinguish (with probability at least 2/3) between the case that the

tested orientation ®𝐺 has the property Π and the case in which the orientation of more than 𝜖 · |𝐸 |
edges should be flipped in order to obtain the property.

While the subgraph model and the orientation model are syntactically identical, the semantics

are very different, as we explain next. Similarly to the subgraph model, an orientation ®𝐺 = ( [𝑛], ®𝐸)
of𝐺 is defined by a function 𝑓 : 𝐸 → {0, 1}. Here, 𝑓 (𝑒) = 1 indicates that in ®𝐺 the edge 𝑒 is directed

from its smaller endpoint to its larger endpoint (i.e., the edge {𝑖, 𝑗} is directed from 𝑖 to 𝑗 if and

only if 𝑖 < 𝑗 ). Querying the orientation of an edge hence corresponds to querying 𝑓 , and distance

between two functions 𝑓 and 𝑓 ′ (representing two different digraphs) is simply the Hamming

distance between the functions.

The fundamental difference in the semantic between the two models is reflected in the fact that

natural properties of digraphs in the orientation model do not correspond to natural properties

of graphs in the subgraph testing model, and vice versa. For example, the functions 𝑓 that define

Eulerian orientations of an undirected graph 𝐺 = ( [𝑛], 𝐸) (as described above) do not necessarily
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define subgraphs of 𝐺 (i.e., in which 𝑓 (𝑒) = 1 indicates that 𝑒 belongs to the subgraph) that are

Eulerian. Hence, natural properties in one model do not necessarily translate to natural properties

in the other model. Still, it may be possible to emulate or reduce testing properties in one model to

testing properties in the other model, as we do in the proof of Theorem 1.5.

1.6 Organization
Following the structure of Section 1.3, we distinguish the presentation of algorithmic results from

the presentation of results that have a dominant lower-bound aspect. The former are presented in

Section 2, whereas the latter appear in Sections 3 and 4. Specifically, Section 2 contains the proofs

of Theorems 1.2, 1.3, and 1.7 as well as Proposition 1.6. The proof of the two parts of Theorem 1.4

is provided in Section 3, which can be read independently of one another, since they use unrelated

techniques. The proof of Theorem 1.5 appears in Section 4.

2 ALGORITHMS
In this section we prove Theorems 1.2, 1.3, and 1.7, as well as Proposition 1.6. These results refer to

different types of base graphs and different classes of properties. We have organized them according

to the type of the base graph. Recall that𝐺 is assumed to have no isolated vertices, so that |𝐸 | ≥ 𝑛/2.

2.1 General bounded-degree base graphs
In this section 𝑑 ≥ 2 is a fixed constant, and the base graph 𝐺 is an arbitrary graph in which each

vertex has degree at most 𝑑 (and at least 1).

2.1.1 Testing downward-monotone properties. We first consider any graph property Π that is

preserved under edge omission. Such properties are said to be downward monotone. We prove

Theorem 1.2, which asserts that for every graph𝐺 = ( [𝑛], 𝐸) of degree at most 𝑑 and any downward-
monotone graph property Π, testing Π ∩ F𝐺 in the subgraph model (w.r.t. the base graph 𝐺) is not
harder than testing Π in the bounded-degree graph (BDG) model.

Proof of Theorem 1.2. Given oracle access to 𝑓 : 𝐸 → {0, 1}, the subgraph tester invokes the tester

of the BDG model, and emulates an incidence oracle for the subgraph of 𝐺 represented by 𝑓 in

the natural manner. That is, the query (𝑣, 𝑖) ∈ [𝑛] × [𝑑] is answered with the 𝑖th vertex in the set

Γ𝑓 (𝑣) = {𝑢 : {𝑢, 𝑣} ∈𝐸 & 𝑓 (𝑢, 𝑣)=1}, where vertices are ordered arbitrarily (e.g., by lexicographic

order), and the answer is ⊥ if |Γ𝑓 (𝑣) | < 𝑖 . This means that each query (𝑣, 𝑖) of the BDG model tester,

denoted𝑇 , is answered by first retrieving Γ𝑓 (𝑣), which in turn amounts to making at most 𝑑 queries

to 𝑓 (i.e., querying all edges incident to 𝑣 in 𝐺). Hence, the subgraph tester emulates the execution

of 𝑇 on the graph 𝐺 𝑓 = ( [𝑛], {𝑒 ∈ 𝐸 : 𝑓 (𝑒)=1}).
In the analysis, downward monotonicity is used to associate distance from Π in each of the two

models with the number of edges that should be omitted from the subgraph (in order to yield a

graph in Π). Specifically, in both cases, the distance from the property reflects the number of edges

that should be omitted in order to make the graph satisfy the property (because adding edges

never decreases that distance).
14

Specifically, if 𝑓 ∈ Π ∩ F𝐺 , then 𝐺 𝑓 ∈ Π, and 𝑇 accepts (with

probability at least 2/3 in general, and with probability 1 if 𝑇 has one-sided error). On the other

hand, if 𝑓 : 𝐸 → {0, 1} is 𝜖-far from Π ∩ F𝐺 , then (by downward monotonicity of Π) any graph in

Π that is closest to 𝐺 𝑓
must be a subgraph of 𝐺 𝑓

(i.e., is in Π ∩ F𝐺 and so differs from 𝐺 𝑓
on more

than 𝜖 · |𝐸 | edges). It follows that 𝐺 𝑓
is 𝜖 ′-far from Π for 𝜖 ′ = 𝜖 · |𝐸 |

𝑑𝑛/2 ≥ 𝜖
𝑑
.

14
That is, letting Δ(𝐺′,𝐺′′) denote the symmetric difference between the edge-sets of 𝐺′

and 𝐺′′
, we have Δ(𝐺 𝑓 ,Π) =

Δ(𝐺 𝑓 ,Π ∩ F𝐺 ) , where Δ(𝐺′,Π′) = min𝐺′′∈Π′ {Δ(𝐺′,𝐺′′) }.
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Proof of Theorem 1.13. The proof is identical to the proof of Theorem 1.2, except that here we

rely on the hypothesis that G is downward monotone in order to infer that any subgraph of𝐺 is in

G.

Tolerant version of Theorem 1.13. Loosely speaking, tolerant testing, introduced in [30], calls for

distinguishing objects close to the property from objects that are far from the property. That is,

given proximity parameters 𝛾 < 𝜖 , one is required to accept (w.h.p.) any object that is 𝛾-close to

the property and reject (w.h.p.) any object that is 𝜖-far from the property. Observing that distances

in the subgraph and BDG models are related by a factor of 𝜌
def

=
|𝐸 |

𝑑𝑛/2 , we obtain a reduction of

𝛾-tolerant 𝜖-testing whether subgraphs of 𝐺 are in Π to 𝜌𝛾-tolerant 𝜌𝜖-testing of Π under the

promise G.

2.1.2 Testing properties that are not downward-monotone. Theorem 1.2 does not apply to properties

that are not downward-monotone. Still, several such properties are quite easy to test in the subgraph

testing model. One simple example is the property of having a specified minimal degree.

Proposition 2.1. (testing minimal degree in the subgraph model): For 𝑑 ′ ≥ 1, testing whether all
vertices in the subgraph have degree at least 𝑑 ′ can be done in time 𝑂 (𝑑/𝜖).

Proof. If 𝑑 ′ is bigger than the minimum degree of the base graph 𝐺 = ( [𝑛], 𝐸), then the tester

rejects without performing any queries. Otherwise, the tester selects Θ(1/𝜖) vertices, uniformly

at random, and computes their degrees in the tested subgraph 𝐺 𝑓
, by querying all their incident

edges in 𝐺 . The tester accepts if and only if all sampled vertices have degree at least 𝑑 ′.
Hence, the tester makes𝑂 (𝑑/𝜖) queries, and always accepts subgraphs that have the property. To

prove that it rejects subgraphs that are 𝜖-far from having the property with probability at least 2/3,
we establish the contrapositive statement. Consider a graph 𝐺 𝑓

that is accepted with probability at

least 1/3. This implies that the number of vertices in 𝐺 𝑓
whose degree is smaller than 𝑑 ′ is at most

(𝜖/2) · 𝑛. Since in 𝐺 every vertex has degree at least 𝑑 ′, it is possible to add edges to 𝐺 𝑓
in order to

obtain a subgraph that has the property, whereas the number of required added edges is at most

(𝜖𝑛/2) · 𝑑 ′ ≤ 𝜖 · |𝐸 |.

Proof of Proposition 1.6. We now turn to the proof of Proposition 1.6, which asserts the existence

of a poly(𝑑/𝜖)-time tester for connectivity in the subgraph model. If the base graph 𝐺 = ( [𝑛], 𝐸) is
not connected, then testing is trivial (since all subgraphs of𝐺 are disconnected). Otherwise (i.e., the

base graph 𝐺 is connected), connectivity of the input 𝑓 ∈ F𝐺 can be tested by emulating the tester

used for the BDG model [17]. This tester samples vertices and explores their local neighborhood in

search of small connected components.

The analysis is even simpler than the original (bounded-degree) one since we can add edges

without worrying about the degree bound (similarly to the analysis of testing connectivity in the

sparse (unbounded-degree) model [29]). Specifically, we use the fact that if 𝑓 represents a subgraph

with 𝑡 connected components, then by modifying 𝑓 at one entry we can obtain a function that

represents a subgraph with 𝑡 −1 connected components. (This relies on the fact that𝐺 must contain

edges between the connected components of 𝐺 𝑓
.)

As noted in the introduction (see Section 1.4), the argument does not extend to 2-connectivity.

The reason is that in that case the known tester for the BDGmodel [17] does not search for arbitrary

2-connected components but rather for 2-connected components that are connected to the rest of

the graph by at most one edge. The problem with that tester is that its analysis requires the ability

to add edges between any given pair of such 2-connected components, whereas we can only add

edges that exist in the base graph.
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2.2 Hyperfinite base graphs
A graph 𝐺 = ( [𝑛], 𝐸) is said to have an (𝜖, 𝑡)-partition if its vertex set can be partitioned into

connected components of size at most 𝑡 such that the number of edges between these components

is at most 𝜖𝑛.

Recall that a graph𝑀 is called a minor of a graph 𝐺 if𝑀 is isomorphic to a graph that can be

obtained by (zero or more) edge contractions on a subgraph of𝐺 . A graph𝐺 is𝑀-minor free if𝑀 is

not a minor of𝐺 . If𝐺 has degree at most 𝑑 and is minor-free (i.e.,𝐺 is𝑀-minor free for some fixed

subgraph𝑀), then it has an (𝜖,𝑂 ((𝑑/𝜖)2))-partition, for every 𝜖 > 0 (the size of𝑀 is “hidden” in

the 𝑂 (·) notation – see [1, 22]).

More generally, Theorem 1.3 refers to any family of hyperfinite graphs, where a family of graph

G is hyperfinite if there exists a function 𝑡 : (0, 1) → N such that, for every 𝜖 > 0, every graph in the

family has an (𝜖, 𝑡 (𝜖))-partition. We shall first prove the second clause in the theorem, which refers

to downward-monotone properties that are additive (i.e., determined by the connected components

of the graph).

2.2.1 A special case of interest. We say that a graph property Π is additive if it holds that a graph
is in Π if and only if all its connected components are in Π. We note that if a property is downward

monotone and additive, then it is closed under the removal of edges and vertices, but the converse

is not necessarily true. In particular this means that not every downward-monotone graph property

is additive. For example, consider the graph property Π that consists of all graphs that either

constitute of a single (Hamiltonian) cycle or consist of a collection of isolated paths and vertices.

Note that Π is closed under omission of edges and vertices, but a graph that consists of several

isolated cycles is not in Π (i.e., Π is not additive).
15

Proposition 2.2. (testing downward-monotone properties that are additive): Let Π ≠ ∅ be a
downward-monotone graph property that is additive. Let 𝐺 = ( [𝑛], 𝐸) be a graph of maximum degree
𝑑 , and 𝑡 : (0, 1) → N be such that, for every 𝜖 > 0, the graph𝐺 has an (𝜖, 𝑡 (𝜖))-partition. Then, testing
whether a subgraph of 𝐺 is in Π can be done by performing 𝑂 (𝑑2 · 𝑡 (𝜖/4)/𝜖) queries. Furthermore,
the tester is non-adaptive and has one-sided error.

In particular, Proposition 2.2 implies that, for every fixed graph𝑀 , testing bipartiteness of a sub-
graph of𝐺 , when𝐺 is𝑀-minor free, can be done in poly(𝑑/𝜖)-time, when given an (𝜖/4,𝑂 ((𝑑/𝜖)2))-
partition of𝐺 .16 This is much more efficient than testing bipartiteness in the bounded-degree model,

for which the query complexity is Ω(
√
𝑛) [17]. It is also more efficient than testing bipartiteness of

bounded-degree graphs under the promise that the graph is minor-free, let alone under the weaker

promise that the graph is 𝑡-hyperfinite. Indeed, under these promises, the tester may implement an

(𝜖/4, 𝑡 (𝜖/4))-partition oracle of the tested subgraph, but such an implementation requires more

than poly(𝑡 (𝜖/4)) queries. Specifically, in the special case of minor-free graphs the best implemen-

tation known uses 𝑂 (𝑑/𝜖)𝑂 (log(1/𝜖))
queries [25], whereas in the general (𝑡-hyperfinite) case the

best implementation known uses exp(𝑑𝑂 (𝑡 (poly(1/𝜖))) ) queries [22],

Proof. Let (𝐶1, . . . ,𝐶𝑟 ) be an (𝜖/4, 𝑡 (𝜖/4))-partition of 𝐺 . Given query access to 𝑓 : 𝐸 → {0, 1},
which represents the subgraph𝐺 𝑓 = ( [𝑛], {𝑒 ∈ 𝐸 : 𝑓 (𝑒) = 1}), we select at random Θ(𝑑/𝜖) vertices,
and for each selected vertex 𝑣 we inspect all edges in the subgraph of 𝐺 = ( [𝑛], 𝐸) induced by the

part 𝐶𝑖 that contains 𝑣 (i.e., we query all pairs (𝑢,𝑤) ∈ 𝐸 ∩ (𝐶𝑖 ×𝐶𝑖 )). We accept if and only if all

the observed subgraphs are in Π; that is, we accept if and only if for each inspected 𝐶𝑖 it holds that

the subgraph of 𝐺 𝑓
induced by 𝐶𝑖 is in Π.

15
Indeed, if a graph is in (this) Π, then all its connected components are in Π, but the converse does not hold.

16
Such a partition can be found in polynomial-time [1].
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In what follows we use the premise of the proposition that Π is downward monotone and additive,

so that it is preserved under the omission of edges and connected components (and hence under

the omission of edges and vertices). Observe that if 𝐺 𝑓
is in Π, then so are the subgraphs of 𝐺 𝑓

induced by the 𝐶𝑖 ’s. Hence, our tester accepts 𝐺
𝑓 ∈ Π with probability 1. On the other hand, if

𝐺 𝑓
is 𝜖-far from Π, then the subgraph of 𝐺 𝑓

obtained by omitting all edges between the 𝐶𝑖 ’s is

(𝜖/2)-far from Π (since (𝜖/4)𝑛 ≤ (𝜖/2) |𝐸 |). Denoting the latter subgraph by 𝐺 𝑓
, we claim that at

least (𝜖/4)𝑛/𝑑 of its vertices reside in connected components that are not in Π. Conditioned on this

claim, and since each connected component of 𝐺 𝑓
corresponds to a subgraph of 𝐺 𝑓

that is induced

by a part 𝐶𝑖 , it follows that the tester rejects 𝐺
𝑓
with probability at least 2/3 (for an appropriate

constant in the Θ(·) notation for the size of the vertex sample).

Assume, contrary to the claim, that less than (𝜖/4)𝑛/𝑑 vertices reside in connected components

of𝐺 𝑓
that are not in Π. Recall that Π is preserved under the omission of edges and vertices (so that

in particular Π contains the graph consisting of a single vertex). Therefore, by omitting at most

𝑑 · (𝜖/4)𝑛/𝑑
2

< (𝜖/2) |𝐸 | edges (i.e., all edges that belong to connected components that are not in Π),
we obtain a graph in which all connected components belong to Π. By additivity of Π, the resulting
graph belongs to Π. But this contradicts the hypothesis that 𝐺 𝑓

is (𝜖/2)-far from Π.

2.2.2 Greater generality at larger cost. A more general result refers to graph properties that are

downward monotone but not necessarily additive, i.e., that are only preserved under edge omissions

(and to hyperfinite base graphs 𝐺). The cost of this generalization is an increase in the query

complexity of the tester, as asserted next.

Proposition 2.3. (testing general downward-monotone properties): Suppose thatΠ is a downward-
monotone graph property and that, for some 𝑡 : [0, 1] → N and every 𝜖 > 0, the graph 𝐺 = ( [𝑛], 𝐸)
has an (𝜖, 𝑡 (𝜖))-partition. Then, we can test whether a subgraph of 𝐺 is in Π with query complexity
𝑂 (𝑑2 · exp(𝑡 (𝜖/4)2)/𝜖2).

We mention that the exponential dependence on 𝑡 of the query complexity of the foregoing

tester is unavoidable (in the general case of downward-monotone graph properties). Consider, for

example, the following base graph and downward-monotone property.

• The base graph is an

√
𝑛-by-

√
𝑛 grid augmented by diagonal edges in each grid cell.

(Denoting the grid vertices by pairs (𝑖, 𝑗) ∈ [
√
𝑛] × [

√
𝑛], the diagonal edges are of the form

{(𝑖, 𝑗), (𝑖 + 1, 𝑗 + 1)}.)
• The downward-monotone property Π is defined as follows. A graph is in Π if there exists a 𝑘

such that the graph consists of connected components that are each a 𝑘-by-𝑘 grid augmented

by some of the foregoing diagonal edges such that at most half of the possible patterns

(created by the diagonal edges) occur in these small grids.

(A pattern that occurs in such a connected component corresponds to an 𝑘2-bit long string,

representing the existence of the corresponding diagonal edges.)
17

Now, on proximity parameter 𝜖 > 0, consider the task of distinguishing between the case that the

subgraph consists of 0.1/𝜖-by-0.1/𝜖 grids in which half of the 𝑁
def

= Θ(2(0.1/𝜖)2 ) possible patterns
occur and the case in which all 𝑁 patterns occur. A lower bound of Ω(

√
𝑁 ) follows by a birthday

paradox argument, whereas 𝑁 = exp(Ω(𝑡 (𝜖)2).18

17
Here we ignore the 𝑂 (1) automorphisms of a 𝑘-by-𝑘 grid. Taking these automorphisms into account, we only have

Ω (2𝑘2 ) patterns.
18
Note that by using [32, 33] we can obtain a lower bound of Ω̃ (𝑁 ) , but this improvement is insignificant here since we

merely aim at a lower bound of the form exp(Ω (1/𝜖2)) .
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Proof. By the premise of the proposition, for every 𝜖 > 0, the base graph𝐺 has an (𝜖/4, 𝑡 (𝜖/4))-
partition. Let 𝑔 ∈ F𝐺 denote the all-ones function (i.e., 𝐺𝑔 = 𝐺), and let 𝑔′ be 𝜖/2-close to 𝑔 such
that 𝑔′ describes a subgraph 𝐺𝑔′

of 𝐺 in which each connected component has size at most 𝑡 (𝜖/4).
Hence, 𝐺𝑔′

is a subgraph of 𝐺 that is obtained from 𝐺 by removing the at most (𝜖/4)𝑛 ≤ (𝜖/2) |𝐸 |
edges between parts in the (𝜖/4, 𝑡 (𝜖/4))-partition of 𝐺 .

By the closure of Π to edge omissions, each function 𝑓 ∈ F𝐺 ∩ Π is (𝜖/2)-close to the function

𝑓 ′ ∈ F𝐺 ∩ Π such that 𝑓 ′(𝑒) = 𝑓 (𝑒) ∧ 𝑔′(𝑒). Let Π′
𝐺
denote the set of graphs obtained in this way;

that is, Π′
𝐺
= {𝑓 ∧ 𝑔′ : 𝑓 ∈ F𝐺 ∩ Π}. Since Π is a graph property, it follows that Π′

𝐺
= F𝐺 ∩ Π′

,

where Π′
is the set of all graphs that are isomorphic to graphs that belong to Π′

𝐺
. Hence, the set

Π′
𝐺
is closed under all automorphisms of the graph 𝐺 .

Recalling that Π′
𝐺
and likewise Π′

contain only graphs that consist of connected components of

size at most 𝑡 = 𝑡 (𝜖/4), it follows that Π′
is characterized by the frequencies in which the various

graphs of size at most 𝑡 appear as connected components. Hence, 𝑓 ∈ F𝐺 describes a graph in Π if

and only if 𝑓 ′ = 𝑓 ∧𝑔′ is in F𝐺 ∩Π′
, where Π′

is characterized in terms of the number of connected

components that are isomorphic to each of the graphs with at most 𝑡 (𝜖/4) vertices (and contain

no smaller connected components). It follows that testing with proximity parameter 𝜖 whether

subgraphs of 𝐺 satisfy Π can be performed by estimating these numbers in the subgraph described

by 𝑓 ∧ 𝑔′, where 𝑓 is the tested function.

Lastly, we note that estimating the frequencies in which the various 𝑡 (𝜖/4)-vertex graphs appear
as connected components can be done using 𝑂 (𝑑2 · exp(𝑡 (𝜖/4)2)/𝜖2) queries, where the term

exp(𝑡 (𝜖/4)2) accounts for the number of 𝑡 (𝜖/4)-vertex graphs. (This is analogous to learning a

distribution that has support size exp(𝑡 (𝜖/4)2) (see, e.g., [14, Exer. 11.4].)

2.3 Local properties and base graphs with small separators
Loosely speaking, a graph property is called local if satisfying it can be expressed as the conjunction

of local conditions, where each local condition refers to a constant-distance neighborhood of one

of the graph’s vertices. (For example, for every fixed graph 𝐻 , being 𝐻 -free is a local property.) A

precise definition is given next.

Definition 2.4. (local property): For a constant ℓ ∈ N, the ℓ-neighborhood of a vertex 𝑣 in a graph

𝐺 is the subgraph of𝐺 induced by all vertices that are at distance at most ℓ from 𝑣 . A property Π of

𝑛-vertex graphs is called ℓ-local if there exists a graph property Π′
such that𝐺 is in Π if and only if

the ℓ-neighborhood of each vertex in 𝐺 is in Π′
. (Actually, Π′

is a set of rooted graphs, where the

root corresponds to the “center” of the ℓ-neighborhood.)19 A graph property Π =
⋃

𝑛 Π𝑛 is local if
there exists a constant ℓ such that Π𝑛 is an ℓ-local property of 𝑛-vertex graphs.

Wemention that this definition coincideswith [18, Def. 5.2], and that (in the bounded degree graph

model) every graph property that has a proximity-oblivious tester of constant query complexity is

local [18, Sec. 5].

For 𝑠 : N → N we say that a graph 𝐺 = ( [𝑛], 𝐸) has separating sets of size 𝑠 if for every set of

vertices𝑈 ⊆ [𝑛] there exists a subset 𝑆 ⊆ 𝑈 of at most 𝑠 ( |𝑈 |) vertices such that the subgraph of 𝐺

induced by𝑈 \ 𝑆 has no connected component of size greater than
2
3
· |𝑈 |. For example, every tree

has separating sets of size 1, every outerplanar graph has separating sets of size 2 [23, Lem. 3], and

𝑛-vertex planar graphs have separating sets of size 𝑂 (
√
𝑛) [26].

Theorem 2.5. (Theorem 1.7, generalized): Let Π be an ℓ-local property and let 𝑠 : N→ N be such
that 𝑠 (𝑛) < 𝑛/log22 𝑛. Suppose that the base graph 𝐺 is of bounded degree 𝑑 and has separators of

19
Marking the root is important only in case that the center of the graph of radius ℓ cannot be uniquely determined.
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size 𝑠 . Then, testing whether a subgraph of 𝐺 = ( [𝑛], 𝐸) has property Π can be done by performing
𝑂 (𝜖−1𝑠 (𝑛) log𝑛 · 𝑑ℓ+1) queries. Furthermore, the tester is non-adaptive and has one-sided error.

Proof. We consider a recursive decomposition of the graph𝐺 , obtained by applying the guaran-

teed separators, and a tree that corresponds to these applications. Specifically, the root of the tree

corresponds to the separating set, denoted 𝑆𝜆 , that disconnects the graph 𝐺𝜆
def

= 𝐺 . Collecting the

resulting connected components into two subgraphs, each containing at most two-thirds of 𝐺 ’s

vertices, we proceed to obtain separating sets, denoted 𝑆0 and 𝑆1, for each of these two subgraphs,

denoted𝐺0 and𝐺1, respectively. In general, an internal node in the tree is labeled by a string 𝛼 and

corresponds to the subgraph 𝐺𝛼 as well as to a separating set 𝑆𝛼 for 𝐺𝛼 . The children of this node

correspond to subgraphs𝐺𝛼0 and𝐺𝛼1 that result from removing 𝑆𝛼 from𝐺𝛼 (where the number of

vertices in each of these subgraphs is at most two-thirds of the number of vertices in𝐺𝛼 ). When the

subgraph reaches some constant size, the process stops. Hence, the leaves of the tree correspond to

subgraphs of constant size. For a leaf labeled by 𝛼 , we let 𝑆𝛼 be the set of vertices of the subgraph

𝐺𝛼 .

For the sake of clarity, we reserve the term ‘node’ for nodes in the tree (describing the recursive

decomposition), and the term ‘vertex’ for the vertices of 𝐺 . We shall never talk of edges of the

(rooted) tree, but only of the descendance and ancestry relations induced by it. Recall that each

node in the tree is associated with a set of vertices of𝐺 , and note that these sets form a partition of

the vertex set of𝐺 . We say that vertex 𝑣 resides in a node labeled by 𝛼 if 𝑣 ∈ 𝑆𝛼 . Observe that edges
of the graph 𝐺 can connect vertices that reside in the same node and vertices that reside in nodes

that are in an ancestry relation, but cannot connect vertices that reside in nodes that are not in an

ancestry relation (equiv., reside in nodes 𝛼 ′0𝛼 ′′
and 𝛼 ′1𝛼 ′′′

for any 𝛼 ′, 𝛼 ′′, 𝛼 ′′ ∈ {0, 1}∗).
We are now ready to describe the tester for Π, which is an ℓ-local property for some constant

ℓ ∈ N. Given a fixed based graph 𝐺 = ( [𝑛], 𝐸) and oracle access to a subgraph represented by

𝑓 : 𝐸 → {0, 1}, the tester repeats the following procedure Θ(𝑑/𝜖) times, where if no invocation of

the procedure causes rejection, then it accepts.

(1) Uniformly select a vertex that resides in one of the leaves of the decomposition tree. Recalling

that 𝑠 (𝑛) < 𝑛/log2 𝑛, it follows that a constant fraction of the vertices of 𝐺 resides in leaves

of the tree.
20

(2) For each vertex 𝑣 of 𝐺 that resides in a node on the path from the selected leaf to the root

(including both the leaf and the root), explore the ℓ-neighborhood of 𝑣 in𝐺 (i.e., query 𝑓 on

each of the edges in that neighborhood).

(3) If the subgraph discovered in the previous step is not consistent with any 𝑛-vertex subgraph

of 𝐺 that has property Π, then reject.

Note that the aforementioned discovered subgraph includes not only the explored edges

but also indication that certain edges do not exist in the subgraph (i.e., the latter include all

non-edges of𝐺 as well as some edges of𝐺 that were queried by the procedure and answered

by the value 0).

The query complexity of this procedure is 𝑂 (𝑠 (𝑛) log𝑛 · 𝑑ℓ ), where 𝑑 is the degree-bound of 𝐺 .

Clearly, the tester always accepts subgraphs of 𝐺 that have the property Π. It remains to show

that if the subgraph is 𝜖-far from Π, then the probability that a single invocation of the procedure

causes rejection is Ω(𝜖/𝑑).
We establish the contrapositive statement. Suppose that the foregoing procedure rejects with

probability 𝜌 < 1. We show that it suffices to modify an 𝑂 (𝜌 · 𝑑) fraction of the edges in 𝐺 in

20
Denoting the vertex set of𝐺𝛼 by𝑉𝛼 , we use the fact that 𝑆𝛼 contains at most an 𝑠 ( |𝑉𝛼 |)/ |𝑉𝛼 | < log

−2
2 |𝑉𝛼 | fraction of

𝑉𝛼 , whereas |𝑉𝛼𝜎 | ≤ 3
2
· |𝑉𝛼 | (for every 𝜎 ∈ {0, 1}) and∏

𝑖>𝑂 (1)
(
1 − 1

𝑖2

)
> 0.99.
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order to obtain a graph that satisfies Π. We say that a leaf of the tree is good if the procedure does

not reject when it selects a vertex that resides in this leaf. We say that an internal node of the

tree is good if it appears on the path from some good leaf to the root. Note that 𝜌 < 1 implies

that there exist good leaves, and hence the root of the tree is good. More generally, if a node is

good, then all its ancestors are good. Also note that each vertex that resides in a good node has an

ℓ-neighborhood in𝐺 𝑓
that satisfies the local condition (i.e., the ℓ-neighborhood is in Π′

), where

recall that 𝐺 𝑓
denotes the subgraph of 𝐺 defined by 𝑓 .

Hence, we only need to modify the neighborhoods of vertices residing in bad nodes, and we

should do so without harming the neighborhoods of vertices that reside in good nodes. But before

explaining how this is done, we note that the number of vertices that reside in internal nodes

belonging to the subtree rooted in node 𝛼 is only a constant factor larger than the number of

vertices that reside in the leaves of this subtree. On the other hand, considering the set of bad nodes

that have good parents, we note that 𝜌 equals the fraction of vertices that reside in leaves of the

subtrees rooted at these bad nodes.

Consider an arbitrary bad node, denoted 𝛼𝜎 , that has a good parent, denoted 𝛼 . Then, the ℓ-

neighborhoods of the vertices residing in node 𝛼 satisfy the local condition (in the subgraph 𝐺 𝑓
).

We claim that the ℓ-neighborhoods of vertices in 𝐺𝛼𝜎 can be modified so that they satisfy the local

conditions as well without modifying the ℓ-neighborhoods of any vertex that resides in a good

node. To verify this claim observe the intersection of the ℓ-neighborhoods of vertices in 𝐺𝛼𝜎 and

the ℓ-neighborhoods of vertices that reside in good nodes is contained in the intersection of the

ℓ-neighborhoods of vertices in𝐺𝛼𝜎 and the ℓ-neighborhoods of vertices that reside either in node 𝛼

or in one of its ancestors. The reasoning is that if vertex 𝑣 in 𝐺𝛼𝜎 is adjacent in 𝐺 to a vertex 𝑢,

then either 𝑢 is in 𝐺𝛼𝜎 or 𝑢 is in 𝑆𝛼′ such that 𝛼 ′
is a (not necessarily proper) prefix of 𝛼 (in other

words, 𝑢 cannot be in 𝐺𝛽 , where 𝛽 has a prefix that is not a prefix of 𝛼).21

Recall that by Item 3 of the procedure (based on which the notion of good node is defined) the

fact that node 𝛼 is good, implies that the ℓ-neighborhoods of vertices in 𝐺𝛼𝜎 can be modified to

satisfy Π′
in a manner that is consistent with the ℓ-neighborhoods of all vertices that reside in node

𝛼 and its ancestors, and so with the ℓ-neighborhoods of all vertices that reside in good nodes. It

follows that by modifying 𝑓 on 𝐺𝛼𝜎 , while maintaining the ℓ-neighborhoods of vertices in 𝑆𝛼 (as

well as 𝑆𝛼′ for each 𝛼 ′
that is an ancestor of 𝛼) intact, we can “fix” the ℓ-local neighborhood of all

vertices in 𝐺𝛼𝜎 .

The foregoing process modifies 𝑓 into a function that describes a subgraph of 𝐺 that is in Π,
while modifying 𝑂 (𝜌 · 𝑑 · 𝑛) = 𝑂 (𝜌 · 𝑑 · |𝐸 |) edges. The theorem follows.

3 TESTING IN THE SUBGRAPH MODEL MAY NOT BE EASIER THAN IN THE BDG
MODEL

As observed in Theorem 1.2, testing downward-monotone graph properties in the subgraph model

(w.r.t. any bounded-degree base graph) can be reduced to testing the same property in the BDG

model. Here we show that there exist base graphs for which the result obtained by the reduction

cannot be significantly improved. Specifically, we prove Theorem 1.4, while observing that the

complexity of testing the corresponding properties in the BDG model meets the lower bound

established for the subgraph model. We first prove Part 1 of Theorem 1.4, which is restated next.

Theorem 3.1. (testing 3-Colorability in the subgraph model): There exist graphs 𝐺 = ( [𝑛], 𝐸) of
constant degree such that testing whether a subgraph of𝐺 is 3-colorable for a constant 𝜖 requires Ω(𝑛)
queries.

21
See the end of the second paragraph of the proof.
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Theorem 3.1 is proved by observing that the proof of Bogdanov, Obata, and Trevisan [4] asserting

that, in the bounded-degree graph model, testing 3-coloring requires linear query complexity can

be extended to the subgraph model.
22
This assertion is based on two main observations.

(1) The first observation is that, while [4, Thm. 14] asserts a local gap-preserving reduction from

3SAT to 3-Colorability (for bounded degree graphs), the reduction is actually from a set of
3CNF formulae that have the same clause-structure (i.e., which variables appear in each of the

clauses) and only differ in the negation-pattern (i.e., which literal of each variable is used in

each of the foregoing occurrences),
23
whose hardness is established in [4, Sec. 6].

(2) The second observation is that, for a fixed clause-structure, the reduction applied in the proof

of [4, Thm. 14] can be adapted to produce subgraphs of the same fixed graph. Specifically,

the negation-pattern of the given 3CNF determines a sequence of binary choices such that

each binary choice determine one edge out of a fixed pair of edges (which is included in the

tested subgraph).

We mention that the reduction used in the proof of [4, Thm. 14] is a variant of a rather standard

approximation-preserving reduction (of Petrank [31]), and we will present yet another variant of it.

In continuation to the foregoing discussion, we define a massively parameterized problem that

refers to testing the satisfiability of a 3CNF formula that is represented by a negation-pattern to be

applied to a fixed clause-structure. That is, the massive parameter, which is fixed per each length,

is a function of the form 𝑓 : [𝑚] × [3] → [𝑛], and the input is a negation parameter of the form

𝑝 : [𝑚] × [3] → {0, 1} such that the 3CNF formula specified by 𝑓 and 𝑝 consists of𝑚 clauses such

that for every 𝑗 ∈ [𝑚] and 𝑘 ∈ [3] the variable 𝑓 ( 𝑗, 𝑘) appears unnegated (resp., negated) as the

𝑘 th literal of clause 𝑗 if 𝑝 ( 𝑗, 𝑘) = 0 (resp., 𝑝 ( 𝑗, 𝑘) = 1). Following [4], we focus on the case that

𝑚 = Θ(𝑛), and furthermore on the case that each variable appears in a constant number of clauses

(i.e., |{( 𝑗, 𝑘) : 𝑓 ( 𝑗, 𝑘) = 𝑖}| = 𝑂 (1) for each 𝑖 ∈ [𝑛]).

Claim 3.2. (implicit in [4, Sec. 6]): For some universal constant 𝑐 the following holds. For every
𝑛 ∈ N, there exists a function 𝑓 : [𝑚] × [3] → [𝑛] such that

(1) For each 𝑖 ∈ [𝑛], it holds that |{( 𝑗, 𝑘) ∈ [𝑚] × [3] : 𝑓 ( 𝑗, 𝑘) = 𝑖}| ≤ 𝑐 .
(2) Given query access to 𝑝 : [𝑚] × [3] → {0, 1}, distinguishing (with success probability 2/3)

between the case that the formula specified by 𝑓 and 𝑝 is satisfiable and the case that any
assignment satisfies less that 90% of the clauses, requires Ω(𝑛) queries to 𝑝 .

For the sake of completeness, we next give the high level idea of the proof of Claim 3.2. The

main step is establishing an analogous result for 3LIN, which refers to linear equations over

GF(2) with three variables in each equation and each variable occurring in a constant number

of equations. Here we consider a fixed𝑚-by-𝑛 matrix 𝐴 over GF(2), with three 1-entries per row

and a constant number of 1-entries per each column. For a fixed matrix 𝐴, given query access to a

vector 𝑏 ∈ GF(2)𝑚 , the testing question refers to whether 𝐴𝑥 = 𝑏 has a solution. By [4, Lem. 19],

there exist (explicit) matrices 𝐴 such that distinguishing the case that 𝐴𝑥 = 𝑏 is solvable and the

22
This replaces a flawed argument, presented in a preliminary version of this work, that supposedly showed a local reduction

from the problem of testing whether an input assignment satisfies a fixed 3CNF formula, for which a linear query complexity

lower bound was established by Ben-Sasson, Harsha, and Raskhodnikova [2].

23
The partition of 3SAT instances to clause-structure versus negation-pattern follows the more general framework of “factor

graphs” of CSPs introduced by Feige and Jozeph [10]. Specifically, the factor graph of a CSP instance determines which

variables appear in each of the constraints, and [10] consider fixing such a factor graph for each input length, where the

input itself only determines which predicate (in a fixed family) is applied in each constraint. In case of 3SAT, the factor

graph corresponds to the clause-structure and the actual input only determines the negation-pattern. We mention that Feige

and Jozeph [10] showed that approximating Max3SAT (to within a certain constant factor), for some fixed factor graphs, is

NP-Hard.
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case that any assignment satisfies at most 51% of the equations requires making Ω(𝑛) queries. As
noted in [4], using the standard gadget reduction of 3LIN to 3SAT, the claim follows.

24

Proof of Theorem 3.1: In order to prove the theorem, we take a closer look at the rather standard

approximation-preserving reduction of 3SAT to 3-Colorability, when applied to the problem referred

to in Claim 3.2. This reduction is merely a small variant of the standard reduction of 3SAT to 3-

Colorability (cf. [13, Prop. 2.27]), which uses gadgets for each clause and each variable. The point

(which is fully formalized below), is that these gadgets are fixed, and only the connections between

them depend on the input 3CNF formula. Furthermore, if the 𝑘 th literal in clause 𝑗 contains an

occurrence of variable 𝑓 ( 𝑗, 𝑘), then the 𝑗 th clause-gadget is connected to the 𝑓 ( 𝑗, 𝑘)th variable-

gadget, independently of the value of the negation pattern 𝑝 . The value of 𝑝 ( 𝑗, 𝑘) determines only to

which of the two vertices in the variable-gadget we connect the relevant edge (i.e., the 𝑘 th outgoing

edge of the clause-gadget). Hence, we place all (actually both) possibilities in the base graph (i.e.,

connect to both vertices), and make the actual choice in the subgraph of the base graph. Details

follow.

The base graph𝐺 𝑓 and its subgraphs. For a fixed clause-structure 𝑓 : [𝑚] × [3] → [𝑛], we consider
the base graph 𝐺 𝑓 that is obtained by a slight variant of the standard reduction of 3SAT to 3-

Colorability, which will contain a subgraph (denoted𝐺
𝑝

𝑓
) that corresponds to each negation-pattern

𝑝 : [𝑚] × [3] → {0, 1}. We shall then show that if the 3CNF formula specified by 𝑓 and 𝑝 is

satisfiable, then 𝐺
𝑝

𝑓
is 3-colorable, whereas if every assignment to this formula fails to satisfy a

certain constant fraction of its clauses, then 𝐺
𝑝

𝑓
is far from being 3-colorable. The base graph 𝐺 𝑓

consists of a tri-partite graph 𝐺 ′
with 𝑠 = max(𝑛,𝑚) vertices on each of the three sides, a gadget

per each of the 𝑛 variables of the formula, a gadget per each of the𝑚 clauses of this formula, and

edges connecting some of these components, as described in detail next.

• We call the three sets in the tri-partite graph 𝐺 ′
, ground, true and false, and denote

the vertices in them by {gℓ }𝑠ℓ=1, {tℓ }𝑠ℓ=1 and {fℓ }𝑠ℓ=1, respectively. Each pair of these sets

is connected by a regular bipartite expander graph of constant degree. Specifically, these

bipartite expander graphs satisfy the mixing property with (constant) error 𝜖0 which means

that the fraction of edges that connect any two subsets equals the product of the densities

of these subsets up-to a deviation of 𝜖0. (Namely, letting 𝑉1 = ground, 𝑉2 = true and

𝑉3 = false, for any two subsets 𝑆 ⊂ 𝑉𝑘 and 𝑇 ⊂ 𝑉𝑘′ (where 𝑘 ≠ 𝑘 ′ ∈ [3]), we have that��� |𝐸 (𝑆,𝑇 ) |
|𝐸 (𝑉𝑘 ,𝑉𝑘′ ) | −

|𝑆 |
|𝑉𝑘 | ·

|𝑇 |
|𝑉𝑘′ |

��� ≤ 𝜖0, where 𝐸 (𝑋,𝑌 ) denotes the set of edges between a pair of subsets

𝑋 and 𝑌 .) The constant 𝜖0 will be picked to be sufficiently small, and this will mean that the

expander will be poly(1/𝜖0)-regular. Furthermore, at least half of the edges of 𝐺 𝑓 reside in

these three expanders.

All subgraphs of 𝐺 𝑓 that we shall consider contain all the foregoing (expander) edges. This

implies that in any 3-coloring of the vertices of𝐺
𝑝

𝑓
that has few monochromatic edges, a large

majority of the vertices in each of these three sets will be assigned a distinct color, which

may be thought of as having the name of this set. We note that the reason for introducing

24
Specifically, each equation is replaced by four out of the eight possible clauses that refer to the corresponding variables,

where the choice of negation pattern is determined by the corresponding bit in 𝑏 (i.e., if the 𝑗 th equation is 𝑥𝑎 ( 𝑗,1) +𝑥𝑎 ( 𝑗,2) +
𝑥𝑎 ( 𝑗,3) = 𝑏 𝑗 , where 𝑎 ( 𝑗, 𝑘) is the 𝑘 th 1-entry in row 𝑗 of 𝐴, then we set 𝑓 (4𝑗 + 𝑑, 𝑘) = 𝑎 ( 𝑗, 𝑘) for each 𝑑 ∈ [4] and
determine 𝑝 (4𝑗 + 𝑑, 𝑘) according to 𝑏 𝑗 only). (For example, if 𝑏 𝑗 = 1, then we use the clauses 𝑥𝑎 ( 𝑗,1) ∨ 𝑥𝑎 ( 𝑗,2) ∨ 𝑥𝑎 ( 𝑗,3) ,
¬𝑥𝑎 ( 𝑗,1) ∨¬𝑥𝑎 ( 𝑗,2) ∨𝑥𝑎 ( 𝑗,3) , 𝑥𝑎 ( 𝑗,1) ∨¬𝑥𝑎 ( 𝑗,2) ∨¬𝑥𝑎 ( 𝑗,3) , and ¬𝑥𝑎 ( 𝑗,1) ∨𝑥𝑎 ( 𝑗,2) ∨¬𝑥𝑎 ( 𝑗,3) , and otherwise we use the four
remaining clauses.) Hence, for a fixed𝐴 and varying 𝑏, we obtain a fixed clause-structure 𝑓 and varying negation-pattern 𝑝 .

Lastly, note that if an assignment violates at least 49% of the equations, then it does not satisfy at least 0.49/4 > 0.1 of the

clauses in the corresponding 3CNF.
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these sets is that the graphs we construct must have a bounded (constant) degree. If we didn’t

have this constraint, then each of these sets could be replaced by a single vertex (with degree

(at most) 𝑠).

• The gadget associated with 𝑖th variable (i.e., 𝑥𝑖 ) consists of a pair of vertices, associated with

the two literals of this variable (i.e., 𝑥𝑖 and ¬𝑥𝑖 ) and an edge that connects these pair of

vertices. We also refer to the corresponding vertices as 𝑥𝑖 and ¬𝑥𝑖 , respectively. In addition,

each of these two vertices is connected to a corresponding vertex in ground; that is, for each
𝑖 ∈ [𝑛], both 𝑥𝑖 and ¬𝑥𝑖 are connected to g𝑖 .
All subgraphs of 𝐺 𝑓 that we shall consider contain all the foregoing edges. This implies that

for any legal 3-coloring of𝐺
𝑝

𝑓
in which g𝑖 is colored ground, if 𝑥𝑖 (resp., ¬𝑥𝑖 ) is colored true,

then its neighbor ¬𝑥𝑖 (resp., 𝑥𝑖 ) is colored false.
• The gadget associated with the 𝑗 th clause contains six designated vertices such that one of

these vertices, called the head vertex and denoted by h𝑗 , is connected by edges to g𝑗 and f𝑗 .

(Indeed, vertex gℓ in the ground set is connected to both the ℓ th variable-gadget (if such exists)
and the ℓ th clause-gadget (if such exists).) In addition, the 𝑗 th clause-gadget is connected by

edges to the six vertices, called its terminals. These vertices belong to the variable-gadgets

that are associated with the literals that may appear in the 𝑗 th clause (i.e., the two literals

of each of the variables 𝑥 𝑓 ( 𝑗,1) , 𝑥 𝑓 ( 𝑗,2) and 𝑥 𝑓 ( 𝑗,3) ). Recall that the clause-structure 𝑓 only

determines the variables that appear in the clause, whereas the actual corresponding literals

are determined by the negation-pattern 𝑝 .

All subgraphs that we shall consider contain all the edges of the gadget and three of

the edges going to its terminals. Specifically, the subgraph 𝐺
𝑝

𝑓
will contain edges going

from the 𝑗 th clause-gadget to the three literals indicated by the three pairs (𝑓 ( 𝑗, 1), 𝑝 ( 𝑗, 1)),
(𝑓 ( 𝑗, 2), 𝑝 ( 𝑗, 2)) and (𝑓 ( 𝑗, 3), 𝑝 ( 𝑗, 3)). For an illustration, see Figure 3.

The clause-gadget has the following property, when it appears as part of a subgraph 𝐺
𝑝

𝑓
. In

each legal 3-coloring of the vertices of the 𝑗 th clause-gadget in which h𝑗 is colored true, at

least one of the three terminals to which it is connected in𝐺
𝑝

𝑓
is colored true. This is the case

since, as detailed in the caption of Figure 3, a legal 3-coloring of the gadget in which these

three terminals are colored false forces the head vertex to be colored false. On the other

hand (also as detailed in the caption of Figure 3), for any coloring of these three terminals in

which at least one of them is colored true, there exists a legal 3-coloring of the vertices of
the clause-gadget in which h𝑗 is colored true.

Using the fact that each variable in the formula described by 𝑓 and any 𝑝 occurs in a constant

number of clauses, it follows that 𝐺 𝑓 has 𝑂 (𝑠) = 𝑂 (𝑛 +𝑚) vertices and constant degree.

The local reduction. For a fixed clause-structure 𝑓 , we spell out the mapping of the negation-pattern

𝑝 to a subgraph of the base graph 𝐺 𝑓 . The subgraph, denoted 𝐺
𝑝

𝑓
, contains all the edges of the

large bipartite expanders as well as all edges of all the gadgets. In addition, it contains both edges

connecting each variable-gadget to the corresponding vertex in ground, and three of the edges

connecting each clause-gadget to its terminals. Specifically, for each 𝑗 ∈ [𝑚] and 𝑘 ∈ [3], the
subgraph 𝐺

𝑝

𝑓
contains the edge going from the 𝑗 th clause-gadget to the literal indicated by the pair

(𝑓 ( 𝑗, 𝑘), 𝑝 ( 𝑗, 𝑘)) (i.e., it is connected to 𝑥 𝑓 ( 𝑗,𝑘) if 𝑝 ( 𝑗, 𝑘) = 0, and to ¬𝑥 𝑓 ( 𝑗,𝑘) otherwise).
This mapping is local in the sense that each query to the subgraph𝐺

𝑝

𝑓
can be answered by making

at most one query to 𝑝 . Hence, if the mapping is gap-preserving (as shown next), then a tester for

3-colorability of subgraphs of 𝐺 𝑓 yields a tester of similar complexity for satisfiability of formulae

that are described by the fixed clause-structure 𝑓 and the varying negation-pattern (which serves
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Fig. 3. The clause-gadget and its connections to terminal vertices. The l.h.s depicts a clause-gadget that is
connected to the vertices (terminals) 𝑥1,¬𝑥2 and 𝑥3 (that belong to the vertex gadgets of variables 1, 2 and 3,
respectively). Note that in 𝐺 𝑓 there are connections to all six vertices: 𝑥1,¬𝑥1, 𝑥2,¬𝑥2, 𝑥3,¬𝑥3, and here we

depict only the edges in𝐺𝑝

𝑓
. The head vertex h𝑗 is indicated, and the gadget itself (together with its terminals)

combines two “sub-gadgets” that share one vertex. The sub-gadget and a generic legal 3-coloring of it are
depicted on the r.h.s, where this generic coloring uses the colors 1, 2, 3 and generic 𝑎, 𝑏 ∈ {1, 2, 3}. Note that
if 𝑎 = 𝑏, then 𝑎 = 𝑏 = 1 must hold. This implies that for any legal 3-coloring of the clause-gadget and its
terminals, it holds that if the three terminals of the gadget are assigned the same color, 𝑐 , then the head
vertex is also assigned the color 𝑐 . On the other hand, it is always possible to set 𝑎 = 1 (by setting 𝑏 ∈ {2, 3}),
and so for every 𝑘 ∈ [3] there exists a legal 3-coloring of the clause-gadget that assigns 𝑥𝑘 the same color as
the head vertex.

as input). Recall that a mapping is gap-preserving if it maps yes-instances to yes-instance while

mapping “far away” instances to far-away instances. We establish both features next.

Satisfying formulae are mapped to 3-colorable subgraphs. Let 𝜙 be the formula described by 𝑓 and

𝑝 , and suppose that 𝜙 is satisfiable by the assignment 𝜏 : [𝑛] → {true, false}. To show that 𝐺
𝑝

𝑓
is

3-colorable, we introduce the following legal 3-coloring.

(1) Each vertex in the tri-partite graph is given the color corresponding to its set (i.e., for each

ℓ ∈ [𝑠], the vertex tℓ is colored true, fℓ is colored false, and gℓ is colored ground).
Hence, there are no monochromatic edges between these vertices.

(2) For each 𝑖 ∈ [𝑛], the vertex 𝑥𝑖 (which belongs to the 𝑖th variable-gadget) is colored 𝜏 (𝑖) and
the vertex ¬𝑥𝑖 is colored ¬𝜏 (𝑖).
Hence, the edge {𝑥𝑖 ,¬𝑥𝑖 } is not monochromatic, and neither are the edges {𝑥𝑖 , g𝑖 } and

{¬𝑥𝑖 , g𝑖 }.
(3) For each 𝑗 ∈ [𝑚], the head vertex h𝑗 is colored true. Hence, the edges {h𝑗 , f𝑗 } and {h𝑗 , g𝑗 } are

not monochromatic. Since the assignment 𝜏 is a satisfying assignment, for each clause-gadget

there is at least one terminal vertex that is colored true. Therefore, by the aforementioned

property of the clause-gadgets, there exists a 3-coloring of the other gadget vertices that does

not introduce any monochromatic edges.

Formulae that are far from being satisfiable are mapped to subgraphs that are far from being
3-colorable. We say that a formula 𝜙 is 𝜖 ′-far from being satisfiable if every assignment to the

variables of 𝜙 satisfies less than (1 − 𝜖 ′)-of its clauses (otherwise it is 𝜖 ′-close to being satisfiable).

Again, let 𝜙 be the formula described by 𝑓 and 𝑝 , and suppose that 𝜙 is far from being satisfiable.

We shall show that the subgraph 𝐺
𝑝

𝑓
is far from being 3-colorable, by showing that if 𝐺

𝑝

𝑓
is 𝜖-close

to being 3-colorable, then 𝜙 is 𝑂 (𝜖 + 𝜖0)-close to being satisfiable, where 𝜖0 is the mixing error of

the expander. Suppose that 𝜒 : 𝑉𝑓 → {ground, true, false} is a 3-partition of the vertices of 𝐺
𝑝

𝑓

that has at most 𝜇 = 𝜖 · |𝐸𝑓 | monochromatic edges, where (𝑉𝑓 , 𝐸𝑓 ) = 𝐺 𝑓 .
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Without loss of generality, assume that the plurality of the 𝜒-values within each set of the

tri-partite graph 𝐺 ′
equals the name of this set. Since at most 𝜇 of the edges between the parts of

the tri-partite graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) are monochromatic (and |𝐸 ′ | ≥ |𝐸𝑓 |/2), it follows that all but
at most 𝐵 = 9 · (6𝜖 + 𝜖0) · |𝑉 ′ | < 18𝜇 + 3𝜖0 · |𝐸𝑓 | of the vertices in the three sets are assigned the

plurality (i.e., majority) color of their set, where the inequality uses |𝑉 ′ | < |𝐸𝑓 |/3. This is shown by

using the mixing property of the expanders that connect the three parts. Specifically, observe that

if one of these parts contains 𝜖 ′ · |𝑉 ′ |/3 vertices that are not assigned the plurality color, then there

must be at least (𝜖 ′ · (1/3) − 𝜖0) · |𝐸 ′ |/3 ≥ ((𝜖 ′/3) − 𝜖0) · |𝐸𝑓 |/6 monochromatic edges between

these vertices and the plurality vertices of some other part. Hence, ((𝜖 ′/3) − 𝜖0)/6 ≤ 𝜖 , which

implies 𝜖 ′ ≤ 3 · (6𝜖 + 𝜖0).
Now consider the vertices {𝑥𝑖 }𝑘𝑖=1 and {¬𝑥𝑖 }𝑘𝑖=1 of the variable-gadgets. For each 𝑖 ∈ [𝑛], we say

that 𝑖 is a consistent index if 𝜒 (g𝑖 ) = ground and there are no monochromatic edges among the edges

{𝑥𝑖 ,¬𝑥𝑖 }, {𝑥𝑖 , g𝑖 } and {¬𝑥𝑖 , g𝑖 } (so that either 𝜒 (𝑥𝑖 ) = true and 𝜒 (¬𝑥𝑖 ) = false or 𝜒 (𝑥𝑖 ) = false
and 𝜒 (¬𝑥𝑖 ) = true). Since at most 𝜇 of the edges within and incident to the variable-gadgets are

monochromatic, all but at most 𝐵′ = 𝐵 + 𝜇 < 19𝜇 + 3𝜖0 · |𝐸𝑓 | of the indices 𝑖 ∈ [𝑛] are consistent
indices.

Based on the coloring 𝜒 we define a truth assignment 𝜎 : [𝑛] → {true, false} as follows. If 𝑖 is a
consistent index, then 𝜎 (𝑖) = 𝜒 (𝑥𝑖 ), and otherwise we set 𝜎 (𝑖) (arbitrarily) to true. We claim that 𝜎

violates𝑂 (𝜇) of the clauses of 𝜙 . To verify this, suppose that 𝑗 ∈ [𝑚] is such that (1) 𝜒 (g𝑗 ) = ground

and 𝜒 (f𝑗 ) = false, (2) there are no monochromatic edges incident to the vertices of the 𝑗 th clause-

gadget, and (3) its terminals correspond to consistent indices. By combining (1) and (2), it holds

that 𝜒 (h𝑗 ) = true, and by the aforementioned property of the clause-gadgets, at least one of the

terminal vertices connected to this clause-gadget must be colored true as well. This implies that 𝜎

satisfies the 𝑗 th clause in 𝜙 .

Letting 𝑐 denote the constant that upper-bounds the number of occurrences of a variable in

the formula, we upper-bound the number of indices 𝑗 ∈ [𝑚] for which one of the foregoing

requirements does not hold by 𝐵 + 𝜇 + 𝑐 · 𝐵′
, where the first term is due to 𝜒 (g𝑗 ) ≠ ground or

𝜒 (f𝑗 ) ≠ false, the second term is due to monochromatic edges incident to vertices of the clause-

gadget, and the third terms is due to inconsistent indices (since each inconsistent index affects only

the clauses in which the corresponding variable appears). Recalling that 𝐵′ = 𝐵 + 𝜇 < 19𝜇 +3𝜖0 · |𝐸𝑓 |
and 𝜇 = 𝜖 · |𝐸𝑓 |, we get 𝐵 + 𝜇 +𝑐 ·𝐵′ = (𝑐 + 1) ·𝐵′ < (𝑐 + 1) · (19𝜖 + 3𝜖0) · |𝐸𝑓 |), and the claim follows.

Conclusion. Lastly, we show how a tester 𝑇 for 3-colorability of subgraphs of 𝐺 𝑓 can be used to

obtain an algorithm (“distinguisher”) 𝐷 for the following task. Given query access to a negation-

pattern 𝑝 , the algorithm 𝐷 distinguishes (with probability at least 2/3) between the case that a

3CNF formula 𝜙 described by (the fixed clause-structure) 𝑓 and 𝑝 is satisfiable and the case in

which it is 𝜖-far from being satisfiable. The distinguisher 𝐷 invokes 𝑇 and answers its edge-queries

in the natural manner; that is, all queries are answered 1, except for the queries that correspond to

the edges between the clause-gadgets and their terminals. That is, for edge-queries that correspond

to an edge between the 𝑗 th clause-gadget and one of its terminals, denoted 𝑦, the distinguisher

𝐷 queries 𝑝 , and responds accordingly. More specifically, if 𝑦 is an unnegated (resp., negated)

form of the 𝑘 th variable occurring in the clause, then 𝐷 answers 1 if and only if 𝑝 ( 𝑗, 𝑘) = 0 (resp.,
𝑝 ( 𝑗, 𝑘) = 1). Hence, on input 𝑝 such that 𝑓 and 𝑝 describe a satisfiable formula (resp., a formula that

is 𝜖-far from being satisfiable), 𝐷 invokes 𝑇 while providing it with oracle access to a 3-colorable

subgraph of 𝐺 𝑓 (resp., a subgraph of 𝐺 𝑓 that is Ω(𝜖 − 𝜖0)-far from being 3-colorable). Recalling

that Claim 3.2 applies to 𝜖 = 0.1 and letting 𝜖0 = 𝜖/2, Theorem 3.1 follows.
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On Part 2 of Theorem 1.4. Part 1 of Theorem 1.4 establishes the optimality of Theorem 1.2 in the

extreme case that the complexity is maximal. Here we establish the optimality of Theorem 1.2 for

any value of the query complexity. This is done by proving Part 2 of Theorem 1.4, which we restate

as follows.

Theorem 3.3. (Theorem 3.1, generalized): For every 𝑠 : N → N such that 𝑠 (𝑛) ≤ 𝑛, there exist
bounded-degree graphs 𝐺 = ( [𝑛], 𝐸) such that testing whether a subgraph of 𝐺 is 3-colorable and
consists of connected components of size at most 𝑠 (𝑛), with respect to constant proximity parameter,
has query complexity Θ(𝑠 (𝑛)). Furthermore, this property has the same query complexity in the
bounded-degree graph model.

Proof. Building on Theorem 3.1, we let𝐺 be a graph that consists of connected components that

are each a copy of the (𝑠 (𝑛)-vertex) base graph𝐺 ′
asserted in Theorem 3.1. The lower bound follows

immediately from Theorem 3.1. Specifically, we reduce the problem of testing whether a subgraph

𝐻 ′
of 𝐺 ′

is 3-colorable to the problem of testing whether a subgraph of𝐺 that consists of 𝑛/𝑠 (𝑛)
isolated copies of 𝐻 ′

satisfies the current property (i.e., is 3-colorable). Note that this reduction

preserves the relative distances from the corresponding properties w.r.t. the corresponding base

graphs.

As for the upper bound, it follows by considering a tester that selects a random vertex 𝑣 ∈ [𝑛]
and explores the connected component in which 𝑣 reside, while suspending the execution and

rejecting if this component contains more than 𝑠 (𝑛) vertices. The key observation is that if 𝐻 is

𝜖-far from 3-colorability, then at least 𝜖𝑛 of its vertices reside in connected components that are

either too large or not 3-colorable. (The latter assertion refers to the BDG model, and an analogous

assertion holds also in the subgraph model.)

4 TESTING IN THE SUBGRAPH MODEL MAY BE HARDER THAN IN THE BDG
MODEL

An indication that testing in the subgraph model may be harder than testing in the BDG model is

given by analogy to the orientation model of Halevy et al. [21]. Specifically, Fischer et al. [11] proved
that testing whether the orientation of an 𝑘-by-𝑘 cyclic grid is Eulerian (i.e., the indegree of each

vertex equals its outdegree, where the digraph is not necessarily connected) requires Ω(log log𝑘)
queries.

25
In contrast, in the bounded-degree (directed) graph model, testing whether a directed

graph is Eulerian can be done by sampling Θ(1/𝜖) vertices and comparing their in-degree to their

out-degree.
26
Actually, this analogy can be transformed into a proof of the following result, which

is essentially a restatement of Theorem 1.5

Theorem 4.1. (testing in the subgraph model may be harder than in the BDG model): There exists
a property of graphs Π for which the following holds. On the one hand, Π is testable in 𝑂 (1/𝜖)-time
in the bounded-degree graph model. On the other hand, there exist explicit graphs 𝐺 = ( [𝑛], 𝐸) of
25
The cited bound is for two-sided error adaptive testers. The lower bounds for restricted testers are higher. In fact, Fischer

et al. [11, Sec. 9] proved that a two-sided (resp., one-sided) error non-adaptive tester must make Ω̃ (
√
log𝑘) (resp., Ω (

√
𝑘))

queries.

26
This claim is proved by showing that if the fraction of violating vertices is 𝜌 , then the digraph is𝑂 (𝜌)-close to being

Eulerian. First observe that if the number of edges in the graph is at most 2𝑑2
(where 𝑑 is the constant degree bound), then

we can get an Eulerian graph by removing all (constant number of) edges. Otherwise, we can apply the following iterative

process. First, we pick a pair (𝑢, 𝑣) such that 𝑢 has a deficit of in-coming edges and 𝑣 has a deficit of out-going edges. Next,

we pick a directed edge 𝑥 → 𝑦 such that 𝑥 9 𝑢 and 𝑣 9 𝑦, and 𝑥, 𝑦 ∉ {𝑢, 𝑣 } (where such an edge must exist given the

lower bound on the number of edges). Then, we omit the edge 𝑥 → 𝑦 from the digraph and insert the edges 𝑥 → 𝑢 and

𝑣 → 𝑦. Note that the number of edges can only increase in each iteration (so that it is always greater than 2𝑑2
) and the

total (incoming and outgoing) deficit degreases in each iteration, where initially it is at most 𝑑𝜌𝑛.
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constant degree such that testing whether a subgraph of 𝐺 satisfies Π requires Ω(log log𝑛) queries.
Furthermore, the property Π is upwards monotone, and the base graph 𝐺 has (𝜖,𝑂 (1/𝜖2))-partitions
for every 𝜖 > 0.

The hardness result is presented by a reduction that preserves non-adaptivity and one-sided

error, and consequently stronger lower bounds hold for classes of restricted testers for Π in the

subgraph model. Specifically, any non-adaptive tester must make Ω̃(
√
log𝑛) queries, and a lower

bound of Ω(𝑛1/4) queries holds for non-adaptive testers that have one-sided error.

 

 

vu

u v

edge

gadget

Fig. 4. The (edge) gadget and the representation of the orientation of the edge {𝑢, 𝑣}. The main vertices are
depicted as squares.

4.1 Proving the main claim of Theorem 4.1
We first establish the main claim of the theorem, while using a property Π that is neither upwards

nor downward monotone. The furthermore claim is established in Section 4.2 by considering an

upwards monotone closure of a variant of Π.
We start with establishing the lower bound for the subgraph testing model, by reducing the

testing problem considered in [11, Sec. 9] to the testing problem considered here. Fischer et al. [11]
proved that testing whether the orientation of a 𝑘-by-𝑘 cyclic grid is Eulerian requires Ω(log log𝑘)
queries. We shall replace each edge of this cyclic grid𝐺𝑘 by a gadget consisting of two parallel paths
of length two, each using a distinct auxiliary vertex, and an edge connecting these two auxiliary

vertices (see Figure 4). The resulting graph, denoted 𝐺 , will serve as our base graph. Note that

𝐺 has 𝑘2 vertices of degree eight, called its main vertices, and 4𝑘2 (auxiliary) vertices of degree
three. Furthermore, the set of main vertices is an independent set in 𝐺 . Also observe that 𝐺 has

(𝜖,𝑂 (1/𝜖2))-partitions for every 𝜖 > 0. In particular, each part corresponds to a (𝑐/𝜖) × (𝑐/𝜖)
sub-grid (for a constant 𝑐 > 1).

Fischer et al. [11] viewed the orientation of vertical (resp., horizontal) edges in the cyclic grid

as either up or down (resp., right or left). An edge directed up (resp., down) is outgoing (resp.,

in-coming) at its lower endpoint and in-coming (resp., outgoing) at its higher endpoint, and ditto

for the horizontal edges. Such an orientation is Eulerian if each vertex has two in-coming edges

and two out-going edges. We represent an orientation of an edge from 𝑢 to 𝑣 in the cyclic grid by
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assigning the value 1 to all but one of the edges of the corresponding gadget such that the missing

edge is (one of the two edges) incident to 𝑢 (see Figure 4).

Hence, there is a one-to-two mapping between orientations of 𝐺𝑘 and subgraphs of 𝐺 in which

each (edge) gadget has exactly one missing edge. It is tempting to let Π simply be the subset of

subgraphs of 𝐺 that are obtained when the orientation of 𝐺𝑘 is Eulerian. As we shall see in the

proof of Claim 4.2, this definition of Π allows to prove that testing Π in the subgraph model with

base graph 𝐺 requires Ω(log log𝑛) queries. However, we also need to show that testing Π in the

BDG model can be done by performing 𝑂 (1/𝜖) queries. To facilitate this upper bound we define

Π differently (in a slightly more cumbersome way) so that it includes a larger subset of graphs.

However, this definition still satisfies that the subgraphs of 𝐺 in Π ∩ F𝐺 are exactly those that

correspond to Eulerian orientations of 𝐺𝑘 .

The basic observation is that each Eulerian orientation of 𝐺𝑘 corresponds to a subgraph of 𝐺

in which each main vertex has degree six (since the corresponding vertex in 𝐺𝑘 has indegree two

and outdegree two), and in each connected pair of auxiliary vertices, one of them has degree two

and one has degree three. This suggests defining Π as the set of graphs that satisfy the following

conditions:

(1) Each vertex in the graph has degree six, three, or two.

(2) Each vertex of degree two is connected to one vertex of degree three and to one vertex of

degree six. Furthermore, these two neighbors are connected.

(3) Each vertex of degree three is connected to one vertex of degree two and to two vertices of

degree six.

(4) Each vertex of degree six is connected to four vertices of degree three and to two vertices of

degree two.

In other words, a graph in Π consists of vertices of degree six that are connected between them by

subgraphs that contain (in addition to these two vertices) one vertex of degree two and one vertex

of degree three (where the latter two vertices are connected by an edge). These subgraphs can be

viewed as having an orientation, which is determined by the missing edge (i.e., by which of the

two degree 6 vertices misses an edge in the subgraph connecting them), and each vertex of degree

six participates in two subgraphs of each of the two orientations.

Hence, if a subgraph 𝐺̃ of 𝐺 belongs to Π, then it corresponds to a orientation of 𝐺𝑘 in which

each vertex has indegree two and outdegree 2 (so that this orientation is Eulerian). The converse is

also true: if a subgraph 𝐺̃ of 𝐺 is such that the orientation of 𝐺𝑘 corresponding to 𝐺̃ is Eulerian,

then 𝐺̃ belongs to Π. Observe though that not every graph in Π necessarily corresponds to an

orientation of 𝐺𝑘 (for some 𝑘), but it corresponds to some Eulerian directed graph.

Claim 4.2. (reducing testing Eulerianity to testing Π in the subgraph model): Testing whether
the orientation of 𝐺𝑘 is Eulerian (with proximity parameter 𝜖) is reducible to testing whether the
subgraph of the base graph𝐺 satisfies property Π (with proximity parameter 0.4 · 𝜖). The reduction
preserves the number of queries.

Proof: In accordance with the foregoing discussion, we represent (or emulate) an orientation of 𝐺𝑘

by a subgraph of 𝐺 as follows. Each edge {𝑢, 𝑣} of 𝐺𝑘 that is directed from 𝑢 to 𝑣 is represented by

a subgraph of the corresponding gadget in which an edge incident to vertex 𝑢 is missing (since

there are two such possible edges, the choice of which edge is missing, may be arbitrary).

Let 𝑇 be a tester for Π in the subgraph model. We derive a tester 𝑇 ′
for Eulerianity in the

orientation model as follows. Given oracle access to an orientation of 𝐺𝑘 , the tester 𝑇
′
invokes 𝑇

and answers its (i.e., 𝑇 ’s) queries regarding edges in 𝐺 by making queries to the corresponding

directed edges of 𝐺𝑘 . Specifically, when 𝑇 queries an edge in the gadget that corresponds to the
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edge {𝑢, 𝑣} of 𝐺𝑘 , tester 𝑇
′
queries the orientation of {𝑢, 𝑣} and answers accordingly. (Actually,

since only two of the edges of the gadget are used to represent the orientation, queries to the other

three edges can be answered (by 1) without making any query to the base graph.)

By the construction of the subgraph of𝐺 , if the orientation of𝐺𝑘 is Eulerian, then 𝑇 ′
answers in

a manner that is consistent with a subgraph that satisfies Π. On the other hand, we claim that if

the orientation 𝐻 of𝐺𝑘 is 𝜖-far from being Eulerian, then𝑇 ′
answers in a manner that is consistent

with a subgraph 𝐺𝐻
of 𝐺 that is 0.4𝜖-far from Π.

To verify this, let 𝐺̃ be a subgraph of 𝐺 that belongs to Π and is closest to 𝐺𝐻
. Let 𝜖 denote the

distance between𝐺𝐻
and 𝐺̃ . Since 𝐺̃ belongs to Π, it defines an orientation 𝐻̃ of𝐺𝑘 that is Eulerian.

Furthermore, the number of edges that are oriented differently in 𝐻̃ as compared to 𝐻 is exactly

one-half the symmetric difference between the edge set of 𝐺𝐻
and the edge set of 𝐺̃ . To verify

the latter statement, consider any pair of main vertices 𝑢, 𝑣 in 𝐺 that correspond to neighboring

vertices in 𝐺𝑘 and the pair of auxiliary vertices 𝑥,𝑦 by which they are connected in 𝐺 . Observe

that both in 𝐺𝐻
and in 𝐺̃ one of these vertices has degree two and one has degree three, and one

of them is connected to both 𝑢 and 𝑣 , and the other to only one of them. If the subgraph induced

by {𝑢, 𝑣, 𝑥,𝑦} differs between 𝐺𝐻
and 𝐺̃ , then it differs in exactly two edges, implying that the

orientation of the edge between 𝑢 and 𝑣 differs between 𝐻 and 𝐻̃ . Finally, as the number of edges

in𝐺𝑘 is smaller by a factor of five than the number of edges in𝐺 (i.e., 2𝑘2 versus 10𝑘2), the distance

between the orientations 𝐻 and 𝐻̃ is 5𝜖/2, which must be greater than 𝜖 , implying that 𝜖 > 0.4𝜖 .

The claim follows.

Hence, the Ω(log log𝑘) lower bound on testing Eulerianity in the orientation model yields a

corresponding lower bound for testing Π the subgraph model, with respect to an explicit 8-regular

𝑂 (𝑘2)-vertex graph. It is left to show that, in the BDG model, testing Π is easy. In fact, we show

that (in the BDG model) Π has a proximity oblivious tester, a notion we recall after the claim.

Claim 4.3. (testing Π in the BDG model): Property Π can be tested in the bounded-degree graph
model, with distance parameter 𝜖 , using 𝑂 (1/𝜖) queries. Actually, Π has a one-sided error proximity
oblivious tester that makes a constant number of queries and has a linear detection probability function.

Recall that a (one-sided error) proximity oblivious tester (see [18]) is a tester-like algorithm

that does not get a proximity parameter, but rejects objects that do not have the property with

probability that is lower-bounded by a function of their distance from the property. This function

is called the detection probability function, and is denoted 𝜌 . Note that a constant-query proximity

oblivious tester with detection probability function 𝜌 implies a standard tester of query complexity

𝑂 (1/𝜌 (𝜖)).
Proof: Note that the number of vertices in graphs in Π must be a multiple of five, since there are

two vertices of degree two (resp., three) per each vertex of degree six. Hence, the tester rejects if the

number of vertices in the input graph, which is given as explicit input, is not a multiple of five.
27

Otherwise, the tester selects uniformly a vertex 𝑠 in the input graph, and explores its depth-three

neighborhood.

(1) If 𝑠 has degree six and its depth-three neighborhood is consistent with a graph in Π, then the

tester accepts.

To spell out the consistency condition, it means that 𝑠 has four neighbors of degree three

and two neighbors of degree two, and that these neighbors belong to four subgraphs that

connect 𝑠 to four distinct degree-six vertices such that each subgraph contains two degree-six

27
Alternatively, onemay redefineΠ such that, for every𝑛 ∈ N, it contains all𝑛-vertex graphs that consist of a 5 · ⌊𝑛/5⌋-vertex

graph and 𝑛 mod 5 isolated vertices.
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vertices, one degree-two vertex and one degree-three vertex (and all edges of this 4-vertex

subgraph are incident to the latter two vertices).

(2) If 𝑠 has degree two such that one of its neighbors has degree three and the other has degree

six, then the tester accepts.

(3) If 𝑠 degree three such that one of its neighbors has degree two and the other two neighbors

have degree six, then the tester accepts.

(4) Otherwise, the tester rejects.

By the definition of Π, this tester always accepts graphs in Π. It remains to show that if a graph

is 𝜖-far from Π, then it is rejected with probability at least 2/3. We establish the contrapositive

statement. Namely, consider any graph that is rejected by the tester with probability 𝜌 . We shall

prove that the graph is at distance 𝑂 (𝜌) from Π (by showing that it is possible to add/remove

𝑂 (𝜌𝑛) edges and obtain a graph in Π).
Denoting the input graph by ( [𝑛], 𝐸), let 𝐷𝑖 denote the set of vertices of degree 𝑖 , and 𝐴 ⊆

𝐷6 ∪ 𝐷2 ∪ 𝐷3 denote the set of initial choices (of the vertex 𝑠) under which the tester accepts (i.e.,

|𝐴| = (1 − 𝜌) · 𝑛). Let 𝐸 ′ ⊆ 𝐸 be the subset of edges that are incident to vertices in 𝐴, and note

that |𝐸 \ 𝐸 ′ | ≤ 𝑑 · 𝜌𝑛, where 𝑑 denotes the degree bound (with respect to which testing is defined).

Letting 𝐴𝑖 = 𝐷𝑖 ∩𝐴, we note that each of the edges in 𝐸 ′ is incident to 𝐴2 ∪𝐴3 (since each edge

with one endpoint in 𝐴6 must have its other endpoint in 𝐴2 ∪𝐴3). Furthermore, the edges in 𝐸 ′

can be partitioned among edge-disjoint oriented gadgets. Specifically, each oriented gadget consists
of two vertices of 𝐷6, one vertex of 𝐴2 and one vertex of 𝐴3 such that the latter vertex is connected

to all other vertices in the subgraph and the degree-two vertex is connected to one of the vertices

of 𝐷6. Let 𝐷
′
6 denote the subset of vertices in 𝐷6 that participate in oriented gadgets, and note

that 𝐷 ′
6 ⊇ 𝐴6. Also note that the number of such gadgets, denoted𝑚, satisfies𝑚 = |𝐴2 | = |𝐴3 |

and 3𝑚 = 6 · |𝐷 ′
6 |. It follows that 2.5 ·𝑚 = |𝐴2 | + |𝐴3 | + |𝐷 ′

6 | ≥ |𝐴|, so that𝑚 ≥ |𝐴|/2.5, and hence

|𝐷 ′
6 | = 0.5𝑚 ≥ 0.2 · |𝐴| ≥ 0.2 · (1 − 𝜌)𝑛.
We now define an auxiliary digraph 𝐺 ′

over the vertex set 𝐷 ′
6 such that there is a directed edge

from𝑢 to 𝑣 in𝐺 ′
if these two vertices are connected (in 𝐸 ′) by an oriented gadget that misses an edge

incident to 𝑢. We observe that, in 𝐺 ′
, each vertex in 𝐴6 has two incoming edges and two outgoing

edges, and so the set of vertices that violate this condition equals 𝐷 ′
6 \𝐴6 = 𝐷

′
6 \𝐴 ⊆ [𝑛] \𝐴, which

means that their number is at most 𝜌𝑛.

If |𝐷 ′
6 | < 0.2 ·𝑛, then we augment𝐺 ′

with 0.2 ·𝑛 − |𝐷 ′
6 | ≤ 0.2𝜌𝑛 vertices (which initially have no

incident edges), and denote this set of vertices by 𝐷 ′′
6 . If |𝐷 ′

6 | > 0.2 · 𝑛, then we remove |𝐷 ′
6 | − 0.2𝑛

vertices that belong to 𝐷 ′
6 \𝐴6 from𝐺 ′

, and denote this set of vertices by 𝐷 ′′′
6 . In either case, let the

resulting digraph be denoted by 𝐺 ′′
. Since |𝐷 ′′

6 | ≤ 0.2𝜌𝑛 and |𝐷 ′′′
6 | ≤ 𝜌𝑛, in either case, the total

number of vertices in 𝐺 ′′
that either do not have two incoming edges or do not have two outgoing

edges is at most 𝜌𝑛. This implies that 𝐺 ′′
is 𝑂 (𝜌)-close to an Eulerian digraph (over 0.2𝑛 vertices)

in which all vertices have in-degree two (see Footnote 26).

Finally, we perform the corresponding modifications on the original undirected graph 𝐺 =

( [𝑛], 𝐸) to obtain a graph in Π. To be precise, recall that we let 𝐸 ′ denote the edges incident to
vertices in 𝐴 (so we have already removed all𝑂 (𝜌𝑛) edges that are not incident to any vertex in 𝐴).

If 𝐷 ′′
6 ≠ ∅, then we can associate each vertex in 𝐷 ′′

6 with some vertex in [𝑛] \𝐴 (which currently has

no incident edges), and if 𝐷 ′′′
6 ≠ ∅, then we remove all (𝑂 (𝜌𝑛)) edges incident to 𝐷 ′′′

6 as well as to

their neighbors in 𝐴2 ∪𝐴3 (so that we have removed all edges in the gadgets that they participated

in). Now, each removal of a directed edge from the digraph 𝐺 ′
in the process of obtaining the

Eulerian digraph 𝐺 ′′
corresponds to the removal of all edges from the corresponding gadget in the

undirected graph we are modifying. Similarly, each addition of a directed edge corresponds to the

addition of a corresponding gadget (since the number of vertices in 𝐺 ′
and 𝐺 ′′

is exactly 0.2𝑛, we
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do not lack vertices that can serve as auxiliary vertices in the gadgets). Hence, the total number of

modifications performed in the process of obtaining a graph in Π from 𝐺 is 𝑂 (𝜌𝑛), as claimed.

We have thus completed the proof of the main part of Theorem 4.1. Recall that since the base graph

we used is planar (and has maximum degree 8), it has (𝜖,𝑂 (1/𝜖2))-partitions for every 𝜖 > 0. This

establishes the second part of the furthermore claim of the theorem.

4.2 Proving the secondary (“furthermore”) claim of Theorem 4.1
We establish the first part of the furthermore claim (i.e., upwards monotonicity of the property) by

using the same base graph 𝐺 and a variant of the property Π, whereas Π itself is neither upwards

nor downward monotone.

We first introduce a graph property Π′
that contains both Π and the set of all graphs having

an edge that connects two vertices of degree at least four. Note that the base graph 𝐺 contains

no subgraph in Π′ \ Π, since the only vertices of degree at least four in 𝐺 are not connected in𝐺 .

Hence, the move from Π to Π′
has no effect on the subgraph testing model, but it makes testing in

the BDG model almost trivial (since each 𝑛-vertex graph is 𝑂 (1/𝑛)-close to Π′
).
28

Next, we consider the upwards monotone closure of Π′
, denoted Π′′

; that is, an 𝑛-vertex graph is

in Π′′
if and only if it contains an 𝑛-vertex subgraph in Π′

. Needless to say, the triviality of testing

Π′
in the BDG model extends to Π′′ ⊇ Π′

(since distances to Π′′
are not larger than distances to

Π′
). Hence, we focus on verifying that Claim 4.2 extends to Π′′

. Towards this end, we use the same

mapping (of directed graphs to subgraphs of 𝐺) that was presented in the original proof. We show

that this mapping constitutes a reduction of testing whether an orientation of 𝐺𝑘 is Eulerian to

testing whether a subgraph of 𝐺 is in Π′′
.

First note that Eulerian orientations of𝐺𝑘 are mapped to subgraphs of𝐺 that are in Π ⊆ Π′′
. Next

note that, in each subgraph of𝐺 that is in Π (or rather in Π ∩ F𝐺 ), each gadget misses a single edge

(out of four designated ones), whereas in each subgraph of 𝐺 that is in Π′′
(or rather in Π′′ ∩ F𝐺 )

each gadget misses at most one edge (out of four designated ones). However, the subgraphs that are
at the image of the reduction always miss a single edge (out of four designated ones) in each gadget.

Hence, if a missing edge in the subgraph in the image of the reduction indicates an orientation that

should be changed, then this edge must be added to the subgraph. (Indeed, unlike in Π, correcting
the wrong indication does not mandate omitting a different edge from the same gadget; but the

former addition suffices towards proving the claim, and we lose only a factor of two in the number

of edge modifications as compared to Claim 4.2.)

4.3 Testing whether subgraphs of the grid are Eulerian
Needless to say, Theorem 4.1 does not refer to the Eulerian property (of undirected graphs) but rather

to a property that results from emulating directed Eulerian graphs by certain gadgets. Actually, it

is easy to test whether a subgraph of the (plain or cyclic) grid is Eulerian.

Proposition 4.4. (testingwhether a subgraph of a grid is Eulerian): For any𝑘 < 𝑛, let𝐺 = ( [𝑛], 𝐸)
be either the𝑘-by-𝑛/𝑘 grid or the𝑘-by-𝑛/𝑘 cyclic grid. Then, testing whether a subgraph of𝐺 is Eulerian
with distance parameter 𝜖 can be done in time poly(1/𝜖).

Proof. Consider a partition of the grid into sub-grides of side-lengths Θ(1/𝜖), which we refer to

as squares, with a Θ(1)-unit wide intermediate grid between them (e.g., a 3-unit wide intermediate

28
Formally, on input 𝑛 and 𝜖 , and oracle access to a tested graph, the tester accepts if 𝜖 > 10/𝑛, while making no queries.

Note that in this case, the tested graph is 𝜖-close to Π′
, since it suffices to add at most nine edges (and omit at most one).

Otherwise (i.e., 𝜖 ≤ 10/𝑛), the tester explores the entire tested graphs and decided accordingly, when in this case its query

complexity is𝑂 (1/𝜖) .
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grid will do). The construction is illustrated in Figure 5. The tester selects Θ(1/𝜖) such squares

uniformly at random, and accepts if and only if all vertices that reside in the sampled squares have

an even degree (where edges with one endpoint in the square are counted too). This tester has

query complexity 𝑂 (𝜖−3), and it always accepts Eulerian subgraphs.

Fig. 5. A grid with six squares depicted as dashed boxes and the 3-unit wide intermediate grid. Two connections
are shown in solid lines.

To complete the analysis of this tester, suppose that the subgraph is 𝜖-far from being Eulerian,

and let 𝜌 denote the fraction of the squares that contain a vertex that has an odd degree in the

subgraph. Our goal is to show that 𝜌 = Ω(𝜖). This is established by showing that the subgraph is

(𝜌 + 0.5𝜖)-close to being Eulerian. Specifically, to modify it into an Eulerian graph we first omit all

edges that are incident to vertices that reside in bad squares (i.e., squares that contain vertices of

odd degree) as well as all edges that are incident to the intermediate grid. (The fraction of edges

internal to bad squares is at most 𝜌 , whereas the fraction of edges incident to the intermediate grid

is
Θ(1)
Θ(1/𝜖) ≤ 𝜖/4.)
Next, we use the intermediate grid in order to connect vertices that lie on the boundary of a

good square and have an odd number of neighbors in the square (and had a single neighbor in the

intermediate grid, before we omitted all edges incident to the intermediate grid). Such connections

can be made by vertex-disjoint paths that go along the sides of the square (and at distance 1 from

it), since the connected vertices all lie on the boundary of the same square (see Figure 5). The total

fraction of edges used for these connections is 𝜖/4, and so the claim follows.

4.4 Open problems
Theorem 4.1 shows that a property that, for some constant 𝜖 , is testable in a constant number of

queries in the BDG model but requires a double-logarithmic number of queries in the subgraph

model. We wonder whether a larger gap can be established.

Problem 4.5. (a larger gap between the subgraph and the BDGmodels): For a function 𝑞 : N→ N
such that 𝑞(𝑛) = 𝜔 (log log𝑛), does there exist a graph property Π such that Π is testable in poly(1/𝜖)-
time in the bounded-degree model, although there exist graphs 𝐺 = ( [𝑛], 𝐸) of constant degree such
that testing whether a subgraph of 𝐺 satisfies Π requires Ω(𝑞(𝑛)) queries.
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Recall that such results are know for restricted testers; specifically, for non-adaptive testers

we can establish the claim for 𝑞(𝑛) = Ω̃(log𝑛), and 𝑞(𝑛) = Ω(𝑛1/4) holds for one-sided error

non-adaptive testers.

On the other hand, we wonder about the complexity of testing degree regularity in the subgraph

model, while recalling that this property is testable with 𝑂 (1/𝜖) queries in the BDG model. Note

that testing 1-regularity of a subgraph of the cycle does not reduce to checking the degrees of

random vertices, and one needs to take into account the location of edges. Details follow.

Consider a 2𝑛-vertex cycle and a random subgraph of it that consists of 𝑛 − 1 edges (i.e., having
exactly 2𝑛 − 2 vertices of degree 1). Then, with high probability the subgraph is Ω(1)-far from
being 1-regular, but one cannot distinguish this subgraph from a 1-regular subgraph by making

𝑜 (𝑛) degree queries. (On the other hand, making two random edge queries, and taking into account

the locations of these edges, yields a POT with linear detection probability.)
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