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Abstract

For a constant t ∈ N, we consider the problem of counting the number of t-cliques mod 2
in a given graph. We show that this problem is not easier than determining whether a given
graph contains a t-clique, and present a simple worst-case to average-case reduction for it.
The reduction runs in linear time when graphs are presented by their adjacency matrices, and
average-case is with respect to the uniform distribution over graphs with a given number of
vertices.

1 Informal description

For a constant integer t ≥ 3, finding t-cliques in graphs and determining their mere existence are
archetypical computational problems within the frameworks of parameterized complexity and fine
grained complexity (see, e.g., [FG] and [W], resp.). The complexity of counting the number of
t-cliques has also been studied (see, e.g., [GR, BBB]). In this work, we consider a variant of the
latter problem; specifically, the problem of counting the number of t-cliques mod 2.

Determining the number of t-cliques mod 2 in a given graph is potentially easier than deter-
mining the number of t-cliques in the same graph. On the other hand, as shown in Theorem 1,
determining the said number mod 2 is not easier (in the worst-case sense) than determining whether
or not a graph contains a t-clique. Hence, the worst-case complexity of counting t-cliques mod 2
lies between the worst-case complexity of counting t-cliques and the worst-case complexity of de-
termining the existence of t-cliques. Consequently, as far as worst-case complexity is concerned,
using the “counting mod 2 problem” as proxy for the “existence problem” is at least as justified as
using the “counting problem” as such a proxy.

Our main result (presented in Theorem 2) is an efficient worst-case to average-case reduction
for counting t-cliques mod 2. The reduction in efficient in the sense that it runs in linear time when
graphs are presented by their adjacency matrices. Average-case is with respect to the uniform
distribution over graphs with a given number of vertices, and it yields the correct answer (with
high probability) whenever the average-case solver is correct on at least a 1 − 2−t

2
fraction of the

instances. In other words, the average-case solver has error rate at most 2−t
2
. The question of

whether the same result holds with respect to significantly higher error rates, and ultimately with
error rate 0.49, is left open.
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Relation and comparison to prior work. Efficient worst-case to average-case reductions were
presented before for the related problem of counting t-cliques (over the integers). Specifically, Gol-
dreich and Rothblum provided such a reduction with respect to a relatively simple distribution
over graphs with a given number of vertices, alas not the uniform distribution [GR]. On the other
hand, their reduction works even when the average-case solver has error rate that approaches 1;
specifically, its error rate on n-vertex graphs may be as large as 1 − 1

poly(logn) = 1 − o(1). In con-
trast, Boix-Adsera, Brennan, and Bresler provided an efficient worst-case to average-case reduction
with respect to the uniform distribution, but their reduction can only tolerate a vanishing error
rate [BBB]; specifically, its error rate on n-vertex graphs is required to be 1/poly(log n) = o(1).

Hence, our worst-case to average-case reduction, which is for a related (but different) problem,
matches the better aspects of the prior works (see Table 1): It refers to the uniform distribution
(as [BBB]), and tolerates a constant error rate (which is better than [BBB] but worse than [GR]).

problem distribution error rate where

counting relatively simple 1− 1/poly(log n) = 1− o(1) [GR]

counting uniform 1/poly(log n) = o(1) [BBB]

counting mod 2 uniform exp(−t2) = Ω(1) here

Table 1: Comparison of different worst-case to average-case reductions for variants of the t-CLIQUE
problem, for the constant t, where n denotes the number of vertices. The first column indicates the
version being treated, the second indicates the distribution for which average-case is considered,
and the third indicates the error rate allowed for the average-case solver.

Techniques. In contrast to [GR, BBB], which relate the t-clique counting problem to the evalua-
tion of lower degree polynomials over large and medium sized fields, we related the counting mod 2
problem to low degree polynomials over GF(2). This relation allows us to present reductions that
are much simpler than those presented in [GR, BBB].

As noted above, we leave open the problem of improving the error rate that can be tolerated
by a worst-case to average-case reduction (for counting t-cliques mod 2). We note that tolerating
an error rate that approaches 0.5 presupposes that approximately half of the n-vertex graphs have
an odd number of t-cliques (unless finding t-cliques can be done in Õ(n2)-time). We were able to
prove this combinatorial conjecture only for the case of t = 3 (see Proposition 4).

2 Formal statements and proofs

For a fixed integer t ≥ 3 and a graph G, we denote by CC(t)(G) the number of t-cliques in G, and let

CC
(t)
2 (G)

def
= (CC(t)(G) mod 2) denote the parity of this number. We often represent n-vertex graphs

by their adjacency matrices; hence, CC
(t)
2 (A) = CC

(t)
2 (G), where A is the adjacency matrix of G, and

it follows that
CC

(t)
2 (A) =

∑
i1<···<it∈[n]

∏
j<k∈[t]

Aij ,ik mod 2, (1)

where Au,v is the (u, v)th entry of A (indicating whether or not {u, v} is an edge in G).
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Theorem 1 (deciding the existence of t-cliques reduces to computing CC
(t)
2 ): For every integer

t ≥ 3, there is a randomized reduction of determining whether a given n-vertex graph contains a

t-clique to computing CC
(t)
2 on n-vertex graphs such that the reduction runs in time O(n2), makes

exp(t2) queries, and has error probability at most 1/3.

Proof: Consider a randomized reduction that, on input G = ([n], E), flips each edge to a non-edge

with probability 0.5, leaves non-edges intact, and returns the value of CC
(t)
2 on the resulting graph;

that is, the reduction generates a random subgraph of G, denoted G′, and returns CC
(t)
2 (G′).

To analyze the output of this procedure (on input G), consider a (symmetric) n-by-n matrix X

such that xi,j is a variable if {i, j} ∈ E and xi,j = 0 otherwise. We view CC
(t)
2 (X), which is defined

as in Eq. (1), as a multivariate polynomial over GF(2), and observe that it has degree at most
(
t
2

)
.

The key observation is that CC
(t)
2 (X) is a non-zero polynomial if and only if the graph G contains a

t-clique (i.e.,CC(t)(G) > 0). Hence, the foregoing reduction can be viewed as returning the value of

CC
(t)
2 (X) on a random (symmetric) assignment to the variables in X. It follows that the reduction

always returns 0 if CC(t)(G) = 0, and returns 1 with probability at least 2−(t
2) otherwise (i.e., when

CC(t)(G) > 0). The latter assertion is due to the Schwartz–Zippel for small fields (i.e., for GF(2)).1

Applying the foregoing reduction for exp(t2) times, the claim follows.

Theorem 2 (worst-case to average-case reduction for CC
(t)
2 ): For every integer t ≥ 3, there is a

randomized reduction of computing CC
(t)
2 on the worst-case n-vertex graph to correctly computing

CC
(t)
2 on at least a 1− exp(−t2) fraction of the n-vertex graphs such that the reduction runs in time

O(n2), makes exp(t2) queries, and has error probability at most 1/3.

Proof: Setting d =
(
t
2

)
, consider the following random self-reduction of CC

(t)
2 . On input a symmetric

and non-reflective n-by-n matrix, A:

1. Select uniformly d random (symmetric and non-reflective) n-by-nmatrices, denotedR(1), ..., R(d),
and let R(0) = A.

2. Making adequate queries to CC
(t)
2 , return

∑
I⊆{0,1,...,d}:I 6={0} CC

(t)
2 (R(I)) mod 2, where R(I) def

=∑
i∈I R

(i) mod 2 and CC
(t)
2 (R(∅)) = 0.

Hence, the foregoing reduction performs 2d+1 − 2 queries, and each of these queries (i.e., each R(I)

for I 6∈ {∅, {0}}) is uniformly distributed over the set of all symmetric and non-reflective n-by-n
matrices.

We claim that, for any fixed R(0), R(1), ..., R(d), it holds that
∑

I⊆{0,1,...,d}:I 6={0} CC
(t)
2 (R(I)) equals

CC
(t)
2 (R(0)) mod 2. This claim is proved by considering the multivariate polynomial P (x0, x1, ..., xd)

over GF(2) that is defined to equal CC
(t)
2 (
∑d

i=0 xiR
(i)). Specifically, we use the following facts:

• P (b0, b1, ..., bd) = CC
(t)
2 (R({i:bi=1})); in particular, P (0, 0, ..., 0) = 0 and P (1, 0, ..., 0) = CC

(t)
2 (R(0)).

• P has degree
(
t
2

)
= d, since P (x0, x1, ..., xd) = CC

(t)
2 (L(x0, x1, ..., xd)) such that L(x0, ..., xd)

is a matrix of linear functions (i.e., the (u, v)th entry of L(x0, ..., xd) equals
∑d

i=0R
(i)
u,vxi).

(Indeed, using Eq. (1), it follows that P = CC
(t)
2 (L) has degree

(
t
2

)
.)

1See [G, Exer. 5.1].
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• for any (d+ 1)-variate polynomial of degree at most d over GF(2) it holds that the sum of its
evaluation over all 2d+1 points is 0.

This general fact can be seen by considering an arbitrary monomial M(x0, x1, ..., xd) =∏
i∈I xi, where I ⊂ {0, 1, .., d}. Indeed,∑

(b0,b1,...,bd)∈GF(2)d+1

M(b0, b1, ..., bd) =
∑

(b0,b1,...,bd)∈GF(2)d+1

∏
i∈I

bi

= 2d+1−|I| ·
∏
i∈I

∑
bi∈GF(2)

bi

which equals 0 (mod 2), since |I| ≤ d.

Combining the foregoing facts, it follows that
∑

I⊆{0,1,...,d}:I 6={0} CC
(t)
2 (R(I)) equals CC

(t)
2 (R0) (mod 2).

Thus, given oracle access to a program Π such that PrR[Π(R) = CC
(t)
2 (R)] ≥ 1 − ε, when

making queries to Π rather than to CC
(t)
2 , the foregoing reduction returns the correct value with

probability at least 1 − (2d+1 − 2) · ε (i.e., whenever all queries are answered correctly). Using
ε = 2−t

2
, we obtain a worst-case to average-case reduction that fails with probability less than

2d+1−t2 = 2−(t
2+t−2)/2 < 1/3 when given access to a procedure that is correct on at least a 1− 2−t

2

fraction of the instances.2

Remark 3 (the distribution of CC
(t)
2 (R) for random R): The proof of Theorem 2 implies that

2−t
2
< PrR[CC

(t)
2 (R) = 1] < 1 − 2−t

2
. To see this, using notation as in the proof, suppose towards

the contradiction that PrR[CC
(t)
2 (R)=b] ≥ 1− 2−t

2
for some b. Then, for every R0, it holds that

PrR1,...,Rd

 ∑
I⊆{0,1,...,d}:I 6={0}

CC
(t)
2 (R(I)) ≡ 0 (mod 2)


≥ PrR1,...,Rd

[
(∀I ⊆ {0, 1, ..., d} \ {{0}, ∅}) CC(t)2 (R(I))=b

]
≥ 1− (2d+1 − 2) · 2−t2 > 0

where the last inequality uses 2d+1−t2 = 2−(t
2+t−2)/2 < 1. But this is impossible when CC

(t)
2 (R0) = 1

(e.g., if CC(t)(R0) = 1).

While Remark 3 only asserts that ER[CC
(t)
2 (R)] is bounded away from both 0 and 1, we conjecture

that it is approximately 1/2. We prove this conjecture in the case of t = 3.

Proposition 4 (the distribution of CC
(3)
2 (R) for random R): Let R be the adjacency matrix of a

random n-vertex graph. Then, PrR[CC
(3)
2 (R)=1] = 0.5± o(1).

Proof: We consider a two-step process of determining a random graph G = ([n], E). Towards this
end, we designate a collection C of n/4 disjoint pairs in [n]; that is, the collection C covers a set U

2Indeed, we can slightly improve the bound by using any constant ε < 2−d−2 = 2−(t2−t+4)/2.
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of size n/2 (i.e., U = {u ∈ P : P ∈ C}). For each P ∈ C and v ∈ [n]\P , let WP,v = {{v, u} : u ∈ P}
(standing for wedge), and note that the (n/4) · (n−2) potential triangles (i.e., P ∪{v}) are distinct.

The process of selecting a random graph proceeds in two steps. In the first step, for each pair in(
[n]
2

)
\C, we decide at random whether or not to include it as an edge in the graph G = ([n], E); that

is, each such pair is included with probability 1/2 (independent of all others). For P = {u1, u2} ∈ C
and v ∈ [n] \ P , we say that WP,v is good if both its pairs (i.e., {v, u1} and {v, u2}) were included
(i.e., WP,v ⊆ E), which happens with probability 1/4.

We say that P ∈ C is good if an odd number of WP,v’s are good, which happens with probability
approximately 0.5. Furthermore, by virtue of the pairs {u, v} such that u ∈ U and v ∈ [n]\U , these
n/4 events are approximately independent (see details below). Hence, letting C ′ ⊆ C denote the
collection of good pairs (i.e., P ∈ C such that P is good), it holds that, with very high probability,
|C ′| ≈ |C|/2.

(To see that the n/4 goodness events are independent, consider splitting the first step into
two sub-steps such that the pairs in

(
U
2

)
\ C are determined in the first sub-step, and the pairs in

U × ([n] \U) are determined in the second sub-step. Fixing the choices made in the first sub-step,
we can analyze the size of C ′ based only on the choices made in the second sub-step, where the
choices for different P ∈ C are disjoint.3 Hence, for any fixing of the first sub-stage, each P ∈ C is
good with probability approximately 1/2, independently of the goodness of all other pairs in C.)

In the second step, for each pair P ∈ C, we decide at random whether or not to include this
pair as an edge. We stress that each decision is independent of all prior choices. Intuitively,
assuming that C ′ 6= ∅, we observe that the number of triangles that contain P ∈ C ′ is odd with
probability 1/2, and show that this implies that the total number of triangles in the graph is odd
with probability 1/2.

In the analysis we fix any choice for the first step (i.e., for pairs
(
[n]
2

)
\ C) and also fix the

decisions for all pairs in C \ C ′. (Hence, we actually split the second step into two sub-steps, the
first determining pairs in C \ C ′, and the second determining pairs in C ′.) For each P ∈ C ′, if the
pair P was included as an edge, then it forms a triangle with each v such that WP,v is good, which
means that the parity of the number of triangles in the graph is flipped (since the number of good
WP,v’s is odd for a good P ). We stress that the choice made for P only affects potential triangles
that include P , and these triangles are exactly the ones counted here (i.e., corresponding to vertices
v such that WP,v is good, where the number of such vertices is odd). Furthermore, each triangle
in the graph may contain at most one pair P ∈ C. Hence, the foregong choices are independent.
Thus, assuming |C ′| > 0, the parity of the number of triangles in the resulting graph is distributed
as the parity of the number of flips in the current step, which is odd with probability 0.5. The
claim follows.

Open Problem 5 (stronger worst-case to average-case reduction for CC
(t)
2 ): For every integer

t ≥ 3 and γ > 0.5, is there a randomized reduction of computing CC
(t)
2 on the worst-case n-vertex

graph to correctly computing CC
(t)
2 on at least a γ fraction of the n-vertex graphs such that the

reduction runs in time Õ(n2), and has error probability at most 1/3.

This strengthens Theorem 2 by requiring the reduction to tolerate error rate that is arbitrary close
to 0.5 rather than error rate exp(−t2). The foregoing Proposition 4 may be viewed as a sanity

3In contrast, for {u1, u2}, {u′1, u′2} ∈ C, the choice regarding {u1, u
′
1} affects the goodness of both pairs.
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check for Problem 5, since |ER[CC
(t)
2 (R)]− 0.5| > δ would have implied that CC

(t)
2 can be computed

correctly with probability 0.5 + δ in constant time. Additonal support is provided by the following.

Proposition 6 (the distribution of CC
(t)
2 (R) for random R, revisited): Let R be the adjacency ma-

trix of a random n-vertex graph. Then, for every t ≥ 3 and b ∈ {0, 1}, it holds that PrR[CC
(t)
2 (R)=

b] > 2−bt/2c − o(1).

(This result is not optimal; a more careful analysis of the case of t = 4 yields PrR[CC
(t)
2 (R) = b] =

0.5± o(1), which yields improvements for all even t > 4.)4

Proof: We establish the claim by induction on t ≥ 3, while recalling that the claim holds for
t ∈ {2, 3} (by triviality and Proposition 4, respectively). For t > 3, we consider a two-step process
of determining a random graph G = ([n], E). Towards this end, we designate two vertices u, v ∈ [n],
and let V = [n] \ {u, v}. In the first step we determine at random the adjacency relation between
all pairs except for {u, v}; that is, each pair is placed in E with probability 1/2. Denoting by

W
def
= {w ∈ V : {u,w}, {v, w} ∈ E} the set of vertices that are adjacent to both u and v, note that

|W | ≈ n/4 with very high probability. In the second step, we add {u, v} to E with probability 1/2.
Considering the situation after the first step, let GW denote the subgraph of G induced by W ,

and note that GW is a random graph over the vertex set W . Hence, by the induction hypothesis,

the number of (t − 2)-cliques in GW is odd (i.e., CC
(t−2)
2 (GW ) = 1) with probability at least

2−b(t−2)/2c− o(1). On the other hand, whenever CC
(t−2)
2 (GW ) = 1, in the second step, the parity of

the number of t-cliques in G flips according to whether or not {u, v} is included in E. This is the case
because t-cliques that contain the pair {u, v} appear if and only if {u, v} ∈ E, whereas each such t-

clique corresponds to a distinct (t−2)-clique in GW . Hence, Pr[CC
(t)
2 (G)=b] > (2−b(t−2)/2c−o(1))/2

for both b ∈ {0, 1}.

3 Conclusion

Theorem 2 asserts an efficient worst-case to average-case reduction for counting t-cliques mod 2,
where average-case is with respect to the uniform distribution over graphs with the given number

of vertices. Specifically, for any integer t ≥ 3, computing CC
(t)
2 on the worst-case n-vertex graph is

reducible (in O(n2)-time) to computing CC
(t)
2 correctly on a 1 − exp(−t2) fraction of all n-verterx

graphs.
We believe that Theorem 2, which has a very simple proof, is as interesting as an analogous

result that refers to counting t-cliques (i.e., computing CC(t)), because (as shown in Theorem 1)

computing CC
(t)
2 is not easier than determining whether a given graph contains a t-clique. The

point is that the decisional problem (i.e., t-CLIQUE) is the one that has received most attention

in prior work, and results regarding either CC(t) or CC
(t)
2 are mostly proxies for it (i.e., for results

4In continuation to the proof of Proposition 6, we use ` ∈ [ω(1), o(logn)] designated pairs (rather than one), and
identify a set I of Θ(log `) pairs that are not connected by the edges determined among all pairs. For each such pair
{ui, vi} we identify a corresponding Wi, and consider the parity of the number of edges in the subgraph induced by
W ′i = Wi \

⋃
j∈I\{i}Wj . With very high probability, there exists i ∈ I such that the number of edges in the subgraph

induced by W ′i is odd. The key observation is that the edges in Wi are “isomorphic” to 4-cliques that contain {ui, vi},
whereas each of these edges is either internal to W ′i or is internal to Wi \W ′i . (In contrast, when t > 4, it does not
hold that each (t− 2)-clique in Wi is either internal to W ′i or has no edge inside W ′i .)
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regarding t-CLIQUE). In particular, combining Theorems 1 and 2, it follows that deciding t-CLIQUE

on the worst-case n-vertex graph is reducible (in O(n2)-time) to computing CC
(t)
2 correctly on a

1− exp(−t2) fraction of all n-verterx graphs.
We note that prior works fall short of establishing results analogous to Theorem 2: The results

of [GR] are not for the uniform distribution (but rather for a relatively simple but different distri-
bution), where the results of [BBB] hold for a notion of average-case that allows only a vanishing
error rate (i.e., the “average-case algorithm” is required to be correct on at least a 1 − 1

poly(logn)

fraction of the n-vertex graphs).
As stated in Problem 5, we leave open the problem of obtaining a result analogous to Theorem 2

for “average-case algorithms” that are correct on a γ fraction of the instances, for every γ > 1/2.
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