
On the Complexity of Estimating the Effective Support Size∗

Oded Goldreich†

June 16, 2019

Abstract

Loosely speaking, the effective support size of a distribution is the size of the support of a
distribution that is close to it (in totally variation distance). We study the complexity of estimating
the effective support size of an unknown distribution when given samples of the distributions as
well as an evaluation oracle (which returns the probability that the queried element appears in the
distribution). In this context, we present several algorithms that exhibit a trade-off between the
quality of the approximation and the complexity of obtaining it, and leave open the question of their
optimality.

Stating the actual results requires some definitions, which are provided in Section 1.1, based on Defini-
tion 1.1. Once Definitions 1.1–1.3 are internalized, one can find the main result stated in Theorem 1.9
(in Section 1.4).

Keywords: Distribution Testing, Effective Support Size, Evaluation oracle.

Contents

1 Introduction 1
1.1 Beyond the straightforward definition . 1
1.2 Initial observations . 2
1.3 Justifying the general framework of Section 1.1 . 3
1.4 Our main results . 4
1.5 Wider context . 5
1.6 Conventions and notations . 6

2 Algorithms 6

Acknowledgments 17

References 17

Appendix A: Reproducing Algorithms from [6] 18

Appendix B: Another Inferior Algorithm 19

∗Preliminary version; comments are most welcome.
†Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:

oded.goldreich@weizmann.ac.il.

i

1 Introduction

The support size of a (discrete) probability distribution is a natural parameter of a distribution: Defined
as the number of elements that appear with positive probability (in the distribution), the support size
measures the “scope” of the distribution; that is, the number of different elements that may occur
when sampling from this distribution. Unfortunately, this parameter is highly sensitive to insignificant
changes in the distribution; for example, any distribution is infinitesimally close to having an arbitrary
large support size.

A much more robust notion, which maintains the intuitive appeal of the support size, is the “effective
support size” of a distribution (cf., [2]). Loosely speaking, the “effective support size” of a distribution
is the number of elements that remain in the support after discarding from it a set of elements that
has a “small” total probability mass. Alternatively, the “effective support size” of a distribution D is
the minimum support size of distributions that are “close” to D. Hence, D has effective support size
at most n if it is “close” to some distribution that has support size (at most) n. Needless to say, the
actual definition should specify what is considered “close”.

Definition 1.1 (effective support size): We say that the distribution D has ǫ-effective support size at

most n if D is ǫ-close to a distribution that has support size at most n, where D is ǫ-close to D′ if their

total variation distance is at most ǫ. The ǫ-effective support size of D, denoted essǫ(D), is the minimal

n such that D has ǫ-effective support size at most n.

Note that the 0-effective support size of a distribution equals its support size, whereas its 1-effective
support size equals 1. (Actually, for any distribution D, there exists a number δ ∈ [0, 1) such that the
δ-effective support size of D equals 1.)

The notion of effective support size is much more robust than the notion of the support size; in
particular, if D is infinitesimally close to a distribution that has ǫ-effective support size n, then D has
ǫ-effective support size at most n + 1 (where the additional unit is needed only in pathological cases).1

In general, if D is o(ǫ)-close to a distribution that has ǫ-effective support size at most n, then D that
has (1 + o(1)) · ǫ-effective support size at most n.

1.1 Beyond the straightforward definition

The foregoing discussion hints at two aspects of slackness that may be applied to the effective support
size. Actually, one better apply these slackness aspects (or notions of approximation) if wishing to
actually find the effective support size of unknown distributions. First, rather than fixing the effective-
ness parameter, one may want to allow it to vary within a fixed interval; that is, rather than seeking
the ǫ-effective support size, for some predetermined ǫ > 0, we seek a number that is upper-bounded by
the ǫ-effective support size and lower-bounded by the ǫ′-effective support size (for some predetermined
ǫ′ > ǫ). Second, we may seek an approximation to the desired number rather than the number itself.

1Let D′ be the foregoing distribution that has ǫ-effective support size n. Then, the typical case is that, for some ǫ′ < ǫ,
the distribution D′ has ǫ′-effective support size n. In this case, any distribution that is (ǫ − ǫ′)-close to D′ has ǫ-effective
support size n. The pathological case is that D′ has ǫ-effective support size n, but for every ǫ′ < ǫ the ǫ′-effective support
size of D′ is larger than n. We claim that, in this case, for some ǫ′ < ǫ, the distribution D′ has ǫ′-effective support size
at most n + 1 (and it follows that any distribution that is (ǫ − ǫ′)-close to D′ has ǫ-effective support size at most n + 1).
To prove this claim, suppose that D′ is ǫ-close to a distribution D′′ that has support size n. We prove the claim by
considering two cases.

1. If the support of D′ is contained in the support of D′′, then the claim is trivial (since then D′ has support size n).

2. Otherwise, let e be in the support of D′ but not in the support of D′′, and consider modifying D′′ by moving a
probability mass of D′(e) > 0 from {u : D′′(u) > D′(u)} to e. Then, the modified distribution D′′′ has support size
n + 1 and is (ǫ −D′(e))-close to D′, and so the claim follows with ǫ′ = ǫ −D′(e).

1

Definition 1.2 (relaxations of the effective support size): The number n is an [ǫ1, ǫ2]-effective support

size of D if there exists ǫ ∈ [ǫ1, ǫ2] such that n is the ǫ-effective support size of D. A random variable

X is an f -factor approximation of the [ǫ1, ǫ2]-effective support size of D if Pr[n ≤ X ≤ f · n] ≥ 2/3 for

n that is an [ǫ1, ǫ2]-effective support size of D.

Note that if n is an f -factor approximation of the [ǫ1, ǫ2]-effective support size of D, then it lies in the
interval [essǫ2(D), f ·essǫ1(D)]. (This is because of any ǫ ∈ [ǫ1, ǫ2], it holds that essǫ2(D) ≤ essǫ(D) ≤
essǫ1(D).)

As hinted, we are interested in algorithms that, for some ǫ1, ǫ2 and f , when given oracle access to
an arbitrary distribution D, output an f -factor approximation of the [ǫ1, ǫ2]-effective support size of
D. Two questions arise:

1. What does it mean to have oracle access to a distribution? One natural oracle associated with
a distribution D is actually a sampling device, denoted sampD, that on each invocation returns a
sample of D (i.e., an element drawn according to the distribution D). Another natural oracle is
an evaluation oracle, denoted evalD, that answers each query e with D(e) = Prs∼D[s=e], which
equals Pr[sampD=e].

We shall focus on oracle machines that are given oracle access to both oracles, but will also discuss
the case of machines that only get access to a sampling device. Actually, we shall consider the
latter setting as a special case.

2. What parameters ǫ1 < ǫ2 and f can we handle and at what cost? Wishing to reduce the number of
parameters, we fix an arbitrary small constant β > 1, and consider the setting ǫ1 = ǫ and ǫ2 = β ·ǫ;
that is, we keep ǫ as a single effectiveness parameter, which we shall always keep varying. In
contrast, the approximation parameters will sometimes be a function of ǫ and sometimes also
depends on the distribution D (e.g., it may depend on the ǫ-effective support size of D).

With these preliminaries in place, our main definition is the following.

Definition 1.3 (approximating the effective support size): We say that a (two oracle) machine M is

an f -factor approximator of the [ǫ1, ǫ2]-effective support size of distributions (in a class C) if, for every

distribution D (in C), it holds that MsampD ,evalD(ǫ1, ǫ2) is an f -factor approximation of the [ǫ1, ǫ2]-
effective support size of D.

Algorithms that have no access to an evaluation oracle may be viewed as a special case in which the
oracle machine makes no queries to evalD. Note that, in general, we did not restrict the complexity
of the approximator so far. Indeed, in what follows we shall consider the query complexity of the
approximator as a function of ǫ1, ǫ2 and f as well as on the distribution D itself (e.g., the complexity
may depend on the output estimate of the effective support size of D).

1.2 Initial observations

We start with two simple but clarifying observations:

Observation 1.4 (The effective support is obtained by omitting the lightest elements in the distri-
bution): If D has ǫ-effective support size n, then D is ǫ-close to a distribution that has support that

consists of the n heaviest elements in D, with ties broken arbitrarily.

Proof: Assuming that n = essǫ(D), let H denote the set of n heaviest elements in D, where ties are
broken arbitrarily; that is, |H| = n and for every e 6∈ H it holds that D(e) ≤ minh∈H{D(h)}. Then,

D(H)
def
=

∑
h∈H D(h) ≥ 1 − ǫ, because otherwise we derive a contradiction (to the hypothesis that D

2

is ǫ-close to some distribution of support size n).2 Moving the probability mass of H to H, the claim

follows (e.g., fixing any h ∈ H, we may let D′(h)
def
= D(h) +

∑
e 6∈H D(e) and D′(e)

def
= D(e) for every

e ∈ H \ {h}).

Observation 1.5 (Small approximation factors can be eliminated by moderately increasing the larger
effectiveness threshold): If a random variable X is an f -factor approximation of the [ǫ1, ǫ2]-effective

support size of D, then X/f is an [ǫ1, ǫ2 + (f − 1)/f]-effective support size of D. (In particular, for
f = 1 + ǫ > 1, we have (f − 1)/f < ǫ.)

Proof: Suppose that n is an f -factor approximation of the [ǫ1, ǫ2]-effective support size of D; that is,
essǫ2(D) ≤ n ≤ f · essǫ1(D). Observing that D is ǫ2-close to a distribution D2 that has support size

n2
def
= essǫ2(D), we move the probability mass of the n2 − (n2/f) lightest elements of D2 to its n2/f

heaviest elements, obtaining a distribution of support size n2/f , denoted D′2. Then, D is (ǫ2 + δ)-close
to D′2, where δ = (n2−(n2/f))·1/n2 = (f−1)/f , and it follows that essǫ2+δ(D) ≤ n2/f ≤ n/f . On the
other hand, using n ≤ f ·essǫ1(D), we infer that n/f ≤ essǫ1(D). Hence, n/f is an [ǫ1, ǫ2 +(f −1)/f]-
effective support size of D.

1.3 Justifying the general framework of Section 1.1

Next, we show that only poor approximations can be obtained when not using the general framework
outlined above (i.e., not using an effectiveness interval and an evaluation oracle).

Justifying the use of an effectiveness interval. As hinted upfront, we chose to relax the def-
inition of ǫ-effective support size (i.e., Definition 1.1) by allowing two effectiveness thresholds (see
Definition 1.2), because we found the former too restrictive. This view is substantiated in the following
result.

Proposition 1.6 (on the hardness of approximating the ǫ-effective support size): For any ǫ ∈ (0, 1)
and n, f ∈ N, an algorithm that makes o(n) queries to (the sampling and evaluation oracles of) an arbi-

trary distribution that has 2ǫ-effective support size at most n cannot provide an f -factor approximation

of the ǫ-effective support size of the distribution.

Note that the approximation factor (i.e., f) may depend arbitrarily on ǫ and n, but not on other
parameters of the distribution (like its actual ǫ-effective support size). Indeed, n is merely an upper
bound on the 2ǫ-effective support size of the distribution, whereas its actual ǫ-effective support size
may be unrelated to its 2ǫ-effective support size. In fact, the proof capitalizes on two extreme cases:
For ǫ ∈ (0, 0.5), in one case the ǫ-effective support size is quite close to the 2ǫ-effective support size,
whereas in the other case the ǫ-effective support size is arbitrary larger than its 2ǫ-effective support
size. (In both cases, the 2ǫ-effective support size is (1− 2ǫ) · n.)

Proof: Fixing ǫ ∈ (0, 1) and n ∈ N, we pick a sufficiently large N ≫ n, and consider the following
two distributions:

2That is, supposed towards the contradiction that D(H) < 1− ǫ. Then, for every distribution D′ having a support S′

such that |S′| = n, it holds that the total variation distance between D and D′ equals

max
S

{D′(S) −D(S)} ≥ D′(S′) −D(S′)

= 1 −D(S′)

≥ 1 − max
S:|S|=n

{D(S)}

= 1 −D(H),

which (by the contradiction hypothesis) is greater than 1− (1− ǫ). Hence, the total variation distance between D and an
arbitrary distribution of support size n is greater than ǫ, contradicting the hypothesis that esse(D) = n.

3

1. For arbitrary sets H and L such that |H| = (1− ǫ) ·n and |L| = ǫ ·N2, the distribution D1 assigns
probability 1/n to each of element in H, and probability 1/N2 to each element in L.

2. For arbitrary sets H ′ and L′ such that |H ′| = (1− ǫ) ·n−1 and |L′| = ǫ ·N2 +N , the distribution
D2 assigns probability 1/n to each of element in H ′, probability 1/N2 to each element in L′, and
probability (1/n) − (1/N) to a single element s 6∈ H ′ ∪ L′.

Note that an oracle machine that makes o(n) queries cannot distinguish these two distributions (i.e.,
its distinguishing gap is o(1)).3 On the other hand, D1 has ǫ-effective support size (1 − ǫ) · n < n,
whereas D2 has ǫ-effective support size (1− ǫ) · n + N > N . Hence, the approximation factor provided
by a o(n)-query machine is Ω(N/n), which cannot be bounded in terms on ǫ and n.

Justifying the use of an evaluation oracle. In the rest of this paper, we shall focus on algorithms
that use both a sampling device and an evaluation oracle, because algorithms that use only a sampling
device perform quite poorly. This fact is an immediate corollary of a result of Raskhodnikova, Ron,
Shpilka, and Smith [9].

Corollary 1.7 (on the hardness of approximating the effective support size when using a sampling
device only): For any constant c ∈ (0, 0.06], an 0.04nc-factor approximator of the [0, 0.04]-effective

support size of distributions over [n] that makes no evaluation queries, must take Ω(n1−3c1/2
) samples.

Proof: Restating the first part of [9, Cor. 2.2], we consider n-grained distributions over [n], where
a distribution is n-grained if all probabilities are multiples of 1/n. The said result asserts that (for

every c ∈ (0, 1/16]) Ω(n1−3c1/2
) samples are needed in order to distinguish an n-grained distribution of

support size at least n/11 > 0.09n from an n-grained distribution with support size at most n1−c. Note
that the first distribution has 0.05-effective support size at least 0.09n − 0.04n, whereas the second
distribution has 0-effective support size at most n1−c. Lastly, note that 0.05n/n1−c is greater than the
desired approximation factor (i.e., 0.04nc).

We stress that Corollary 1.7 does not rule out the possibility of obtaining more crude approximations
of the effective support size in time that is significantly smaller than linear in the effective support
size. On the other hand, note that, in this setting (i.e., without using an evaluation oracle), nothing

significant can be done in time that is significantly smaller than a square root of the effective support

size, since (for any c > 0) in n0.5−c time one cannot distinguish a uniform distribution on n elements
from a uniform distribution on n1−2c−o(1) elements. So the real questions are of the following type.

Open Problem 1.8 (obtaining crude approximation of the effective support size when using a sam-
pling device only): Fixing any positive ǫ1 < ǫ2 < 0.5, for which values of c, c′ ∈ (0, 0.5) does there

exist an nc-factor approximator of the [ǫ1, ǫ2]-effective support of distributions over [n] that uses n0.5+c′

samples, when making no evaluation queries at all?

1.4 Our main results

In contrast to Corollary 1.7, fast and good approximations of the effective support size (of distributions)
can be obtained when using both types of queries (i.e., a sampling device as well as an evaluation oracle).
In fact, we obtain several different algorithms that exhibit a trade-off between the running time and
the approximation factor of the [ǫ, β · ǫ]-effective support size (of distributions), for any constant β > 1.

3To streamline the argument, when the machine queries D1, let s be an arbitrary element in H . Then, the distinguishing
gap is mainly due to the case that the machine obtained s as a sample, where we neglect the different collision probabilities
for L and L′ (since it is extremely small).

4

Specifically, at the fastest extreme, we obtain an O(1/ǫ)-time algorithm with an approximation factor

that is logarithmic in the ǫ-effective support size (and almost linear in 1/ǫ). On the other hand, at
the most accurate extreme, we obtain a β-factor approximation algorithm than runs in log∗(n/ǫ)-time,

where n is the effective support size.

Theorem 1.9 (fast and good approximators of the effective support size): For every constant β > 1
and each of the following for options regarding T and f , there exists an algorithm that, on input ǫ > 0
and oracle access to D, runs in time T and outputs an f -factor approximation of the [ǫ, β · ǫ]-effective

support size of D. Letting n = essǫ(D) denote the ǫ-effective support size of D, the four options are:

1. T = O(1/ǫ) and f = O(ǫ−1 log(n/ǫ)).

2. T = Õ(1/ǫ) and f = O(log(n/ǫ)).

3. For any constants t, k ∈ N, it holds that T = Õ(t/ǫ1+ 1
k) and f = Õ(log(t)(n/ǫ)), where log(t)

denotes t iterated logarithms.

4. For any constant k ∈ N, it holds that T = Õ(log∗(n/ǫ)/ǫ1+ 1
k) in expectation and f = β.

The running time dependence on β is poly(1/(β − 1)).

By Observation 1.5, in the last item, we can obtain f = 1 (with T = Õ(ǫ−1 log∗(n/ǫ)) in expectation).
It is not clear whether the trade-off between the running time and the approximation factor exhibited
by the foregoing four options is inherent. In particular, we wonder whether one can obtain T and f
that are both functions of ǫ only.

Open Problem 1.10 (approximators of the effective support size with performance guarantees that
are oblivious of the distribution): For a constant β > 1, does there exist an algorithm that, on input

ǫ > 0 and oracle access to D, runs in time T (ǫ) and outputs an f(ǫ)-factor approximation of the

[ǫ, β · ǫ]-effective support size of D, where T and f are functions of ǫ only? If so, can both functions be

polynomials in 1/ǫ? And, if so, can we have T (ǫ) = poly(1/ǫ) and f = 1?

A negative answer would join the small collection of natural computational problems having compu-
tational complexity that depends extremely mildly on the object’s size (i.e., the complexity is lower-
bounded by some unbounded function of the size and is upper-bounded by a log-star in that size).

1.5 Wider context

Our original motivation for the current study arose in the context of “vertex-distribution-free” (VDF)
models for testing properties of graphs [5]. Loosely speaking, in these models the tester is provided
with a sampling device to an arbitrary distribution, D, over the vertex set (as well as with query access
to the graph itself). Our focus in [5] was on strong testers; that is, tester whose complexity depends
only on the proximity parameter. Nevertheless, in [5, Sec. 5.2], we suggested to consider also testers of
complexity that depends on (label-invariant) parameters of the vertex distribution such as its effective
support size. This immediately raises the problem of approximating these parameters. Indeed, an
initial study of this problem was provided by us in [6, Sec. 2.2], and it was used in the construction of
a Bipartite tester (in (a variant of) the bounded-degree VDF model), which is the actual focus of [6].
(We reproduce the relevant parts of [6, Sec. 2.2], which represent a somewhat different algorithmic
approach, in the appendix.)

Access to an evaluation oracle may not be very natural in the context of the “vertex-distribution-
free” testing model (yet, it was postulated, motivated, and relied upon in [6]). In contrast, an evaluation
oracle is quite natural in the context of studying computational problems regarding distributions (see,

5

e.g., [1, 3, 8]).4 In particular, prior works [1, 3, 8] considered a variety of computational problems such
as approximating the distance to a known distribution, approximating the entropy of a distribution,
and approximating the size of the support of distributions (when given a lower bound on the probability
of the lightest element in the support, and allowed an additive approximation error that is inversely
proportional to that bound).5 We comment that the different models of [1, 3] and [8] coincide in our
setting, where the domain of the distributions is not a priori known.6

Approximating the effective support size is somewhat related to (tolerantly) testing the support
size of distributions, a task that has been studied extensively (see [4, Sec. 11.4] and the references
therein). Specifically, tolerantly testing that D has support size n under proximity parameter ǫ and
tolerance parameter ǫ′ calls for accepting distributions that have ǫ′-effective support size at most n
(i.e., when essǫ′(D) ≤ n) and rejecting distributions that have ǫ-effective support size greater than n
(i.e., when essǫ(D) > n). In particular, testing that D has support size n under proximity parameter
ǫ calls for accepting distributions that have support size at most n and rejecting distributions that
have ǫ-effective support size greater than n. (Note that an ǫ′-tolerant ǫ-tester is (given n and) allowed
arbitrary behaviour in case n ∈ [essǫ(D), essǫ′(D)), whereas a 1-factor approximator of the [ǫ′, ǫ]-
effective support size is required to find n ∈ [essǫ(D), essǫ′(D)].)7

1.6 Conventions and notations

Throughout this work we refer to discrete probability distributions, which may be thought of as ranging
either over binary strings or over natural numbers. For such a distribution D, we denote by D(e) the
probability (or weight or mass) that D assigns e; that is, D(e) = Prs∼D[s= e]. For a set S, we define

D(S)
def
=

∑
e∈S D(e).

We say that D is ǫ-close to D′ if the total variation distance between them is at most ǫ, where the
total variation distance between D and D′ equals

1

2
·
∑

e

∣∣D(e)−D′(e)
∣∣ = max

S
{D(S)−D′(S)}. (1)

Otherwise, we say that D is ǫ-far from D′.

2 Algorithms

In this section we establish the four items of Theorem 1.9 by proving four corresponding theorems.
Our starting point is an algorithm that is based on clustering the elements of the distribution’s support
according to their approximate probability mass (or weight). The key observation is that the number
of relevant clusters (i.e., clusters having noticeable weight) is logarithmically related to the effective
support size. Furthermore, the effective support size can be related to the size of a random relevant
cluster (i.e., a relevant cluster selected with probability that is proportional to its total mass). The
resulting approximation factor is linearly related to the number of relevant clusters (which is logarithmic
in the effective support size) and is inversely related to the effectiveness threshold.

4Prior works (see, e.g., [7]) have also considered the problem of learning the evaluation function of a distribution (rather
than learning to generate the distribution).

5The latter problem sounds related to approximating the effective support size, but is actually different from it.
6In general, in [1, 3] the algorithm is allowed arbitrary evaluation queries, whereas [8] provide it only with the probability

mass of each sampled element. But in setting in which the domain of the distribution is arbitrary, evaluation queries to
unsampled elements is practically useless.

7Hence, it is unclear how to convert an approximator into a tester. As for the opposite direction, we face the generic
problem of converting a decision procedure into a search procedure, and note that we cannot afford a logarithmic factor
overhead (since we care about lower complexities).

6

Theorem 2.1 (the basic algorithm): For every constant β > 1, there exists an algorithm that on input

ǫ > 0 and oracle access to D, runs in time O(1/ǫ) and outputs an O(ǫ−1 log(n/ǫ))-factor approximation

of the [ǫ, β · ǫ]-effective support size of D, where n = essǫ(D).

Proof: Fixing β > 1 and D, for every i ∈ N, we consider the set of elements having probability

approximately β−(i−0.5); that is, we let Wi
def
= {e : β−i < D(e) ≤ β−(i−1)}. We first observe that almost

all of the probability mass of D is assigned to the first O(ǫ−1 · log n) sets (i.e., Wi’s), where n = essǫ(D)
is the ǫ-effective support size of D.

Claim 2.1.1 Suppose that D has ǫ-effective support size at most n, and let ℓ ∈ N be minimal such that∑
i>ℓD(Wi) ≤ β · ǫ. Then, ℓ ≤ logβ(n/(β − 1) · ǫ).

Throughout this proof (as well as the subsequent proofs), we shall assume that ℓ > 1, while noting that
the case of ℓ = 1 is easily handled (by outputting |W1|).

8 In fact, for similar reasons, we may assume
that ℓ > logβ(1/ǫ) + O(1).

Proof: Let S be a set of size at most n such that there exists a distribution that is ǫ-close to D and
has support S. Then, letting L

def
= {e : D(e) ≤ (β − 1) · ǫ/n}, we have

D(L) = D(L ∩ S) +D(L \ S)

≤ |S| ·max
e∈L
{D(e)} +D(S)

≤ n ·
(β − 1) · ǫ

n
+ ǫ

which equals β · ǫ. The claim follows, because, for every i > k
def
= logβ(n/(β − 1) · ǫ), it holds that

Wi ⊆ L (since e ∈Wi implies D(e) ≤ β−(i−1) ≤ β−k = (β − 1) · ǫ/n).

For ǫ′ = β · ǫ, let ℓ′ ∈ N be maximal such that
∑

i≥ℓ′ D(Wi) ≥ β · ǫ′. Hence, ∆
def
=

∑
i∈[ℓ′,ℓ]D(Wi) ≥

(β − 1) · ǫ′. Suppose that we select i ∈ [ℓ′, ℓ] with probability proportional to D(Wi); this can be done
by “rejection sampling” (and has complexity O(1/ǫ)). The key observation is that, with probability

at least 2/3, it holds that the selected i satisfies D(Wi) ≥
∆
3ℓ ≥

(β−1)ǫ′

3ℓ , because for B
def
= {j ∈ [ℓ′, ℓ] :

D(Wj)<∆/3ℓ} it holds that Pri∼D[i∈B|i∈ [ℓ′, ℓ]] equals
∑

j∈B D(Wj)/∆ < |B|/3ℓ ≤ 1/3. Hence, with
probability at least 2/3, it holds that

|Wi| ≥ D(Wi)/β
−(i−1) ≥

(β − 1) · ǫ′

3ℓ
· βi−1 = (β − 1) · ǫ · βi/3ℓ. (2)

On the other hand,
∑

j≤i |Wj | <
∑

j≤i β
j < βi+1/(β−1). Now, letting f = βi+1/(β−1)

(β−1)·ǫ·βi/3ℓ
= 3·β

(β−1)2
·ǫ−1 ·ℓ

and combining the foregoing bounds, we get

∑

j≤i

|Wj | <
βi+1

β − 1
≤ f ·

∑

j≤i

|Wj |. (3)

Using
∑

j>iD(Wj) ≤
∑

j≥ℓ′+1D(Wj) < β2 · ǫ and
∑

j≥iD(Wj) ≥
∑

j>ℓ−1D(Wj) ≥ β · ǫ, we infer that

v
def
= βi+1/(β − 1) constitutes an f · β2-factor approximation of the [ǫ, β2 · ǫ]-effective support size of

D, since essβ2ǫ(D) ≤
∑

j≤i |Wj | < v and essǫ(D) ≥ β−2 ·
∑

j≤i |Wj | ≥ v/β2f , where essβ2ǫ(D) ≤∑
j≤i |Wj| and essǫ(D) ≥

∑
j≤i |Wj | for i < ℓ are quite obvious (see below). Let us spell out the latter

two facts as well as their proofs.

8In this case (i.e., ℓ = 1), it holds that |W1| < 1/β and all elements of W1 can be found in constant time. Furthermore,
this case can be detected in constant time (since D(W1) can be computed in constant time).

7

Claim 2.1.2 Let ℓ and ℓ′ be as define above. Then, for every i ∈ [ℓ′, ℓ] it holds that:

1. essβ2ǫ(D) ≤
∑

j≤i |Wj|.

2. essǫ(D) ≥ β−1 ·
∑

j≤i |Wj | − 1. Furthermore, if i < ℓ, then essβǫ(D) ≥
∑

j≤i |Wj|.

As done above, in the sequel we shall use a simpler (but more wasteful) form of Part 2, which asserts
that essǫ(D) ≥ β−2 ·

∑
j≤i |Wj|. This is justified (for i = ℓ) by recalling that we may assume that

ℓ > logβ(β3/(β − 1)ǫ) (see discussion following Claim 2.1.1). On the other hand, we may assume
that D(Wℓ) ≥ (β − 1) · ǫ, since otherwise

∑
j>ℓD(Wj) ≥ ǫ and essǫ(D) ≥

∑
j≤ℓ |Wj| follows. Hence,

|Wℓ| ≥ ǫ · βℓ−1 > β2/(β − 1) and β−1 ·
∑

j≤ℓ |Wj | − 1 > β−2 ·
∑

j≤ℓ |Wj | follows.

Proof: To see the first part, consider a distribution D′ in which the probability mass of
⋃

j>i Wj is

moved to
⋃

j≤i Wj. By maximality of ℓ′, it holds that
∑

j>iD(Wj) ≤
∑

j≥ℓ′+1D(Wj) < β2ǫ. Hence, D′

is β2ǫ-close to D, which implies that there exists a distribution that is β2ǫ-close to D and has support
of size

∑
j≤i |Wj | (i.e., essβ2ǫ(D) ≤

∑
j≤i |Wj |).

Turning to the second part, we start with the furthermore case (i.e., i < ℓ). In this case, us-
ing the minimality of ℓ, it holds that

∑
j>iD(Wj) ≥

∑
j>ℓ−1D(Wj) > βǫ. Using Observation 1.5,∑

j>iD(Wj) ≥ βǫ implies that any distribution that is βǫ-close to D must have support size at least∑
j≤i |Wj| (i.e., essβǫ(D) ≥

∑
j≤i |Wj|).

Turning to the main claim of the second part and focusing on the case of i = ℓ (since a stronger

claim was already established for i < ℓ), we let δ
def
=

∑
j≥ℓD(Wj) and observe that δ > βǫ (by the

minimality of ℓ). Below, we introduce a distribution D′ that is (1 − β−1) · δ-close to D and satisfies∑
j≤ℓ−1 |W

′
j| ≥ β−1 ·

∑
j≤ℓ |Wj|−1 and

∑
j>ℓD

′(W ′
j) =

∑
j>ℓ−1D(Wj), where W ′

j = {e : β−j < D′(e) ≤

β−(j−1)}. Using this distribution, we observe that

essǫ(D) ≥ essδ/β(D)

≥ essδ(D
′)

≥
∑

j≤ℓ−1

|W ′
j|

≥ β−1 ·
∑

j≤ℓ

|Wj | − 1,

where the first inequality is due to ǫ ≤ δ/β, the second inequality is due to fact that a distribution that is
δ/β-close to D must be δ-close to D′ (which implies that essδ(D

′) ≤ essδ/β(D)),9 and the third inequal-
ity follows by using

∑
j>ℓD

′(W ′
j) =

∑
j>ℓ−1D(Wj) = δ (which implies essδ(D

′) ≥
∑

j≤ℓ−1 |W
′
j|).

10

So it is left to demonstrate the existence of the foregoing distribution D′. This is done by shifting
the probability mass of Wℓ to W ′

ℓ−1; specifically, letting Lℓ denote a maximal set of the lightest ele-
ments of Wℓ such that D(Lℓ) ≤ β−1 · D(Wℓ), we increase the probability mass of each e ∈ Lℓ by a
factor of β, and assign each element in Wℓ \ Lℓ weight 0 (while leaving the rest of D intact).11 Note
that |Lℓ| ≥ ⌊β

−1 · |Wℓ|⌋. Hence, the resulting distribution D′ satisfies all the foregoing requirements;
specifically:

• D′ is at distance (1− β−1) · D(Wℓ) from D (i.e., D′ is (1− β−1) · δ-close to D).

9Let D′′ be a distribution that is δ/β-close to D and has support size essδ/β(D). Then, D′′ is ((δ/β)+(1−β−1)·δ)-close
to D′, since D is (1 − β−1) · δ-close to D′. It follows that essδ(D′) is upper-bounded by the support size of D′′.

10Indeed, as in the argument used in the furthermore claim, this implication is due to Observation 1.5, which implies
that essδ(D′) is minimized by moving a probability mass of δ from the lighter elements to the heavier ones.

11Actually, the above description is slightly inaccurate, since D(Wℓ)− β · D(Lℓ) ∈ [0, β−(i−1)). In case the difference is
positive, we move the access probability mass (from one of the elements of Wℓ \ Lℓ) to arbitrary elements in

S

j≤ℓ−1 W ′
j .

8

• |W ′
ℓ−1| ≥ |Wℓ−1|+ ⌊β

−1 · |Wℓ|⌋, which implies
∑

j≤ℓ−1 |W
′
j| ≥ β−1 ·

∑
j≤ℓ |Wj | − 1.

• D′(W ′
ℓ−1) = D(Wℓ−1) + D(Wℓ) and D′(W ′

j) = D(Wj) for every j 6∈ {ℓ − 1, ℓ}, which implies∑
j>ℓD

′(W ′
j) =

∑
j>ℓ−1D(Wj).

This completes the proof of the claim.

The foregoing presentation is idealized, since in reality we do not know ℓ′ and ℓ. Yet, we can find
“good enough” approximations for them. Specifically, taking a sample S of poly(1/(β−1))·ǫ−1 elements
of D, we set ℓ̃ to be minimal such that |{e∈S : e∈

⋃
j>eℓ

Wj}| < β1.1 · ǫ · |S|, while noting that with high

probability ℓ̃ ≤ ℓ. Likewise, we set ℓ̃′ to be maximal such that |{e∈S : e∈
⋃

j≥eℓ′
Wj}| > β1.9 · ǫ · |S|,

while noting that with high probability ℓ̃′ ≥ ℓ′. On the other hand,
∑

j>eℓ
D(Wj) ≤ β5/4 · ǫ and

∑
j≥eℓ′
D(Wj) ≥ β7/4 · ǫ. Hence, ∆̃

def
=

∑
i∈[eℓ′,eℓ]

D(Wi) ≥ β7/4ǫ − β5/4ǫ, which is lower-bounded by

(β0.5 − 1) · βǫ > (β − 1) · ǫ/2. Hence, selecting i ∈ [ℓ̃′, ℓ̃] with probability proportional to D(Wi), with

probability at least 2/3 it holds that D(Wi) ≥
e∆
3ℓ ≥

(β−1)·ǫ
6ℓ (and |Wi| ≥

(β−1)·ǫ
6ℓ · βi−1 follows). Let us

spell out the resulting algorithm.

Algorithm 2.1.3 (For fixed β > 1, on input ǫ > 0 and oracle access to D:)

1. Using a sample of size O(1/ǫ), determine ℓ̃ and ℓ̃′ as outlined above.

2. Select i ∈ [ℓ̃′, ℓ̃] with probability proportional to D(Wi).

Output βi+1/(β − 1).

Applying the simplified form of Claim 2.1.2 , it follows that essβ2ǫ(D) ≤
∑

j≤i |Wj | < βi+1/(β−1) and

essǫ(D) ≥ β−2 ·
∑

j≤i |Wj | >
(β−1)·ǫ

6ℓ · βi−3. It follows that Algorithm 2.1.3 is a f ′-factor approximator

of the [ǫ, β2 · ǫ]-effective support size of D, where f ′ = βi+1/(β−1)
(β−1)·ǫ·βi−3/6ℓ

< 6·β4

(β−1)2
· ǫ−1 · ℓ. Recalling that

ℓ ≤ logβ(n/(β − 1) · ǫ), where n = essǫ(D) is the ǫ-effective support size of D, the claim follows (by a
change of parameters).

Improving over Theorem 2.1. The approximation factor provided by Theorem 2.1 is essentially
the multiple of two factors: The first factor is the reciprocal of the effectiveness parameter ǫ, and the
second factor is essentially the logarithm of the effective support size; actually, the second factor is
O(ℓ) = O(log(n/ǫ)), where n is the ǫ-effective support size of the distribution. Both factors are an
artifact of using Θ(ǫ/ log(n/ǫ)) · βi−1 as a lower bound on the size of |Wi|, whereas |Wi| could be as
large as βi.

An immediate improvement follows from the observation that we can afford to identify the case
that |Wi| = Ω(ǫ · βi), since in this case D(Wi) = Ω(ǫ), and output a much better estimate in this
case. Specifically, when D(Wi) = Ω(ǫ), we can afford to approximate D(Wi) up to a β factor, and
this yields an approximation of |Wi| up to a β2 factor. On the other hand, we can easily detect the
case that D(Wi) = o(ǫ) (or even distinguish D(Wi) < ǫ/100 from D(Wi) > ǫ/99), and in this case
using Θ(ǫ/ log(n/ǫ)) · βi−1 as an estimate of |Wi| is only a factor of O(log(n/ǫ)) off. The foregoing
considerations ignore the contribution of

∑
j<i |Wj | to the effective support size, but employing the

same considerations to Wj for each j ∈ [i− logβ(1/ǫ), i − 1], we reduce the approximation factor from
Θ(ǫ/ log(n/ǫ)) to Θ(log(n/ǫ)), while slightly increasing the running time (so to allow for obtaining
Θ(log(1/ǫ)) approximate values rather than a constant number of such values).

Theorem 2.2 (the basic algorithm, revised): For every constant β > 1, there exists an algorithm

that on input ǫ > 0 and oracle access to D, runs in time Õ(1/ǫ) and outputs an O(log(n/ǫ))-factor
approximator of the [ǫ, β · ǫ]-effective support size of D, where n = essǫ(D).

9

Proof: The algorithm starts by determining ℓ̃ and ℓ̃′ and selecting i ∈ [ℓ̃′, ℓ̃] as in Algorithm 2.1.3.
Next, rather than outputting βi+1/(β − 1), the algorithm uses O(ǫ−1 log log(1/ǫ)) samples in order
to estimate D(Wj) for each j ∈ [i′, i], where i′ = max(1, i − logβ(1/ǫ)), and (essentially) outputs the
corresponding estimate of

∑
j≤iD(Wj) · β

j . (The upper bound of O(log(1/ǫ)) on the length of the
interval [i′, i] is used when employing a union bound on the probability that some of these estimates
are wrong.)

Algorithm 2.2.1 (refining Algorithm 2.1.3): After setting ℓ̃, ℓ̃′ and i as in Algorithm 2.1.3, the algo-

rithm proceeds as follows (where i′ = max(1, i − logβ(1/ǫ))):

• For each j ∈ [i′, i], the algorithm first obtains an estimate δ̃j of D(Wj) such that (with probability

at least 1− 1/10 logβ(1/ǫ))) it holds that δ̃j ∈ [D(Wj), β · D(Wj)] if D(Wj) > ǫ/β2 and δ̃j < ǫ/β
otherwise.12

• Next, for each j ∈ [i′, i], if δ̃j < ǫ/β, then the algorithm resets δ̃j ← ǫ.

• Finally, for each j ∈ [i′, i], the algorithm sets w̃j ← δ̃j · β
j , and outputs βi′

β−1 +
∑

j∈[i′,i] w̃j as its

estimate of the effective support size.

As in the proof of Theorem 2.1, the analysis of Algorithm 2.2.1 focus on the case that the selected i
satisfies D(Wi) ≥

(β−1)·ǫ
6ℓ . But here we consider two sub-cases.

1. If D(Wi) > ǫ/β2, then, with high probability, it holds that D(Wi) ≤ δ̃i ≤ β · D(Wi), and
|Wi| ≤ w̃i ≤ β2 · |Wi| follows.

2. Otherwise (i.e., D(Wi) ≤ ǫ/β2), with high probability, the algorithm reset δ̃i ← ǫ. In this case,
relying on the foregoing hypotheses, we have D(Wi) < δ̃i = ǫ ≤ 6ℓ · (β − 1)−1 · D(Wi), and
|Wi| ≤ w̃i ≤

6ℓ
β−1 · β · |Wi| follows.

Hence, in both cases

|Wi| ≤ w̃i ≤
6ℓ · β2

β − 1
· |Wi| (4)

holds (where we either use ℓ = ω(1) or assume β < 7). We stress that here the estimate for |Wi| is
sandwiched more tightly than in the proof of Theorem 2.1; that, is the ratio between the upper and

lower bounds is 6β2

β−1 · ℓ (rather than is 6β2

β−1 · ℓ/ǫ).

A similar (but slightly different) analysis applies to each j ∈ [i′, i − 1]. Specifically, with high
probability, it holds (for each j ∈ [i′, i − 1]) that if D(Wj) > ǫ/β2 then |Wj| ≤ w̃j ≤ β2 · |Wj|,

whereas if D(Wj) ≤ ǫ/β2 then δ̃j = ǫ and |Wj| < D(Wj) · β
j ≤ ǫβj−2 < δ̃j · β

j = w̃j follows. Hence,
|Wj | < w̃j ≤ max(β2 · |Wj|, ǫ · β

j).
Using the forgoing bounds we sandwich the output value (i.e., (β− 1)−1 ·βi′ +

∑
j∈[i′,i] w̃j) between∑

j≤i |Wj| and O(ℓ) ·
∑

j≤i |Wj|. First, we observe that, with high probability, the output is lower-
bounded by

∑
j≤i |Wj |, since

∑

j≤i

|Wj| =
∑

j<i′

|Wj |+
∑

j∈[i′,i]

|Wj |

<
βi′

β − 1
+

∑

j∈[i′,i]

w̃j ,

12This estimate, eδj , is merely
√

β times the fraction of the number of occurrences of elements in Wj in the foregoing
sample. Note that if D(Wj) > ǫ/β2, then (w.h.p.) the empirical measure resides in [β−0.5 · D(Wj), β

0.5 · D(Wj)], and
otherwise the empirical count is smaller than ǫ/β1.5.

10

where we use
∑

j<i′ β
j < βi′−1 · β/(β − 1) as well as the fact that |Wj | ≤ βj for every j. Next,

using D(Wi) ≥
(β−1)·ǫ

6ℓ , which implies |Wi| ≥
(β−1)·ǫ

6ℓ · βi−1, we upper-bound the output value by
O(ℓ) ·

∑
j≤i |Wj |. In fact, foreseeing subsequent applications, we prove a more general statement

(which refers to auxiliary parameters η and ǫ′).

Claim 2.2.2 Suppose that |Wi| ≥ max(η · βi−1, w̃i/β
2) ≥ 1 and w̃j ≤ max(β2 · |Wj|, ǫ

′ · βj) for every

j ∈ [i′, i− 1]. Then, for i′ = max(1, i − logβ(1/ǫ′)), it holds that

βi′

β − 1
+

∑

j∈[i′,i]

w̃j <
β

β − 1
+

(
1 +

2ǫ′

(β − 1) · η

)
· β2 ·

∑

j≤i

|Wj|.

In our application η = (β−1)·ǫ
6ℓ and ǫ′ = ǫ; so i′ = max(1, i− logβ(1/ǫ)) and

(
1 + 2ǫ′

(β−1)·η

)
· β2 = O(ℓ).

Proof: For each j ∈ [i′, i− 1], combining w̃j ≤ max(β2 · |Wj |, ǫ
′ · βj) and |Wi| ≥ η · βi−1, we get

w̃j ≤ β2 · |Wj|+
ǫ′ · βj−i+1

η
· |Wi|. (5)

We also use βi′ ≤ max(β, ǫ′ · βi) ≤ β + β·ǫ′

η · |Wi|, where the first inequality is due to the definition of

i′ and the second inequality is due to |Wi| ≥ η · βi−1. Hence,

βi′

β − 1
+

∑

j∈[i′,i]

w̃j =
βi′

β − 1
+ w̃i +

∑

j∈[i′,i−1]

w̃j

≤
β

β − 1
+

β · ǫ′

(β − 1) · η
· |Wi|+ β2 · |Wi|+

∑

j∈[i′,i−1]

(
β2 · |Wj |+

ǫ′ · βj−i+1

η
· |Wi|

)

=
β

β − 1
+


 β · ǫ′

(β − 1) · η
+

β · ǫ′

η
·

∑

j∈[i′,i−1]

βj−i


 · |Wi|+ β2 ·

∑

j∈[i′,i]

|Wj |

<
β

β − 1
+

2β · ǫ′

(β − 1) · η
· |Wi|+ β2 ·

∑

j∈[i′,i]

|Wj |

<
β

β − 1
+

(
1 +

2ǫ′

(β − 1) · η

)
· β2 ·

∑

j∈[i′,i]

|Wj|.

The claim follow.

Recall that we have sandwiched the output of Algorithm 2.2.1 (i.e., (β − 1)−1 · βi′ +
∑

j∈[i′,i] w̃j)
between

∑
j≤i |Wj | and O(ℓ) ·

∑
j≤i |Wj |. Proceeding as in the proof of Theorem 2.1, we infer that

Algorithm 2.2.1 constitutes a O(ℓ)-factor approximator of the [ǫ, β · ǫ]-effective support size of D.

Reducing the factor that depends on the effective support size. The (approximation) factor
of O(ℓ) = O(log(n/ǫ)), which remains in Theorem 2.2, is due to the fact that we use D(Wi) = Ω(ǫ/ℓ)
for the selected i ∈ [ℓ̃′, ℓ̃], and did not try to farther capitalize on the fact that

∑
∈[eℓ′,eℓ]

D(Wj) = Ω(ǫ).

The key observation is that if Algorithm 2.1.3 happens to select i > ℓ̃′+logβ(ℓ̃/ǫ) such that D(Wi) =

Ω(ǫ/ℓ̃), then we can output Θ(ǫ/ℓ̃) · βi and use a better analysis of approximation factor. Loosely
speaking, in this case, we can show the existence of a distribution D′ that β2 · ǫ-close to D such that∑

j∈[i−logβ(eℓ/ǫ),i]
D′(W ′

j) = D′(W ′
i) = Θ(ǫ/ℓ̃) and

∑
j>iD

′(W ′
j) = 0, where W ′

j = {e : β−j < D′(e) ≤

β−(j−1)}, while noting that
∑

j<i−logβ(eℓ/ǫ)
|W ′

j | = O(ǫ/ℓ̃) ·βi. Hence, in this case, there exists a constant

11

c > 0 such that essβ2·ǫ(D) ≤ c · (ǫ/ℓ̃) · βi ≤ O(1) · essǫ(D). On the other hand, we show that if the

foregoing event (i.e., selecting i > ℓ̃′ + logβ(ℓ̃/ǫ) s.t. D(Wi) = Ω(ǫ/ℓ̃)) is unlikely, then this is due to∑
j∈[eℓ′,eℓ′+logβ(eℓ/ǫ)]

D(Wj) = Ω(ǫ), and in this case we can use ℓ̃′ + logβ(ℓ̃/ǫ) instead of ℓ̃, which means

that we lose a factor of O(log(ℓ̃/ǫ)) rather than a factor of ℓ̃. Iterating this reasoning for t − 1 times,
we get –

Theorem 2.3 (the iterative algorithm): For every constants β > 1 and t, k ∈ N, there exists an algo-

rithm that on input ǫ > 0 and oracle access to D, runs in time Õ(t/ǫ1+ 1
k) and outputs an O(log(t)(n/ǫ))-

factor approximator of the [ǫ, β · ǫ]-effective support size of D, where n = essǫ(D) and log(t) denotes t
iterated logarithms (i.e., log(1) m = log m and log(j+1) m = log(log(j) m)).

Proof: The case of t = 1 was established in Theorem 2.2, which actually states a stronger running-
time bound. Hence, we start by considering the case of t = 2 (and k = 1), where all notations are as
in the proofs of Theorems 2.1 and 2.2. We consider three cases, where the main cases are the last two.

1. If λ
def
= ℓ̃ − ℓ̃′ + 1 ≤ 1/ǫ, then we can proceed as in the proof of Theorem 2.2, except that

we use a sample of size Õ(λ/ǫ) = Õ(1/ǫ2) in order to obtain more accurate estimates of the
D(Wj)’s. Specifically, with such a sample, setting i′ = max(1, i − logβ(λ/ǫ)), we can obtain, for

each j ∈ [i′, i], an estimate δ̃j of D(Wj) such that (with probability at least 1−1/10 logβ(λ/ǫ))) it

holds that δ̃j ∈ [D(Wj), β ·D(Wj)] if D(Wj) > β−3 ·ǫ/λ and δ̃j < ǫ′
def
= β−2 ·ǫ/λ otherwise. We then

proceed as in Algorithm 2.2.1, while resetting δ̃j < ǫ′ to δ̃j ← ǫ′, and output βi′

β−1 +
∑

j∈[i′,i] w̃j .

The crucial fact is that with such better estimates, for each j ∈ [i′, i], it holds that |Wj | < w̃j ≤
max(β2 · |Wj|, O(βj−i) · |Wi|) (rather than |Wj | < w̃j ≤ max(β2 · |Wj |, O(βj−i · ℓ) · |Wi|) as in the
proof of Theorem 2.2).13 Hence, we obtain a O(1)-factor approximation of the [ǫ, β2 · ǫ]-effective
support size of D.

The main two cases deal with the situation in which λ > 1/ǫ, where we want to avoid running in
time Õ(λ/ǫ), which we cannot afford when λ is much larger than 1/ǫ. (Recall that λ = ℓ̃− ℓ̃′+1.)

2. If λ > 1/ǫ and
∑

j∈[eℓ′,eℓ′+2 logβ λ]
D(Wj) < 0.9∆̃, then, by repeatedly selecting i with probability

proportional to D(Wi), we obtain i ∈ [ℓ̃′ + 2 logβ λ + 1, ℓ̃] after O(1/ǫ) trials. (Here we use∑
j∈[eℓ′+2 logβ λ+1,eℓ]

D(Wj) > 0.1∆̃, and in the analysis (which follows) we shall also use λ > 1/ǫ.)

Furthermore, with probability at least 0.9, it holds that D(Wi) > ∆̃/100λ > (β − 1) · ǫ/200λ. In

this case, we output ǫ·βi

(β−1)·λ as the estimated size of the effective support size, and show that this

yields an O(1)-factor approximation of the [ǫ, β2 · ǫ]-effective support size of D.

The crux of the analysis is showing that the output (i.e., ǫ · βi/(β − 1) ·λ) is sandwiched between
essβ2·ǫ(D) and O(essǫ(D)). On the one hand, essβ2·ǫ(D) ≤ (β − 1)−1 · ǫ · βi/λ, because i −
2 logβ λ > ℓ′ and so

∑
j>i−2 logβ λD(Wj) < β2 · ǫ, whereas

∑
j≤i−2 logβ λ |Wj | <

∑
j≤i−2 logβ λ βj <

(ǫ/λ) ·βi/(β−1) (using 2 logβ λ ≥ logβ(λ/ǫ)). On the other hand, ess·ǫ(D) ≥ β−2 · |Wi|, which is

lower-bounded by D(Wi) ·β
i−3 > (β−1)·ǫ

200λ ·β
i−3. Hence, ǫ·βi/((β−1)·λ)

essǫ(D) < 200 · (β − 1)−2 ·β3 = O(1).

3. If λ > 1/ǫ and
∑

j∈[eℓ′,eℓ′+2 logβ λ]
D(Wj) ≥ 0.9∆̃, then we can proceed as in the proof of Theorem 2.2

except that we use ℓ̃′ + 2 logβ λ = ℓ̃′ + O(log ℓ) instead of ℓ̃, and 0.9∆̃ instead of ∆̃. In this case,

13That is, the analysis uses Claim 2.2.2 with ǫ′ as set here (i.e., ǫ′ = β−2 · ǫ/λ) and η = (β − 1) · ǫ/6λ, while noting

that the original argument implies that D(Wi) ≥ (β − 1) · ∆/6 · (eℓ − eℓ′ + 1) (rather than D(Wi) ≥ (β − 1) · ∆/6 · ℓ). (In
Algorithm 2.3.1 we shall use a slightly different setting.)

12

we obtain a O(log ℓ)-factor approximation of the [ǫ, β · ǫ]-effective support size of D. (Note that
O(log ℓ) = O(log log(essǫ(D)/ǫ)).)

Hence, in each case we make Õ(1/ǫ2) steps and obtain a O(log log(essǫ(D)/ǫ))-factor approximation
of the [ǫ, β · ǫ]-effective support size of D. This establishes the claim for t = 2 and k = 1. We shall
extend this result to general k ∈ N at the end of this proof.

For t > 2, we proceed almost exactly in the same manner, with the following three exceptions:
First, the threshold for the main case analysis is set to equal 1 − 0.1/t rather than 0.9 (so to increase
the probability mass in the last case).14 Second, in the third case we continue as in the current proof
with t ← t − 1 and ∆̃ ← (1 − (0.1/t)) · ∆̃ (rather than as in the proof of Theorem 2.2).15 Last, we
slightly modify the threshold distinguishing Case 1 from Cases 2–3 and the setting of i′. (The latter
modification as well as the tightening of the analysis are performed in preparation for the proof of the
next theorem.) For sake of clarity, we detail the recursive procedure next.

Algorithm 2.3.1 (recursive procedure with fixed parameters t and ℓ̃′): The varying parameters are

the remaining recursion-depth t′ (initially set to t), the remaining probability mass ∆′ (initially set to
∆̃), and the remaining interval length λ (initially set to ℓ̃− ℓ̃′ + 1).16 If t′ = 1, then we proceed as in

the proof of Theorem 2.2, and otherwise we proceed as follows, when setting c = 300t/(β − 1)2.

1. If λ < c/ǫ, then we proceed as in the proof of Theorem 2.2, except that we use a sample of size

Õ(λ/ǫ) = Õ(t/ǫ2), set i′ = max(1, i − logβ(6λ/(β − 1)3ǫ)), and output βi′

β−1 +
∑

j∈[i′,i] w̃j, where

i ∈ [ℓ̃′, ℓ̃′ + λ − 1] and the w̃j’s are determined as in Algorithm 2.2.1, except that δ̃j is reset to

ǫ′
def
= (β − 1)3 · ǫ/6λ if δ̃j < ǫ′.

(Recall that our estimates of the D(Wj)’s are better than in the proof of Theorem 2.2, since we

use a larger sample. Specifically, for each j ∈ [i′, i], with high probability, δ̃j ∈ [D(Wj), β ·D(Wj)]

if D(Wj) > ǫ′/β2 and δ̃j < ǫ′/β otherwise.)

We warn that approximately distinguishing between the following two cases requires approximating

the value of
∑

j∈[eℓ′+2 logβ λ+1,eℓ′+λ−1]
D(Wj) in the sense of distinguishing a value above 0.11∆′/t

from a value below 0.09∆′/t. This can be done using O(t/∆′) = O(t/ǫ) samples. Using the same

sample in all t − 1 recursion levels, it suffices to use a single sample of size Õ(t)/ǫ for these

approximations.

2. If λ ≥ c/ǫ and
∑

j∈[eℓ′,eℓ′+2 logβ λ]
D(Wj) <

(
1− 0.1

t

)
·∆′, then, by repeatedly selecting i with prob-

ability proportional to D(Wi), we obtain i ∈ [ℓ̃′ + 2 logβ λ + 1, ℓ̃′ + λ − 1] after O(t/ǫ) trials. In

this case, we output (β − 1) · ǫ · βi/300tλ as the estimated size of the effective support size.

3. If λ ≥ c/ǫ and
∑

j∈[eℓ′,eℓ′+2 logβ λ]
D(Wj) ≥

(
1− 0.1

t

)
·∆′, then we invoke this very procedure while

setting the remaining recursion-depth to t′−1, the remaining probability mass to (1−(0.1/t)) ·∆′,
and the remaining interval length to 3 logβ λ.

(Note that 2 logβ λ + 1 < 3 logβ λ < λ.)17

Hence, Cases 1 and 2 produce output by themselves, whereas Case 3 initiates a recursive call.

14This setting guarantees that the residual probability mass is reduced by a factor of 1−0.1/t rather than by a constant
factor (of 0.9). The point is that (1 − 0.1/t)t > 0.9, whereas 0.9t = exp(−t).

15Actually, when reaching the third case with t = 2, the recursive call will actually invoke Algorithm 2.2.1.
16Hence,

P

j∈[eℓ′, eℓ′+λ−1]
D(Wj) ≥ ∆′ holds.

17Both inequalities use λ ≥ c/ǫ > 300/(β − 1), while assuming (w.l.o.g.) that β ≤ 2.

13

The total complexity of the invocation of Algorithm 2.3.1 (with t′ = t) is Õ(t/ǫ2), which fits our aim
for k = 1. Before modifying the algorithm for general k ∈ N, let us analyze its performance.

If Case 1 holds, then the analysis provided in the proof of Theorem 2.2 holds, when adapted to
using more accurate estimates for the D(Wj)’s. Recall that in this case we obtain, for each j ∈ [i′, i],

an estimate δ̃j of D(Wj) such that (with probability at least 1− 1/10 logβ(6λ/(β − 1)3ǫ)) it holds that

δ̃j ∈ [D(Wj), β · D(Wj)] if D(Wj) > ǫ′/β2 and δ̃j < ǫ′/β otherwise, where in the latter case δ̃j is reset
to ǫ′ = (β − 1)3 · ǫ/6λ. Hence, |Wj| ≤ w̃j ≤ max(β2 · |Wj|, ǫ

′ · ǫj) for every j ∈ [i′, i], whereas the

fact that w̃j ≥ |Wj | (for all j ∈ [i′, i]) implies that essβ2·ǫ(D) ≤ βi′

β−1 +
∑

j∈[i′,i] w̃j . Observing that

D(Wi) ≥ η
def
= (β − 1) · ǫ/6λ = ǫ′/(β − 1)2 (rather than merely D(Wi) ≥ (β − 1) · ǫ/6ℓ as stated in the

proof of Theorem 2.2) and recalling that i′ = max(1, i− logβ(1/ǫ′)), we invoke Claim 2.2.2 and obtain

βi′

β − 1
+

∑

j∈[i′,i]

w̃j <
β

β − 1
+

(
1 +

2ǫ′

(β − 1) · η

)
· β2 ·

∑

j≤i

|Wj |

=
β

β − 1
+ (1 + 2 · (β − 1)) · β2 ·

∑

j≤i

|Wj |

< β5 ·
∑

j≤i

|Wj|,

where the last inequality may be assumed without loss of generalty.18 Recalling that essǫ(D) ≥
β−2 ·

∑
j≤i |Wj| (by the simplified form of Part 2 of Claim 2.1.2), it follows that the output in this case

(i.e., βi′

β−1 +
∑

j∈[i′,i] w̃j) is a β7-factor approximation of the [ǫ, β2 · ǫ]-effective support size of D.

When Case 2 holds we use
∑

j∈[eℓ′+2 logβ λ+1,eℓ′+λ]
D(Wj) > 0.1∆′/t in order to infer that an adequate

i (i.e., i ∈ [ℓ̃′ + 2 logβ λ + 1, ℓ̃′ + λ]) is indeed selected (w.h.p.) after O(t/ǫ) trials. Furthermore, with
probability at least 0.9, it holds that D(Wi) > ∆′/100tλ ≥ (β − 1)ǫ/300tλ. Using the minimality of ℓ′,
which implies

∑
j≤eℓ′+1

D(Wj) ≤ β2 · ǫ, and i > ℓ̃′ + 2 logβ λ (equiv., i− 2 logβ λ > ℓ̃′), we upper-bound

essβ2·ǫ(D) by
∑

j≤i−2 logβ λ−1 |Wj |. Hence, using i > ℓ̃′ + 2 logβ λ ≥ ℓ̃′ + logβ(300tλ/(β − 1)2ǫ), where

the last inequality is due to λ ≥ c/ǫ, we get

essβ2·ǫ(D) ≤
∑

j≤i−2 logβ λ−1

βj

<
βi−logβ(300tλ/(β−1)2ǫ)

β − 1

=
ǫ · (β − 1)

300tλ
· βi

which implies that the output (in this case) is at least essβ2·ǫ(D). On the other hand, D(Wi) >
(β− 1)ǫ/300tλ implies that |Wi| > (β− 1) · ǫ ·βi−1/300tλ, and applying (the simplified form of) Part 2
of Claim 2.1.2, we get

essǫ(D) ≥ β−2 ·
(β − 1) · ǫ

300tλ
· βi−1.

18Specifically, β
β−1

< (β − 1) · P

j≤i |Wj | follows from
P

j≤i |Wj | = ω(1), which can be justified by an alternative

approximation procedure that holds in case m
def
=

P

j≤i |Wj | = O(1). Recalling that
P

j>i D(Wj) < β2 ·ǫ, we show how to

find an [β2ǫ, β3ǫ]-effective support size of D in O(1/ǫ) time. Specifically, letting W =
S

j≤i Wj and H = {e ∈ W : D(e) ≥
(β3 − β2) · ǫ/m}, observe that D(H) ≥ D(W)− (β3 − β2) · ǫ > 1− β3 · ǫ. The suggested procedure finds all elements in H
using O(1/ǫ) samples, and outputs the largest v such the total weight of the heaviest v elements in H is at most 1−β2 · ǫ.
Denoting the set of the heaviest v elements by H ′, it follows that 1 − D(H ′) ∈ [β2 · ǫ, β3 · ǫ] and ess1−D(H′)(D) = v.
Hence, v is an [β2ǫ, β3ǫ]-effective support size of D.

14

Hence, the output (i.e., (β− 1) · ǫ ·βi/300tλ) is at most β3 ·essǫ(D). Combining both bounds, we infer
that (in this case) the output is an β3-factor approximation of the [ǫ, β2 · ǫ]-effective support size of D.

We are left with two cases: The case of t′ = 1 (handled in the preamble of Algorithm 2.3.1) and
Case 3 (in which t′ > 1). In the latter case (i.e., for t′ > 1), we recurse, and otherwise (i.e., for t′ = 1),
we invoke Algorithm 2.2.1 (with the current ∆′ and λ). The key observation is that, at this time (i.e.,
when t′ = 1), it holds that λ = O(log(t−1)(O(log(n/ǫ)))) and ∆′ ≥ (1− (0.1/t))t−1 · ∆̃ > 0.9∆̃. Hence,
this invocation produces an O(λ)-factor approximation of the [ǫ, β · ǫ]-effective support size of D. This
establishes the theorem for k = 1.

Turning to general k ∈ N, we modify Algorithm 2.3.1 by merely replacing the thresholds that
govern the choice of cases. Specifically, for distinguishing Case 1 from Cases 2–3, we use a threshold of
k2·(c/ǫ)1/k rather than c/ǫ, whereas distinguishing between Case 2 and Case 3 is done based on the value
of

∑
j∈[eℓ′,eℓ′+(k+1)·logβ λ]

D(Wj) (rather than
∑

j∈[eℓ′,eℓ′+2 logβ λ]
D(Wj)). Similarly, at the end of Case 3,

the remaining interval length is set to (k+2) · logβ λ (rather than to 3· logβ λ), and λ ≥ k2 ·(c/ǫ)1/k

is used to argue that (k + 2) · logβ λ < λ. Hence, the complexity of Case 1 is Õ(λ/ǫ) = Õ(t/ǫ1+ 1
k)

(rather than Õ(t/ǫ2)), whereas in the analysis of Case 2 we use (k + 1) · logβ λ ≥ logβ(cλ/ǫ) (rather
than 2 · logβ λ ≥ logβ(cλ/ǫ)).19 The theorem follows.

Theorem 2.4 (the iterative algorithm, revised): For every constants β > 1 and k ∈ N, there exists

an algorithm that on input ǫ > 0 and oracle access to D, runs in expected time Õ(log∗(n/ǫ)/ǫ1+ 1
k) and

outputs an β-factor approximator of the [ǫ, β · ǫ]-effective support size of D, where n = essǫ(D) and

log∗m is the minimal t ∈ N satisfying log
(t)
2 m < 2.

Unlike in the previous three theorems, the running time stated in Theorem 2.4 depends on the effective
support size and is bounded in expectation only.20 These two features seem related, since such an
algorithm should obtain some crude and necessarily randomized estimate of the effective support size
of the distribution in order to determine its own running time. On the other hand, recall that by
Observation 1.5, Theorem 2.4 implies a 1-factor approximator of the [ǫ, (β + (β − 1)) · ǫ]-effective

support size of D, and by change of parameters we infer that the output is an [ǫ, β · ǫ]-effective support
size of D.

Proof: Intuitively, we invoke Theorem 2.3, while setting t = log∗(n/ǫ). However, in this case, t is not a
constant, and we do not know it. Still, we can overcome these difficulties in one of two ways, where the
more elegant way (presented first) was suggested to us by Clement Canonne. The crucial observation,
used in both ways, is that Cases 1 and 2 in Algorithm 2.3.1 provide a β-factor approximation, whereas

the case of t′ = 1 can be avoided. Hence, recursing till either Cases 1 or Case 2 occurs, we obtain the
desired approximation factor.

The first way to do so is to first obtain a very crude approximation of the effective support size.
Specifically, invoking the basic algorithm (of Theorem 2.1), we obtain in O(1/ǫ)-time an O(ǫ−1 log(n/ǫ))-
factor approximation of the [ǫ, β ·ǫ]-effective support size of D, where n = essǫ(D). Denoting this value
by ñ, we set t = 4k · log∗β(ñ/ǫ)) = O(log∗(n/ǫ)), and invoke Algorithm 2.3.1, while noting that this set-
ting of t prevents the algorithm from ever reaching the case of t′ = 1 (since iterating λ← (k +2) logβ λ

19Indeed, here we use λ ≥ (c/ǫ)1/k. The fact that Cases 2 and 3 actually presumes λ ≥ k2 · (c/ǫ)1/k is used only when
verifying that (k + 2) logβ λ < λ.

20For any t ∈ N, one can generically convert an approximator that runs for expected time T = T (ǫ,D), where T is
unknown a priori, into an approximator that runs for O(t · T)-time with probability at least 1 − 2−Ω(t). To do so, we
invoke the algorithm t times in parallel, suspends all executions as soon as 90% of the them terminate, and output the
median value obtained in these 0.9t invocations. The point is that, with probability at least 0.95, a random execution
runs for at most 20 · T steps. Hence, with probability at least 1− 2−Ω(t), more than 90% of the executions will terminate
within 20 · T steps and most of them will output a correct value (i.e., an [ǫ, β · ǫ]-effective support size).

15

for t−2 times, starting with λ = O(logβ(ñ/ǫ)), yields a value smaller than k2 ·(c/ǫ)1/k).21 The theorem
follows.

The alternative way is to adapt Algorithm 2.3.1 so that it does not use t at all. Specifically, first,
we replace the varying parameter t′, which represent the remaining recursion-depth, by a varying
parameter that represents the current recursion-depth, and remove the stopping rule that refers to the
case that t′ = 1. Second, we change the threshold that distinguishes the two main cases (i.e., Cases 2

and 3) from
(
1− 0.1

t

)
· ∆′ to

(
1− 1

g(t′′)

)
· ∆′, where t′′ represents the current recursion depth and

g(m) = Õ(m) satisfies
∑

m≥1(1/g(m)) < 0.1 (e.g., g(m) = 20m · log2
2(m + 1) will do).22 Lastly, the

constant c = 300t/(β − 1)2, will be replaced by a variable c that will be set to c = 30g(t′′)/(β − 1)2

(assuming g(m) = 20m · log2
2(m + 1) is used). What will happen is that we shall either stop at Case 2

or at Case 1, since if we never stop at Case 2 then at some point we shall reach λ < 600 < c/ǫ. In the

analysis, we use the fact that
∏

t′′≥1

(
1− 1

g(t′′)

)
> 1−

∑
t′′≥1

1
g(t′′) > 0.9.

21In fact, for sufficiently large k, this (t − 2)-step iterative process yields a value smaller than k2.
22Note that

P

m≥1
1

m·log2

2
(m+1)

<
P

m≥1
1

m·⌊log
2
(m+1)⌋2

<
P

i≥1 2i · 1
2i·i2

< 2.

16

Acknowledgments

I am grateful to Clement Canonne for numerous comments and suggestions regarding a prior version
of this write-up.

This project was partially supported by the Israel Science Foundation (grant No. 1146/18), and
has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 819702).

References

[1] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld. The complexity of approximating the
entropy. SICOMP, Vol. 35 (1), pages 132–150, 2005.

[2] E. Blais, C.L. Canonne, and T. Gur. Distribution Testing Lower Bounds via Reductions from
Communication Complexity. In 32nd Computational Complexity Conference, pages 28:1–
28:40, 2017.

[3] C.L. Canonne and R. Rubinfeld. Testing Probability Distributions Underlying Aggregated
Data. In 41st ICALP, pages 283–295, 2014.

[4] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[5] O. Goldreich. Testing Graphs in Vertex-Distribution-Free Models. ECCC, TR18-171, 2018.
(See Revision Nr 1, March 2019.)

[6] O. Goldreich. Testing Bipartitness in an Augmented VDF Bounded-Degree Graph Model.
arxiv, 1905.03070 [cs.DS], 2019.

[7] M.J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire, and L. Sellie. On the learn-
ability of discrete distributions. In 26th STOC, pages 273–282, 1994.

[8] K. Onak and X. Sun. Probability-Revealing Samples. In 21st AISTATS, pages 2018–2026,
2018.

[9] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong Lower Bounds for Approximating
Distribution Support Size and the Distinct Elements Problem. SICOMP, Vol. 39 (3), pages
813–842, 2009.

17

Appendix A: Reproducing Algorithms from [6]

This appendix reproduces the algorithms presented by us in [6, Sec. 2.2], while adapting the notation
to the one used in the current write-up. Both algorithms are different from all algorithms presented in
Section 2, but they obtain inferior results.

A simple approximation of the effective support size. We first present a simple algorithm
for obtaining a rather rough (but sufficiently good for our purposes) approximation. Given an “ef-
fectiveness” parameter ǫ, we proceed in iterations such that in the ith iteration we take a sample of

m = O(ǫ−1 log i) elements of D, and halt outputting 2i/ǫ if the number of samples that have D-value

below ǫ/2i is at most 3ǫ ·m.
Observer that (in iteration i), with probability at least 1 − 0.01/i2, the sample approximates the

total weight of the “light elements” (i.e., elements having D-value below ǫ/2i) in the sense that if
Pre←D[D(e) < ǫ/2i] < 2ǫ, (resp., if Pre←D[D(e) < ǫ/2i] ≥ 4ǫ), then the number of samples that have
D-value below ǫ/2i is at most 3ǫ ·m (resp., is greater than 3ǫ ·m).

Now, letting n be an upper bound on the ǫ-effective support size of D (and assuming for simplicity
that n is a power of two), observe that, with high (constant) probability, we halt by iteration i∗ = log2 n,
because Pre←D[D(e) < ǫ/2i∗] < n ·ǫ/2i∗+ ǫ = 2ǫ, where the first (resp., second) term is due to elements
that are (resp., are not) in the effective support of D. Hence, with high (constant) probability, the
algorithm outputs a value that is at most n/ǫ. (Actually, if we reach iteration i∗, we halt in it with
probability at least 1 − 0.01/(i∗)2; it follows that with probability at 1 − 0.01/ log2 n, the algorithm
outputs a value that is at most n/ǫ.)

On the other hand, assuming that the 4ǫ-effective support size of D is at least n′ (and assuming
that n′ is also a power of two), with high (constant) probability, we do not halt before iteration
i+ = log2(ǫ · n

′), because otherwise Pre←D[D(e) < ǫ/2i+−1] < 4ǫ, which implies that D has 4ǫ-effective
support size at most n′/2 (since Pre←D[D(e) < 2/n′] < 4ǫ implies that D is 4ǫ-close to a distribution
of support size at most n′/2). Hence, with high (constant) probability (i.e., with probability at least
1−

∑
i<i+ 0.01/i2 > 0.98), the algorithm outputs a value that is at least n′.

It follows that, with high (constant) probability, the algorithm outputs a number that lies between
n′ and n/ǫ (i.e., between the half the 4ǫ-effective support size of D and 2/ǫ times its ǫ-effective support
size). Furthermore, with high (constant) probability, this algorithm runs for

∑
i≤i∗ O(ǫ−1 · log i) =

Õ(log n)/ǫ steps (and its expected number of steps can be similarly bounded). Hence, we got

Theorem A.1 (obtaining a crude approximation of the effective support size): There exist an (4/ǫ)-
factor approximator of the [ǫ, 4ǫ]-effective support of distributions that runs in expected time Õ(ǫ−1 log n),
where n denote the approximator’s output.

Building on any such crude approximation of the effective support size, one can obtain a better ap-
proximation is shown next.

Obtaining better approximations of the effective support size. For starters, we present a
tighter analysis of (a minor variant of) the foregoing algorithm. Specifically, for any constant β > 1,
in the ith iteration, we take a sample of m = O(ǫ−1 log i) elements of D, and halt outputting 2i/ǫ
if the number of samples that have D-value below (β − 1) · ǫ/2i is at most β2 · ǫ · m. In analyzing
the probability that this algorithm halts by iteration i∗ = log2 n, we use the fact that Pre←D[D(e) <
(β − 1) · ǫ/2i∗] < n · (β − 1) · ǫ/2i∗ + ǫ = β · ǫ, whereas in analyzing the probability that the algorithm
does halts before iteration i+ = log2(ǫ ·n

′) implies Pre←D[D(e) < (β− 1) · ǫ/2i+−1] < β3 · ǫ (where here
n′ is the β3ǫ-effective support size).23 It follows that, with high (constant) probability, the algorithm

23Here we use the fact that (in iteration i), with probability at least 1−0.01/i2, the sample approximates the total weight
of the “light elements” (i.e., elements having D-value below ǫ/2i) in the sense that if Pre←D[D(e) < (β − 1) · ǫ/2i] < β · ǫ,

18

outputs a number, denoted ñ, that lies between half the β3 · ǫ-effective support size of D and 2/ǫ
times its ǫ-effective support size. That is, we obtain a (4/ǫ)-factor approximator of the [ǫ, β3ǫ]-effective
support of distributions.

To obtain an even better approximation of the effective support size, we use the rough estimate
ñ obtained above in order to approximate the number of elements that have D-value approximately
βi−0.5 for every i ∈ [O(log ñ/η)]. Indeed, our first step is ignoring elements having D-value below
ǫ/ñ or so. Specifically, setting ǫ′ = β3 · ǫ, recall that if D has an ǫ′-effective support of size ñ, then

D(H) ≥ 1−βǫ′ for H
def
= {v : D(v) ≥ (β−1) ·ǫ′/ñ} (see prior paragraph, while replacing i∗ by log2 ñ).24

Hence, assuming that D(H) ≤ 1− ǫ and letting ǫ′′ = β · ǫ′ = β4 · ǫ, it holds that |H| lies between the
minimal ǫ′′-effective support size of D and its minimal ǫ-effective support size, and so providing a good
approximation of the “effective size” of H will do. (In the case that D(H) > 1− ǫ additional steps will
be needed.)

To (effectively) approximate |H|, we let Wi = {e : β−i < D(e) ≤ β−(i−1)}, and observe that it

suffice the approximate D(Wi) for i = 1, ..., ℓ, where ℓ
def
= logβ(ñ/(β − 1) · ǫ′) = O((β − 1)−1 · log(ñ/ǫ)).

Actually, letting I = {i ∈ [ℓ] : D(Wi) ≥ (β − 1)ǫ′′/ℓ}, it suffices to approximate D(Wi) for every
i ∈ I, which yields approximations of the corresponding |Wi|’s (using |Wi| ≈ D(Wi)/β

−(i−0.5)). That

is, we do not actaully approximate |H| but rather approximate the size of H ′
def
=

⋃
i∈I Wi ⊆ H, while

capitalizing on D(H \H ′) ≤ (β − 1) · ǫ′′. Hence, we will approximate the minimal ǫ′′′-support size for
some ǫ ≤ ǫ′′′ ≤ βǫ′′ = β5ǫ. Specifically, for each i ∈ [ℓ], using a sample of O(tℓ/(β − 1)2 · ǫ′) samples,
we obtain (with probability 1− 2−t) a β-factor approximation of D(Wi) for each i ∈ I, which yields a
β2-factor approximation of |Wi| (since |Wi| ∈ [βi−1D(Wi), β

i · D(Wi))). Note that the rough estimate
of the effective support size of D (i.e., ñ) is only used in order to determine ℓ.

Recall that we have assumed that D(H) ≤ 1− ǫ, whereas this is not necessarily the case. Needless
to say, we can easily estimate 1 − D(H) up to any desired constant factor (using O(1/ǫ) samples of
D). In case we are quite sure that D(H) > 1 − ǫ (which will happen if D(H) > 1 − βǫ but not if
D(H) < 1 − β−1ǫ), we can reduce the estimate obtained for |H| by disposing an adequate weight of
H; that is, we dispose as many as the the lightest elements as possible till reaching a subset of H ′ that
has D-value that is most likely to be below 1− ǫ. Note that the foregoing process is performed without
making any samples or queries; it is solely based on the estimated values of D(Wi) for i ∈ I already
obtained. Hence, we get.

Theorem A.2 (obtaining a good approximation of the effective support size): For every constant

β > 1, there exist a β2-factor approximator of the [β−1 · ǫ, β5 · ǫ]-effective support of distributions that

makes a number of queries that is almost logarithmic in the quantity it outputs. Specifically, when given

oracle access to D, the expected number of steps performed by the approximator when outputting the

value n is Õ(ǫ−1 log n).

Needless to say, by a change in parameters we can make n lie between the β · η-effective support
size of D and β times its η-effective support size. Hence, we obtain a β-factor approximator of the
[ǫ, β · ǫ]-effective support of distributions.

Appendix B: Another Inferior Algorithm

This appendix presents an algorithm that is similar to the one stated in Theorem A.2. Achieving the
same result as Theorem A.2, it is inferior to Theorem 2.4. (This algorithm was devised by us before

(resp., if Pre←D[D(e) < (β − 1) · ǫ/2i] ≥ β3 · ǫ), then the number of samples that have D-value below (β − 1) · ǫ/2i is at
most β2 · ǫ · m (resp., is greater than β2 · ǫ · m).

24In other words, observe that Prv←D[D(v) < (β−1) · ǫ′/en] < en · (β−1) · ǫ′/en+ ǫ′ = β · ǫ′, where the first (resp., second)
term is due to elements that are (resp., are not) in the effective support of D.

19

realizing that the analysis of Algorithm 2.3.1 can be tighted so that Theorem 2.4 can yield a β-factor
approximation rather than an O(1)-factor approximation.)

Using any crude approximation of the effective support size, one can obtain a better approximation
factor by estimating the values of the D(Wj)’s for all j ∈ [ℓ̃]. The point is that the crude approximation
is used only to determine a good upper bound on ℓ = O(log(n/ǫ)), where n = essǫ(D). The best result
of this type is obtained by using Algorithm 2.2.1 as a starting point, or rather by using a variant of
the proof of Theorem 2.2.

Theorem B.1 (obtaining a β-factor approximation): For every constant β > 1, there exists an al-

gorithm that on input ǫ > 0 and oracle access to D, runs in expected time Õ(ǫ−1 · log(essǫ(D))) and

outputs an β-factor approximator of the [ǫ, β · ǫ]-effective support size of D.

Recall that by Observation 1.5, Theorem B.1 implies a 1-factor approximator of the [ǫ, (β +(β−1)) · ǫ]-
effective support size of D, and by change of parameters we infer that the output is an [ǫ, β · ǫ]-effective
support size of D.

Proof: We adapt the proof of Theorem 2.2 by obtaining more accurate approximations of the relevant
D(Wj)’s and tightening the analysis. Specifically, rather than obtaining a constant factor approximation
for each D(Wj) = Ω(ǫ), we obtain such an approximation for each D(Wj) = Ω(ǫ/ℓ). Of course, this
requires increasing the sample complexity by a factor of O(ℓ), which we can afford per the claim of
the current theorem. (Indeed, the adaptation is identical to the one used in Case 1 of Algorithm 2.3.1,
except that here we use ǫ/ℓ instaed of ǫ/λ.) Specifically, our algorithm proceeds as follows.

• As in Algorithm 2.2.1, the algorithm starts by determining ℓ̃ and ℓ̃′ and selecting i ∈ [ℓ̃′, ℓ̃] as in
Algorithm 2.1.3. (Actually, we could have afforded to select i ∈ [ℓ̃′, ℓ] as having the highest δ̃i

value among those in [ℓ̃′, ℓ̃], rather than selecting i ∈ [ℓ̃′, ℓ̃] with proportional to D(Wi).)

• Next, letting i′ = max(1, i−logβ(6βℓ/((β−1)3 ·ǫ))) (rather than i′ = max(1, i−logβ(1/((β−1)ǫ)))),

and using a sample of size Õ(ℓ/ǫ), the algorithm obtains, for each j ∈ [i′, i], an estimate δ̃j of

D(Wj) such that (with probability at least 1−1/10 logβ(ℓ/ǫ))) it holds that δ̃j ∈ [D(Wj), β·D(Wj)]

if D(Wj) ≥ η
def
= (β−1)3·ǫ

6βℓ and δ̃j < β · η otherwise.

• As in Algorithm 2.2.1, for each j ∈ [i′, i], if δ̃j < β · η, then the algorithm resets δ̃j ← η.

• Finally, for each j ∈ [i′, i], the algorithm sets w̃j ← δ̃j · β
j , it outputs βi′

β−1 +
∑

j∈[i′,i] w̃j as its
estimate of the effective support size.

As in the proofs of Theorems 2.1 and 2.2, the analysis of the foregoing algorithm focus on the case
that the selected i satisfies D(Wi) ≥

(β−1)·ǫ
6ℓ = β·η

(β−1)2 > η (assuming, w.l.o.g, that β < 2.618). It

follows that δ̃i ∈ [D(Wi), β · D(Wi)] (w.h.p.). Hence, |Wi| ≤ w̃i ≤ β2 · |Wi| holds. Likewise, with high
probability, for each j ∈ [i′, i− 1], if D(Wj) ≥ η then |Wj| ≤ w̃j ≤ β2 · |Wj |, and otherwise δ̃j = η and
|Wj | < D(Wj)·β

j < η·βj = w̃j . Hence, with high probability, the output (i.e., (β−1)−1·βi′+
∑

j∈[i′,i] w̃j)
is lower-bounded by

∑
j≤i |Wj |, since

∑

j≤i

|Wj| =
∑

j<i′

|Wj |+
∑

j∈[i′,i]

|Wj |

<
βi′

β − 1
+

∑

j∈[i′,i]

w̃j .

20

Next, using |Wi| ≥ βi−1 · D(Wi) ≥
η

(β−1)2
· βi, we upper-bound the output value by β ·

∑
j≤i |Wj |. We

first recall that for each j ∈ [i′, i], either w̃j ≤ β2 · |Wj | or w̃j = η · βj−i · βi ≤ βj−i · (β − 1)2 · |Wi|,
which implies

w̃j ≤ β2 · |Wj |+ (β − 1)2 · βj−i · |Wi|. (6)

We also use βi′ ≤ max(β, (β−1)3·ǫ
6βℓ · βi) = max(β, η · βi) ≤ (β − 1)2 · |Wi|, where the first inequality is

due to the definition of i′ and the second inequality is due to |Wi| ≥ βi · η/(β − 1)2. Hence,

βi′

β − 1
+

∑

j∈[i′,i]

w̃j =
βi′

β − 1
+ w̃i +

∑

j∈[i′,i−1]

w̃j

≤ (β − 1) · |Wi|+ β2 · |Wi|+
∑

j∈[i′,i−1]

(
β2 · |Wj|+ (β − 1)2 · βj−i · |Wi|

)

=


(β − 1) + (β − 1)2 ·

∑

j∈[i′,i−1]

βj−i


 · |Wi|+ β2 ·

∑

j∈[i′,i]

|Wj |

<

(
(β − 1) + (β − 1)2 ·

1

β − 1

)
· |Wi|+ β2 ·

∑

j∈[i′,i]

|Wj |

< (β2 + 2 · (β − 1)) ·
∑

j∈[i′,i]

|Wj|.

Noting that β2 + 2(β − 1) < β4, we have established that the algorithm outputs a β6-factor approxi-
mation of the [ǫ, β · ǫ]-effective support size of D (where the extra factor of β2 is due to the use of the
simplified form of Part 2 of Claim 2.1.2). Replacing β6 by β, the proof is completed.

21

