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Abstract

We consider the complexity of enumerating ordered sets, defined as solving the following
type of a computational problem: For a predetermined ordered set, given i ∈ N, one is required
to answer with the ith member of the set (according to the predetermined order).

Our focus is on countable sets such as the primes and the rational numbers, although in
these cases we provide no decisive answers. In general, we do not report of any exciting results,
but rather make a few observations and suggest some open problems.
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1 Introduction and Overview

Most studies of the “complexity of enumeration” refer to enumerating the solutions to search
problems (see, e.g., [8, 4]). Specifically, for a fixed relation R ⊆ {0, 1}∗ × {0, 1}∗, given an input

x, the task is to find all solutions to x (i.e., all elements of the set R(x)
def
= {y : (x, y)∈R}), and

the main complexity measure considered is the “delay” (i.e., time spent between outputting two
consecutive solutions).1 In particular, typically, the order in which these elements are generated is
at the discretion of the algorithm’s designer.2

The last point holds also with respect to previous studies of the problem of enumerating (or
generating) the elements of some combinatorial set (see, e.g., [10, Sec. 7.2]).3 For example, on input

n ∈ N, one may be asked to generate all permutations over [n]
def
= {1, 2, ..., n}, whereas the order

in which these permutations are generated is typically left to the algorithm’s designer. In fact,
the various algorithms suggested in [10, Sec. 7.2.1.2] are aimed at optimizing various “complexity”
criteria.

In contrast, by enumerating ordered sets we mean enumerating the elements in a single ordered
(countable) set according to the predetermined (total) order. Furthermore, we are interested in the
generation of individual elements according to their location in the predetermined order. Specifi-
cally, for a fixed set S ⊆ {0, 1}∗ and a fixed order on strings (e.g., the lexicographical order), we
consider the task in which, given i ∈ N, one is required to output the ith element in S, denoted
enmS(i). We consider two notions of complexity, but our focus is on the first (i.e., strict) one.

A strict notion: Here, the complexity of enumerating S is defined as the complexity of computing
the function enmS : N → {0, 1}∗, where (as usual) elements of N are presented in binary
notation.

Typically (but not always), this notion is closely related to the complexity of counting the
number of elements in S that precede a given string (according to the predetermied order):
See Theorem 1.5.

An amortized notion: Here, we actually consider the time complexity of producing the list of
the first i elements (i.e., affecting the mapping i 7→ (enmS(1), ..., enmS(i))), for every i ∈ N.
Dividing the total time by i yield a notion of amortized complexity.

We stress that information generated while producing the first i − 1 elements can be used
when producing the ith element. A more stringent notion may refer to the average time it
takes to evaluate enmS on the first i numbers.

Recall that the prior works (e.g., [4, 8, 10]) are focused on computing the successive function
(according to an order that is chosen by the algorithm’s designer). We stress that the complexity
of computing the successive function does not yield good upper bounds on the (strict) complexity
of computing the corresponding enumeration function.

Our main point is that, while in some cases the order in which elements are enumerated is
immaterial, there are cases in which a natural (predetermined) order matters. This is most evident

1In addition, one also considers the time to generate the first solution and the time to determine that no additional
solution exists. Conceptually, we view these as special cases of the main complexity measure (i.e., “delay”).

2We mention that both [8] and [10] refer to cases in which enumeration is according to a natural order (e.g., the
lexicographic one), but they seem to view it as an extra feature.

3Given the vast volume of [10, Sec. 7.2], which spans more than 230 pages, it is possible that facts such as
Observation 1.3 appear there.
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in the case of enumerating “naturally” ordered sets such as the prime numbers and the rational
numbers. More generally, in many cases, it is natural to require that elements having shorter
description be enumerated before elements having longer description.

Another important point is that we focus on a single countable ordered set rather than on
a countable sequence of finite sets. The reason that this technical difference matters is that the
enumeration task is stated in terms of a single order, which is an order on the elements not on the
sets. Specifically, given i ∈ N, one is asked to return the ith element in the ordered set (or the i first
elements in the case of amortize complexity). In contrast, when considering a countable sequence
of finite sets, one is asked to produce all elements in one of these sets, and is not required to figure
out (implicitly) the number of elements in all prior sets.

1.1 The strict notion

Let us first spell out the weak relation between our focus and the focus of most prior studies.

Remark 1.1 (relation to enumerating solutions): For a search problem R ⊆ {0, 1}∗ × {0, 1}∗, we
consider the set S = {x0ℓ(|x|)−|y|1y : (x, y) ∈ R}, where ℓ : N→ N is a monotonically increasing
function such that ℓ(n) is an upper bound on the length of solutions to n-bit long instances. Then,
the complexity of enumerating solutions to R (in the standard sense (i.e., as in [8, 4])) is upper-
bounded by the complexity of enumerating S (according to the lexicographic order). Furthermore,
letting R(x) = {y : (x, y) ∈ R}, we can generate the jth string in R(x) by first determining (see
Theorem 1.5) the number of elements in S that precede x0ℓ(|x|)1, denoted nx, and then finding the
nx + jth element in S. Note, however, that the converse does not hold.

� It may be harder to enumerate the solutions according to a predetermined order rather than
arbitrarily (i.e., according to the order determined by the enumerator itself).

� It may be possible to enumerate solutions to R (i.e., enumerate R(x) when given x) without
determining the number of solutions to all prior instances (i.e.,

∑
z<x |R(z)|).

Note that enumerating (or generating) the elements of some combinatorial set (e.g., [10, Sec. 7.2])
can be cast as a search problem.4

Using the fact that efficiently enumerating an ordered set implies efficiently counting the number of
elements in the set that precede a given string (see Theorem 1.5), it follows that some enumeration
problems are #P-hard: This holds for the enumeration problem of a set S that is defined as in
Remark 1.1 based on any search problem R for which counting the number of solutions is #P-hard.

Some examples. In contrast to Remark 1.1, we focus on the enumeration of “natural” countable
sets, of the type that appear in standard Math textbooks. In order to emphasize this focus as well
as offer a complexity-theoretic perspective on traditional claims of countability, we spell out a few
simple example, listing them according to the complexity of enumeration.

1. Enumerating N itself. This task is, of course, trivial, since enmN(i) = i.

4Typically, on input n, one is required to generate all elements of a finite set Sn. This can be captured by the search
problemR such that (x, y)∈R if and only if y∈S|x| (or, alternatively, by the search problem {(1n, y) : n∈N ∧ y∈Sn}).
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2. Enumerating the even natural numbers. This task is almost trivial (i.e., it is in NC0), since
enm2N(i) = 2i, which means that the algorithm amounts to appending a zero.

3. Enumerating the odd natural numbers. Here, given i we need to compute 2i − 1, which is
slightly less trivial than computing 2i (e.g., it is in AC0 but not in NC0).

4. Enumerating the set 3N = {3n :n∈N}. Here, given i we need to compute 3i, which is slightly
less trivial than computing 2i−1. (E.g., computing enm3N requires width three ROBP, whereas
enm2N−1 can be computed by width two ROBP.)

5. Enumerating all (natural numbers that are) squares. Here, given i we need to compute i2.
This is clearly feasible; it is in NC1 (but not in AC0[p] for any fixed prime p).5

6. Enumerating all (natural number that are) powers of two. Here, given i we need to compute
2i, which means that the output length is exponential in the input length. This is clearly
infeasible (i.e., cannot be done in polynomial time).

Examples 1–5 illustrate a fine complexity hierarchy among enumeration problems. In contrast to
them, Example 6 illustrates an enumeration problem that requires exponential time, but this lower
bound is due to the extreme sparsity of the target set (to be enumerated): the ith element in it has
length i + 1 > 2|i|−1. A much more natural enumeration problem that seems very hard, although
it is dense, is presented next.

Observation 1.2 (enumerating the prime numbers): Enumerating the set of all prime numbers,
according to their size, seems infeasible, because this problem is computationally equivalent to count-
ing the number of primes that are smaller than a given natural number (see Theorem 1.5). The
best known algorithm for the latter problem runs in exponential-time (see [7] and the references
therein). We stress that the ith prime number is of length |i|+ o(|i|), so (unlike in Example 6) the
perceived difficulty of the enumeration task is not due to the length of the desired output.

Before proceeding let us comment on the choice of the predetermined order. In general, we think
of this order as being determined by the ‘user’ (i.e., the application) rather than by the algorithm’s
designer. Still, in some cases, standard (and natural) orders are extremely appealing.

Some standard orders. In the case of the natural numbers, the standard order is indeed the
one according to which the natural numbers are actually defined (i.e., by use of the successive
function). In the case of the set of all strings, the standard order is the lexicographical one (in
which longer strings appear after shorter ones, and the bit 1 appears after the bit 0). Needless
to say, these two standard orders (almost) coincide under the standard representation of natural
numbers by binary strings.6 When moving to t-tuples of natural numbers, a standard choice is that
(m1, ...,mt) precedes (n1, ..., nt) if either

∑
i∈[t]mi <

∑
i∈[t] ni or

∑
i∈[t]mi =

∑
i∈[t] ni and for some

t′ ∈ [t − 1] it holds that mt′ < nt′ and mi = ni for all i ∈ [t′ − 1]. This order is used in standard
texts that seek enumeration of Nt, and we call it the standard order of t-tuples.

5Note that integer multiplication is AC0-reducible to squaring, whereas integer multiplication is not in AC0[p].
The latter fact holds because, for any prime q ̸= p, addition mod q, which is hard for AC0[p], is AC0-reducible to
integer multiplication.

6Actually, the most straightforward way of representing the natural numbers by (non-empty) strings avoids the
1-bit long string 0. Alternatively, N ∪ {0} corresponds to {0, 1}+. Yet another correspondence is of N with {0, 1}∗
(when dropping the leading 1 in the binary representation of numbers).
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Observation 1.3 (enumerating tuples of natural numbers): For any t ∈ N, the set of t-tuples
ordered according to the foregoing standard order can be enumerated in polynomial time. The key
observation is that for every s ∈ N and t′ ∈ N, the cardinality of the set

Ns,t′
def
=

(q1, ..., qt′) ∈ Nt′ :
∑
i∈[t′]

qi = s

 (1)

is Ns,t′
def
=

(
s−1
t′−1

)
, which is a polynomial of degree t′ − 1 in s with coefficients that only depend on

t′. Hence, given a = (a1, ..., at), we can compute the number of t-tuples preceding a in polynomial
time, since this number can be represented by a polynomial of degree t in the ai’s with coefficients
that only depend on t (or rather as a sum of t bivariate polynomials of degree t in some partial
sums of the ai’s (with coefficients that only depend on t)).7

We are often interested in enumerating an easily recognizable subset of the set of t-tuples of natural
numbers (e.g., ordered pairs representing the positive rational numbers). In light of Remark 1.1
(as well as Observation 1.2), this may not be feasible, even in the case of t = 1 (when insisting on
the standard order).

On enumerating the rational numbers. Indeed, how about enumerating the positive rational
numbers? Specifically, we associate the rational numbers with ordered pairs of natural numbers
that are relatively prime, and seek to enumerate the set of these pairs according to the standard
order of pairs (used in Observation 1.3).

An efficient algorithm for generating all rational numbers was presented in [2], but it gener-
ates these numbers in an order that is fundamentally different from the foregoing standard order.
Specifically, the ith rational number in the order defined by this algorithm is f(i)/f(i + 1) such
that f(1) = f(2) = 1 whereas f(2j + 1) = f(j) and f(2j + 2) = f(j) + f(j + 1). Observing that,
for every i ∈ N, the values f(i + 1) and f(i) are easily computed from f(⌈i/2⌉) and f(⌈i/2⌉ − 1),
the efficiency of enumeration follows. For example, the ten first rational numbers in this order are

1

1

1

2

2

1

1

3

3

2

3

1

1

4

4

3

3

5

5

2

Furthermore, observing that f(2k − 1) = 1 and f(2k) = k, it follows that the 2kth rational number
in this order is 1/k, which means that for i = 2k the length of the ith pair is logarithmic in the
length of the index (i.e., |k| = log2 |i|).

In contrast, we wish to enumerate pairs (a, b) ∈ N2 such that gcd(a, b) = 1 but do so such
that (a, b) appears before (a′, b′) if a + b < a′ + b′. (Note that the ith rational number in this
order has description length Θ(|i|).) A key observation is that, for every integer s ≥ 2, the set
{(a, b)∈N2 :a+b=s ∧ gcd(a, b)=1} is in 1-1 correspondence with the set {a∈ [s−1] :gcd(a, s)=1};
hence, both sets have size φ(s), where φ is Euler’s function. As observed next, this suggests that
it is infeasible to enumerate the rational numbers according to the aforementioned standard order.

7Specifically, for every t′ ∈ [t − 1], the number of t-tuples of the form (a1, .., at′−1, b, bt′+1, ..., bt) such that b +∑
i∈[t′+1,t] bi ≤ at′ +

∑
i∈[t′+1,t] ai and b < at′ equals

∑
b∈[at′−1]

∑
s′∈[a′−b] Ns′,t′ , where a

′ =
∑

i∈[t′+1,t] ai. Note that∑
s′∈[x] Ns′,t′ is a polynomial of degree t′ in x with coefficients that only depend on t′, whereas

∑
r∈[y]

∑
s′∈[x−r] Ns′,t′

is a polynomial of total degree t′ + 1 in x and y (with coefficients that only depend on t′).
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Observation 1.4 (enumerating the rational numbers and computing Euler’s function): Consider
the following three computational problems:

1. Enumerating the set Q def
= {(a, b)∈N2 :gcd(a, b) = 1} according to the standard order on pairs

of natural numbers; that is, computing enmQ.

2. Computing the function s 7→
∑

i∈[s] φ(i), where φ is Euler’s function.

3. Computing Euler’s function (i.e., φ), which is equivalent to factoring [11, Sec. 10.4].8

Then, (3) is reducible to (2), and (2) is reducible to (1), where the latter reduction relies on Theo-
rem 1.5 and the fact that

∑
i∈[s] φ(i) equals the number of pairs preceding (s, 1).

It is not clear whether (1) is reducible to (2), and whether (2) is reducible to (3).

On enumerating the integers. In contrast, it is easy to enumerate the integers, when repre-
sented as ordered pairs (a, b) ∈ N2 such that {a, b} ∋ 1 and (a, b) represents a− b, according to the
standard order on pairs. The first integer in this order is 0 (represented by (1, 1)), whereas the 2jth

and (2j + 1)st integers are j and −j (represented by (j + 1, 1) and (1, j + 1), respectively).

Enumerating versus counting. As mentioned already (see, e.g., Observation 1.2), the com-
plexity of enumerating a set is closely related to the complexity of counting the number of members
of the set that precede a given string.

Theorem 1.5 (enumerating versus counting, a special case): For any polynomial-time recognizable
set S such that the number of n-bit strings in S is at least exp(nΩ(1)), the following two tasks are
polynomial-time reducible to one another.

1. On input i ∈ N, output the ith string in S.

2. On input x ∈ {0, 1}∗, output the number of strings in S that precede x.

In both cases, the order is the lexicographic one.

In particular, Theorem 1.5 applies to the enumeration of the primes and the rational numbers
(discussed in Observations 1.2 and 1.4, resp.). We mention that the density and efficient recogniz-
ability conditions are used only in proving that counting implies enumerating. While Theorem 1.5
refers to the lexicographic order only, more general results that refer to other orders are stated in
Theorems 2.3 and 2.4.

8It is easy to see that factoring composites that are the product of two different primes reduces to evaluating
φ on them: Letting N = PQ, for primes P ̸= Q, it holds that φ(N) = (P − 1) · (Q − 1), which implies that
P +Q = N +1−φ(N). Hence, factoring N reduces to solving the quadratic equation X · (N +1−φ(N)−X) = N .
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1.2 The amortized notion

Note that enumerating S in amortized polynomial-time means that the first i elements are produced
in time i · poly(|i|) = Õ(i). A sufficient condition for this to happen is that the set is easily
recognizable and dense.

Theorem 1.6 (a sufficient condition): Suppose that the set S is polynomial-time recognizable and
|S ∩ {0, 1}n| ≥ 2n/poly(n). Then, the amortized complexity of enumerating S (according to the
lexicographic order) is polynomial.

Note that low amortized complexity of enumerating S implies (very) weak forms of both conditions.
In particular, it requires that among the i first elements in S almost all have at most poly(|i|)
length, which implies |S ∩ {0, 1}ℓ| ≥ 2ℓ

Ω(1)
. It also implies that S can be decided in exponential

time, because x ∈ S implies that x appears among the first 2|x|+1 elements (which means that it
will be produced by the enumeration within Õ(2|x|+1) time).

Corollaries. Using Theorem 1.6, we observe that the amortized complexity of enumerating the
following two ordered sets is polynomial.

1. The set of all primes (ordered according to their size).

2. The set of all positive rational numbers (represented by ordered pairs of natural numbers that
are ordered as in Observations 1.3 and 1.4).

Needless to say, this stands in contrast to the perceived difficulty of enumerating these sets in the
strict sense (cf. Observation 1.2 and 1.4).

1.3 Organization

Sections 2 and 3 provide more details about the notions discussed in the introduction. Specifically,
Section 2 expands on the treatment of the strict notion that was discussed in Section 1.1, whereas
Section 3 expands the discussion of the amortized notion provided in Section 1.2.

Section 4 takes a tangential issue that arises naturally when discussing the amortized notion,
and Section 5 provides a compilation of some open problems.

2 The Strict Notion: More Details

In this section, we formulate more rigorously the notions that are mentioned in Section 1.1, gener-
alize Theorem 1.5, and present a few additional efficient enumerations.

We start by clarifying that by order on strings we mean a correspondence between the set
of strings and the set of natural numbers. Hence, an arbitrary order on strings is defined by an
arbitrary bijection, called a successor function, from {0, 1}∗ to {0, 1}∗\{α}, where α is an arbitrary
string, which is the first according to this order.

Definition 2.1 (the complexity of enumeration): For an infinite countable set S ⊆ {0, 1}∗ and
an order on strings, denoted ≺, let enm≺S (i) denote the ith element in S (i.e., enm≺S (i) ∈ S and
|{x∈S :x≺enm≺S (i)}| = i − 1). Then, the complexity of enumerating S is defined as the complexity
of evaluating the function enm≺S .
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For a set S and an order as in Definition 2.1, we define the (“counting”) function cnt≺S :{0, 1}∗→N
such that cnt≺S (x)

def
= |{z∈S : z≺x}|. The following observations can be readily verified.

� For every i ∈ N, it holds that cnt≺S (enm
≺
S (i)) = i− 1.

� For every x ∈ S, if x ∈ S then enm≺S (cnt
≺
S (x) + 1) = x, and otherwise x≺enm≺S (cnt

≺
S (x) + 1).

Let succ≺ : {0, 1}∗ → {0, 1}∗ denote the successor function; that is, succ≺(x) = y if x≺y and x≺z
implies y⪯z. Then:

� For every x, it holds that x ∈ S if and only if cnt≺S (x) < cnt≺S (succ
≺(x)).

We observe that, typically, the counting function (i.e., cnt≺S ) is in #P. Specifically, this holds for
the lexicographic order and any set S ∈ P.

Theorem 2.2 (typically, S ∈ P implies cnt≺S ∈ #P): Let ≺ be a polynomial-time decidable order
on strings (i.e., given x, y ∈ {0, 1}∗, we can decide in polynomial-time whether x≺y or y≺x) such
that y≺x implies |y| ≤ poly(|x|). Then, for every polynomial-time recognizable set S, it holds that
cnt≺S is in #P.

Proof: Consider the search problem

R
def
= {(x, y) :y∈S ∧ y≺x}.

Then, R is polynomially bounded (i.e., (x, y) ∈ R implies |y| ≤ poly(|x|) and polynomial-time
recognizable, which means that #R is in #P. On the other hand, cnt≺S (x) = |{y ∈ S : y≺x}|
equals the number of solutions for x (w.r.t R).

2.1 Generalization of Theorem 1.5

The two directions of Theorem 1.5 are captured by the following two theorems, which actually
generalize it. These generalizations of Theorem 1.5 impose minimal restrictions on the order ≺
(hinted at by the word “typically” in the titles of Theorems 2.3 and 2.4). Needless to say, these
restrictions are definitely satisfied by the lexicographic order and natural variations of it.

Theorem 2.3 (typically, enumerating S implies computing cnt≺S ): Let ≺ be a polynomial-time
decidable order on strings (i.e., given x, y ∈ {0, 1}∗, we can decide in polynomial-time whether x≺y
or y≺x). Then, for any set S such that cnt≺S (x) ≤ exp(poly(|x|)), computing cnt≺S is polynomial-
time reducible to computing enm≺S .

The condition cnt≺S (x) ≤ exp(poly(|x|)) (equiv., |cnt≺S (x)| ≤ poly(|x|)) is obviously a necessary
condition for efficiently computing cnt≺S (regardless of the orcale we may use). We stress that this
condition (which refers both to S and to ≺) is trivial in the case of the lexicographic order.

Proof: On input x, using oracle access to enm≺S (and to ≺), we perform a binary search for the
largest i ∈ N ∪ {0} such that enm≺S (i)≺x, while relying on cnt≺S (x) ≤ exp(poly(|x|)). Once found,
this i equals cnt≺S (x), as desired. Details follow.

On input x, we maintain an interval of possible values for cnt≺S (x), which is initiated to
[0, exp(poly(|x|))]. We proceed in iterations such that in each iteration the size of the interval
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shrinks by approximately a half. While the interval contains more than two integers, we pick an
integer i in its (approximate) middle, check whether enm≺S (i)≺x, and update the interval accord-
ingly (i.e., if enm≺S (i)≺x, then the lower bound of the interval is reset to i, and otherwise the upper
bound is reset to i−1). Note that checking whether enm≺S (i)≺x is performed by using oracle access
to enm≺S and to ≺. Lastly, note that if cnt≺S (x) ∈ {i, i + 1}, then cnt≺S (x) = i + 1 if and only if
enm≺S (i+ 1)≺x.

Theorem 2.4 (typically, for sufficiently dense and efficiently recognizable S, computing cnt≺S
implies enumerating S): Let ≺ be an order on strings such that the following betweenness task9 can
be solved in polynomial time: Given x≺y, one should determine whether or not y = succ≺(x) (i.e.,
whether there exists z s.t. x≺z≺y), and in case y ̸= succ≺(x) output a string z such that

|{w∈{0, 1}∗ : w≺z}| = α · |{w∈{0, 1}∗ : w≺x}| + (1− α) · |{w∈{0, 1}∗ : w≺y}|

for some α ∈ [0.1, 0.9].10 Then, for any polynomial-time recognizable set S such that cnt≺S (x) ≥
exp(|x|Ω(1)), computing enm≺S is polynomial-time reducible to computing cnt≺S .

The condition cnt≺S (x) ≥ exp(|x|Ω(1)) is shown to imply |enm≺S (i)| ≤ poly(|i|), which is obviously
a necessary condition. Note that, in case succ≺ can be computed in polynomial time, decid-
ing S is polynomial-time reducible to computing cnt≺S , because x ∈ S if and only if cnt≺S (x) <
cnt≺S (succ

≺(x)). Of course, in general, it is unlikely that computing cnt≺S is polynomial-time
reducible to deciding (see Remark 1.1).

Proof: We first show that the density condition implies that |enm≺S (i)| ≤ ℓ(|i|), for some polynomial
ℓ. Specifically, suppose that cnt≺S (x) ≥ exp(|x|ϵ), for some constant ϵ > 0. Then, for any i ∈ N,
let x ← enm≺S (i), and observe that cnt≺S (x) = |{z ∈ S : z≺x}| = i − 1 < i. Hence, exp(|x|ϵ) ≤
cnt≺S (x) < i implies |x| < |i|1/ϵ, and |enm≺S (i)| < |i|1/ϵ follows. We now turn to the reduction itself.

On input i ∈ N, using oracle access to S and to cnt≺S (and an algorithm for the betweenness
task), we perform a binary search for x ∈ S such that cnt≺S (x) = i− 1, while observing that this x
satisfies |x| ≤ ℓ(|i|) ≤ poly(|i|). Once found, this x equals enm≺S (i), as desired. Details follow.

On input i, we maintain a set of possible candidates for enm≺S (i). This set is implicitly defined
by two (“bounding”) strings, denoted u and v, and equals {z : u⪯z⪯v}. Initially, we set u to be
the first string according to ≺ (i.e., there exists no z s.t. succ≺(z) = u), and v = 0ℓ(|i|)+1. We
proceed in iterations such that in each iteration the number of candidates shrinks by a factor of
at least 0.9. While v ̸∈ {u, succ≺(u)}, we use the “betweenness procedure” to pick string w in
between u and v, obtain cnt≺S (w), and update the foregoing bounding strings accordingly; that
is, if cnt≺S (w) ≤ i − 1, then we reset u ← w, and otherwise we reset to v ← w. If u = v, then
enm≺S (i) = u must hold, whereas if v = succ≺(u), then enm≺S (i) ∈ {u, v} holds. In the latter case,
we output u if u ∈ S, and output v otherwise.

Deriving Theorem 1.5 as a special case. As noted upfront, the conditions made in Theo-
rems 2.3 and 2.4 regarding≺ (i.e., being polynomial-time decidable, satisfying cnt≺S (x) ≤ exp(poly(|x|))
for every S, and having an efficient betweenness procedure) hold for the lexicographic order. Hence,
combining Theorems 2.3 and 2.4, we derive Theorem 1.5.

9Be warned that this is not the computational problem that is traditional called “betweenness” (cf. [3]).
10The slackness allowed here is rather arbitrary (as long as one avoids insisting on α = 1/2). Note that, for every

i ≤ j + 2, it holds that i < α · i+ (1− α) · j < j.
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2.2 Additional enumeration problems

Continuing with the lexicographic order, we consider the lexicographic order on square Boolean
matrices that is imposed by viewing the matrices as strings. Noting that the ordered set of square
non-singular Boolean matrices, denoted Ssns, satisfies the conditions of Theorem 1.5, we infer that
computing enmlexSsns

is polynomial-time equivalent to computing cntlexSsns
. We found it is somewhat

easier to prove the following result in terms of cntlexSsns
.

Proposition 2.5 (efficiently enumerating square non-singular Boolean matrices): The function
cntlexSsns

can be computed in polynomial time, where Ssns denote the set of square non-singular
Boolean matrices.

Proof: We mimic the standard procedure of selecting an n-by-n non-singular Boolean matrix
uniformly at random. Recall that this process proceeds in iterations such that in the ith iteration
we select a row that is linearly independent of the previous i− 1 rows. The number of such choices
is 2n − 2i−1, and the problem that we shall face soon is efficiently determining how many of these
choices precede a given n-bit string. But before doing so, we note that the number of n-by-n
non-singular matrices is

Nn
def
=

∏
i∈[n]

(
2n − 2i−1

)
. (2)

We now get to the aforementioned problem: For k = i− 1, given a full rank k-by-n matrix G and
a n-bit vector x = x1 · · ·xn, we ask how many of the vectors spanned by the rows of G precede x
in lexicographic order. The key observation is that

|{y∈{0, 1}k : yG ≺ x}| =
∑
j∈[k]

|{y∈{0, 1}k : (yG)[j−1] = x[j−1] ∧ (yG)j < xj}|, (3)

where z[t] = z1 · · · zt. The point is that jth term in the r.h.s of Eq. (3) equals zero if xj = 0
and otherwise it equals the number of solutions to a system of j linear equations (which are not
necessarily independent or homogeneous).11 Hence, we reduced our (intermediate) problem to
determining the rank of matrices.

With the foregoing solution at hand, we determine the number of non-singular Boolean matrices
that precede a given n-by-n matrix M as follows. For i = 1, ..., n, we let G = G(i) denote the
matrix that represents the first i − 1 rows of M , and let x = x(i) denote the ith row of M . Now,
we compute the number of the vectors spanned by the rows of G that precede x in lexicographic
order, denoting this number by N(i)(M). We claim that if M is non-singular, then the number of
n-by-n non-singular matrices that precede it equals

N(M)
def
=

∑
i∈[n]

N(i)(M) ·
∏

j∈[i+1,n]

(2n − 2j−1), (4)

The claim follows by observing that an n-by-n non-singular matrixM ′ precedesM if for some i ∈ [n]
the first i− 1 rows of these two matrices agree while the ith row of M ′ precedes the ith row of M .
Note that the remaining n−i rows ofM ′ can be any of the allowed

∏
j∈[i+1,n](2

n−2j−1) possibilities.

Hence, for an n-by-n non-singular matrix M , it holds that cntlexSsns
(M) =

∑
k∈[n−1]Nk + N(M).

11Recalling that G and x are fixed, the actual variables are the bits of y. For ℓ ∈ [j − 1], the ℓth equation is
(yG)ℓ = xℓ, and the jth equation is (yG)j = 0.
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In the general case (i.e., when M may be singular), we let r(M) ∈ {0, 1, 2..., n} denote the
maximal number r such that the first r rows of M are independent, and return 0 if r(M) = 0.
Otherwise (i.e., r(M) ∈ [n]), we stop the foregoing process after performing iteration i = r(M);
that is, we output

∑
k∈[n−1]Nk + N(M) such that

N(M)
def
=

∑
i∈[r(M)]

N(i)(M) ·
∏

j∈[i+1,n]

(2n − 2j−1). (5)

Indeed, Eq. (5) differens from Eq. (4) only in the scope of the summation; that is, Eq. (4) is the
special case of Eq. (5) that corresponds to r(M) = n.

A different way of presenting the general case amounts to saying that we replace M by the first
(in lexicographic order) non-singular n-by-n matrix that agrees with M on the first r(M) rows, and
invoke the special case on the resulting matrix (i.e. denoting the resulting matrix by R, it holds
that cntlexSsns

(M) = cntlexSsns
(R)).

Generalization to other finite fields. The proof of Proposition 2.5 extends to any finite field,
except that handling the jth term in the r.h.s of Eq. (3) requires considering all values smaller than
xj . Hence, the complexity of enumeration grows linearly with the size of the finite field. Actually,
we can get complexity that is linear in the characteristic of the finite field, but it is unclear whether
one can do better than that.

On enumerating finite sequences of natural numbers. The set of t-tuples of natural num-
bers (considered in Observation 1.3) is quite a popular countable set. Another popular countable
set is the set of all finite sequences of natural numbers. Recall that we defined the standard order
on t-tuples of natural numbers such that the dominant term is the sum of the numbers in the tu-
ple; that is, (a1, ..., at) ∈ Nt precedes (b1, ..., bt) whenever

∑
i∈[t] ai <

∑
i∈[t] bi. Applying the same

principle of sequences of varying number of elements does not seem natural, because it would mean
that the n-long sequence of 1’s (resp., any n/2-long sequence over {1, 2}) precedes the sequence
(1, n). Indeed, the foregoing suggestion fails to account for the length of the sequences. In contrast,
we argue that the order presented in the next result is the natural one in the current context.

Proposition 2.6 (efficiently enumerating finite sequences of natural numbers according to the
length of the sequences): Consider the set, denoted N+ =

⋃
t∈NNt, of finite sequences of natural

numbers with respect to the following order ≺ that places (m1, ...,mt′) before (n1, ..., nt′′) if one of
the following conditions hold.

1.
∑

i∈[t′] |mi| <
∑

i∈[t′′] |ni|, where as usual |n| = ⌈log2(n+ 1)⌉.

2.
∑

i∈[t′] |mi| =
∑

i∈[t′′] |ni| and t′ < t′′.

3. t
def
= t′ = t′′ and

∑
i∈[t] |mi| =

∑
i∈[t] |ni| and (|m1|, ..., |mt|) precedes (|n1|, ..., |nt|) according

to the standard order of t-tuples over N.

4. (|m1|, ..., |mt′ |) = (|n1|, ..., |nt′′ |) and for some k ∈ [t′ − 1] it holds that mk < nk and mi = ni

for all i ∈ [k − 1].

Then, the foregoing ordered set can be enumerated in polynomial time.
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The foregoing order on sequences of varying length induces an alternative order on Nt. As we shall
see in the following proof, it is easier to enumerate Nt according to this alternative order than to
do so according to the standard order (which is considered in Observation 1.3).

Proof: Again, using Theorem 2.4, we focus on computing the corresponding counting function
cnt≺N+ . Given a sequence a = (a1, ..., at) ∈ N+, we proceed as follows.

� Letting ℓ =
∑

i∈[t] |ai|, for each ℓ′ ∈ [ℓ− 1] and t′ ∈ [ℓ′], we compute the number of sequences

(ℓ1, ..., ℓt′) ∈ Nt′ such that
∑

i∈[t′] ℓi = ℓ′. Recalling that this number equals Nℓ′,t′
def
=

(
ℓ′−1
t′−1

)
,

we can compute all these numbers (i.e., all Nℓ′,t′ ’s for ℓ
′ ∈ [ℓ−1] and t′ ∈ [ℓ′]) in poly(ℓ)-time.

Furthermore, For each ℓ′ ∈ [ℓ − 1] and t′ ∈ [ℓ′], the number of sequences (b1, ..., bt′) ∈ N+

such that
∑

i∈[t′] |bi| = ℓ′ equals Nℓ′,t′ ·2ℓ
′−t′ , because the number of sequences (b1, ..., bt′) that

satisfy |bi| = ℓi (equiv., bi ∈ [2ℓi−1, 2ℓi − 1]) for each i ∈ [t′] equals
∏

i∈[t′] 2
ℓi−1 = 2ℓ

′−t′ .

Hence, we can efficiently compute the number of sequences that precede a per Condition 1,
which equals ∑

ℓ′∈[ℓ−1]

∑
t′∈[ℓ′]

Nℓ′,t′ · 2ℓ
′−t′ .

� Similarly, we can efficiently compute the number of sequences that precede a per Condition 2.
Specifically, the number of sequences that precede a per Condition 2 is

∑
t′∈[t−1]Nℓ,t′ · 2ℓ−t′ ,

where ℓ =
∑

i∈[t] |ai|.

� Turning to Condition 3, recall that an efficient algorithm for computing the number of se-
quences (ℓ1, ..., ℓt) that precede (|a1|, ..., |at|) was outlined in Observation 1.3 (see Footnote 7).
The number of sequences that precede a per Condition 3 is 2ℓ−t times larger.

� Lastly, we compute the number of sequences that precede a per Condition 4; that is, we
compute the number of (b1, ..., bt′) ∈ Nt such that (|b1|, ..., |bt|) = (|a1|, ..., |at|) and for some
k ∈ [t − 1] it holds that bk < ak and bi = ai for all i ∈ [k − 1]. For each k ∈ [t − 1], the

corresponding number is (ak − 1) · 2ℓ−
∑

i∈[k] |ai|.

Having established the fact that cnt≺N+ can be computed in polynomial-time and wishing to in-
voke Theorem 2.4, we need to verify that the betweenness task can be performed in polynomial-
time. Unlike in prior cases, this is non-trivial, due to the complexity of the order involved. Given
(m1, ...,mt′)≺(n1, ..., nt′′), we solve the “between task” by considering the following two cases.

The case of equal length-sequences: (|m1|, ..., |mt′ |) = (|n1|, ..., |nt′′ |).

Letting t
def
= t′ = t′′ and ℓi

def
= |mi| = |ni| for every i ∈ [t], we identify k ∈ [t − 1] such that

mk < nk and mj = nj for every j ∈ [k− 1]. If mk ≤ nk − 2, then (m1, ...,mk−1, ik, ik+1, ..., it)
such that ik = ⌊(mk + nk)/2⌋ and ij = ⌈0.75 · (2ℓj − 1⌉ for every j ∈ [k + 1, t] is an adequate
answer.12 Otherwise (i.e., mk = nk − 1), a more careful examination of the sequences is
required.

12The key observation is that, for every vk, the number of (t − k)-tuples (vk+1, ..., vt) ∈ Nt−k such that |vj | = ℓj

(equiv., vj ∈ [2ℓj−1, 2ℓj −1]) equals
∏t

j=k+1 2
ℓj−1 = 2ℓ

′−(t−k), where ℓ′ =
∑

j = k + 1tℓj . The argument then focuses

on the worst case in which mj = 2ℓj−1 and nj = 2ℓj − 1 for every j ∈ [k + 1, t].
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The case of different length-sequences: (|m1|, ..., |mt′ |) ̸= (|n1|, ..., |nt′′ |).
In this case, we observe that

(m1, ...,mt′)⪯ (2|m1| − 1, ..., 2|mt′ | − 1)≺ (2|n1|−1, ..., 2|nt′′ |−1)⪯ (n1, ..., nt′′).

Computing the value of cnt≺N+ on these four sequences, we determine whether one of the
two intermediate sequences can be used as a valid answer. Otherwise, a valid answer should
appear inbetween one of the three adjacent pairs. The first and third subcases are handled
by the previous case, and so we are left with solving the betweenness problem for the second
subcase (i.e., (2|m1| − 1, ..., 2|mt′ | − 1)≺(2|n1|−1, ..., 2|nt′′ |−1)).

Thus, given (ℓ′1, ..., ℓ
′
r) and (ℓ′′1, ..., ℓ

′′
s) such that (2ℓ

′
1 − 1, ..., 2ℓ

′
r − 1)≺(2ℓ′′1−1, ..., 2ℓ

′′
s−1), we

have to find (w1, ..., wt) that satisfies the betweenness condition. Letting ℓ′
def
=

∑
i∈[r] ℓ

′
i and

ℓ′′
def
=

∑
i∈[s] ℓ

′′
i , this is done by considering all possible ℓ ∈ [ℓ′, ℓ′′] and all possible t ∈ [ℓ]

and (p, q) ∈ [t] × [ℓ], which correspond to Conditions 1–3, respectively. The key observation
is that the number of possibilities is polynomial in ℓ′′, which is the length of our original
input (i.e., the sequences (m1, ...,mt′) and (n1, ..., nt′′)), and for each possibility the relevant
computations are easy.

Indeed, the tedious details were omitted here.

3 The Amortized Notion: More Details

In this section, we formulate more rigorously the notions that are mentioned in Section 1.2
Whereas Definition 2.1 refers to the complexity of finding the ith element in a set S, here we

consider the complexity of producing the list of the first i elements. This notion yield a notion of
amortized complexity, but one in which information generated for producing the first i−1 elements
can be used in producing the ith element. A more stringent notion may refer to the average time
it takes to evaluate enm≺S on the first i numbers (see Secton 4).

Definition 3.1 (the amortized complexity of enumeration): For an infinite countable set S ⊆
{0, 1}∗ and an order on strings, denoted ≺, let enm≺S be as in Definition 2.1. Then, the amortized
complexity of enumerating S is defines as TS(i)/i, where TS(i) is the total time it takes to produce
the first i elements in S; that is, we consider the time complexity of algorithms that, given i ∈ N,
output the sequence (enm≺S (1), ..., enm

≺
S (i)).

Note that the amortized complexity of enumerating S is polynomial if and only if TS(i) = Õ(i) =
i · poly(|i|). We also observe that if the “successive function of S w.r.t ≺” (i.e., the mapping
enm≺S (i) 7→ enm≺S (i + 1)) can be computed in polynomial-time and |enm≺S (i)| ≤ poly(|i|), then the
amortized complexity of enumerating S is polynomial. The corresponding algorithm works by
iterative invocations of the successive function (of S w.r.t ≺), and makes a modest requirement
regarding the density of S (i.e., |enm≺S (i)| ≤ poly(|i|) implies that for some constant ϵ > 0 it holds
that |S ∩

⋃
i∈[n]{0, 1}i| ≥ 2n

ϵ
). A different algorithm is used for the following result.

Theorem 3.2 (the amortized complexity of enumerating dense and efficiently recognizable sets):
For an infinite countable set S ⊆ {0, 1}∗ and the lexicographic order on strings, suppose that S
is polynomial-time recognizable and that |S ∩ {0, 1}n| ≥ 2n/poly(n) (for every n ∈ N). Then, the
amortized complexity of enumerating S is polynomial.
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For simplicity, we have restricted ourselves to the lexicographic order on strings, but any order ≺
that is monotonically non-decreasing with the length of strings (i.e., x≺y implies |x| ≤ |y|) will do.
A more general statement appears in Theorem 3.4.

Proof: We consider an algorithm that, on input i ∈ N, generates the first poly(|i|) · 2|i| strings (in
lexicographic order), determines which of these strings is in S, and outputs the i first strings that
are in S. Correctness follows by the density guarantee, which implies that the initial list contains
more than i elements of S (i.e., for n = |i|+O(log |i|), we have |S ∩{0, 1}n| ≥ 2n/poly(n), which is
greater than 2|i|). The total time spend by this algorithm is poly(|i|) · 2|i| · poly(|i|) = Õ(i), which
implies that the amortized complexity is poly(|i|).

Corollary 3.3 (the amortized complexity of enumerating the primes and the rationals): The amor-
tized complexity of enumerating the following two sets is polynomial.

1. The set of all primes (ordered according to their size).

2. The set of all positive rational numbers (represented by ordered pairs of natural numbers that
are ordered as in Observation 1.3).

Proof: Item 1 follows by invoking Theorem 3.2, while recalling that the number of n-bit long
primes is Ω(2n/n) and using the primality tester of [1]. To establish Item 2, we need to show that
the number of rationals that are represented by pairs (a, b) such that |(a, b)| = n (and gcd(a, b) = 1)
is at least 2n/poly(n). This follows even by considering only pairs of the form (p, 1) such that p is
a prime.

Theorem 3.4 (a generalization of Theorem 3.2): Suppose that ≺ is an order on strings such

that the amortized complexity of enumerating U
def
= {0, 1}∗ according to order ≺ is polynomial.

For an infinite countable set S ⊆ {0, 1}∗, suppose that S is polynomial-time recognizable and that
|S ∩ {enm≺U (i) : i ∈ [2n]}| ≥ 2n/poly(n) (for every n ∈ N). Then, the amortized complexity of
enumerating S according to ≺ is polynomial.

The restriction to orders that allow for an efficient amortized enumeration of all strings is essential.
Violations of this restriction may be due to the order having huge gaps; specifically, it may be that
for a fast growing function f :N→N there are infinitely many i’s such that |enm≺U (i)| ≥ f(i).13

Proof: We follow the strategy of the proof of Theorem 3.2, except that here we generate the first
poly(|i|) · 2|i| strings according to the given order. Correctness follows by relying on the modified
density guarantee, which refers to the given order.

Transitivity. By a straightforward generalization of the proof of Theorem 3.4, we obtain the
following.

Theorem 3.5 (a generalization of Theorem 3.4): For infinite countable sets S, T and an order ≺
on T , suppose that the amortized complexity of enumerating T according to ≺ is polynomial. If S
is polynomial-time recognizable and |S ∩ {enm≺T (i) : i ∈ [2n]}| ≥ 2n/poly(n) (for every n ∈ N), then
the amortized complexity of enumerating S according to ≺ is polynomial.

13Consider, for example, for any monotonically increasing function g :N→N, an order derived from the standard
lexicographic order by moving 0g(n)+1 from its standard location (right after 1g(n)) to the location right after 0n+1).
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Note that T is not necessarily dense with respect to U (i.e., |T ∩{enm≺U (i) : i ∈ [2n]}| ≥ 2n/poly(n)
does not necessarily hold). Consider, for example, the lexicographic order and the set T = {x0|x| :
x∈T ′} such that the amortized complexity of enumerating T ′ is polynomial (e.g., T ′ is the set of
primes).

Some “degrees of freedom”. We observe that in the current context, when given i ∈ N, the
ability to generate a list that contains the i first elements of the ordered set suffices.

Observation 3.6 (implicit in [8]): Let ≺ be a polynomial-time decidable order on strings (i.e.,
given x, y ∈ {0, 1}∗, we can decide in polynomial-time whether x≺y or y≺x). Suppose that the set
S is polynomial-time recognizable and there exists an algorithm that, given i ∈ N, runs for t = Õ(i)
steps and outputs a list that contains the i first elements of S. Then, the amortized complexity of
enumerating S according to ≺ is polynomial. The key observation is that, using the hypothesis, we
can recognize the elements of S in the list, and sort the list according to ≺, all within Õ(t)-time.

4 An Average Case Notion

In continuation to brief comments made in the introduction and in Section 3, we present a definition
of average case complexity of enumeration problems. Following Levin [9] (see [5, Apdx]), we avoid
the naive formulation, and present instead the following one.

Definition 4.1 (average case complexity of enumeration): Let cA :N∗→N∗ be an arbitrary notion
of complexity of algorithm A such that cA(i) is a function of the number of steps that A takes on
input i (e.g., cA(i) may be a square root of the number of steps).

� For (S,≺) and enm≺S as in Definition 3.1, we say that A enumerates S within average complexity
C if

∑
i∈[n] cA(i)/n ≤ C(|n|).

� Letting tA(i) denote the number of steps taken by A on input i, we say that A enumerates
S in average polynomial time if for some polynomial p it holds that tA(i) ≤ p(cA(i)) and∑

i∈[n] cA(i)/n ≤ O(|n|).

The naive formulation being avoided uses cA = tA and C = p; that is, it says that a function is
polynomial on the average if its average is polynomial. Instead, we say that a function is polynomial
on the average if it is polynomial in a function that is linear on the average. The point is that
the alternative formulation is closed under polynomial composition, whereas the naive one is not.
Actually, we believe that the notion of typically polynomial-time is more appealing than the notion
of average polynomial-time (see [6, Sec. 10.2.1.1]).

Definition 4.2 (enumeration in typical polynomial-time): For (S,≺) and tA as in Definition 4.1,
we say that A enumerates S in typical polynomial time if for some polynomial p and some negligible14

function µ, for all n’s it holds that |{i∈ [n] : tA(i)>p(|i|)}| ≤ µ(|n|) · n.
14A function µ :N → [0, 1] is called negligible if for every positive polynomial q and all sufficiently large ℓ it holds

that µ(ℓ) < 1/q(ℓ).
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Obviously the strict notion of polynomial-time implies the average (resp., typical) notion, which in
turn implies the amortized notion. An evidence for the separation between the average (resp., typi-
cal) he amortized notions is provided by the problems of enumerating primes and rational numbers.
Recall that these two ordered sets are enumerated in amortized polynomial-time (Corollary 3.3),
whereas the difficulties in enumerating them in the strict sense (cf. Observation 1.2 and 1.4) ex-
tend also to the average (resp., typical) sense. Specifically, the issue is not finding an object of
an approximate desired size, which is typically easy, but rather finding an object of a specific lo-
cation in the order. For example, given N , it is “typically” easy to find a prime in the interval
[N,N + poly(logN)], but it is typically hard to determine the number of primes that are smaller
than N (equiv., find the ith prime, when given i).15

As for a separation between the strict notion of polynomial-time and the average (resp., typical)
notion, we provide evidence to it by using a construction akin to Remark 1.1

Observation 4.3 (strict vs average (resp., typical) polynomial-time enumeration): Assuming that
#P-complete problems cannot be solved in polynomial-time, there exists a set S ⊂ {0, 1}∗ that
cannot be enumerated in strict polynomial-time, but can be enumerate in typical and average
polynomial-time, where in all cases the enumeration is according to the lexicographic order.

Proof: Let R ⊆ {0, 1}∗ → {0, 1}∗ be a #P-complete search problem and let R(x) = {y : (x, y)∈R}.
Note that we may assume, without loss of generality, that y ∈ R(x) implies that |y| = ℓ(|x|) for
some polynomial ℓ :N→N. Let χx,y = 1 if (x, y) ∈ R and χx,y = 0 otherwise. Consider the set
S = S′ ∪ S′′ such that

S′ def
=

{
x0ℓ(|x|)1y : y∈R(x)

}
∪
{
x0ℓ(|x|)0y : y∈

(
{0, 1}ℓ(|x|) \R(x)

)}
=

{
x0ℓ(|x|)χx,yy : y ∈ {0, 1}ℓ(|x|)

}
S′′ def

=
{
xz′z′′ ∈ {0, 1}∗ :z′ ∈

(
{0, 1}ℓ(|x|) \ {0ℓ(|x|)}

)
∧ z′′ ∈ {0, 1}ℓ(|x|+1

}
Note that w ∈ S implies that |w| = n + 2ℓ(n) + 1 for some n ∈ N. Furthermore, for w = xz′z′′ ∈
{0, 1}n+2ℓ(n)+1 such that |x| = n and |z′| = ℓ(n), either z′ ̸= 0ℓ(n) and z′′ ∈ {0, 1}ℓ(n)+1 or z′ = 0ℓ(n)

and z′′ = σy such that y ∈ R(x) if and only if σ = 1.
Note that computing the number of R-solutions for x (i.e., |R(x)|) reduces to computing cnt≺S .

Specifically,
|R(x)| = cnt≺S (x0

ℓ(|x|)−110ℓ(|x|)+1)− cnt≺S (x0
ℓ(|x|)10ℓ(|x|))

because

cnt≺S (x0
ℓ(|x|)−110ℓ(|x|)+1)− cnt≺S (x0

ℓ(|x|)10ℓ(|x|))

=
∣∣∣{z∈{0, 1}2ℓ(|x|)+1 :z≺succ≺(0ℓ(|x|)11ℓ(|x|))

}∣∣∣− ∣∣∣{z∈{0, 1}2ℓ(|x|)+1 :z≺0ℓ(|x|)10ℓ(|x|))
}∣∣∣

=
∣∣∣{0ℓ(|x|)1y : y ∈ R(x)

}∣∣∣
where succ≺(w) denotes the string succeeding w according to ≺.

15The first assertion (i.e., ease of finding primes) is a bit inaccurate. The prime number theorem only implies that,
for any constant c > 0, the fraction of n-bit numbers N such that [N,N + nc+1] contains no prime is at most n−c.
Recall, however, that Cramer’s conjecture is that [N,N + n2] always contains a prime.
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On the other hand, the density of S′ within all strings in S∩{0, 1}n+2ℓ(n)+1 is exactly 2−(ℓ(n)+1),
whereas counting the number of strings that precede a given string in S′′ is easy. This is the case
because the number of strings in S′ ∩ {0, 1}n+2ℓ(n)+1 is exactly 2ℓ(n). Hence, given i ∈ N such that
enm≺S (i) ∈ S′′, we can compute enm≺S (i) in polynomial time. Lastly, note that (n + 2ℓ(n) + 1)-bit
long strings of S′ can be enumerated in time 2n+ℓ(n) · poly(n). Thus, S can be enumerated in
(typical and) average polynomial-time.

5 Open Problems (a compilation)

In this section, we compile a list of the open problem that are explicit or implicit in the prior
sections. We focus on problems related to the strict notion of enumeration.

Recall that, by Theorem 1.5, enumerating prime numbers is computationally equivalent to
counting the number of primes that are smaller than a given natural number. The latter problem
was studied in the number theoretic community, and the best known algorithm for the latter
problem runs in exponential-time: on input an n-bit number, the algorithm runs in Õ(2n/2)-time
(see [7] and references therein). Putting aside the obvious question of whether this can be improved,
we wonder if some additional evidence can be given for the perceived difficulty of the problem.

Open Problem 5.1 (the complexity of strictly enumerating the prime numbers): Can one pro-
vide complexity theoretic justification for the perceived difficulty of strictly enumerating the prime
numbers?

Turning to the other classical problem (i.e., enumeration of rational numbers), we ask the obvious
question (see next title) as well as questions regarding the relative complexity of sub-tasks.

Open Problem 5.2 (the complexity of strictly enumerating the rational numbers): For Q =
{(a, b)∈N2 : gcd(a, b) = 1} and enmlexQ , when defined according to the lexicographic order on these
pairs (i.e., (a, b) appears before (a′, b′) if either a+ b < a′+ b′ or a+ b = a′+ b′ and a < a′), what is
the complexity of computing enmlexQ ? Recall that, by Observation 1.4, computing enmlexQ is at least
as hard as computing s 7→

∑
i∈[s] φ(i), which is at least as hard as factoring integers. Are any of

these three problem computationally equivalent?

A positive answer regarding the first two problems would follow if, given s ∈ N and a ∈ [s − 1]
along with the factorization of s, one can efficiently determine the size of the set |{a′ ∈ [a − 1] :
gcd(a′, s) = 1}|. This is the case because of the following facts:

1. The number of pairs in Q that precede (a, b) equals ∑
i∈[a+b−1]

φ(i)

 +
∣∣{a′∈ [a− 1] :gcd(a′, a+ b)=1}

∣∣ . (6)

2. Computing s 7→
∑

i∈[s] φ(i) allows to compute the main sum in Eq. (6) as well as to compute
the function φ.

3. Computing φ allows to factor integers [11, Sec. 10.4].
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Hence, we pose the following problem.

Open Problem 5.3 (the complexity of determining the size of a prefix of the multiplicative group
modulo a factored composite): Given ((p1, e1), ..., (pt, et)) and r ∈ [s− 1], where s =

∏
i∈[t] p

ei
i , can

we efficiently determine the size of the set |{m∈ [r] : (∀i ∈ [t]) gcd(m, pi)=1}|?

We note that the special case in which the ei’s are all 1 is computationally equivalent to the general
case.

We now turn to another natural enumeration problem (i.e., enumerating non-singular square
matrices). Recall that the proof of Proposition 2.5 extends to any finite field, except that the
complexity may be linear in the characteristic of the finite field. Recall that difficulty is in evaluating
the quantity in Eq. (3). This leads to the following problem.

Open Problem 5.4 (the complexity of strictly enumerating square non-singular matrices over
arbitrary finite fields) Can the complexity of enumerating square non-singular matrices over a
finite field be polylogarithmic in the size of the field? In particular, can the following problem be
solved in poly(n log p)-time? Given a full rank k-by-n matrix G over GF(p), where k < n and p
is a prime number, and a vector x ∈ GF(p)n, determine the number of the vectors spanned by the
rows of G that precede x in lexicographic order.

Computationally tractable orders on strings. The general results stated in Section 2 im-
pose three minimal restrictions on the order ≺ (hinted at by the word “typically” in the titles of
Theorems 2.2–2.4). These restrictions (or conditions), which are briefly discussed next, assert the
tractability of natural computational problems regarding orders on strings.

Efficient decidability: There exists a polynomial-time algorithm that, on input x and y, deter-
mines whether or not x≺y.

Weak conformity with length : If x≺y, then |x| ≤ poly(|y|).
This may be viewed as asserting that, on input x, one can efficiently find a string y such that
x≺y.
(A much more stringent requirement may postulate that x≺y implies |x| ≤ |y|.)

An efficient betweenness procedure: For starters, we require an efficient decision procedure
that, on input x and y, determines whether or not y = succ≺(x), where succ≺(x) is the
successor of x with respect to ≺.

Furthermore, letting idx≺(v)
def
= |{w ∈ {0, 1}∗ : w≺v}|+ 1, we require an efficient algorithm

that, given x and y such that succ≺(x)≺y, outputs a string z such that for some β ∈ [0.1, 0.9]
it holds that idx≺(z) = idx≺(x) + β · (idx≺(y)− idx≺(x)).

Note that the last two conditions imply that succ≺ can be computed in polynomial-time.16 In
contrast, even assuming that x≺y implies |x| ≤ |y| (and that ≺ can be efficiently decided), does
not allow to reduce the betweenness task to succ≺.

We wounder whether these three conditions capture what one may consider as the class of
“computationally tractable orders on the set of strings” and what one can say about this class.

16The claim follow by observing that, given x and y such that x≺y, we can find succ≺(x) by iteratively replacing y
with a string y′ that is between x and y. Letting ℓ(|x|) ≥ |x| be an upper-bound on the length of strings that precede
x according to ≺, we observe that x≺1ℓ(|x|)+1 must hold, and so we can start the foregoing process with y ← 1ℓ(|x|)+1.
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