
Constructing Large Families of Pairwise Far Permutations:

Good Permutation Codes Based on the Shuffle-Exchange Network

Oded Goldreich∗ Avi Wigderson†

December 27, 2020

Abstract

We consider the problem of efficiently constructing an as large as possible family of permu-
tations such that each pair of permutations are far part (i.e., disagree on a constant fraction
of their inputs). Specifically, for every n ∈ N, we present a collection of N = N(n) = (n!)Ω(1)

pairwise far apart permutations {πi : [n] → [n]}i∈[N] and a polynomial-time algorithm that on
input i ∈ [N] outputs an explicit description of πi.

From a coding theoretic perspective, we construct permutation codes of constant relative
distance and constant rate along with efficient encoding (and decoding) algorithms. This con-
struction is easily extended to produce codes on smaller alphabets in which every codeword is
balanced; namely, each symbol appears the same number of times.

Our construction combines routing on the Shuffle-Exchange network with any good binary
error correcting code. Specifically, we uses codewords of a good binary code in order to determine
the switching instructions in the Shuffle-Exchange network.

Contents

1 Introduction 1

2 Preliminaries 3

3 The Construction 4

4 The Analysis 4

5 The Coding Theoretic Perspective 6
5.1 Proof of Theorem 2 . 6
5.2 Constructing good constant composition codes . 7

Acknowledgements 8

References 8

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel. E-mail:
oded.goldreich@weizmann.ac.il. Partially supported by the Israel Science Foundation (grant No. 1041/18).
†School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA. E-mail: avi@ias.edu. Research

partially supported by NSF grant CCF-1900460.

1

1 Introduction

The notion of a good code C : Σk → Σn is well known. Such a code has constant relative distance
(i.e., images of C differ in Ω(n) locations), and constant rate (i.e., k = Ω(n)). In other words, the
image of C, called its set of codewords, are pairwise far apart (in Hamming distance), and their
number is polynomially related to the domain in which they reside (i.e., |C(Σk)| = |Σn|Ω(1)).

In this paper, we construct such codes in which all codewords are permutations. Namely,
Σ = [n], and all symbols in any codeword are distinct. In short, a good permutation code is a
collection of permutations of maximal (up to polynomial) size such that the permutations in the
collection are pairwise far apart. The coding theoretic perspective is spelled-out in Section 5. We
mention that permutation codes (suggested in [7]) have been extensively studied before, but it
seems that the focus of these studies was on different issues (see, e.g., [2, 3, 6]).

The concrete motivation for this work arose in our prior work [5], where we used a large collection
of permutations of [n] that are pairwise far-apart. Indeed, we say that π, π′ : [n]→ [n] are far apart
if |{j ∈ [n] : π(j) 6= π′(j)}| = Ω(n) and “large” means either of size (n!)Ω(1) or of size exp(Ω(n)),
depending on the application in [5]. Specifically, in our prior work [5], we obtained the following
two results:

1. A collection of N = (n!)Ω(1) pairwise far-apart permutations over [n] can be constructed in
poly(N)-time.

This is done by a greedy algorithm that selects the permutations one by one, while relying
on the existence of a permutation that augments the current collection (while preserving the
distance condition).

2. A collection of N = exp(Ω(n)) pairwise far-apart permutations over [n] can be locally con-
structed such that each permutation is constructed in poly(n)-time (i.e., on input i ∈ [N],
the polynomial-time algorithm returns a description of the ith permutation).

This is done by using sequences of disjoint transpositions determined via a good binary error
correcting code. (Our current construction will build on this idea.)

The foregoing results beg the challenge of locally constructing a collection of N = (n!)Ω(1) pairwise
far-apart permutations over [n]; that is, a collection that comes along with a polynomial-time
algorithm that, on input i ∈ [N], returns a description of the ith permutation (i.e., the algorithm
should run in poly(logN)-time). In this work, we meet this challenge by proving –

Theorem 1 (efficient construction of a large collection of pairwise far-apart permutations): For
every n ∈ N, there exists a collection of N = N(n) = (n!)Ω(1) pairwise far apart permutations
{πi : [n] → [n]}i∈[N] and a polynomial-time algorithm that on input i ∈ [N] outputs an explicit
description of πi.

Theorem 1 follows directly from the next theorem, which presents the construction in a coding-
theoretic language. It allows a very general conversion of binary codes to permutation codes that
essentially preserves all the main parameters and efficiency.

Theorem 2 (good permutation codes): For `, k ∈ N and n = 2`, let C : {0, 1}k → {0, 1}n/2 be
any binary code, and Sn ⊂ [n]n denote the set of all permutations over [n]. Then, there exists
a permutation code C ′ : ({0, 1}k)` → Sn that uses C as a black-box such that evaluating C ′ (i.e.,
encoding) reduces to ` evaluations of C and the following properties hold:

1

• The rate of C ′ equals half the rate of C.

• The relative distance of C ′ is at least that of C.

• If C has a unique decoding from ε ·n errors, then so has C ′. Furthermore, decoding C ′ reduces
to ` invocations of decoding algorithm for C.

Furthermore, individual symbols in codewords of C ′ depend on ` symbols in codewords of C, and
can be computed in poly(`)-time.

Actually, an even more general result holds, yielding so-called constant composition codes (cf., [4])
of constant rate and constant relative distance. These are codes of block-length n = 2` over [2`

′
]

such that every symbol appears 2`−`
′

times in each codeword, where the case of `′ = ` coincide
with permutation codes (and `′ = 1 correspond to the special case of binary codes). For details see
Section 5.

Theorems 1 and 2 are proved by considering a routing network for n elements. Such a network
consists of layers such that in each layer specific pairs of elements can be switched, where each
switch is governed by a corresponding instruction bit that determines whether or not to switch the
pair. The basic idea is to use codewords of a good binary code (as postulated in Theorem 2) in
order to determine the instruction bits for each layer. The point is showing that this works; that
is, that this does yield permutations that are pairwise far apart. We prove this fact while referring
to ` layers of the Shuffle-Exchange network for n = 2` elements.1

The simple nature of our construction immediately implies a simple encoding algorithm for
our permutation code (Theorem 2). Furthermore, our distance analysis also leads to an efficient
decoding algorithm from errors, by a simple reduction to any decoding algorithm of the original
binary code used in out construction (as postulated in the last item of Theorem 2).

Perspective: Routing on the Shuffle-Exchange network. Starting with Benes [1], much
research was devote to routing all possible permutations on the Shuffle-Exchange network (and
related ones) in ways that optimize various parameters such as parallel time and congestion (see,
e.g., Valiant’s seminal work [8, 9]). These routing schemes use several repetitions of the network,
whereas we shall use the known fact that a single repetition efficiently routes many permutations.
Specifically, we show that if these routes are chosen according to codewords of a good error cor-
recting code, then the resulting permutations are pairwise far apart.

Perspective: Permutation codes. As mentioned above, permutation codes (suggested by
Slepian [7]) have been extensively studied before. It seems that the focus of most of these studies
is on using permutation groups as codes (see, e.g., [2, 6]), and mostly on the study of different
parameters. These results are inferior to ours in standard coding parameters and efficiency (mainly
because we are not restricted by any algebraic structure). Alternative approaches have been sug-
gested as well, including distance preserving maps from binary and other codes (see, e.g., [3]).
However, the focus seems to be on fixed sizes and simulations (see [3]), and result in much weaker
parameters and efficiency. Constant composition codes, briefly mentioned after Theorem 2, have

1The general case (i.e., n that is not necessarily a power of 2) is easily reducible to the special case of 2blog2 nc

elements. Specifically, we extend π : [2`] → [2`] to π′ : [n] → [n], by letting π′(x) = π(x) if x ∈ [2`] and π′(x) = x
otherwise.

2

been studied as well (see e.g., [4]). However, as in the case of permutation codes, the known results
are inferior to ours in standard coding parameters and efficiency.

Organization. We start with some preliminaries regarding the Shuffle-Exchange network (Sec-
tion 2), which is followed by our construction and its analysis (Sections 3 and 4, respectively).
This establishes Theorem 1. In Section 5, we offer a coding theoretic perspective, which leads
us to present an error-correcting procedure for the permutation code that we constructed. This
establishes Theorem 2. The extension to good constant composition codes appears in Section 5.2.

2 Preliminaries

Our family of permutations will be described by an injective map from {0, 1}`·2`−1
to the set of

permutations over the set {0, 1}`. Each permutation in the image of this map may be viewed as
generated by a process, initiated on the identity permutation, such that each step is governed by
an input bit that specifies whether or not to perform a transposition between two predetermined
locations. The specific process we have in mind is defined by the Shuffle-Exchange network and is
described next.

We view each permutation (over {0, 1}`) as a sequence of 2` different `-bit long strings that
reside in 2` cells, which are named by `-bit long strings. Initially, the string x resides in cell x. In
each step of the Shuffle-Exchange network strings that reside in paired cells may be switched, as
detailed next.

The Shuffle-Exchange network is viewed as consisting of ` layers of 2`−1 switches between pairs
of cells, where the cells are paired according to their name (viewed as an `-bit string). Specifically,
in the ith step, we pair cells whose locations (i.e., names) differ only in their ith bit. This defines
an `-step process of permuting {0, 1}`, where initially the string x ∈ {0, 1}` resides in cell x.

For i = 1, ..., `, in the ith step, pairs of strings that are at locations that differ only in the ith

bit are possibly switched. The decision of whether or not to switch the contents of cells α0β and
α1β, where (α, β) ∈ {0, 1}i−1 × {0, 1}`−i, is determined by an instruction bit, denoted ηα,β; that is,
if ηα,β = 1, then we switch the contents, and otherwise we don’t.

The 2`−1-bit long sequence of instruction bits for a step is called an instruction sequence, and
the instruction sequence for the ith step is indexed by pairs of strings of length i − 1 and ` − i
respectively. The permutation defined by the instruction sequence η = (η0i−1,0`−i , ..., η1i−1,1`−i) of

the ith step is denoted π
(i)
η : {0, 1}` → {0, 1}`, and for every (α, σ, β) ∈ {0, 1}i−1×{0, 1}×{0, 1}`−i

it holds that

π
(i)
η (ασβ)

def
=

{
ασβ if ηα,β = 0,
ασβ otherwise (where σ = 1− σ).

(1)

For every sequence of ` instruction sequences, denoted w1, ..., w`, we define the permutation πw1,....,w`
:

{0, 1}` → {0, 1}` such that

πw1,....,w`
(x)

def
= π(`)

w`
◦ · · · ◦ π(1)

w1
(x). (2)

Indeed, this is the permutation generated by the `-step process when using wi as an instruction
sequence for Step i.

We stress that the foregoing `-step process cannot generate all permutations of {0, 1}`. One

3

way of verifying this fact is observing that the number of generated permutation is upper-bounded2

by the number of possible `-step instruction sequences, whereas the latter number is (22`−1
)` =

22`·`/2 � 2`!.
Another point worthy of spelling out is that the permutation πw`,....,w1 is the inverse of πw1,....,w`

;

this holds since for every i ∈ [`] and w ∈ {0, 1}`−1 it holds that π
(i)
w is an involution.

3 The Construction

The basic idea it to use instruction sequences that are 2`−1-bit long codewords of some good binary
error correcting code (rather than all possible instruction sequences). That is, given an `-tuple

of codewords w1, ..., w` ∈ {0, 1}2
`−1

, we consider the permutation (over {0, 1}`) that is defined by
using wi as the instruction sequence for step i.

The key observation is that any difference between two `-tuples of 2`−1-bit long strings that are
used as instruction sequences yields a difference between the two generated permutations. Further-
more, a difference caused in Step i cannot be undone by a subsequent step, although differences
in the instruction sequences used in different steps may “reinforce” an existing difference. (See
rigorous analysis in Section 4.) Hence, using two different `-tuples of codewords, even if these
`-tuples differ only in one codeword, yields Ω(2`) differences between the generated permutations,
since different codewords disagree on Ω(2`−1) bits.

The idea that codewords yield far apart permutations can be traced back to our prior work [5],
where the codewords were used in order to define transpositions; that is, in terms of the current
presentation, only a single step was performed. Hence, the collection of permutations constructed
in [5] has size 2Θ(2`). In contrast, the collection constructed here has size (2Θ(2`))` = (2`!)Θ(1).

The actual construction. Let C : {0, 1}k → {0, 1}2`−1
be an efficiently computable binary code

of relative constant distance and constant rate (i.e., every two codewords disagree on Ω(2`−1) bits
and k = Ω(2`−1)). Then, the family of permutations (over {0, 1}`) that we consider includes all
permutations πw1,....,w`

: {0, 1}` → {0, 1}` such that wi is a codeword of C, for every i ∈ [`]. That
is, we consider the family of permutations{

πC(r1),....,C(r`) : {0, 1}` → {0, 1}`
}
r1,...,r`∈{0,1}k

(3)

Recall that πw1,....,w`
is defined in Eq. (2), and that it is the composition of the π

(i)
wi ’s. Specifically,

defining x(0) def
= x, for every i ∈ [`] we have x(i) = π

(i)
wi (x

(i−1)), and πw1,....,w`
(x) = x(`).

4 The Analysis

The key observation is that the value of πw1,....,w`
(x) is the exclusive-or of x and (some specific) `

bits in the ` instruction sequences (i.e., one bit in each of the wi’s). Furthermore, the location of the
ith bit (i.e., the bit that gets xor-ed with x) in wi is determined by x and w1, ..., wi−1, obliviously
of the sequences wi,, w`.

2Actually, we will prove that this upper bound is tight, by showing that each sequence results in different permu-
tation. (See comment following Theorem 4.)

4

Observation 3 (key observation (folklore)): For any x ∈ {0, 1}` and w1, ..., w` ∈ {0, 1}2
`−1

, it
holds that πw1,...,w`

(x) = x⊕ b1 · · · b` where for every i ∈ [`] the bit bi is a bit in wi whose location
is determined by x and w1, ..., wi−1. Specifically, letting x1 · · ·x` = x and wi,0`−1 · · ·wi,1`−1 = wi, it
holds that bi = wi,y′x′′, where y′ = x1 · · ·xi−1 ⊕ b1 · · · bi−1, and x′′ = xi+1 · · ·x`; that is, bi is the bit
that resides in location y′x′′ in wi, where locations in wi are indexed as (`− 1)-bit long strings.

This observation is well-known and was used explicitly and implicitly in many works that study
routing on the Shuffle-Exchange network. What we believe is new is that this observation imply
the distance preservation feature stated in Theorem 4.

Proof: We first observe that, for any z = z1 · · · z` ∈ {0, 1}`, i ∈ [`] and w ∈ {0, 1}2`−1
, it holds

that π
(i)
w (z) = z⊕0i−1b0`−i where b is the bit that resides in location z1 · · · zi−1zi+1 · · · z` in wi; that

is, letting (η0i−1,0`−i , ..., η1i−1,1`−i) = wi, it holds that b = ηz1···zi−1,zi+1···z` .

The main claim follows by induction on i. Specifically, defining x(0) def
= x and x(i) = x

(i)
1 · · ·x

(i)
`

def
=

π
(i)
wi (x

(i−1)), it holds that x(i) = x(i−1) ⊕ 0i−1bi0
`−i, where bi is the bit that resides in location

x
(i−1)
1 · · ·x(i−1)

i−1 xi+1 · · ·x` in wi. Using the induction hypothesis, it follows that x(i) = x⊕b1 · · · bi0`−i

and that x
(i−1)
1 · · ·x(i−1)

i−1 xi+1 · · ·x` = y′x′′ such that y′ = x1 · · ·xi−1⊕b1 · · · bi−1 and x′′ = xi+1 · · ·x`.

We now prove that the fact that the code C is good (i.e., has relative constant distance and
constant rate) implies that the collection of permutations based on it (per Eq. (3)) constitutes
a good code. Hence, good binary codes imply good permutation codes. The claim regarding rate
is evident (since k · ` = Ω(log(2`!)) and C is injective) and so we focus on the distance between
different permutations.

Theorem 4 (distance between permutations in the family defined by Eq. (3)): For any r =
(r1, ..., r`) ∈ ({0, 1}k)` and s = (s1, ..., s`) ∈ ({0, 1}k)` such that r 6= s, it holds that∣∣∣{x∈{0, 1}` : πC(r1),...,C(r`)(x) 6= πC(s1),...,C(s`)(x)

}∣∣∣ ≥ δC · 2`,
where δC is the relative distance of C.

As a special case (when using the identity map in the role of C), it follows that that different
`-step instruction sequences generate different permutations; that is, for every two distinct u =
(u1, ..., u`) ∈ ({0, 1}2`−1

)` and v = (v1, ..., v`) ∈ ({0, 1}2`−1
)`, it holds that πu 6= πv (i.e., there exists

x∈{0, 1}` such that πu(x) 6= πv(x)).3

Proof: For simplicity of notation, suppose that i ∈ [`] is smallest such that ri 6= si. Let
(η0i−1,0`−i , ..., η1i−1,1`−i) = C(ri) and (ζ0i−1,0`−i , ..., ζ1i−1,1`−i) = C(si). Using Observation 3, it
follows that if ηα,β 6= ζα,β, then, for both σ ∈ {0, 1}, the `-bit long strings πC(r1),...,C(r`)(ασβ) and

πC(s1),...,C(s`)(ασβ) differ on their ith bit (whereas they agree on their i − 1 first bits). By the

hypothesis there are at least δC · 2`−1 locations on which C(ri) and C(si) differ, and each such lo-
cation contributes two units (to the difference between πC(r1),...,C(r`) and πC(s1),...,C(s`)). The claim
follows.

3Specifically, we consider use the identity map as a code C : {0, 1}2
`−1

→ {0, 1}2
`−1

(i.e., k = 2`−1), while noting
that δC = 2−(`−1) > 0. Hence, each tuple of instruction sequences yields a different permutation.

5

Digest. Note that the difference between πC(r1),...,C(r`)(x) and πC(s1),...,C(s`)(x) was charged to
the first index i such that ri 6= si. In particular, in that case πC(r1),...,C(r`)(x) and πC(s1),...,C(s`)(x)

differ on the ith bit. Indeed, these two strings may differ also on subsequent bits (due to i′ > i
such that ri′ 6= si′), but we avoided double-counting by focusing on a single index i. We also note
that working with the first possible index i (such that ri 6= si) merely simplifies the notation and
clarifies the argument.

5 The Coding Theoretic Perspective

In this section we prove Theorem 2 as well as its extension to constant composition codes, which
is stated below as Theorem 6.

5.1 Proof of Theorem 2

The algorithm guaranteed by Theorem 1 asserts a mapping from [N] to a collection of N = N(n) =
(n!)Ω(1) pairwise far apart permutations {πi : [n] → [n]}i∈[N]. Specifically, using any good binary

code C : {0, 1}k → {0, 1}2`−1
, the proof identifies [n] with Σ

def
= {0, 1}` (and so n = 2` and

N(n) = (2`)k), and specifies a mapping from {0, 1}k·` ≡ Σk to Σn. This mapping, denoted M ,

maps r = (r1, ..., r`) ∈ {0, 1}`·k to (πC(r)(0
`),, πC(r)(1

`)) ∈ Σ2` , where C(r) = (C(r1), ..., C(r`)).

Needless to say, we can present the ` · k-bit long sequence of r (equiv., `-long sequence of ri’s)
as a k-long sequence over Σ ≡ {0, 1}`.4 Recalling that the locations in the codewords of M are
associated with `-bit strings, the symbol in location x of the codeword M(r) is πC(r)(x); that is,

M(r)x = πC(r)(x).

The relative distance and rate of M . Theorem 4 asserts that the relative distance of M is
lower-bounded by the relative distance of C. Let us spell out the fact that the rate of M equals
k
n = 1

2 ·
k

2`−1 , where k
2`−1 is the rate of C.

Inverting M (i.e., error-less decoding). By definition, each valid codeword (Y0` , .., Y1`) is
associated with a unique permutation πC(r1),...,C(r`). When given the codeword, the permutation is
given explicitly, but inverting M means that we should find the corresponding sequence (r1, ..., r`) ∈
({0, 1}k)`. This sequence is easy to find by using Observation 3. Specifically, the fact that, for every
x ∈ {0, 1}`, the equality πC(r1),...,C(r`)(x) = Yx imposes ` conditions on the bits of the C(ri)’s, and
combining all these conditions determines all the C(ri)’s, which in turn determines all ri’s. (See
details in the proof of Theorem 5.)

Error correction for M . The error-less regime provides a good warm-up for the following.

Theorem 5 (efficient error correction for the code M): Suppose that there exists a polynomial-
time algorithm for decoding C at an error rate of at most εC . Then, there exists a polynomial-time
algorithm for decoding M at an error rate of at most εC .

4One appealing way of doing this is by encoding the jth bit of each of the ri’s in the jth symbol of the Σ-sequence.

6

Proof: We consider the same conditions as in the warm-up (error-less) case. Intuitively, although
the corrupted codeword (of M) may violate some of the conditions, it still holds that we get enough
correct conditions for the values of the bits in each C(ri), and can overcome the incorrect ones by
relying on the error-correction algorithm for C. Specifically, we will show that if the corrupted
M -codeword is εC-close to the code M , then we can obtain the correct values of at least a 1− εC
fraction of the bits of C(ri), which allows us to recover C(ri) by error-correction. Hence, we
provide a simple reduction from error correction of this permutation code to error correction of the
associated binary code, without any loss in parameters. Details follow.

Rephrasing Observation 3, we observe that if πw1,...,w`
(x) = y, then, for every i ∈ [`], the ith

bit of y equals the exclusive-or of the ith bit of x and the bit in location y′x′′ in wi, where y′ is the
(i− 1)-bit long prefix of y and x′′ is the (`− i)-bit long suffix of x. Hence, for each i ∈ [`], we get
two equations for the value of each bit in wi.

Now, suppose that the sequence (Y0` , .., Y1`) is εC-close to the M -codeword πC(r1),...,C(r`); that is,
for at least a 1− εC fraction of the x’s it holds that Yx = πC(r1),...,C(r`)(x). Then, given (Y0` , .., Y1`),

we recover the ri’s in ` iterations. Specifically, in the ith iteration we recover ri and also correct
the ith bit in all Yx’s as follows.

1. For each (x′, x′′) ∈ {0, 1}i−1 × {0, 1}`−i, we have two equations for the value of location y′x′′

in C(ri), where y′ is the (i − 1)-bit long prefix of Yx′0x′′ (which equals the (i − 1)-bit long
prefix of Yx′1x′′). One equation suggests that the value of this bit (of C(ri)) equals the ith bit
of x′0x′′ ⊕ Yx′0x′′ , and the other equation suggests that the value of this very bit equals the
ith bit of x′1x′′ ⊕ Yx′1x′′ .
We record both suggestions, and call them the 0-vote and the 1-vote for this bit of C(ri).
Note that the b-vote is correct if the bit ith bit of Yx′bx′′ is correct (i.e., equals the ith bit of
πC(r1),...,C(r`)(x

′bx′′)). Since at most εC · 2` of the Yx’s are incorrect, there exists a b ∈ {0, 1}
such that at most εC · 2`−1 of the b-votes are incorrect.

2. For each b ∈ {0, 1}, we try to decode C(ri) according to the b-votes for its bits. We stress
that the correctness of the decoding can be verified; that is, the decoding is accepted if the
corresponding C-codeword disagrees with at most an εC fraction of the b-votes. Hence, for
at least one of the b’s, we recover C(ri), which also yields ri. At this point we correct the ith

bit of all Yx’s accordingly (i.e., set it to the ith bit of πC(r1),...,C(r`)(x)), and proceed to the
next iteration.

Hence, if (Y0` , .., Y1`) is εC-close to the M -codeword πC(r1),...,C(r`), then we correctly recover all ri’s.
The claim follows.

5.2 Constructing good constant composition codes

Recall that a constant composition code over an alphabet Σ is a code in which in each codeword
each symbol of Σ appears the same number of times [4]; that is, if the codewords have length n,
then each symbol appears n/|Σ| times in each codeword. Permutation codes correspond to the
special case in which |Σ| = n. Hence, the following result generalizes Theorem 2.

Theorem 6 (good constant composition codes): For `, `′, k ∈ N and n = 2` ≥ 2`
′
, let C : {0, 1}k →

{0, 1}n/2 be any binary code, and S′n ⊂ [2`
′
]n denote the set of all n-long sequences in which each

7

element appears 2`−`
′

times. Then, there exists a constant composition code C ′ : ({0, 1}k)`′ → S′n
that uses C as a black-box such that evaluating C ′ (i.e., encoding) reduces to `′ evaluations of C
and the following properties hold:

• The rate of C ′ equals half the rate of C.

• The relative distance of C ′ is at least that of C.

• If C has a unique decoding from ε ·n errors, then so has C ′. Furthermore, decoding C ′ reduces
to `′ invocations of decoding algorithm for C.

Furthermore, individual symbols in codewords of C ′ depend on `′ symbols in codewords of C, and
can be computed in poly(`)-time.

Proof Sketch: We modify the construction that underlies the proof of Theorem 2 by replacing
permutation over {0, 1}` that are indexed by `-long sequences of codewords of C with functions
from {0, 1}` to {0, 1}`′ that are indexed by `′-long sequences of codewords of C. Specifically, the
generic permutation πw1,....,w`

: {0, 1}` → {0, 1}` defined in Eq. (2) is replace by the generic function
fw1,....,w`′ : {0, 1}` → {0, 1}`′ defined by

fw1,....,w`′ (x)
def
= pref`′(π

(`′)
w`′
◦ · · · ◦ π(1)

w1
(x)), (4)

where pref`′(z) is the `′-bit long prefix of z, and the π
(i)
w ’s are as in Eq. (1). Indeed, fw1,....,w`′

returns the `′-bit long prefices of values of the permutation that is generated by the (partial) `′-step
walk on the (first `′ layers of the) Shuffle-Exchange network that is determined by the `′ instruction

sequences w1,, w`′ . Note that for every y ∈ {0, 1}`′ (and every w1,, w`′ ∈ {0, 1}2
`−1

) it holds
that |{x∈{0, 1}` :fw1,....,w`′ (x)=y}| = 2`−`

′
.

Letting Σ = {0, 1}`′ , the code C ′ : ({0, 1}k)`′ → S′n ⊂ Σ2` is defined such that it maps

r = (r1, ..., r`′) ∈ {0, 1}`
′·k to (fC(r)(0

`),, πC(r)(1
`)) ∈ Σ2` , where C(r) = (C(r1), ..., C(r`′)).

Recalling that the locations in the codewords of C ′ are associated with `-bit strings, the symbol in
location x of the codeword C ′(r) is fC(r)(x); that is, C ′(r)x = fC(r)(x).

We first note that C ′ is a constant composition code (since for every y ∈ {0, 1}`′ and r ∈
{0, 1}`′·k, it holds that |{x ∈ {0, 1}` : fC(r)(x) = y}| = 2`−`

′
). The rate of C ′ is `′·k

2`·`′ , which is half

the rate of C, and the distance of C ′ is established exactly as in the proof of Theorem 4, where
the crucial observation that a difference created by the ith step appears in the ith bit.5 Analogous
considerations apply to the proof of Theorem 5, and this establishes the error correction feature of
C ′.

Acknowledgements

We are grateful to Venkatesan Guruswami for extremely useful discussions regarding Section 5. In
particular, Theorem 6 answers a question that he suggested.

5For distinct (r1, ..., r`′), (s1, ..., s`′) ∈ {0, 1}`
′·k, let i ∈ [`′] be the smallest index such that ri 6= si. Then, the

permutations π
(i)

C(ri)
◦ · · · ◦ π(1)

C(r1)
and π

(i)

C(si)
◦ · · · ◦ π(1)

C(s1)
differ on δC · 2` values, where δC is the relative distance of

C, and these values differ on their ith bits. Furthermore, subsequent steps do not affect these bits.

8

References

[1] V. Benes. Optimal Rearrangeable Multistage Connecting Networks. Bell System Technical
Journal, Vol. 43 (4), pages 1646–1656, 1964.

[2] P.J. Cameron. Permutation Codes. European Journal of Combinatorics, Vol. 31 (2), pages
482–490, 2010.

[3] Y.M. Chee and P. Purkayastha. Efficient decoding of permutation codes obtained from distance
preserving maps. In 2012 IEEE International Symposium on Information Theory, pages 636-
640, 2012.

[4] W. Chu, C.J. Colbourn, P. Dukes. On Constant Composition Codes. Discrete Applied Math-
ematics, Vol. 154 (6), pages 912–929, 2006.

[5] O. Goldreich and A. Wigderson. Robustly Self-Ordered Graphs: Constructions and Applica-
tions to Property Testing. ECCC, TR20-149, September 2020.

[6] F.H. Hunt, S. Perkins, and D.S. Smith. Decoding Mixed Errors and Erasures in Permutation
Codes. Designs, Codes and Cryptography, Vol. 74, pages 481–493, 2015.

[7] D. Slepian. Permutation Modulation. Proceeding of the IEEE, Vol. 53, pages 228–236, 1965.

[8] L.G. Valiant. A Scheme for Fast Parallel Communication. SIAM Journal on Computing,
Vol. 11 (2), pages 350–361, 1982.

[9] L.G. Valiant and G.J. Brebner. Universal Schemes for Parallel Communication. In 13th ACM
Symposium on the Theory of Computing, pages 263–277, 1981.

9

	Introduction
	Preliminaries
	The Construction
	The Analysis
	The Coding Theoretic Perspective
	Proof of Theorem 2
	Constructing good constant composition codes

	Acknowledgements
	References

