
Multi-pseudodeterministic algorithms∗

Oded Goldreich†

January 27, 2019

To a great woman.

Abstract

In this work, dedicated to Shafi Goldwasser, we consider a relaxation of the notion of pseudode-
terministic algorithms, which was put forward by Gat and Goldwasser (ECCC, TR11–136, 2011).

Pseudodeterministic algorithms are randomized algorithms that solve search problems by almost
always providing the same canonical solution (per each input). Multi-pseudodeterministic algo-
rithms relax the former notion by allowing the algorithms to output one of a bounded number of
canonical solutions (per each input). We show that efficient multi-pseudodeterministic algorithms
can solve natural problems that are not solveable by efficient pseudodeterministic algorithms, present
a composition theorem regarding multi-pseudodeterministic algorithms, and relate them to other
known notions.

Keywords: Pseudodeterministic algorithms, search problems, BPP vs P.

Contents

1 Introduction 1

2 Notions 2

2.1 The basic notion . 2
2.2 An alternative definition . 3
2.3 Relation to reproducible solution algorithms . 4

3 Multiple invocations of multi-pseudodeterministic algorithms 6

4 A complexity theoretic perspective 8

5 Acknowledgements and the story behind the dedication 11

∗Partially supported by the Israel Science Foundation (grant No. 1146/18).
†Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:

oded.goldreich@weizmann.ac.il.

1

1 Introduction

Randomized algorithms have a clear deficiancy: They require a source of randomness (or pseudoran-
domness), and carry a probability of error (or failure). However, as noted by Gat and Goldwasser [1],
in the context of solving search problems, randomized algorithms have another deficiancy: They do not
necessary return the same answer, when invoked on the same input. At the extreme, which does occur
in many natural algorithms, their output is a random variable that has very low (e.g., exponentially
small) collision probability.

Randomized algorithms (for solving search problems) that avoid the latter deficiancy (i.e., having
a high collision probability) are thus of natural interest. These algorithms offer a functionally that
is closer in spirit to that of deterministic algorithms, and are thus called pseudodeterministic. That
is, pseudodeterministic algorithms are randomized algorithms that solve search problems by almost
always providing the same canonical solution.

Definition 1 (pseudodeterministic algorithms [1]): For a binary relation R ⊆ {0, 1}∗ × {0, 1}∗, let

R(x)
def
= {y : (x, y) ∈ R} and SR = {x : R(x) 6= ∅}. A randomized algorithm A is said to be a

pseudodeterministic solver of the search problem R if for every x ∈ SR there exists (a canonical solution)
cx ∈ R(x) such that Pr[A(x)=cx] ≥ 2/3 (and Pr[A(x)=⊥] ≥ 2/3 for every x 6∈ SR).

Note that error reduction is applicable to Definition 1; that is, 2/3 can be replaced by 1− η if we are
willing to repeat the algorithm for O(log(1/η)) times.

The notion of pseudodeterministic algorithms was put forward by Gat and Goldwasser [1], who
initiated their study. In particular, they presented polynomial-time pseudodeterministic algorithms
for several natural search problems, which were previously known to have probabilistic polynomial-
time solvers, and characterized the class of search problems having polynomial-time pseudodetermin-
istic algorithms (see Theorem 12). The study of pseudodeterministic algorithms was extended to the
sublinear-time model in [4], and to randomized-NC in [5].

We note that it may be that randomization does not help in the context of solving search problem in
polynomial-time. This is certainly the case if the promise problem version of BPP equals the promise
version of P (see Theorem 13). But as long as the latter equality is not known or assumed, pseudode-
terministic algorithms are positioned between deterministic and general probabilistic algorithms, and
moving from general probabilistic algorithms to pseudodeterministic ones is a step forward, which may
even be viewed as a step towards full derandomization. The same holds with respect to the deter-
ministic, pseudodeterministic, and (general) probabilistic versions of NC. In contrast, in the context
of sublinear algorithms, probabilistic algorithms are typically significantly stronger than deterministic
ones. Unfortunately, the results of [4] indicate that typically pseudodeterministic algorithms are not
significantly stronger than deterministic ones.

In light of the above, augmenting the collection of known pseudodeterministic algorithms is of major
importance. Having failed to do so, led us to an attempt to relax the notion of pseudodeterministic
algorithms, while observing that in the context of sublinear algorithms this relaxation “buys” power.

Indeed, the contents of this work is the presentation of a relaxation of the notion of pseudodeter-
ministic algorithms, and a study of some of its features. The basic notion appears in Section 2.1, and
related notions are discussed in Sections 2.2 and 2.3. In Section 3 we present a composition result for
this type of algorithms, and in Section 4 we characterize the class of search problems that can be solved
by such polynomial-time algorithms in terms of restricted (deterministic polynomail-time) reductions
to the promise problem version of BPP .

The computational model. We present several transformations from one type of algorithms to
another type, where the latter algorithm invokes the former algorithm as a subroutine (several times).
Our transformations presume a model of computation in which the cost (or complexity) of these

1

invocations dominates the complexity of the resulting algorithms. This holds in the standard model
of probabilistic (polynomial-time) algorithms as well as in the model of sublinear-time algorithms, but
not in the context of log-space computation (e.g., since storing the outcomes of numerous subroutine
calls is not for free).

2 Notions

Shafi: Do you have the notion of a refill?
The attendant: Yes, we have refills, but what is a notion?

(In a diner, on the way to STOC’85.)

2.1 The basic notion

One basic difficulty that frustrates attempts to construct pseudodeterministic algorithms is their failure
to solve the problem of estimating the average value of a bounded function defined over a huge universe,
which is easily solvable by ordinary probabilistic algorithms. The issue is that we can easily find an
approximate value, and (w.h.p.) this value can be made to reside in a small interval, but we cannot
make it hit a single (canonical) value (with high probability). On the other hand, if we were allowed
to hit one of two canonical values (with high probability), then we can easily do it (see Proposition 4).
This leads to the following generalization of Definition 1 (which is recovered by setting m ≡ 1).

Definition 2 (m-pseudodeterministic algorithm): For R and SR as in Definition 1, and m : N→ N,

we say that A is a m-pseudodeterministic solver of the search problem R if for every x ∈ SR there exists

a non-empty set Cx ⊆ R(x) such that |Cx| ≤ m(|x|) and Pr[A(x)∈Cx] ≥ m(|x|)+1
m(|x|)+2 . Furthermore, as in

Definition 1, it is required that Pr[A(x)=⊥] ≥ 2/3 for every x 6∈ SR.

Error reduction is possible here too, since we can distinguish an output not in Cx (which occurs with
probability at most 1

m+2) from at least one of the outputs in Cx (which occurs with probability at least
1+(1/m)

m+2).1 In particular, 1/(m + 2) can be replaced by η < 1/(m + 2) if we are willing to repeat the

algorithm for O(m4 log(1/η)) times. The gap between the probability of outputting some element in
R(x) and the probability of outputting any element outside R(x) is a salient feature of Definition 2, as
reflected in the following result.

Proposition 3 (key feature of m-pseudodeterministic algorithms): Let R,SR and m : N → N be as

in Definition 2. Then, any m-pseudodeterministic solver of R, denoted A, satisfies

1. For every x ∈ SR, there exists cx ∈ R(x) such that Pr[A(x)=cx] ≥ 1+(1/m)
m+2 and for every y 6∈ R(x)

it holds that Pr[A(x)=y] ≤ 1/(m + 2).

2. For every x 6∈ SR, it holds that Pr[A(x)=⊥] ≥ 2/3.

On the other hand, if A satisfies the foregoing two conditions, then there exists an m-pseudodeterministic

solver of R that invokes A for Õ(m4) times.

Proof Sketch: The necessity follows by an averaging argument (i.e., maxy∈Cx{Pr[A(x) = y]} ≥
Pr[A(x) ∈ Cx]/|Cx|). On the other hand, given A that satisfies the conditions, we consider an al-
gorithm that invokes A for Õ(m4) times and outputs the most frequently occurring output in this
sample. Observe that, for any x ∈ SR, with very high probability, some element of R(x) occurs in the

sample with frequency greater than 1+(1/2m)
m+2 and each element outside of R(x) occurs in the sample with

1We use m+1
m+2

(resp., 1
m+2

) as a quantity that is noticeably larger than m
m+1

(resp., noticeably smaller than 1
m+1

).

2

frequency smaller than 1+(1/2m)
m+2 . (For proving the last assertion, partition all elements in {0, 1}∗ \R(x)

into sets, S1, ..., SO(m), such that Pr[A(x) ∈ Si] ≤ 1/(m + 2) for each i, and argue separately for the
frequency of the occurrence of each Si in the sample.)

A demonstration of the benefit of the generalization. Indeed, as asserted in the motivating
discussion, the generalization from pseudodeterministic algorithms to 2-pseudodeterministic algorithms
allows for approximating the average value of a bounded function defined over a huge universe.

Proposition 4 (averages can be approximated by a 2-pseudodeterministic algorithm): Given oracle

access to f : {0, 1}n → [0, 1], the value f
def
= Expx[f(x)] can be approximated, with high probability, to

within an additive error of ǫ by a 2-pseudodeterministic algorithm that makes O(1/ǫ2) queries to f .

Recall that (by [4, Thm. 4.1]) any 1-pseudodeterministic algorithm that solves this problem must have
query complexity exp(Ω(n)).

Proof Sketch: The algorithm selects uniformly at random m = O(1/ǫ2) points x1, ..., xm ∈ {0, 1}
n,

queries f for their value, and outputs ⌊v/ǫ⌉ · ǫ such that v =
∑

i∈[m] f(xi)/m, where ⌊α⌉ is the integer

closest to α. The claim follows by noting that, whp, it holds that |v − f | < 0.4ǫ. In this case, we
have ⌊v/ǫ⌉ ∈ [⌊(f − 0.4ǫ)/ǫ⌉, ⌊(f + 0.4ǫ)/ǫ⌉], whereas the latter interval contains at most two integers.
(Lastly, recall that |⌊v/ǫ⌉ · ǫ− v| ≤ 0.5ǫ).)

2.2 An alternative definition

The following definition, which is related to Definition 2, was suggested by Salil Vadhan. It iterprets
m-pseudodeterministic algorithms as ones capable of outputing (w.h.p.) a list of m valid solutions that
always contains the canonical solution.

Definition 5 (m-pseudodeterministic algorithm, alternative): For R,SR and m : N→ N as in Defini-

tion 2, we say that A is a m-pseudodeterministic list solver of the search problem R if for every x ∈ SR

there exists cx ∈ R(x) such that Pr[cx ∈A(x)⊆R(x)] ≥ 1 − 1
3m(|x|) and |A(x)| ≤ m(|x|) always holds.

Furthermore, as in Definition 2, it is required that Pr[A(x)=⊥] ≥ 2/3 for every x 6∈ SR.

The choice of the probability bound in the main condition of Definition 5 is more arbitrary than
in Definition 2. For starters, as in the latter case, any lower bound that is noticeablly larger than
m/(m + 1) (and smaller than 1 − exp(−m)) will do (see proof of Theorem 6).2 Furthermore, even an
lower bound that is (only) noticeablly larger than 1/2 allows for equivalence with Definition 2, albeit
at the cost increasing the parameter m. (For example, a lower bound of 2/3 in the main condition
allows for an equivalence up to a constant factor in the parameter m; see the proof of Theorem 6.)3

Theorem 6 (relating Definitions 2 and 5): For every efficiently computable m : N → N \ {1} and

search problem R, the following hold.

1. If R has an m-pseudodeterministic solver, then, invoking this solver for Õ(m4) times yields a

m-pseudodeterministic list solver.

2Specifically, note the free parameter η in the proof of the first direction, and observe that in the opposite direction
any lower bound p such that p > m/(m + 1) suffices in order to assert that cx ∈ {y : qy > 1− 1/(m + 1)} ⊆ R(x). Hence,
the choice of p only affects the overhead (p − (m/(m + 1)))2.

3Specifically, in such a case, we shall use the fact that qcx
≥ 2/3, whereas |{y : qy > 1/2}| < 2m and qy < 1/2 for every

y 6∈ R(x). Outputting an arbitrary element that appears in at least 60% of the lists, we derive an 2m-pseudodeterministic
solver. In general, any lower bound p such that p > 1/2 implies |{y : qy > 1/2}| < 2m, whereas the choice of p > 1/2
only affects the overhead (p − 0.5)2.

3

2. If R has an m-pseudodeterministic list solver, then, invoking this solver for Õ(m2) times yields

a m-pseudodeterministic solver.

Proof: Let A be an m-pseudodeterministic solver of R. For an arbitrary function η : N → (0, 1/3],
consider an algorithm that on input x proceeds as follows.

1. Invokes A(x) for O(m(|x|)4 · log(1/η(|x|))) times, and let py denote the frequency of the output
y in these invocations.

2. If p⊥ > 1/2, then we output ⊥. Otherwise, we output the list of all y’s such that py > 1+(1/2m(|x|))
m(|x|)+2 .

Clearly, if x 6∈ SR, then we output ⊥ with very high probability. Turning to the case of x ∈ SR, let Cx

be as in Definition 2, and let cx ∈ Cx be a string that is output by A(x) with the highest probability

(with ties broken arbitrarily).4 Then, Pr[A(x) = cx] ≥ 1+(1/m(|x|))
m(|x|)+2 , and so, with probability at least

1−η(|x|)/2, it holds that pcx > 1+(1/2m(|x|))
m(|x|)+2 . On the other hand, Pr[A(x) 6∈Cx] ≤ 1

m(|x|)+2 , and so, with

probability at least 1 − η(|x|)/2, it holds that
∑

y 6∈Cx
py < 1+(1/2m(|x|))

m(|x|)+2 . Recalling that |Cx| ≤ m(|x|)

and Cx ⊆ R(x), it follows that, with probability at least 1 − η(|x|), we output a list of size at most
m(|x|) that contain cx and is contained in R(x). Setting η(n) = 1/3m(n), Part 1 follows (since we may
output ⊥ in the rare case that the aforementioned list exceeds the size bound).

Turning to Part 2, let A be an m-pseudodeterministic list solver of R, and consider the probability,

denoted qy, that y occurs in the list output by A(x); that is, qy
def
= Pr[y ∈ A(x)]. Then,

∑
y qy ≤ m(|x|),

and so |{y : qy > 1−1/(m(|x|)+1)}| ≤ m(|x|). Also note that qcx ≥ 1−1/3m(|x|) > 1−1/(m(|x|)+1),
and that qy ≤ 1/3m(|x|) < 1− 1/(m(|x|) + 1) for every y 6∈ R(x). Now, consider an algorithm that on
input x proceeds as follows.

1. Invokes A(x) for O(m(|x|)2 · log m(|x|)) times, and let py denote the frequency of y in the lists
produces in these invocations.

2. If some y satisfies py > 1 − 1/2m(|x|), then we output it (i.e., if several y’s satisfy py > 1 −
1/2m(|x|), then we output one of them chosen arbitrarily). Otherwise, we output ⊥.

Clearly, if x 6∈ SR, then we output ⊥ with very high probability. Otherwise (i.e., x ∈ SR), with
probability at least 1−1/2(m(|x|)+2), the solution cx occurs more than a 1−1/2m(|x|) fraction of the
lists output in the invocations of A(x) (since qcx ≥ 1− 1/3m(|x|)). Likewise, with probability at least
1− 1/2(m(|x|) + 2), no y such that qy ≤ 1− 1/(m(|x|) + 1) < 1− 3/5m(|x|) occurs in a 1− 1/2m(|x|)
fraction of these lists.5

2.3 Relation to reproducible solution algorithms

The following (general) notion of reproducible solution algorithms is implicit in the work of Grossman
and Liu [6], which focuses on the case of randomized log-space.

Definition 7 (t-reproducible algorithms): For R,SR as in Definition 2 and t : N→ N, we say that A
is a t-reproducible solver of the search problem R if A decomposes to two algorithms, A1 and A2, such

that the following conditions hold.

1. |A1(x)| = t(|x|) always holds, and for x 6∈ SR it holds that Pr[A2(x,A1(x))=⊥] ≥ 2/3.

4Indeed, we could have used the first part of Proposition 3 instead (for arguing that some element cx of R(x) satisfies

Pr[A(x)=cx] ≥ 1+(1/m(|x|))
m(|x|)+2

), but not for arguing that
P

y 6∈R(x) Pr[A(x)=y] is small.
5Again, this is shown by partitioning all these y’s into sets, S1, ..., SO(m), such that Pr[A(x)∈Si] ≤ 1 − 1/(m + 1) for

each i, and argue separately for the frequency of each Si in the sample.

4

2. For every x ∈ SR and every y, there exists cx,y ∈ R(x) such that

Expy←A1(x) [Pr[A2(x, y)=cx,y]] ≥ 8/9.

Algorithm A2 (and consequently algorithm A) is sound if for every x ∈ SR and every y, it holds

that Pr[A2(x, y) ∈R(x) ∪ {⊥}] = 1. Algorithm A is almost-sound if, for every x ∈ SR, it holds that

Pr[A2(x,A1(x))∈R(x) ∪ {⊥}] = 1− 2−4t(|x|)−1.

We say that y is x-good if Pr[A2(x, y) = cx,y] ≥ 2/3, and note that Condition 2 implies that with
probability at least 2/3 it holds that A1(x) is x-good. Observe that, like in Definition 2, the error
probability of algorithm A2 on inputs (x, y) such that y is x-good can be reduced by repetitions. When
A2 is sound, the error probability of algorithm A1 can also be reduced by repetitions (and testing the
potential outputs by invoking A2).

6 This fact is used in Part 1 of the following result.

Theorem 8 (relating Definitions 2 and 5): For every efficiently computable t : N → N and search

problem R, the following hold.

1. If R has a t-reproducible almost-sound solver, then, invoking this solver for O(t2) times yields a

2t-pseudodeterministic solver.

2. If R has an 2t-pseudodeterministic solver, then, invoking this solver for exp(O(t)) times yields a

(t + 4)-reproducible almost-sound solver.

Part 2 was suggested to us by Ofer Grossman.

Proof: Starting with Part 1 and employing error reduction, we obtain algorithms A′1 and A′2 such
that for every x ∈ SR

Pry←A′
1(x)

[
Pr[A′2(x, y)=cx,y] > 1− 2−2t(|x|)−1

]
≥ 1− 2−2t(|x|)−1

where cx,y ∈ R(x) is as in Definition 7. Specifically, A′1(x) invokes A1(x) for 2t(|x)) times, and for
each sampled output y it invokes A2(x, y) for O(t(|x|)) times, thus estimating the collision probability
of A2(x, y) up to additive deviation of 0.1 with probability at least 1− 2−2t(|x|)−2. Furthermore, with
probability at least 1 − 2−2t(|x|)−2, for one of the sampled y’s the collision probability of A2(x, y) is
at least 2/3, whereas all sampled y’s are in R(x) ∪ {⊥} (since A is almost-sound). Likewise, A′2(x, y)
invokes A2(x, y) for O(t(|x)) times, and outputs the most frequently occurring output.

Letting Cx = {cx,y : y ∈ {0, 1}t(|x|)} ∩ R(x), we consider an algorithm that on input x outputs
A′2(x,A′1(x)). Observe that on input x ∈ SR, this algorithm outputs an element of Cx with probability
at least (1− 2−2t(|x|)−1)2 > 1− 1/(2t(|x|) + 2). The claim follows (noting that |Cx| ≤ 2t(|x|) and that the
algorithm outputs ⊥ w.h.p whenever x 6∈ SR).

Turning to Part 2, we are given an algorithm A that on input x ∈ SR satisfies Pr[A(x)∈Cx] ≥ m+1
m+2 ,

where m = 2t(|x|). The basic idea is distinguishing between elements in a non-empty subset of Cx that
each occur in A(x) with probability at least 1+(1/2m)

m+2 and the other elements.7 The problem is that
some elements of Cx may occur with probability that is very close to this threshold. This problem

is resolved by using a random threshold in the interval
[

1+(1/2m)
m+2 ± 1/3m

m+2

]
. Specifically, we select the

threshold at random in the set T =
{

1+(1/6m)
m+2 + i/15m2

m+2 : i∈ [10m]
}

.

6Specifically, we sample a few outputs y’s of A1(x), and output the one that seems to maximize the collision probability
of A2(x, y). That is, for each sampled y, we estimate the probability that two invocations of A2(x, y) yield the same output,
by making a small number of trials.

7Recall that (as shown in Proposition 3) some string in Cx appears in A(x) with probability at least 1+(1/m)
m+2

, whereas

each string outside Cx appears in A(x) with probability at most 1)
m+2

.

5

Using the fact that the elements in T are at distance at least 1
15m2·(m+2)

apart, it follows that each

element in {Pr[A(x) = y] : y ∈ Cx} can be at distance at least 1
31m2·(m+2) from at most one of the

elements of T . Hence, with probability at least 0.9, the random threshold τ is at distance at least
1

31m2·(m+2)
from each of the m probabilities of occurrence of elements in Cx (and is always at distance

at least 1/(6m · (m + 2)) from the probability of occurrence of any element outside of Cx). Thus, we
obtain the following (t + 4)-reproducible solver: The first component (i.e., A′1) outputs a uniformly
distributed i ∈ [10 · 2t(|x|)], and the second component (i.e., A′2) uses i to determine the threshold

τ = 1+((5·2t(|x|)−1+i)/15·22t(|x|))

2t(|x|)+2
and the set C ′x,τ = {y : Pr[A(x) = y] > τ}. Whenever the threshold is

good (in the above sense), the set C ′x,τ is correctly reconstructed (with probability 1 − o(1), by using

Õ(26t(|x|)) invocations of A(x)), and A′2(x, i) may just output the lex-first element of C ′x,τ . Finally,

observe that (A′1, A
′
2) is almost-sound, because for every τ , with probability at least 1− 2−4t(|x|)−1, the

set C ′x,τ ⊂ R(x) ∪ {⊥} is correctly reconstructed.

3 Multiple invocations of multi-pseudodeterministic algorithms

A straightforward application of Proposition 4 to the problem of approximating t different quantities
yields a 2t-pseudodeterministic algorithm. We can do better.

Algorithm 9 (approximating t averages by a (t + 1)-pseudodeterministic algorithm): Given oracle

access to f1, ..., ft : {0, 1}n → [0, 1], the algorithm proceeds as follows.

1. It selects uniformly at random m = Õ(t4)/ǫ2 points, x1, ..., xm ∈ {0, 1}
n
, queries the fi’s for their

value, and computes vi =
∑

j∈[m] f(xj)/m for each i ∈ [t].

2. It selects uniformly at random a number τ ∈ {(j − 0.5) · ǫ/10t2 : j ∈ [5t2]}, and sets v′i = vi + τ
for each i ∈ [t].

It outputs the t-tuple (⌊v′1/ǫ⌉ · ǫ, ..., ⌊v
′
t/ǫ⌉ · ǫ).

Indeed, with probability at least 1− 1
2(t+3) , it holds that |vi−f i| < ǫ/10t2 for every i ∈ [t], where f i

def
=

Expx[fi(x)], and in this case ⌊(vi + τ)/ǫ⌉ ∈ Ii, where Ii = [⌊(f i + τ − ǫ/10t2)/ǫ⌉, ⌊(f i + τ + ǫ/10t2)/ǫ⌉].
We call τ bad for i if the interval Ii contains more than a single integer, and note that the probability
that τ is bad for some i ∈ [t] is at most

t · Prτ [⌊(f i + τ − ǫ/10t2)/ǫ⌉ 6= ⌊(f i + τ + ǫ/10t2)/ǫ⌉],

which is upper-bounded by t·4/10t2 < 1/2(t+3) (assuming t > 12). Hence, with probability 1−1/(t+3),
all vi’s are ǫ/10t2-close to the corresponding f i’s and τ is not bad for any i. In this case, the output
sequence equals (⌊(f1 + τ)/ǫ⌉ · ǫ, ..., ⌊(f t + τ)/ǫ⌉ · ǫ), and the key observation is that this sequence can
assume at most t + 1 possible values when τ varies in the interval [0, ǫ/2]. To see this, let remǫ(α) =
α−⌊α/ǫ⌋·ǫ, and assume (w.l.o.g.) that remǫ(f i) ≤ remǫ(f i+1) for every i ∈ [t−1]. In this case a typical
sequence (⌊(f 1 + τ)/ǫ⌉ · ǫ, ..., ⌊(f t + τ)/ǫ⌉ · ǫ) takes the floor-value on the first i ∈ {0, 1, ..., t} values and
the ceiling-value in the remaining t− i values, which means that there are at most t + 1 possibilities.
It follows that Algorithm 9 constitute a (t + 1)-pseudodeterministic algorithm for approximating the

averages of t bounded functions.

Comment. Algorithm 9 is closely related to the O(t log(1/ǫ))-reproducible solver used by Grossman
and Liu [6] to estimate exp(O(t)) different probabilities (which arise from any randomized 2t-time
algorithm that uses space t). Using Part 1 of Theorem 8, this yields a poly(t/ǫ)-pseudodeterministic

6

algorithm, whereas our analysis yields a (t + 1)-pseudodeterministic algorithm. The use of a single
threshold here (and in [6]) is reminiscent of the use of a single threshold by Saks and Zhou [7], although
the benefit of using a single threshold is different. Specifically, Saks and Zhou [7] use a single threshold
in order to economize on randomness, whereas we use it in order to better upper-bound the number of
possible rounding-patterns (which would have been 2t otherwise).

Beyond Algorithm 9. Generalizing the idea that underlies the analysis of Algorithm 9, we obtain
the following composition result (which improves over the trivial bound of mt).

Theorem 10 (non-adaptive invocations of a m-pseudodeterministic algorithm): Suppose that A is an

m-pseudodeterministic algorithm for solving the search problem R. Then, one can solve t instances of

R by a (t · (m− 1) + 1)-pseudodeterministic algorithm that invokes A for poly(tm) times.

Note that this result holds both in the context of sub-linear time algorithms (as in Algorithm 9) and
in the context of polynomial-time algorithms.

Proof: Let (x1, ..., xt) be a sequence of inputs, and suppose for simplicity that x1, ..., xt ∈ SR (since
the xi’s that have no solution are easy to detect).

For every x ∈ SR, let py(x) = Pr[A(x)=y], and observe that maxy{py(x)} ≥ 1
m ·

m+1
m+2 = (1 + m−1) ·

1
m+2 whereas {y : py(x) > 1/(m + 2)} ⊆ Cx (where Cx ⊆ R(x) is as defined in Definition 2). Letting

δ = 1/(m · (m + 2)), this suggests finding, for each x ∈ SR, the set of y’s such that py(x) ≥ f(τ)
def
=

1
m+2 + τ , where τ is uniformly distributed in [0.5δ, δ]. Specifically:

1. Select τ uniformly in [0.5δ, δ]. Indeed, selecting τ in {(M + i) · δ/2M : i ∈ [M]}, where M =
poly(tm), will do.

2. For each i ∈ [t], taking a sample of size poly(M/ǫ), let Ci denote the set of y’s that appeared
with frequency at least f(τ) in the sample.

3. For each i ∈ [t], output the lex-first element of Ci.

With very high probability, each Ci is non-empty and contains only elements of Cxi . Furthermore,
each y ∈ Ci occurs in the sample with frequency that is very close to py(xi). We call τ bad for i if for
some y such that py(xi) > f(0) = 1/(m+2) it holds that |py(xi)−f(τ)| < δ/4M , and observe that the
probability that τ is bad for some i is o(1/tm). We complete the proof by showing that the algorithm’s
output, when τ is not bad for any i, is one of t · (m− 1) + 1 possibilities.

To see this, fix such a τ , and consider the set {(i, y) : py(xi) > f(0)}. Arrange all these t ·m pairs
according to the value of py(xi), and note that f(τ) is sufficiently far from each of these values. Hence,
with probability 1− o(1/tm), each set Ci equals the set of y’s such that py(xi) > f(τ). It follows that,
in this case, the output of the algorithm is uniquely determined by the set {(i, y) : py(xi) > f(τ)}, or,
equivalently, by the location of τ in the sorted sequence of py(xi)’s. Note that there are only tm+1− t
(rather than tm + 1) possibilities, since for each i there exists y such that py(xi) > f(δ).

Adaptive invocations. We note that a result of the flavor of Theorem 10 for adaptive invocations
of 2-pseudodeterministic algorithms (i.e., invoking the algorithm on instances determined by prior
invocations) would imply efficient poly-pseudodeterministic algorithms for all “search problems in BPP”
(as defined in [3, Sec. 3.1]). This is the case because “BPP search problems” are deterministically
reducible (in polynomial-time) to promise problems in BPP (see [3, Thm. 3.5]), which in turn have
polynomial-time 2-pseudodeterministic algorithms.

7

4 A complexity theoretic perspective

Confining ourselves to search problems having “efficiently recognizable solutions” (as defined next),
we characterize the class of search problems that are solavle by m-pseudodeterministic algorithms in
terms of problems that are solvable by deterministic polynomial-time reductions of a certain type.

Definition 11 (search problems with efficiently recognizable solutions): A search problem R ⊆ {0, 1}∗×
{0, 1}∗ is said to have efficiently recognizable solutions if there exists a probabilistic polynomial time al-

gorithm for deciding membership in R (i.e., R, as a set, is in BPP).

Our starting point is the charcterization provided by Gal and Golkdwasser [1].

Theorem 12 (characterization of the class of search problems that are solvable by polynomial-time
pseudodeterministic algorithms [1]):8 Let R be a search problem having efficiently recognizable solutions.

The problem R can be solved by a polynomial-time pseudodeterministic algorithm if and only if it is

reducible in determinstic polynomial-time to a decision problem in BPP.

Indeed, the reductions referred to in Theorem 12 are deterministic polynomial-time oracle machines
that make multiple queries to the (binary) oracle, which in turn is (the characteristic function of) a
set in BPP . Interestingly, using reductions to the promise problem version of BPP, denoted prBPP ,
allows such reductions to solve any “BPP search problem” (i.e., a search problem that can be solved
in probabilistic polynomial-time and has efficiently recognizable solutions).

Recall that a promise problem is a pair of disjoint sets, (Syes, Sno), and solving it means distin-
guishing inputs in Syes from inputs in Sno; the set Syes ∪ Sno is called the promise. Consequently,
when a reduction to a promise problem makes a query that lies outside the promise (or “violates the
promise”), it obtains an arbitrary answer (see [2, Sec. 2.4.1.1]).

Theorem 13 (characterization of the class of search problems that are solvable by probabilistic
polynomial-time algorithms [3]): Let R be a search problem having efficiently recognizable solutions.

The problem R can be solved by a (two-sided error) probabilistic polynomial-time algorithm if and only

if it is reducible in deterministic polynomial-time to a promise problem in prBPP.

It turns out that Theorems 12 and 13 are special cases of a general result, which refers to the number
of queries outside the promise that appear in the “tree of all possible executions” of the reduction. The
latter notion is defined next.

Definition 14 (the directed tree of all possible executions of a reduction): Let M be deterministic

reduction to a promise problem Π = (Syes, Sno); that is, M is a deterministic oracle machine that

makes oracle calls to Π. For any input x, the tree of all possible executions of MΠ(x) describes all

possible executions of M on input x and oracle Π such that internal nodes in this directed tree are

associated with queries that may be made in such an execution, outgoing edges in the tree correspond to

possible answers to these queries, and leaves correspond to the outputs in such executions. Specifically,

a query q that satisfies the promise of Π has a single child in the tree, since the answer to q is 1 if

q ∈ Syes and 0 if q ∈ Sno, whereas a query that violates the promise has two children corresponding

to the two possible answers to the query q 6∈ Syes ∪ Sno.

Note that (standard) decision problems have trivial promises (i.e., the decision problem associated with
the set S corresponds to the promise problem (S, {0, 1}∗ \S)), and so the tree of all possible executions
of a (deterministic) reduction to a decision problem consists of a single path (i.e., all internal nodes have

8Actually, the equivalence holds (and is stated in [1]) also for search problems not having efficiently recognizable
solutions.

8

degree 1 and the directed tree has a single leaf). On the other hand, the tree of all possible executions
of a deterministic polynomial-time reduction to a promise problem may contain an exponential number
of internal nodes.

Theorem 15 (characterization of the class of search problems that are solvable by polynomial-time m-
pseudodeterministic algorithms):9 Let R be a search problem having efficiently recognizable solutions,

and m : N → N be upper-bounded by a polynomial. The problem R can be solved by a polynomial-

time m-pseudodeterministic algorithm if and only if it is reducible in determinstic polynomial-time to a

promise problem Π in prBPP such that on input x the tree of all possible executions of MΠ(x) contains

at most m(|x|) leaves.

Note that Theorem 12 is a special case of Theorem 15 in which m ≡ 1, whereas Theorem 13 can be
restated by replacing the two occurrences of m (in the main assertion of Theorem 15) by two different
functions of the form exp(poly).10

Proof: Suppose that R can be solve by a deterministic (polynomial-time) oracle machine M when
given oracle access to a promise problem Π ∈ prBPP such that the tree of all possible executions of
MΠ(x) contains at most m = m(|x|) leaves. Then, this tree contains at most m−1 internal nodes that
correspond to queries that lie outside the promise of Π. The idea is to emulate a possible execution of
MΠ(x) by replacing the oracle calls with an actual probabilistic polynomial-time computation. When
the query lies inside the promise, doing so is straightforward (since by the hypothesis Π ∈ prBPP), and
the answer is uniquely determined and is correctly obtained (with overwhelmingly high probability).
However, when the query lies outside the promise, we can estimate the acceptance probability of the
machine deciding Π, and decide according to a single randomly selected threshold (as in the proof of
Theorem 10).

Actually, we (can not and) do not need to know whether or not the query lies inside the promise;
we rather estimate the acceptance probability of the machine deciding Π, and act accordingly (while
relying on the fact that if the query lies inside the promise then its acceptance probability is bounded
away from the selected threshold). Before detailing the resulting algorithm, we observe that all queries
in the tree (including the m− 1 queries that violate the promise) are fully determined by M,x and Π,
which means that our decision is determined whenever the random threshold is sufficiently far from
the accepting probabilities of all queries (including the m− 1 queries that violate the promise). As in
the proof of Theorem 10, it follows that the resulting (polynomial-time) algorithm is a ((m− 1) + 1)-
pseudodeterministic algorithm that solves R. Specifically, using a decision procedure P for Π, on input
x, our randomized algorithm proceeds as follows.

1. Select τ ∈
{

0.4 + i
5(m+2)2 : i ∈ [(m + 2)2]

}
uniformly at random.

2. Emulate the execution of M on input x, answering queries by estimating the acceptance prob-
ability of P and returning 1 if and only if the estimate is larger than τ . Specifically, M makes

a query q, we estimate pq
def
= Pr[P (q)= 1] such that, with probability at least 1 − (m + 2)−2/d,

the estimate p̃q falls inside [pq ± 0.09 · (m + 2)−2], where d is the depth of the tree of all possible
executions of MΠ(x). We return 1 if p̃q > τ and 0 otherwise.

9Actually, the equivalence holds also for search problems not having efficiently recognizable solutions; indeed, the
following proof does not refer to this hypothesis.

10The resulting assertion reads: For any search problem R having efficiently recognizable solutions, R can be solved

by a polynomial-time exp(poly)-pseudodeterministic algorithm if and only if it is reducible in deterministic polynomial-

time to a promise problem Π in prBPP such that on input x the tree of all possible executions of MΠ(x) contains

at most exp(poly(|x|)) leaves. The proof uses the fact that if R has efficiently recognizable solutions, then any prob-
abilistic polynomial-time algorithm solving R can be made to output valid solutions for x with probability at least
1 − exp(−poly(|x|)).

9

Note that providing the aforementioned approximation requires O(m4 log(md)) ≤ poly(|x|) in-
vocations of P , where the inequality uses the upper bounds on m and on the running time of
M .

3. When M halts, we output its verdict.

Observe that τ is very far from any query that lies inside the promise of Π (i.e., for every such query q it
holds that either pq ≥ 2/3 or pq ≤ 1/3). As for queries that lie outside the promise of Π, the probability
that any of these queries is 0.09 · (m+2)−2-close to τ is at most m · (m+2)−2 < (m+2)−1− (m+2)−2.
Furthermore, when all queries are 0.09·(m+2)−2-far from τ , with probability 1−(m+2)−2 the relation
of each of the p̃q’s to τ is determined (by the relation of t + p to τ), and the claim follows as in the
proof of Theorem 10.

Turning to the opposite direction, let A be an m-pseudodeterministic algorithm that solves R. The
oracle machine that we construct, iteratively extends a prefix of a single solution that is output by
A(x) with probability at least 1+(1/m(|x|))

m(|x|)+2 , provided x ∈ SR. Indeed, in each iteration the current prefix
is extended by a single bit such that the probability of outputting a single solution that extends this
prefix is essentially preserved (or even increased). In order to determine this bit, we need to estimate
the probability that A(x) outputs a single solution that fits the extended prefix, which can be done by
issuing an adequate query to prBPP .

Note that we cannot hope distinguish in prBPP between the case that the extended prefix fits
a single solution that is output with probability at least p and the case that each fitting solution is
output with probability smaller than p, but we can distinguish (in prBPP) between the former case
and the case that the latter probability is smaller than p− 1/poly(|x|). Hence, in the ith iteration we
seek a i-bit long prefix that fits some single solution that is output by A(x) with probability at least
1+(1/m(|x|)−(i/poly(|x|))

m(|x|)+2 . We enter this iteration with a (i − 1)-bit long prefix y of a single solution that

is output by A(x) with probability at least 1+(1/m(|x|)−((i−1)/poly(|x|))
m(|x|)+2 , and use the oracle in order to

distinguish the case that y0 is output by A(x) with probability at least 1+(1/m(|x|)−((i−1)/poly(|x|))
m(|x|)+2 and

the case that y0 is output by A(x) with probability smaller than 1+(1/m(|x|)−(i/poly(|x|))
m(|x|)+2 .

The key observation is that this query (i.e. y0) violates the corresponding promise if and only if
both possible setting of the current bit yield a prefix that can be extended to a single solution that
is output by A(x) with about the same (or higher) probability. (Specifically, if (x, y0) is not a yes-
instance, then y1 must be the extension of y that fits a solution output by A(x) with probability at

least 1+(1/m(|x|)−((i−1)/poly(|x|))
m(|x|)+2 .) It follows that the number of leaves in the execution tree of the oracle

machine that we construct cannot exceed the number of solutions that A(x) outputs with probability
greater than 1/(m(|x|)+2), which is upper-bounded by m(|x|). The resulting oracle machine, denoted
M , is detailed next, while assuming (without loss of generality)11 that all solutions in R(x) have length
ℓ(|x|), for some easy to compute function ℓ : N→ N.

1. On input x, estimate Pr[A(x) = ⊥], and halt outputting ⊥ if the estimate exceeds 1/2. (This
estimate is obtained by making the query x to the BPP-set {x′ : Pr[A(x′)=⊥] ≥ 2/3} = {0, 1}∗ \
SR, while noting that Pr[A(x)=⊥] ≤ 1/3 for any x ∈ SR.)

Otherwise (i.e,., x ∈ SR), the machine initializes y ← λ as a prefix of some solution that is output

with sufficiently high probability. Indeed, at this point, there exists z ∈ {0, 1}ℓ(|x|)−|y| such that

Pr[A(x)=yz] ≥ 1+(1/m(|x|))
m(|x|)+2 .

Let δ(n) = 1/m(n) and ǫ(n) = 1/(2m(n) · ℓ(n)).

11We may set ℓ to be the running time of A, and consider padding all solutions to length ℓ(|x|)+1; for example, consider

R′(x)
def
= {y10ℓ(|x|)−|y| : y∈R(x)}.

10

2. For i = 1, ..., ℓ(|x|), test if extending the prefix y by 0 yields a prefix of a single solution that
is output with sufficiently high probability. Specifically, we estimate the probability that A(x)

outputs a single solution with prefix y0, set y ← y0 if the estimate exceeds 1+δ(|x|)−(i−1)·ǫ(|x|)
m(|x|)+2 ,

and set y ← y1 otherwise.

The foregoing estimate is obtained by making the query (x, y0) to the promise problem Π =
(Syes, Sno) such that

Syes =

{
(x′, y′) : ∃z∈{0, 1}ℓ(|x

′|)−|y′| s.t. Pr[A(x′)=y′z] ≥
1 + δ(|x′|)− (|y′| − 1) · ǫ(|x′|)

m(|x′|) + 2

}

Sno =

{
(x′, y′) : ∀z∈{0, 1}ℓ(|x

′|)−|y′| Pr[A(x′)=y′z] <
1 + δ(|x′|)− |y′| · ǫ(|x′|)

m(|x′|) + 2

}

That is, we extend y ∈ {0, 1}i−1 to y0 if and only if the query (x, y0) is answered positively.
Hence, if y ∈ {0, 1}i−1 is extended to y0, then (x, y0) 6∈ Sno must hold, which implies that A(x)

outputs a single solution with prefix y0 with probability at least 1+δ(|x|)−i·ǫ(|x|)
m(|x|)+2 . On the other

hand, if y ∈ {0, 1}i−1 is extended to y1, then (x, y0) 6∈ Syes must hold, which implies that A(x)

outputs a single solution with prefix y1 with probability at least 1+δ(|x|)−(i−1)·ǫ(|x|)
m(|x|)+2 , since otherwise

A(x) outputs each single solution with prefix y with probability less than 1+δ(|x|)−(i−1)·ǫ(|x|)
m(|x|)+2 , which

contradicts the guarantee of the prior iteration. In both cases, the extended i-bit long y satisfies
the following: there exists z ∈ {0, 1}ℓ(|x|)−i such that Pr[A(x)=yz] ≥ 1+δ(|x|)−i·ǫ(|x|)

m(|x|)+2 .

Note that the promise problem Π is in prBPP by virtue of an algorithm that, on input (x′, y′),
invokes A(x′) for O(m(|x′|)/ǫ(|x′|))2 = poly(|x′|) times and estimate the maximal probability
that the output equals a single string that extends y′.

3. Output y ∈ {0, 1}ℓ(|x|), while noting that

Pr[A(x)=y] ≥
1 + δ(|x|) − |y| · ǫ(|x′|)

m(|x|) + 2
=

1 + (1/2m(|x|))

m(|x|) + 2

Note that whenever the query (x, y0) lies outside Syes ∪ Sno it is the case that for both σ ∈ {0, 1}

it holds that A(x) outputs a single solution with prefix yσ with probability at least 1+δ(|x|)−|yσ|·ǫ(|x|)
m(|x|)+2 ,

which equals 1+(1/m(|x|))−(|yσ|/2m(|x|)ℓ(|x|))
m(|x|)+2 ≥ 1+(1/m(|x|))−(1/2m(|x|))

m(|x|)+2 . Hence, nodes in the tree of all

possible executions of MΠ(x) that have two children correspond to a pair of prefixes (y0, y1) that
are each a prefix of a single solution output by A(x) with high probability (i.e., probability exceeding
1/(m(|x|)+2)), whereas these two different solutions must be in the set Cx (as per Definition 2). Hence,
the number of different nodes in level i of the tree is upper-bounded by the number of different i-bit
long prefixes of different solutions in Cx. It follows that the number of leaves in this trees is at most
|Cx| ≤ m(|x|).

5 Acknowledgements and the story behind the dedication

I wish to thank Salil Vadhan and Ofer Grossman for their contributions to this work. In particular, the
definition of m-pseudodeterministic list solver (i.e., Definition 5) was suggested to me by Salil Vadhan,
and Part 2 of Theorem 8 was suggested to me by Ofer Grossman. I am grateful to both of them for
the permissions to include their contributions here.

In the Fall of 2018, a group of former students of Shafi started planning to hold a small celebration
of her birthday (November 14th). One day after November 14th 2018, I heard Shafi present an overview
of pseudodeterminism, a direction of research she initiated in her paper with Gat [1]. It has occurred

11

to me that nothing could be more appropriate than to try to contribute to this research direction. This
work was first presented in the aforementioned celebration, which took place at the Simons Institute
on January 13th 2019.

The dedication is meant to evoke the dedication of Beethoven’s third (“Eroica”) symphony, but
avoiding Shafi’s name is not meant to express dismay.

References

[1] E. Gat and S. Goldwasser. Probabilistic Search Algorithms with Unique Answers and Their Cryp-
tographic Applications. In ECCC, TR11–136, 2011.

[2] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press,
2008.

[3] O. Goldreich. In a World of P=BPP. In Studies in Complexity and Cryptography, LNCS Vol. 6650,
Springer, pages 191–232, 2011.

[4] O. Goldreich, S. Goldwasser, and D. Ron. On the possibilities and limitations of pseudodeterministic
algorithms. In 4th ITCS, pages 127–138, 2013.

[5] S. Goldwasser and O. Grossman. Bipartite Perfect Matching in Pseudo-Deterministic NC. In 44th

ICALP, pages 87:1–87:13, 2017.

[6] O. Grossman and Y.P. Liu. Reproducibility and Pseudo-Determinism in Log-Space. In 30th SODA,
pages 606–620, 2019.

[7] M. Saks and S. Zhou. BPHSpace(S) ⊆ DSPACE(S3/2). JCSS, Vol. 58 (2), pages 376–403, 1999.

12

