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Summary. In this note we present a proof that the variation distance up to relabeling is upper-
bounded by the “relative earth mover distance” (to be defined below). The relative earth mover
distance was introduced by Valiant and Valiant [VV11], and was extensively used in their work.
The foregoing claim was made in [VV11], but was not used there. The claim appears a special case
of [VV15, Fact 1] (i.e., the case of 7 = 0). The proof we present is merely an elaboration of (this
special case of) the proof presented by Valiant and Valiant in [VV15, Apdx A].

1 Definitions
We start by introducing some definitions and notations.

Definition 1 (Histograms and relative histograms for distributions) For a distribution p :
[n] — [0,1], the corresponding histogram, denoted hy:[0,1] — N, such that h,(x) def {i € [n] :
p(i) = x}| for each x € [0,1]. The corresponding relative histogram, denoted hl':[0,1] — R, satisfies
hE(x) = hy(x) - @ for every € [0,1].

That is, hy(x) equals the number of elements in p that are assigned probability mass z, whereas
hﬁ(x) equals the total probability mass assigned to these elements. Hence, h,(0) may be positive,

whereas hf(0) is always zero.

For a non-negative function h, let S(h) & {x : h(z) > 0} denote the support of h. Observe that

for any distribution p : [n] — [0, 1] we have that Zmes(hp) hyp(z) = n and ers(h;}) hli(z) = 1. Also
note that S(hlt) = S(hy) \ {0}.

The following definition interprets the distance between non-negative functions h and h’ as the
cost of transforming h into A’ by moving m(x,y) units from = in h to y in i’ (for every z € S(h)
and y € S(h')), where the cost of moving a single unit from z to y is either |x — y| or |log(z/y)|
(depending on the distance).
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Definition 2 (Earth-Mover Distance and Relative Earth-Mover Distance) For a pair of
non-negative functions h and h' over [0, 1] such that D wesi M@) =X pesm I (x), the earth-mover
distance between them, denoted EMD(h,h'), is the minimum of

Y>> mzy) v -y,

z€S(h) yeS(')
taken over all non-negative functions m:S(h) x S(h') — R that satisfy:
e For every x € S(h), it holds that 3 gy m(z,y) = h(z), and
o For everyy € S(h'), it holds that 3 ¢ gy m(z,y) = I'(y).

The relative earth-mover distance between h and h', denoted REMD (h,h'), is the minimum of

S Y mley)- llog(e/y)l

xzeS(h)yeS(h')

subject to the same constraints on m as for EMD.

The term earth-mover comes from viewing the functions as piles of earth, where for each = € S(h)
there is a pile of size h(z) in location = and similarly for each y € S(R) there is a pile of size h'(y)
in location y. The goal is to transform the piles defined by h so as to obtain the piles defined by A/,
with minimum “transportation cost”. Specifically, m(z,y) captures the possibly fractional number
of units transferred from pile x in h to pile y in A’. For EMD the transportation cost of a unit from
x to y is |z —y| while for REMD it is | log(z/y)|. In what follows, for a pair of distributions p and ¢
over [n] we shall apply EMD to the corresponding pair of histograms h, and hy, and apply REMD
to the corresponding relative histograms hﬁ and hf.

Variation distance up to relabeling, as defined next, is a natural notion in the context of testing
properties of symmetric distributions (i.e., properties that are invariant under relabeling of the
elements of the distribution).

Definition 3 (Variation Distance up to Relabeling) For two distributions p and q over n,
the variation distance up to relabeling between p and q, denoted VDR(p, q), is the minimum over all

permutations o over [n] of
1 n
3 > Ip(i) = q(o(@)] -
i=1

2 Proofs
Our goal is to present a proof of the following result.

Theorem 4 (special case of Fact 1 in [VV15]) For every two distributions p and q over [n],
it holds that
VDR(p,q) < REMD(h%, hl) .

P’Tq

The proof will consist of two steps (captured by lemmas):



1. VDR(p,q) = & - EMD(hy, hy).
2. EMD(hy, hy) < 2- REMD(RE nE).

P’q

Actually, we start with the second step.

Lemma 5 For every two distributions p and q over [n],

EMD (hy, hg) < 2- REMD(h[, B) .
The following proof shows how to construct, for every transportation function m’ used for the
relative histograms (hf and hf) a corresponding transportation function m for the corresponding
histograms (h,, and h,) such that the EMD cost of m is at most twice the REMD cost of m’.

Proof: It will be convenient to consider two distributions, p and ¢ that are slight variations of p
and ¢, respectively. They are both defined over [2n], where p(i) = p(i) and ¢(i) = q(i) for every
i € [n], and p(i) = q(i) = 0 for every ¢ € [2n] \ [n]. Since hB = hft and hB = hE, we have that
REMD(hf,hf) = REMD(hﬁ,hf) As for hy and hg they agree Wlth hy and hg, respectively,
everywhere except on 0, where hz(0) = h,(0) + n and hz(0) = hq(0) + n, so EMD(hg, hg) =
EMD(hy, hy) as well. Therefore, it suffices to show that EMD(hg, hy) <2 - REMD(hg, h?) .

Let m/ be a function over S (hg) xS (hg) that satisfies the constraints stated in Definition 2 for
the pair of histograms hg and hz?. We next show that there exists a non-negative function m over
S(hi) x S(hg) that satisfies the constraints stated in Definition 2 for the pair of histograms hj; and
hz, and also satisfies

Y may)lr-yl<2- > D m(ay) - log(x/y)] . (1)

z€S(hp) yeS(hy) xES(hR)yES hR)

Note that the range of m’ is [0,1], since it is defined over relative histograms, while m is not
upper bounded by 1. However, the constraints on the two functions are related since for every

x € S(hg) = S(hz)\{0} it is required that EyeS(hf;‘) m/(x,y)/x = hy(x) = ZyES(hq) m(x,y) and for
every y € S(h?) = S(hg) \ {0} it is required that erS(hg) m/(x,y)/y = hg(y) = ZxES(hq) m(x,y).
(Indeed, m is also subjected to constraints on z = 0 and y = 0, whereas m/’ is not.)

We now define the function m. For each z € § (hg), initialize m(x,0) to 0 and similarly for
each y € S(hg), initialize m(0,y) to 0. For every pair (z,y) € S(hg) X S(hz?), if m/(z,y) = 0, then
m(z,y) = 0, and otherwise we do the following.

o If x > y, let m(x,y) be set to m/(x,y)/x and increase m(0,y) by m?( y) o "z,y)/y —
m/(z,y)/x > 0. Observe that m(z,y) - (z —y) = m/(z,y) - (1 —y/x) = m®(0,y) - y. Therefore,
the contribution to the left-hand-side of Equation (1) is

m(z,y) - (x —y) +m*(0,y) - (y — 0) = 2m/(z,y) - (1 —y/z) < 2m/(x,y) - log(x/y) ,

where the last inequality is due to the fact that f(z) =logz+ (1/z) =1 >Inz+ (1/2) — 1 is
positive for all z > 1.



o If © < y, let m(z,y) be set to m/(z,y)/y and increase m(z,0) by m¥(z,0) ey m/(z,y)/x —
m/(z,y)/y > 0. Similarly to the previous case, m(z,y) - (y — ) = m¥(z,0) - z, and the
contribution to the left-hand-side of Equation (1) is

m(z,y) - (y — x) + m¥(z,0) - (x — 0) = 2m/(z,y) - (1 — z/y) < 2m/(z,y) - log(y/x) .
o If z =y, let m(x,y) = m/(z,y)/x (= m/(z,y)/y). In this case both m(z,y) - |z —y| = 0 and
m'(xz,y) - [log(z/y)| = 0.

Finally, we set m(0,0) = hz(0) — >, cgpm)ym(0,y). To see that m(0,0) > 0, note that since
q
hi(0) > n while

Z m(0,y) = Z Z m*(0,y) = Z Z m/(z,y)/y < n.

yeS(hi) y€S(hY) z€S(hF)N(y,1] y€S(hX) z€S(hF)N(y,1]

By combining the contribution of all pairs z,y as defined above, Equation (1) holds.
It remains to verify that m satisfies the constraints in Definition 2. For each x € S(hp) \ {0},

S omlry) = m@0)+ Y may+ Y my)

yES(hq) yGS(ha)ﬂ(O,w} yES(hq)ﬂ(:E,l}
= o om0+ > mxy)+ Y, mzy)
yeS(h)N(z,1] y€S(hZ)N(0,2] yeS(hn(z,1]
1 1 m/(x, m/(z,
= Z (E _ 5) (2, y) + Z (x y) I Z (y y)
yeS(h)n(z,1] yeS(hH)N(0.2] yeS(hH)n(z,1]
m'(z,y
= Z (x ) = hz(z) .
yeS(hl)

Similarly, for each y € S(hg) \ {0},

Yo om@y) = mOy+ Y, m@y+ Y, my)

z€S(hg) z€S(hs)N(0,y] z€S(hg)N(y,1]

_ S mroy+ Y mry+ > mxy)

z€S(hE)N(y,1] z€S(hE)N(0,y] z€S(hE)N(y,1]

= > (é—é)-m'(w,yﬂ > m(@,y) | 3 m/(;;’y)

mES(h?)ﬂ(y,l} mES(h?)ﬂ(O,y} y wES(h(I;)ﬂ(y,l]

= 2 WD) gy

xES(hB') y

We defined m/(0,0) such that ZyES m(0,y) = m(0,0) + Zyes(hjj) m(0,y) = h;(0), and

Z Z Zm:ny Z Z m(x,y) =2n — Z ha( 7(0),

z€S(hg) xz€S(hg) yeq z€S(hg) yeS(hg)\{0} yeS(hg)

and the proof is completed. [l



Lemma 6 For every two distributions p and q over [n],
1
VDR(p, q) = 3 -EMD(hp, hy) .

Intuitively, there is a one-to-one correspondence between integer-valued transportation functions m
as in Definition 2 and the relabeling permutations ¢ used in Definition 3. The core of the following
proof is showing that integer-value transportation functions m obtain the minimum for EMD.

Proof: Consider a constrained version of the earth-mover distance in which we also require that
m(z,y) is an integer for every x € S(hy) and y € S(hy), and denote this distance measure by IEMD.
Using the definition of VDR and IEMD, one can verify that VDR(q,p) = % - IEMD(hy, hy), since
there is a correspondence between the permutation ¢ used in Definition 3 and the integer movement
in EMD. (The factor of 1/2 is due to the fact that the variation distance between distributions
equals half the Li-norm between them.)

It therefore remains to prove that EMD(h,, hy) = IEMD(hy, hy); that is, the function m that
obtains the minimum of the EMD objective function has integer values. To this end, we define a
specific integer-valued function m (based on a simple iterative assignment procedure), and show
that it is optimal.

Initially, m(z,y) = 0 for every € S(hp) and y € S(hy). We also initialize s(x) = hy(z) for
every x € S(hy), and d(y) = hy(y) for every y € S(hy). (Intuitively, s(z) is the supply of x, and
d(y) is the demand of y.) Note that > g, )s(@) =n =3 cgp,)d(y). In each iteration, we
consider the smallest x € S(h),) for which s(z) > 0 and the smallest y € S(h,) for which d(y) > 0,
set m(z,y) = min{s(x),d(y)} and reduce both s(x) and d(y) by m(z,y). Hence, all intermediate
values of m (as well as s and d) are integers. (We note that an equivalent definition of m can be
obtained by considering the mapping o from [n] to [n] that maps the i*® smallest p-value to the i
smallest g-value.)! By its construction, the function m satisfies the constraints of Definition 2.

To verify that the resulting function m is an optimal setting for EMD, consider any other
non-negative function ¢ over S(h,) x S(hq) that satisfies the constraints of Definition 2. Actually,
among all such functions ¢ consider only those that agree with m on the longest prefix of pairs
(z,y) according to the lexicographical order on pairs, and let (z*,y*) be the first pair on which ¢
and m differ; that is, £(z*,y*) # m(z*,y*) whereas {(z,y) = m(z,y) for every (z,y) < (z*,y*).
Furthermore, among all such functions ¢, select one for which [¢(z*, y*) —m(x*, y*)| is minimal. We
shall show that £ = m.

Assume towards the contradiction that ¢ # m, and let (z*,y*) be as above. We first prove
that ¢(x*,y*) < m(z*,y*). Towards this end, we consider the supply of z* and the demand of
y* just before m(z*,y") is determined; that is, s(z*) = hy(z*) — >, . m(z*,y) and d(y*) =
hq(y*) = > pcpe m(x,y*). Recalling that m(z*,y*) = min(s(z*),d(y*)), we note that if £(z*,y*) >
m(z*,y*) = s(z*), then > . l(z*y) =3 m(z*,y) + (2", y*) > hy(z™), which means that ¢
violates a constraint of Definition 2. A similar contradiction is obtained by assuming that £(z*, y*) >
m(z*,y*) = d(y*), when in this case we get Y .. {(x,y*) > hy(z*).

Having shown that ¢(z*,y*) < m(z*,y*). we now derive a function ¢’ that violates the “min-
imality” of ¢. Specifically, ¢(z*,y*) < m(z*,y*) (combined with ¢(z,y) = m(x,y) for every
(z,y) < (x*,y*)) implies that there exists 2’ > x* such that £(z/,y*) > m(2’,y*) and ¢/ > y*
such that £(z*,y") > m(z*,y'). Letting ¢ = min(m(x,y) — €(a*,y*), £(z',y*), {(x*,y")) > 0, define

!That is, letting 7, and 7, be permutations over [n] such that p(my(7)) < p(mp(i + 1)) and q(m4(3)) < q(me(i + 1))
for every i € [n — 1], define o(mp(i)) = 74(4) for every i € [n].



¢" as equal to £ on all pairs except for the following four pairs that satisfy ¢ (z*,y*) = £(z*,y*) + ¢,
U2 y*) =02 y*) — ¢, U(x*,y) =Llx*y) —c, and ¢ (2',y') = (2',y) + c¢. Then, ¢' preserves
the constraints of Definition 2, but ¢'(x,y) = {(z,y) = m(z,y) for every (z,y) < (z*,y*) and
|0/ (2, y*) — m(z*, y*)| = [6(x*,y*) — m(z*, y*)| — ¢, in contradiction to the choice of ¢, since ¢ > 0.

3 Comments

As noted in [VV11], there exist distributions p and ¢ for which VDR(h,, hy) << REMD(hJ hl).
The source of this phenomenon is the unbounded cost of transportation under the REMD (i.e.,
transforming a unit of mass from x to y costs |log(z/y)|). For example, for any e¢ € [0,0.5],
consider the pair (p,q) such that p is uniform over [n] (i.e., p(i) = 1/n for every i € [n]) and q is
extremely concentrated on a single point in the sense that g(n) = 1 — e and ¢(i) = ¢/(n — 1) for
every i € [n — 1]. Then, the variation distance between p and ¢ is "T_l — €, but the REMD is at
least =1 - log(1/e).

This phenomenon is reflected in the proof of Lemma 5 at the point we used the inequality
1—(1/z) <logz for z > 1. This inequality becomes more crude when z grows.
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