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Abstract

In 1989, Babai, Nisan and Szegedy [BNS92] gave a construction of a pseudorandom
generator for logspace, based on lower bounds for multiparty communication complexity. The
seed length of their pseudorandom generator was 2Θ(

√
logn), because the best lower bounds

for multiparty communication complexity are relatively weak. Subsequently, pseudorandom
generators for logspace with seed length O(log2 n) were given by [N92] and [INW94].

In this paper, we show how to use the pseudorandom generator construction of [BNS92]
to obtain a third construction of a pseudorandom generator with seed length O(log2 n),
achieving the same parameters as [N92] and [INW94]. We achieve this by concentrating
on protocols in a restricted model of multiparty communication complexity that we call
the conservative one-way unicast model and is based on the conservative one-way model of
[DJS98]. We observe that bounds in the conservative one-way unicast model (rather than
the standard Number On the Forehead model) are sufficient for the pseudorandom generator
construction of [BNS92] to work.

Roughly speaking, in a conservative one-way unicast communication protocol, the players
speak in turns, one after the other in a fixed order, and every message is visible only
to the next player. Moreover, before the beginning of the protocol, each player only
knows the inputs of the players that speak after she does and a certain function of
the inputs of the players that speak before she does. We prove a lower bound for the
communication complexity of conservative one-way unicast communication protocols that
compute a family of functions obtained by compositions of strong extractors. Our final
pseudorandom generator construction is related to, but different from the constructions of
[N92] and [INW94].
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1 Introduction

Derandomizing space bounded computations has attracted a lot of attention over the last
few decades. The most important problem is to simulate randomized logspace machines with
deterministic ones. Savitch [S70] result on nondeterministic machines implies that RL ⊆ L2.
Subsequently, this problem was studied, for example, by [AKS87], [BNS92], [N92], [INW94] and
[NZ96]. Currently, the best derandomization of general logspace machines is due to Saks and
Zhou [SZ99], proving that BPL ⊆ L3/2.

One way to simulate a randomized, space bounded computation with a deterministic one is
using a space psesudorandom generator. Roughly speaking, a space pseudorandom generator
converts, efficiently, a short truly random seed into a long string that looks random to machines
with limited space. A major open problem in the theory of pseudorandomness is to construct
an explicit pseudorandom generator that stretches a seed of length O(logn) to n bits that
cannot be distinguished from uniform by any logspace machine with input length n. Such a
generator would imply that RL = L. Nisan [N92] constructed space pseudorandom generators
that convert O(log2 n) random bits to poly(n) bits that look random to any logspace machine.
Subsequently, [INW94] showed a different construction with the same parameters. Since [N92]
and [INW94], no better seed length was obtained for derandomizing general logspace machines.
There were other constructions of space pseudorandom generators for more restricted classes
of space bounded computations, such as [RR99], [BRRY10], [BV10], [KNP10], [GMRTV12],
[BDVY13] and [RSV13].

In this paper, we give a new construction of a space pseudorandom generator for general
logspace machines, with seed length O(log2 n), achieving the same parameters as [N92]
and [INW94]. Our pseudorandom generator construction is based on a lower bound for a
certain model of multiparty communication complexity, relying on the pseudorandom generator
construction of Babai, Nisan and Szegedy [BNS92]. The pseudorandom generator of [BNS92] has
seed length 2Θ(

√
logn). The proof that their construction gives a pseudorandom generator relies

on a lower bound for multiparty communication complexity. [BNS92] gave a lower bound for
the multiparty communication complexity of protocols in the Number On the Forehead (NOF)
model with blackboard communication. In this model, each player knows all inputs except her
own input and the communication is done by writing messages on a blackboard (broadcast) so
that every player sees all the previous communication. For this model, [BNS92] gave a lower
bound of Ω( n

2k
) (where n is the length of each input and k is the number of players). Improving

this lower bound is a major open problem.
We observe that the pseudorandom generator construction of [BNS92] can be based on lower

bounds for a restricted model of multiparty communication complexity. For this model we are
able to obtain improved lower bounds, resulting in a pseudorandom generator with seed length
O(log2 n).

Definition 1 (Conservative One-way Unicast Communication Protocol). Let P be a
deterministic, multiparty communication protocol for k players p1, . . . , pk. For a function
f : B × A1 × · · · × Ak → B, we say that P is a conservative one-way unicast communication
protocol with respect to f if for an input b, a1, . . . , ak ∈ B ×A1 × · · · × Ak the following holds:

1. For every i ∈ [k], before the beginning of the protocol, the ith player only knows ai+1, . . . , ak
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and the (truth table1 of the) function fi : Ai × · · · × Ak → B, defined by:

fi(zi, . . . , zk) = f(b, a1, . . . , ai−1, zi, . . . , zk)

for every zi, . . . , zk ∈ Ai × · · · × Ak.

2. The players communicate one after the other in the fixed order p1, p2, . . . , pk.

3. For every 1 ≤ i < k, the ith message is visible only to pi+1. The message of the last player
is the output of the protocol.

Usually, we will take f to be the function that the players are trying to compute. Note that
the ith player doesn’t know b, a1, . . . , ai−1 as in the NOF model, but she does know the relevant
information on b, a1, . . . , ai−1 that is needed to compute the function f(b, a1, . . . , ai−1, zi, . . . , zk)
for every zi, . . . , zk ∈ Ai × · · · × Ak.

Our definition of conservative one-way unicast communication protocols is based on
definitions by Damm, Jukna and Sgall [DJS98]. [DJS98] defined conservative communication
protocols as protocols satisfying item (1) in Definition 1, and conservative one-way
communication protocols as protocols satisfying items (1),(2) in Definition 1, where the
communication is done by writing messages on a blackboard (broadcast) so that every player sees
all the previous communication. The motivation of [DJS98] to study the conservative one-way
model was different than ours. They studied this model as an interesting communication model
in its own right, without relating it to pseudorandom generators for logspace computations.

[DJS98] proved lower bounds for the communication complexity of conservative one-way
(blackboard) communication protocols that compute the pointer jumping problem. For k =
O((n/logn)1/3), [DJS98] proved a lower bound of Ω(n/k2), and for k ≤ log∗ n− ω(1), they proved
a lower bound of n log(k−1) n(1 − o(1)) (where k is the number of players and n is the length
of each input). The conservative one-way model was further studied by Chakrabarti in [C07],
where the Ω(n/k2) lower bound due to [DJS98] was extended so that it applies for all k.

The unicast setting, where the players communicate by sending messages to each other
over private channels, was studied in the context of message-passing models of multiparty
communication. These models have been used extensively in distributed computing, for example
in [FLP85], [KSSV00], [KDG03], and [BEOPV13]. Message passing models are also used to study
privacy and security in multiparty computations.

For conservative communication protocols (satisfying item (1) in Definition 1) it is convenient
to consider composed functions as we define next.

Definition 2 (Composed Functions). For a function f : {0, 1}m × {0, 1}n → {0, 1}m and
1 < i ∈ N, the ith composition of f is a function f (i) : {0, 1}m+in → {0, 1}m defined for every
a0 ∈ {0, 1}m, a1, . . . , ai ∈ {0, 1}n as

f (i)(a0, a1, . . . , ai) = f(f (i−1)(a0, a1, . . . , ai−1), ai)

where f (1)(a0, a1) = f(a0, a1). In addition, we define f (0)(a0) = a0.

Let f (k) be the kth composition of a function f : {0, 1}m × {0, 1}n → {0, 1}m. Note
that for every input (a0, a1, . . . , ak) ∈ {0, 1}m+kn and every i ∈ [k], if the ith player knows

f (i−1)(a0, a1, . . . , ai−1), then she also knows the function f
(k)
i defined in item (1) in Definition 1.

1The truth table is not counted as part of the length of the input
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Therefore, for the sake of proving lower bounds for the communication complexity of conservative
communication protocols with respect to f (k), it is enough to assume that for an input
(a0, a1, . . . , ak) ∈ {0, 1}m+kn, for every i ∈ [k], before the beginning of the protocol, the ith

player only knows ai+1, . . . , ak and f (i−1)(a0, a1, . . . , ai−1).
In our paper, we prove lower bounds for the communication complexity of conservative

one-way unicast communication protocols with respect to a certain composed function
f (k). Therefore, we replace item (1) in Definition 1 by the assumption that for an input
(a0, a1, . . . , ak) ∈ {0, 1}m+kn, for every i ∈ [k], before the beginning of the protocol, the ith

player only knows ai+1, . . . , ak and f (i−1)(a0, a1, . . . , ai−1).

An Example - The Pointer Jumping Problem

In the pointer jumping problem for k players, the input is k functions Π1, . . . ,Πk : [r] → [r] and
an additional input i0 ∈ [r]. The players need to output Πk ◦ · · · ◦Π1(i0). Let Sr denote the set
of all functions from [r] to [r] and let f : [r]×Sr → [r] be the function defined by f(i,Π) = Π(i)
for every i ∈ [r] and Π ∈ Sr. Note that the pointer jumping problem for k players is the kth

composition of f . In a conservative communication protocol (satisfying item (1) in Definition 1)
with respect to the pointer jumping problem, for every i ∈ [k], before the beginning of the
protocol, the ith player only knows Πi+1, . . . ,Πk and f i−1(i0,Π1, . . . ,Πi−1) = Πi−1◦· · ·◦Π1(i0).

2

1.1 Main Result

We say that a communication protocol P computes a function f : {0, 1}n → {0, 1}m with bias
δ > 0 if

Pr
x∈R{0,1}n

[f(x) = P (x)] ≥ 2−m + δ

We denote the length of the longest message sent during the execution of P by L(P ) (on the
worst case input, not including the last message which is the output of the protocol).

Let Ext : {0, 1}m×{0, 1}n → {0, 1}m be a (t, ε) strong extractor (see Definition 10). We refer
to the kth composition of Ext, denoted Ext(k), as a (t, ε) composed strong extractor. Composed
strong extractors are closely related to alternating extractors, which are used in [DW09], with
cryptographic applications.

Our lower bound is for the length of the longest message communicated during any
conservative one-way unicast communication protocol that computes a composed strong
extractor with bias δ > 0.

Theorem 3. Let Ext(k) : {0, 1}m+nk → {0, 1}m be a (t, ε) composed strong extractor and let P
be a conservative one-way unicast communication protocol with respect to Ext(k) that computes
Ext(k) with bias δ > 0, such that ε < δ · 2−(k+2). Then,

L(P ) ≥ n− t− k − log
1

δ
− 2

In fact, we prove a slightly stronger version of Theorem 3 in which we consider projections
of the composed strong extractor (see Theorem 17). Using this lower bound together with the
pseudorandom generator construction of Babai, Nisan and Szegedy [BNS92], we obtain a space

2In this case, knowing Πi−1 ◦ · · · ◦ Π1(i0) is equivalent to knowing the function fi defined in item (1) in
Definition 1.
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pseudorandom generator that converts O(log2 n) random bits to poly(n) bits that look random
to any logspace machine (see Section 4).

Comparison with [N92] and [INW94]

The pseudorandom generator construction of [INW94] is also based on a recursive composition
of extractors. However, their generator is different from the one presented here. The recursive
composition used in [INW94] is different from the composition in Definition 2. Moreover,
[INW94] use extractors that output O(log2 n) bits, whereas here we use extractors that output
O(log n) bits.

The pseudorandom generator construction of [N92] is based on a recursive composition of
hash functions. This is done by a composition similar to the one in Definition 2. We note that
hashing can be viewed as an application of an extractor. However, when viewing the hashing
as an application of an extractor, the composition of [N92] does not fit our definition of a
composed extractor. In particular, in our definition of a composed extractor, the recursion is
done by replacing the seed of the extractor with the output of the extractor from the previous
composition, whereas in [N92], the recursion is done by replacing the source of the extractor
with the output of the extractor from the previous composition.

2 Preliminaries

2.1 General Notation

Let [n] be the set of numbers {1, 2, . . . , n}. For a binary string x ∈ {0, 1}∗ and an index i ∈ N,
let xi be the ith bit of x. For a set of indexes S = {i1, . . . , ik} ⊆ [|x|], let xS be the string
xi1 , . . . , xik .

2.1.1 Functions

For a function f : {0, 1}n → {0, 1}m and a subset S ⊆ [m] of size m′, where m′ ≤ m, the
projection of f on S, denoted fS , is a function from {0, 1}n to {0, 1}m′

defined as fS(x) = (f(x))S
for every x ∈ {0, 1}n. To simplify notation, for i ∈ [m], we define fi = f{i}. For two functions
f : A → B and h : B → C, let h ◦ f be the function from A to C defined as h(f(a)) for every
a ∈ A.

2.1.2 Distributions and Random Variables

We write x ∈R X if x is chosen uniformly at random from X . For a distribution D and a subset
S of the support of D, let D(S) be the sum

∑
s∈S D(s). For a random variable X and an event

E, we write X|E to denote X conditioned on E. We write X ∈ X if X is distributed over the set
X . For two random variables X and Y , we write X ∼ Y if X and Y have the same distribution.
Slightly abusing notation, given a random variable X, we let x ∼ X indicate the sampling of x
from the distribution of X.
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2.2 Statistical Distance

Definition 4 (Statistical Distance). Let D1 and D2 be two distributions over the same space
Ω. Their statistical distance is

∥D1 −D2∥ = max
S⊆Ω

|D1(S)−D2(S)| =
1

2

∑
x∈Ω

|D1(x)−D2(x)|

For two random variables X1, X2 ∈ Ω distributed according to D1 and D2 respectively, we define
∥X1 −X2∥ = ∥D1 −D2∥.

Proposition 5. Let X,X ′ ∈ X be two random variables and let f : X → Y be any deterministic
function. Then,

∥f(X)− f(X ′)∥ ≤ ∥X −X ′∥

Proposition 6. Let X ∈ X , Y ∈ Y and Z ∈ Z be three random variables, and let U be uniform
over X , independent of X, Y and Z. Then,

∥(Z,X)− (Z,U)∥ ≤ ∥(Y, Z,X)− (Y, Z, U)∥

2.3 Space Pseudorandom Generators

A deterministic, space s(n) Turing machine uses s(n) space on any input of size n. A non-
uniform, space s(n) statistical test is a deterministic, space s(n) Turing machine M and an
infinite sequence of binary strings a = (a1, . . . , an, . . . ) called the advice strings, where the
length of an is exp(s(n)), for every n ∈ N. The result of the test on input x, denoted Ma(x),
is the result of running M on x when it has access to the advice a|x|. The machine M reads
the advice as if it is on a normal input tape, and it has a one-way access to the input x (i.e.,
it can access the next bit of x but it cannot go “back” and review bits it already read). A
pseudorandom generator for space bounded computations is required to produce strings that
can be used instead of truly random strings in randomized, space bounded computations (while
introducing only small additional error). Therefore, a pseudorandom generator must produce
strings that look random to any non-uniform, bounded space statistical test. The following is a
formal definition. For more information see e.g. [BNS92].

Definition 7. G =
{
Gn : {0, 1}m(n) → {0, 1}n

}
is an ε pseudorandom generator for space s(n)

if for every non-uniform, space s(n) statistical test Ma it holds that∣∣∣∣ Pr
x∈R{0,1}n

[Ma(x) = 1]− Pr
y∈R{0,1}m(n)

[Ma(G(y)) = 1]

∣∣∣∣ ≤ ε

The following is an alternative definition (which is equivalent upto a multiplicative factor of
n change in ε).

Definition 8. G =
{
Gn : {0, 1}m(n) → {0, 1}n

}
is an ε pseudorandom generator for space s(n)

if for every i ∈ [n] and for non-uniform, space s(n) statistical test Ma it holds that∣∣∣∣ Pr
y∈R{0,1}m(n)

[Ma(first i− 1 bits of G(y)) = ith bit of G(y)]− 1

2

∣∣∣∣ ≤ ε

In this paper, we use Definition 8.
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2.4 Strong Extractors

The notion of weak source was first defined by Nisan and Zuckerman [NZ93].

Definition 9 (Min-Entropy). For a random variable X, the min-entropy of X is

H∞(X) = − logmax
x

Pr[X = x]

An (n, t) source is a random variable in {0, 1}n that has min-entropy at least t.

Definition 10 (Strong Extractor [NZ96]). A function Ext : {0, 1}m × {0, 1}n → {0, 1}ℓ is a
(t, ε) strong extractor if for every (n, t) source X and every seed S uniformly distributed over
{0, 1}m it holds that

∥S,Ext(S,X)− U∥ ≤ ε

where U is uniformly distributed over {0, 1}m+ℓ.

2.4.1 Average Min-Entropy and Average-Case Extractors

The following definitions and lemmas appear in [DORS08].

Definition 11 (Average Min-Entropy). For two random variables X ∈ X and Y ∈ Y, the
average min-entropy of X given Y is

H̃∞(X|Y ) = − log E
y∼Y

max
x∈X

Pr[X = x|Y = y] = − log E
y∼Y

[
2−H∞(X|Y=y)

]
Lemma 12. Let X,Y and Z be random variables. If Y has at most 2ℓ possible values, then

H̃∞(X|(Y, Z)) ≥ H̃∞((X,Y )|Z)− ℓ ≥ H̃∞(X|Z)− ℓ

Definition 13 (Average-case Strong Extractor). A function Ext : {0, 1}m × {0, 1}n → {0, 1}ℓ
is an average-case (t, ε) strong extractor if for every pair of random variables (W, I) such that
W ∈ {0, 1}n and H̃∞(W |I) ≥ t, and every seed S uniformly distributed over {0, 1}m, it holds
that

∥I, S,Ext(S,W )− I, U∥ ≤ ε

where U is uniformly distributed over {0, 1}m+ℓ.

Lemma 14. For any γ > 0, if Ext is a (t − log 1/γ, ε) strong extractor, then Ext is also an
average-case (t, ε+ γ) strong extractor.

3 Lower Bounds for Conservative One-way Unicast
Communication Protocols

For the construction of the pseudorandom generator in Section 4, we will need a lower bound for
the communication complexity of a function that outputs a single bit. To this end we consider
also projections of composed strong extractors (see notation for projections in Section 2.1).

Definition 15. A function g : {0, 1}m+nk → {0, 1}m′
is called a (t, ε) projection of a composed

strong extractor (PCSE) if g = Ext
(k)
S , where S ⊆ [m] is a subset of size m′ for m′ ≤ m and

Ext(k) : {0, 1}m+nk → {0, 1}m is a (t, ε) composed strong extractor.
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The following lemma is the main technical part of our paper. The proof is related to the
proof of the “alternating extraction theorem” in [DW09], which uses ideas from [DP07]. See
also lecture notes [Lec11].

Lemma 16. Let Ext
(k)
S : {0, 1}m+nk → {0, 1}m′

be a (t, ε) PCSE and let A0 ∈ {0, 1}m,
A1, . . . , Ak ∈ {0, 1}n be uniformly and independently distributed. Let P be a conservative one-
way unicast communication protocol with respect to Ext(k), and let M1, . . . ,Mk be the messages
sent during the execution of P on inputs A0, . . . , Ak, where the ith player sends Mi, for i ∈ [k].
Fix γ > 0 and assume that M1, . . . ,Mk−1 ∈ {0, 1}ℓ, for ℓ ≤ n− t− log 1

γ . Then,

∥(Mk, Ext
(k)
S (A0, A1, . . . , Ak))− (Mk, U

′)∥ ≤ 2k+1(ε+ γ)

where U ′ is uniformly distributed over {0, 1}m′
.

Proof. To simplify notation, for every i ∈ [k] we write Ext(i) instead of
Ext(i)(A0, A1, . . . , Ai) and let Ai = (Ai, . . . , Ak). For i > k we define Ai to be the empty
string. Let U be uniformly distributed over {0, 1}m. Recall that U ′ is uniformly distributed over
{0, 1}m′

. Then, for every z ∈ {0, 1}m′
, by Proposition 5,

∥(Ext
(k)
S |Mk = z)− U ′∥ ≤ ∥(Ext(k)|Mk = z)− U∥

Therefore, it is enough to prove that

∥(Mk, Ext(k))− (Mk, U)∥ ≤ 2k+1(ε+ γ) (1)

By the definition of a conservative one-way unicast communication protocol with respect to
Ext(k), for every i ∈ [k] it holds that

Mi = gi(Ai+1,Mi−1, Ext(i−1)) (2)

where gi is some (deterministic) function, and M0 = 0ℓ. We prove by induction on i, that for
every 0 ≤ i ≤ k,

∥(Ai+1,Mi, Ext(i))− (Ai+1,Mi, U)∥ ≤
i∑

j=0

2j(ε+ γ)

Substituting i = k we get equation (1) as required. For i = 0 we have that ∥(A1,M0, Ext(0))−
(A1,M0, U)∥ = 0, and the claim holds. Assume that the claim holds for some 0 ≤ i < k and let
∆ = ∥(Ai+2,Mi+1, Ext(i+1))− (Ai+2,Mi+1, U)∥. By equation (2) and Proposition 5,

∆ ≤ ∥(Ai+2,Mi, Ext(i), Ext(i+1))− (Ai+2,Mi, Ext(i), U)∥

By the definition of Ext(i+1),

∆ ≤ ∥(Ai+2,Mi, Ext(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, Ext(i), U)∥

Let S be uniformly distributed over {0, 1}m. By the triangle inequality,

∥(Ai+2,Mi, Ext(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, Ext(i), U)∥ ≤
∥(Ai+2,Mi, Ext(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, S, Ext(S,Ai+1))∥+ (3)

∥(Ai+2,Mi, S, Ext(S,Ai+1))− (Ai+2,Mi, S, U)∥+ (4)

∥(Ai+2,Mi, S, U)− (Ai+2,Mi, Ext(i), U)∥ (5)
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By Lemma 14, Ext is also an average-case (t+ log 1/γ, ε+ γ) strong extractor. By Lemma 12,

H̃∞(Ai+1|Ai+2,Mi) ≥ H̃∞(Ai+1|Ai+2)− ℓ = H∞(Ai+1)− ℓ = n− ℓ ≥ t+ log 1/γ

and therefore, by Definition 13, (4) ≤ ε+ γ. By Propositions 5 and 6,

(3), (5) ≤ ∥(Ai+1,Mi, Ext(i))− (Ai+1,Mi, S)∥

By the inductive hypothesis, ∥(Ai+1,Mi, Ext(i)) − (Ai+1,Mi, S)∥ ≤
∑i

j=0 2
j(ε + γ). Putting it

together we get that

∆ ≤ ε+ γ + 2 ·
i∑

j=0

2j(ε+ γ) =

i+1∑
j=0

2j(ε+ γ)

as required.

Finally, we give a lower bound for the length of the longest message in a conservative one-way
unicast communication protocol that computes a projection of a composed strong extractor.

Theorem 17. Let Ext
(k)
S : {0, 1}m+nk → {0, 1}m′

be a (t, ε) PCSE and let P be a conservative

one-way unicast communication protocol with respect to Ext(k) that computes Ext
(k)
S with bias

δ > 0, such that ε < δ · 2−(k+2). Then,

L(P ) ≥ n− t− k − log
1

δ
− 2

Proof. Let A0 ∈ {0, 1}m, A1, . . . , Ak ∈ {0, 1}n be uniformly and independently distributed
and let M1, . . . ,Mk be the messages sent during the execution of the protocol P on inputs

A0, . . . , Ak, where the ith player sends Mi, for i ∈ [k]. To simplify notation, we write Ext
(k)
S

instead of Ext
(k)
S (A0, A1, . . . , Ak). Since the protocol P computes Ext

(k)
S with bias δ,

δ + 2−m′ ≤ Pr
Ā∈R{0,1}m+nk

[
Mk = Ext

(k)
S

]
Let U ′ be uniformly distributed over {0, 1}m′

. Since Mk = Ext
(k)
S is a statistical test on the

distribution (Mk, Ext
(k)
S ), and the same statistical test on (Mk, U

′) passes with probability 2−m′
,3∣∣∣∣ Pr

Ā∈R{0,1}m+nk

[
Mk = Ext

(k)
S

]
− 2−m′

∣∣∣∣ ≤ ∥(Mk, Ext
(k)
S )− (Mk, U

′)∥

Assume for simplicity and without loss of generality, that all messages M1, . . . ,Mk−1 have
the same length, denoted ℓ. Fix γ = δ · 2−(k+2) and assume towards a contradiction that
ℓ < n− t− log 1

γ . Then, by Lemma 16,

∥(Mk, Ext
(k)
S )− (Mk, U

′)∥ ≤ 2k+1(ε+ γ)

We get that δ ≤ 2k+1(ε + γ) and therefore, γ ≥ δ · 2−(k+1) − ε > δ · 2−(k+2), which contradicts
our choice of γ.

3We can assume, without loss of generality, that Mk is of length m′.
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4 Logspace Pseudorandom Generators

We review the construction of the pseudorandom generator of Babai, Nisan and Szegedy
[BNS92]. The generator is based on a function f that takes k arguments, each r bits long, and
has high multiparty communication complexity. The ε multiparty communication complexity
of f , denoted Cε(f), is the communication complexity of the best deterministic communication
protocol in the NOF model with blackboard communication that computes f with bias at least
ε.

The input to the generator consists of t random strings of length r each. Fix k ≤ t
and let S1, S2, . . . , S(tk)

be all k-subsets of the input strings in anti-lexicographic order (i.e.,

each Si is a set of k strings, each string is r bits long, and Si appears before Sj if the last
string in the symmetric difference of Si and Sj belongs to Sj). The output of the generator is
f(S1), f(S2), . . . , f(S(tk)

).

The proof of the following lemma appears in [BNS92]. We give it for completeness in
Appendix A.

Lemma 18. For every ε > 0, every function f : {0, 1}rk → {0, 1} and every s < Cε(f)/k, the
above construction gives an ε pesudorandom generator for space s (see Definition 8).

We make few observations on Lemma 18 and its proof, that will allow us to use our lower
bound from Section 3:

1. In the multiparty communication protocol used for the proof, the players communicate in
a fixed order. Hence, we can consider communication protocols that satisfy item (2) in
Definition 1.

2. In the multiparty communication protocol used for the proof, for every i < k, the ith

message, sent by the ith player, is used only by player i + 1. Therefore, the blackboard
is not required and we can consider communication protocols that satisfy item (3) in
Definition 1.

3. In the multiparty communication protocol used for the proof, for every j ∈ [k], if the jth

player needs to compute f(T ) during the simulation, then it holds that the set T comes
before the set S in the anti-lexicographic order, and yi1 , . . . , yij−1 ∈ T and yij /∈ T . For
every such a set T , the jth player can compute f(T ) without knowing yi1 , . . . , yij−1 . It
suffices that she knows the strings that were fixed, the input strings yij+1 , . . . , yik and the
function f(yi1 , . . . , yij−1 , zj , . . . , zk) for every zj , . . . , zk ∈ {0, 1}r. Hence, we can consider
communication protocols that satisfy item (1) in Definition 1.

4. In the multiparty communication protocol used for the proof, all messages have the same
length. Hence, we can use a lower bound for the length of the longest message sent during
the execution of the protocol.

Note that the function f from Definition 1 has an additional input string b ∈ B. We can
think of b as if it is added to all subsets S1, S2, . . . , S(tk)

. Formally, our adjusted construction

is as follows. The input to the generator consists of t random strings of length r each and an
additional random string b ∈ {0, 1}m. Let S1, S2, . . . , S(tk)

be all k-subsets of the input strings

(not including the string b) in anti-lexicographic order, as in the original construction. For every
1 ≤ j ≤

(
t
k

)
, let Sj = {yij,1 , . . . , yij,k}, where ij,1 > ij,2 > · · · > ij,k. Then, the jth bit in the
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output of the generator is f1(b, yij,1 , . . . , yij,k). Recall that f1 returns the first bit of the function
f (see notation for projections in Section 2.1).

We get the following lemma.

Lemma 19. Fix ε > 0 and a function f : {0, 1}m+kr → {0, 1}m, such that for every conservative
one-way unicast communication protocol with respect to f that computes f1 with bias ε, the length
of the longest message is at least C. Then, for every s < C, the adjusted construction gives an
ε pesudorandom generator for space s.

Corollary 20. For every constant c > 0, there exists an (explicitly given) n−c pseudorandom
generator for logspace which converts O(log2 n) random bits to poly(n) bits.

Proof. Let m = O(log n), r = O(log n) and let f : {0, 1}m+r → {0, 1}m be a (t′, ε) strong
extractor, such that t′ < r − 2 log n − c log n − 2 and ε < 1/4nc+1. For an explicit construction
of a strong extractor with such parameters see Theorem 4.2 in [GW97] (for more information
see e.g. [NT99], [S02] and [V12]). Let δ = n−c, k = log n and let P be a conservative one-way

unicast communication protocol with respect to f (k) that computes f
(k)
1 with bias δ. Since

ε < δ · 2−(k+2) = 1/4nc+1, Theorem 17 guarantees that L(P ) ≥ r − t′ − k − log 1
δ − 2 =

r − t′ − log n − c log n − 2 > log n. By Lemma 19, using the adjusted construction with the

PCSE f
(k)
1 and t = k · 2c′ for any constant c′ > 1, we get a δ pseudorandom generator for space

log n, that on a seed of length m + tr = O(log2 n) produces a pseudorandom string of length(
t
k

)
≥ nc′ .
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A Proof of Lemma 18

Fix f : {0, 1}rk → {0, 1}, ε > 0 and s < Cε(f)/k. Assume towards a contradiction that the ith bit
of the output of the generator can be predicted by a non-uniform, space s statistical test. That
is, there exists a non-uniform, space s statistical test Ma such that

Pr
y∈R{0,1}tr

[Ma(first i− 1 bits of G(y)) = ith bit of G(y)]− 1

2
> ε

where G is the generator that is defined by the construction above. Fix y = (y1, . . . , yt) ∈
({0, 1}r)t and let the ith bit of the output of the generator on input y be f(S), where
S = {yi1 , yi2 , . . . , yik} and i1 > i2 > · · · > ik. By an averaging argument, we can fix all input
strings from y that are not in S, such that the prediction bias of Ma is preserved. We describe
a multiparty communication protocol for k players, that computes f(S) with bias ε. The model
of this multiparty communication protocol is the NOF model with blackboard communication,
in which the jth player knows all input strings except yij , for j ∈ [k], and the players broadcast
their messages. The players simulate the running of Ma on the first i−1 bits of G(y) as follows.
The first player starts the simulation and continues it for as long as she can, that is, as long as
she has access to the input bits that the test reads. Then, the first player sends the state of
Ma (i.e., all the memory space used by the machine) to the second player. The second player
continues the simulation for as long as she can, and so on. Note that for every j ∈ [k], the jth

player can simulate Ma until the simulation requires the value f(T ) for a set T that contains
yij . Moreover, because the sets used to compute the bits of the generator are ordered in anti-
lexicographic order, every set that appears after T , until S appears, contains yij . Therefore,
the kth player can continue the simulation until it reaches a set that contains yi1 , yi2 , . . . , yik ,
which must be the set S, when the simulation ends and the prediction is made. Sending the
space used by the machine k− 1 times, by each of the first k− 1 players, results in less than ks
communicated bits. Since ks < Cε(f), we get a contradiction.

12


