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Abstract

The distributed	relaxation multigrid and defect	
correction methods are applied to the two	
dimensional compressible Navier	Stokes equations�
The formulation is intended for high Reynolds num	
ber applications and several applications are made at
a laminar Reynolds number of ������� A staggered	
grid arrangement of variables is used
 the coupled
pressure and internal energy equations are solved
together with multigrid� requiring a block �x� ma	
trix solution� Textbook multigrid e�ciencies are at	
tained for incompressible and slightly compressible
simulations of the boundary layer on a �at plate�
Textbook e�ciencies are obtained for compressible
simulations up to Mach numbers of ��� for a viscous
wake simulation�

Introduction

Computational �uid dynamics CFD� is becom	
ing a more important part of the complete aircraft
design cycle because of the availability of faster com	
puters with more memory and improved numerical
algorithms� The cruise shapes of transport aircraft
are designed to minimize viscous and shock wave
losses at transonic speeds and computational meth	
ods for these �ows are reasonably well in hand� Sim	
ulations of o�	design performance associated with
maximum lift� bu�et� and �utter and the deter	
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mination of stability and control derivatives� in	
volving unsteady separated and vortical �ows with
stronger shock waves� demand signi�cant comput	
ing resources since Reynolds	averaged Navier	Stokes
RANS� methods are needed� The turnaround time
of these computations for high	Reynolds �ows over
complex geometries is too long to impact the design
cycle and the turbulence models for separated �ows
have a high degree of variability�

The current RANS solvers with multigrid require
on the order of ���� residual evaluations to con	
verge the lift and drag to one percent of their �	
nal values for wing	body geometries near transonic
cruise conditions� Complex geometry and complex
physics simulations require many more residual eval	
uations to converge� if indeed convergence can even
be attained� It is well	known for elliptic problems
that solutions can be attained optimally using a full
multigrid FMG� process in far fewer� on the order of
�	�� residual evaluations� An optimally convergent
method is de�ned by Brandt��� as textbook multi	
grid e�ciency TME�� meaning the solutions to the
governing system of equations are attained in a com	
putational work which is a small less than ��� mul	
tiple of the operation count in the discretized system
of equations� Thus� there is a potential gain of two
orders of magnitude in operation count reduction if
TME could be attained for the RANS equation sets�
This possible two order of magnitude improvement
in convergence represents an algorithmic �oor since
it is unlikely that faster convergence for these non	
linear equations could be attained� This algorithmic
acceleration� however� coupled with further increases
in computational speed can open up avenues and ac	
celerate progress in many areas� including� the ap	
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plication of steady and time	dependent simulations
in the high	lift� o�	design� and stability and control
areas
 the usage of RANS solvers in the aerodynamic
and multidisciplinary design areas
 and the develop	
ment of improved turbulence models�
The RANS equation sets are a system of coupled

nonlinear equations which are not� even for subsonic
Mach numbers� fully elliptic� but contain hyperbolic
partitions� Brandt� has summarized the progress
and remaining barriers in TME for the equations
of �uid dynamics� Although TME demonstrations�
especially for incompressible simulations� have been
completed� the distributed relaxation approach has
not been used widely for large	scale simulations�
Current methodologies use a block	matrix relaxation
and�or a time	dependent approach to solve the equa	
tions
 signi�cant improvements have been demon	
strated using multigrid approaches� but the meth	
ods are not optimally convergent� An example is
the plane solver of Thomas� et al��which gives fast
multigrid performance� but at a cost of block matrix
solutions of size m� where m is the number of conser	
vation equations at a grid point� A subtle disadvan	
tage of this block	matrix approach is that classical
Gauss	Seidel relaxation methods� well suited for the
constituent hyperbolic and elliptic partitions in the
equations� cannot be applied stably in subsonic �ow�
The distributed relaxation approach of Brandt de	

composes the system of equations into separable�
many times scalar� pieces that can be treated with
optimal methods� The purpose of this paper is to
apply distributed relaxation in a defect correction
setting to the compressible Navier	Stokes equations�
A staggered	grid discretization is used which sim	
pli�es the elements of the calculation� although this
is not an essential ingredient� The method follows
closely the original derivation of Brandt���� dating
to �����

Distributed Relaxation

The equations for the time	dependent conserva	
tion of mass� momentum� and energy can be written
as

�tQ�R � �� ��

where Q � �� �u� �v� e�T and RQ� is the spatial
divergence of a vector function representing convec	
tion and viscous�heat transfer e�ects� The quantity
e is the total energy per unit volume� � is the internal
energy per unit mass� and the perfect gas equation
of state relating pressure� p� to density� �� and � can
be written as

p � � � ���e� �u� � v����� � � � ����� ��

where � is the ratio of speci�c heats� A set of non	
conservative equations can be cast in terms of prim	
itive variables q � u� v� p� ��T by multiplying the
equations by the Jacobian matrix �q

�Q given as

�q

�Q
� S

����
�� � � �
�� � � �

u� � v���� �u �v �
��� u� � v���� �u �v �

���� 

��

S �

����
� � � �
� � � �
� � � � � �
� � � �

���� � ��

The primitive equations are then

�tq �
�q

�Q
R � �� ��

These equations may be linearized about a given
state variable and written in delta form� �q �
qn�� � qn� as

L �q � �
�q

�Q
R� ��

where in the matrix operator L� only the principal
terms at the viscous and inviscid scales are retained�
Both scales are essential for high Reynolds number
simulations� the inviscid scales over most of the �ow	
�eld and the viscous scales in the thin viscous layers
near bodies and in their wakes� Since we are in	
terested here in solutions to the steady	state equa	
tions� we drop the time derivative� Additionally� the
thin	layer approximation� in which only the viscous
terms associated with variations in the coordinate
normal to the body are retained� can further sim	
plify the terms in L� This approximation is widely	
used for high Reynolds number applications and is
used for the numerical calculations below� although
the development does not rely on this approxima	
tion� Also� the formulation allows a conservative
discretization of R although� for the results below�
a nonconservative form for �q

�Q R is used�
The distributed relaxation method replaces �q by

M�w so that the resulting matrix LM becomes a
diagonal or lower triangular matrix� as
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LM �w � �
�q

�Q
R � �r� ��

The diagonal elements of LM are composed ideally
of the separable components of the determinant of
the matrix L and represent the elliptic or hyperbolic
features of the equation�

The approach yields fast convergence for both
steady and unsteady simulations if the constituent
scalar diagonal operators in LM are solved with fast
methods� such as multigrid for the elliptic partitions
and upwind methods for convection� Brandt� has
derived a set of matricesM for the equations of �uid
dynamics which provide a convenient lower triangu	
lar form based on a discretization of the equation of
state� A variation of that formulation� in which the
equation of state is an algebraic equation� is used
below� The Appendix gives the matrices for the in	
compressible equations�

Defect Correction

Since Eq� �� is written in delta form� it is natural
to consider defect correction for the update� namely
a lower	order discretization of the left side of the
equations in order to simplify the construction of
the implicit equations� The most common approx	
imation for the driver operator is a �rst	order dis	
cretization for the convective and pressure inviscid�
contributions� For this approach� we can write the
implicit scheme as

�LM�d �w � �rt� ��

where the subscripts t and d denote some desired
�target� and �driver� schemes on the right and left
sides� respectively� of the equation�

The convergence of defect correction is known to
be fast for elliptic equations� For hyperbolic equa	
tions� the convergence may be slow� even if the im	
plicit equations are solved exactly� This slowdown
was pointed out by Brandt � and discussed in some
detail in Brandt and Yavneh�� Thomas� et� al�� and
Diskin and Thomas�� For the second	order upwind	
biased discretization corresponding to � � �� de�ned
subsequently� the asymptotic convergence rate is ap	
proximately ��� per defect	correction iteration� For
a �rst	order driver approximation� the initial conver	
gence may be quite slow
 the number of iterations
to get into the asymptotic convergence regime might
grow on �ne grids and for certain frequencies at the
rate h����� This worst case behavior is usually not

that harmful for steady	state calculations with mod	
erate frequency content of the information imposed
at in�ow�
With a second	order accurate behavior of the

driver operator such as the fully	upwind second	
order operator � � ���� the convergence is quite
fast� within three iterations at most� although on
very coarse meshes� in which neither the driver nor
the target operators retain discretely an order prop	
erty over the whole of the domain� some large growth
of errors may occur� An e�cient half	space Fourier
mode analysis is given in Diskin and Thomas � which
predicts quite closely the actual solution behavior for
scalar equations�

Inviscid Compressible Equations

The inviscid compressible equations take a rela	
tively simple form with the choice of primitive vari	
ables considered here� Using a nonconservative dis	
cretization of the steady equations� the update equa	
tion is de�ned as

L �q � �r � �f � Lq�� ��

where f � �� the matrix L is

L �

�����
Q � �

��x �

� Q �
��y �

�c��x �c��y Q �
c�

� �x
c�

� �y � Q

����� � ���

and Q � u�x � v�y � The last equation is decoupled
from the �rst three� representing the convection of
entropy along a streamline� The determinant of the
matrix of operators�

Q��Q� � c����

corresponds to an elliptic partition� represented by
the full potential equation� and two convective par	
titions� generally recognized as the convection of en	
tropy and vorticity� Taking the distribution matrix
M as the cofactors of the third row of L divided by
their common factor�

M �

����
� � ��

��x �

� � ��
��y �

� � Q �
� � � �

���� � ���

the equations to solve for the �ghost� �w variables
are
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LM �w � �r� ���

or

Q�w� � �r�

Q�w� � �r�

f�
�

c�
Q� ��g�w� � �

�

c�
r� � ��x�w� � �y�w��

�

c�
Q�w� � �

�

c�
r� �

�

�
�x�w� � �y�w��

�
�

��
��w�

The last equation could be replaced with

Q�q� � �r� �
c�

�
�x�u� �y�v�

for inviscid �ow� Thus the update to q is

un�� � un � �q� � un � �w� �
�

�
�x�w�

vn�� � vn � �q� � vn � �w� �
�

�
�y�w�

pn�� � pn � �q� � pn �Q�w�

�n�� � �n � �q� � �n � �w�

The staggered	grid discretization used here is usual�
p� �� � de�ned at the interiors of the grid� u de�ned at
the cell interfaces tangent to the y� or k�direction�
and v de�ned at the cell interfaces tangent to the
x� or j�direction� The discrete scheme with such a
staggered	grid arrangement of variables can be de	
scribed as

Lh �

�����
Qh � �

��
h
x �

� Qh �
�
�hy �

�c��hx �c��hy
�Qh
� �

c�

� �
h
x

c�

� �
h
y � Qh

����� � ���

where �hx and �hx are �	point centered di�erences on
the staggered grid� The operator Qh is an upwind	
biased convection operator� de�ned in terms of
translation operators Tj and Tk� Tjuj�k � uj���k��
as

Qh �
u�

hx�j
D�Tj� �

u�

hx�j
D�Tj�

�
v�

hy�k
D�Tk� �

v�

hy�k
D�Tk�

D�Tj� � c�T
��
j � c�T

��
j � c� � c�T

��
j

D�Tj� � �c�T
��
j � c�T

��
j � c� � c�T

��
j

u� � u� juj���

The coe�cients for � � ���� �� are

fc�� c�� c�� c�g �
�

�
f�� �� ��� �� ��� ��� � � �g

and for �rst	order accuracy are

fc�� c�� c�� c�g � f�� ��� �� �g�

The convection operator in the pressure equation is
di�erenced with a downwind operator� i�e��

�Qh
� �

u�

hx�j
D�Tj� �

u�

hx�j
D�Tj�

�
v�

hy�k
D�Tk� �

v�

hy�k
D�Tk�

so that the determinant of the discrete matrix Lh�

Qh���Qh �Qh
� � c��h��

has a smaller and more symmetrical stencil than
if the upwind operator were used everywhere� For
grid	aligned �ow� this full potential operator is a cen	
tered �	point discretization of the Prandtl	Glauert
equation� With this formulation� the low	Mach
number limit is not a problem� as the usual �ve	point
Laplacian is obtained for the w� variable� analogous
to the purely incompressible form�

Compressible Navier�Stokes Equations

The contributions to the principal terms of the
matrix of operators for the viscous and heat con	
duction terms arise from the momentum and energy
contributions as in Eq� ��� since there is no in�u	
ence of viscosity in the continuity equation� The
two major complications are that the heat conduc	
tion term couples into both the pressure and inter	
nal energy equations and the viscous terms in the
momentum equations involve cross	derivative terms�
With the nonconservative discretization considered
here assuming constant viscosity and heat conduc	
tion coe�cients� the update equation can be written

�
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as Eq� �� with f � ��� �� �� ���� ���T where the
viscous dissipation term � is

� � 	���xu�
����yv�

���xv��yu�
���
��xu��yv�

���

the matrix L is

L �

�����
Q� �

b�
��xx �

b�
� �xy

�
��x �

�
b�
� �xy Q� �

b�
��yy

�
��y �

�c��x �c��y Q �� � ��k�
c�

� �x
c�

� �y � Qk��

����� �
���

and Q� � Q� ��� Nondimensionalizing by density
and speed of sound and using the Stokes hypothesis
for the bulk viscosity term� the coe�cients become
� � 	�� � M��Re��� k � M���RePr� and b
 �

� 	 � 	���
The distribution matrixM is developed similarly

to that for the inviscid equations with some addi	
tions that eliminate the cross	derivative terms� as
below

M �

�����
� � ��

��x �

� � ��
��y �b
�x b
�y Q
��

b�
�

�

� � � �

����� � ���

The matrix LM now has only diagonal entries of Q�

in the �rst two rows� The last two equations are still
coupled� requiring a block �x� solution as below�

�
� �

c�
QQ

��
b�
�

�� 	���
k
c�

�

� �
��� Qk��

� �
�w�

�w�

	

�

�
g�
g�

	
���

where

g� �
�

c�
r� � ��x�w� � �y�w��

�
b

c�
Q�x�w� � �y�w��

g� � �
�

c�
r� �

�

�
�x�w� � �y�w��

In the high Reynolds number simulation considered
here� the term � �

c�QQ��
b�
�

� �� in Eq� ��� is ap	

proximated as the full potential operator associated

with the inviscid equations� The discrete approxi	
mation of the terms above are straightforward ad	
ditions to the inviscid compressible terms� since the
viscous terms are di�erenced centrally�

In the calculations below� the thin	layer approxi	
mation is made for the viscous terms� i�e�� only the
derivative terms in the y	direction are retained� The
�w� and �w� equations the momentumequations at
constant pressure� are solved with a tridiagonal y	
line marching algorithm� The equations for �w� and
�w� are solved with two passes of a V���� multi	
grid cycle with line Gauss	Seidel iteration using four
multigrid levels
 a correction scheme CS� multigrid
was used in which the coe�cients of the block ma	
trix terms were interpolated to cell center locations
using bilinear interpolation� The coarsest grid level
was solved exactly� A smoothing was done with a
point Gauss	Seidel scheme before transferring resid	
uals to coarser meshes�

Computational Results

Inviscid Linearized Flow

The linearized �ow over a bump in a channel
was computed for a computational domain extend	
ing from x � � to x � � and y � � to y � � on a uni	
form grid of mesh size hx � hy� A sine	squared pro	
�le extending from x � � to x � � of height ��� that
of the channel height was imposed with linearized
boundary conditions� v�u� � dy�dx at y � ��

The boundary conditions for the primitive and
ghost variables require some discussion� The residu	
als at the horizontally oriented boundaries are taken
to be zero� corresponding to an imposed boundary
condition of tangency� In general� satisfaction of
these residuals to zero is obtained by adjusting the
pressure across the boundary to satisfy the normal	
momentum equation� The boundary condition im	
posed on the �w� ghost variable along the top and
bottom of the domain is �y�w� � �� corresponding
to the prescribed normal velocity condition� �v � ��

The residuals and u at the vertically oriented up	
stream boundary are unknowns in the solution
 the
variables p� � and u at points just upstream of the
boundary are taken as the imposed boundary con	
ditions
 the upstream boundary conditions imposed
in the ghost	variable solutions are as follows�

�w� � �
 �w� � �
 �w� � ��

corresponding to imposed values of u� p� e� The value
of v upstream of the boundary can be determined by
imposing �w� � � and then correcting it at values
outside the domain using the update formulas�

�
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Cp� Cp� Cp�
hx � hy M� � � M� � ���� M� � ���
��� 	������ 	������ 	������
��� 	������ 	������ 	������
���� 	������ 	������ 	������
���� 	������ 	������ 	������
���� 	������ 	������ 	������

Table �� Linearized pressure coe�cients at x � ���
for the �ow over a sine	squared bump in a channel�

The pressures at locations just downstream of the
downstream boundary are speci�ed as freestream

all of the other values are obtained through integra	
tion of the update equations with the upwind	biased
convection operator� The downstream boundary
conditions imposed on the ghost variable �w� is
�x�w� � �� corresponding to the prescribed pres	
sure condition� �p � � � Thus� in summary� Dirich	
let conditions are imposed for �w at the upstream
boundary and Neumann conditions for �w� at all
other boundaries�
The exact discrete solution for both incompress	

ible and compressible �ow is obtained in one iter	
ation starting from freestream conditions if �� we
solve the �w� equation to machine zero using con	
ventional multigrid methods and �� we use �rst	
order di�erencing� We are not recommending that
residuals be reduced to machine zero
 rather this
approach does provide a convenient check of the
implementation of the algorithm on the computer�
since arbitrarily large perturbations in q can be
damped�convected from the domain in one iteration�
The ghost variable �w� in the domain takes the role
of the perturbation potential in an irrotational isen	
tropic �ow� The values of u and v are obtained to
second order� The value of p is determined by the ac	
curacy of the convection operator� Fast convergence
and second	order accuracy is obtained if we use de	
fect correction with the second	order convection op	
erator � � ��� The values of Cp � ��u � u�� at
x � ��� obtained on a sequence of grids are shown in
Table �� Second	order accuracy is obtained and the
results obey the expected Prandtl	Glauert scaling of
the pressure coe�cient with ��

p
� �M�

��
 the Cp

decrease for M� � ��� is ����� as compared to ����
from the Prandtl	Glauert scaling�

Viscous Flat Plate

The viscous �ow over a �at plate was computed
for the same computational domain as above at a
Re������� based on the height of the channel� The
grid was stretched in the y�direction with a stretch	
ing factor of ���� on the �nest mesh of NxxNy �

���x��� No	slip� adiabatic wall conditions are pre	
scribed from x � � to x � � along the lower bound	
ary and symmetry conditions upstream and down	
stream of those points
 a wake pro�le develops down	
stream of the trailing edge x � �� Pressure was pre	
scribed at the downstream boundary and tangency
along the upper wall�

The ghost	variable boundary conditions are the
same as the channel �ow simulation except in the
region of the �at plate� For the internal energy�
the gradient normal to the boundary is zero for
both the adiabatic and symmetry conditions� so that
�y�w� � � is imposed� Since the residuals and v
are prescribed to be zero at the lower boundary� the
boundary conditions for the �w� variable is taken
as �y�w� � �� Thus� boundary conditions for the
ghost variables in this simulation are the same as
the channel �ow simulation� The primitive variable
velocities outside the lower boundary in the region of
the plate are chosen to satisfy the no	slip condition
at the plate� i�e� u�y� � �uy�
 v�y� � �vy��

Convergence could be attained in this simulation
for incompressible and slightly compressible �ow�
An FMG cycle was used� The value of Cf at x � ����
midwaydown the plate� is a sensitive measure of con	
vergence� First	order solutions were obtained which
decreased the L�	norm of the maximum residual �	�
orders of magnitude on each of the three �ner meshes
over �� iterations� corresponding to a convergence
rate of roughly ��� per �ne	grid iteration for both in	
compressible �ow and M� � ���� The skin friction
values converged to within discretization error in �	�
cycles� For second	order accuracy of the convection
operator� � � �� skin friction results are tabulated
in Table � for the series of meshes and for �������and
�� �ne	grid iterations� The convergence is quite fast

solutions are obtained to within truncation	error ac	
curacy within a few multigrid cycles� The L�	norm
of the maximum residual was reduced � orders of
magnitude on each of the three �ner meshes in ��
iterations� corresponding to a convergence rate of
roughly ��� per �ne	grid iteration�again for both in	
compressible �ow and M� � ����

At higher Mach numbers� convergence could not
be attained� The residuals remained quite large
and the solution eventually diverged near the lead	
ing edge of the plate� This behavior is not entirely
unexpected since we expect the distributed relax	
ation approach to be augmented with procedures to
locally reduce the residuals near boundaries� before
relaxing the interior equations� This local relaxation
near boundaries is required to guarantee convergence
within a few cycles even for elliptic equations��

�
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Cf � Cf �
NxxNy Iterations M� � � M� � ���
�� x � � �����E	�� �����E	��
�� x � � �����E	�� �����E	��
�� x � �� �����E	�� �����E	��
�� x � �� �����E	�� �����E	��

�� x �� � �����E	�� �����E	��
�� x �� � �����E	�� �����E	��
�� x �� �� �����E	�� �����E	��
�� x �� �� �����E	�� �����E	��

�� x �� � �����E	�� �����E	��
�� x �� � �����E	�� �����E	��
�� x �� �� �����E	�� �����E	��
�� x �� �� �����E	�� �����E	��

��� x �� � �����E	�� �����E	��
��� x �� � �����E	�� �����E	��
��� x �� �� �����E	�� �����E	��
��� x �� �� �����E	�� �����E	��

Table �� Convergence of the skin friction value
halfway down the viscous �at plate for incompress	
ible and slightly compressible �ow
 Re � ��� ����

Viscous Wake

In order to investigate the behavior of the viscous
algorithm for higher Mach numbers in a smoother
�ow� the viscous �ow in a developing wake pro�le
was considered� The simulation was similar to that
above except that a wake de�cit with uniform pres	
sure and internal energy was applied at the in�ow
boundary� The inlet pro�le at x � �hx was pre	
scribed according to the exact incompressible far
wake solution� as

u�u� � ��wdx� ������exp
�Re y�

�x� ���
�

where wd � ���� The minimum velocity was moni	
tored at x � ���� a location midway in the domain�
as a measure of convergence� The boundary con	
ditions for the ghost variables are the same as the
channel �ow simulation�

Convergence could be attained from incompress	
ible �ow up to the highest Mach number investi	
gated� M� � ���� First	order solutions were ob	
tained which decreased the L�	norm of the maxi	
mum residual � orders of magnitude on each of the
three �ner meshes over �� iterations� corresponding
to a convergence rate of roughly ��� per �ne	grid it	
eration at all Mach numbers The wake de�cit values
converged to within discretization error in � itera	
tions� For second	order accuracy of the convection

umin� umin�
NxxNy Iterations M� � � M� � ���
�� x � � ������ ������
�� x � � ������ ������
�� x � � ������ ������
�� x � �� ������ ������

�� x �� � ������ ������
�� x �� � ������ ������
�� x �� � ������ ������
�� x �� �� ������ ������

�� x �� � ������ ������
�� x �� � ������ ������
�� x �� � ������ ������
�� x �� �� ������ ������

��� x �� � ������ ������
��� x �� � ������ ������
��� x �� � ������ ������
��� x �� �� ������ ������

Table �� Convergence of the minimum velocity at
x � ��� for incompressible and compressible wake
�ows
 Re � ��� ����

operator� � � �� minimum velocity values are tab	
ulated in Table � for the series of meshes used in
the FMG cycle and for ������ and �� �ne	grid itera	
tions� The solution converges to within truncation	
error accuracy within � multigrid cycles� The L�	
norm of the maximum residual was reduced � or	
ders of magnitude on each of the three �ner meshes
in �� iterations� corresponding to a convergence rate
of roughly ��� per �ne	grid iteration�again for both
incompressible �ow and M� � ����

Concluding Remarks

The distributed	relaxation multigrid and defect	
correction methods are applied to the compress	
ible Navier	Stokes equations� The formulation is in	
tended for high Reynolds number applications and
several applications are made at a laminar Reynolds
number of ������� Although deemed not essential
to the methodology� both a staggered	grid arrange	
ment of variables and nonconservative forms for the
governing equations have been used�

The compressible �ow algorithm solves a multi	
grid problem for the pressure and internal energy
equations which necessitates a local block �x� ma	
trix solution at every grid point� Since we obtain
solutions to within truncation error in �	� �ne	grid
iterations and the additional operations to solve for
the ghost variables are on the order of an additional
residual evaluation� textbook multigrid e�ciencies
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are attained for incompressible and slightly com	
pressible simulations of the boundary layer on a �at
plate� Di�culties were encountered for higher Mach
numbers
 the calculation can and should be aug	
mented with local procedures to reduce the resid	
uals near boundaries� since this approach is required
for general conditions even for the elliptic equations�
Textbook e�ciencies are obtained for compressible
simulations up to Mach numbers of ��� for a viscous
wake simulation�
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Appendix � Incompressible Equations

The update equations for the nonconservative in	
compressible viscous equations can be written as
Eq� �� with

L �

����
Q� � �x �
� Q� �y �
�x �y � �
� � � Qk

���� �
f � ��� �� ����T � and 
 � �� Nondimension	
alized by density and velocity� the viscosity and
heat conduction terms are � � 	�� � ��Re and
k � ��RePr�� The distribution matrixM is deter	
mined by the cofactors of the third row of L divided
by their common factor� as

M �

����
� � ��x �
� � ��y �
� � Q� �
� � � �

���� �
The equations to solve for the ghost variables are
LM�w � �r� as

Q��w� � �r�

Q��w� � �r�

� �w� � �r� � �x�w� � �y�w�

Qk�w� � �r�

The distribution matrixM has the same form for in	
viscid �ow � � �� as viscous �ow� The distribution
formulas re�ect the role of pressure in the incom	
pressible equations to satisfy the continuity equa	
tion�
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