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Abstract. New renormalization-group algorithms are developed with adaptive representations of
the renormalized system which automatically express only significant interactions. As the amount of
statistics grows, more interactions enter, thereby systematically reducing the truncation error. This
allows statistically optimal calculation of thermodynamic limits, in the sense that it achieves accuracy
e in just O(¢~2) random number generations. There are practically no finite-size effects and the
renormalization transformation can be repeated arbitrarily many times. Consequently, the desired
fixed point is obtained and the correlation-length critical exponent v is extracted. In addition, we
introduce a new multiscale coarse-to-fine acceleration method, based on a multigrid-like approach.
This general (non-cluster) algorithm generates independent equilibrium configurations without slow
down. A particularly simple version of it can be used at criticality. The methods are of great generality;
here they are demonstrated on the 2D Ising model.

Introduction

A Monte Carlo (MC) simulation aimed at calculating an average of a certain observable
is called “statistically optimal” if it achieves accuracy € in O(0?¢™%) random number
generations, where ¢ is the standard deviation of the observable. This is just the
same order of complexity as needed to calculate, by statistical sampling, any simple
“pointwise” average, such as the frequency of “heads” in coin tossing. Our goal is to
attain such an optimal performance in calculating much more complicated averages in
statistical physics, including in particular thermodynamic limits, i.e., limits approached
by the averages of system observables when the system size tends to infinity.

Two basic factors usually prevent naive Monte Carlo calculations of a thermody-
namic limit from being optimal, even when O(c?c?) independent samples are indeed
enough to average out their deviations down to O(e) accuracy. First, to achieve an O(e)
approximation to the thermodynamic limit, each sample should be calculated on a sys-
tem of sufficiently large volume, that is, a system whose linear size L grows with 7!
typically L ~ e~ for some p > 0. So in d physical dimensions, the required simulation
volume for each sample is LY = O(s774). This factor is called the volume factor. The
second factor is the critical slowing down (CSD), i.e., the increasing number n of MC
passes needed (at least at the critical temperature) when L grows in order to produce
each new (essentially independent) sample; usually n ~ L?, where z is typically close
to 2. As a result of these two factors, the cost of calculating the thermodynamic limit
to accuracy ¢ rises as O(o2g 2 P4 p7),



Cluster algorithms (such as Swendsen-Wang [1] and Wolff [2]) are able to eliminate
the CSD factor, i.e., attain z = 0 for certain models. For other models they can only
partly lower z, or not at all. Moreover, they leave the volume factor intact.

Optimal performance, where both the CSD and the volume factors are eliminated,
was first demonstrated in calculating various thermodynamic limits for Gaussian mod-
els with constant coefficients (and also in calculating the critical temperature of the
Ising model) [3]. The main tool was the multigrid cycle, which involves coarse-to-fine
acceleration, thus eliminating the CSD, and performs most of the sampling at coarse
levels, thus eliminating the volume factor. The technique of inter-level transfer was
based (as in classical multigrid) on pre-determined interpolation rules. With increasing
sophistication of the multigrid cycling and the interpolation rules, optimal performance
has subsequently been accomplished also for massive Gaussian models with variable
couplings [4], [5], [6]. For example, it has been shown that the susceptibility of a 2D
infinite lattice variable-coupling Gaussian model can be calculated to accuracy ¢ in less
than 200%¢~2 random number generations, independently of the maximal ratio between
strong and weak couplings (unlike the severe extra slowness that large such ratios can
inflict on pointwise Monte Carlo).

Efforts to extend these interpolation-based multigrid methods to non-Gaussian mod-
els have met with only partial success [6], [7], and have eventually led to the techniques
described in this report. These techniques include a couple of interconnected pro-
cedures, collectively called the renormalization multigrid method (RMG), since they
combine ideas previously advanced in both those disciplines.

In this report we will show that the RMG method yields statistically optimal calcu-
lations for the 2D Ising model. It will however be clear from the description (and from
the discussion in Section 6) that the method is very general. Indeed, it has already
preliminarily been applied to the XY model, demonstrating optimal results [7|. Proper
modifications of the RMG method are now being introduced to such diverse models as
molecular mechanics of macromolecules ([8], Section 14.6 and [9]) and atomistic models
of fluids ([8], Section 14.7 and [10]). An analogous method is even being developed
for solving deterministic sets of equations [11]. Moreover, RMG is applicable even for
many systems which are not governed by a Hamiltonian.

For simplicity, the new techniques are surveyed here in terms of the 2D Ising model
with the majority-rule coarsening, as they were first developed. We begin with a short
review of the necessary physical background aimed for the unfamiliar reader. A detailed
numerical description for the transition probabilities of the block level is presented next,
followed by a comparison to the classical coupling-constants representation. Next it is
explained how this approach can be used for the calculation of the fixed point and
the correlation-length critical exponent. The Monte Carlo coarse-to-fine multiscale
acceleration method is then introduced. Finally, the extension to continuous-state
models is briefly discussed.

This article is a revision of [12]. Related publications are [13], [14].

1 Physical Background

We briefly summarize some relevant topics in statistical mechanics including the Ising
spin model, the Monte Carlo simulations and the Renormalization group formalism.



1.1 Classical Monte Carlo Method

Consider a two dimensional lattice of size L x L, where each site 7 is occupied by an
Ising spin s; (which can assume only two values: +1 or —1). The spins are related by
the nearest neighbor (nn) Hamiltonian

H(S)=—KnnSun ; Spn = Z SiSj (1)
<i,j>
where S is a configuration (i.e., a realization of the spins {s;} at all sites), K, is the
associated coupling constant (assumed to absorb 1/(kgT), where T is the temperature
and kp is the Boltzmann constant) and the sum runs over all distinct nearest neighbor
pairs < i, j >. Periodic boundary conditions are assumed. The probability of a certain
configuration S is given by the Boltzmann distribution

P(S) ~ e 1S (2)

The computational task is to calculate macroscopic physical observables of the sys-
tem

<0> =Y 0(5)P(S), (3)

where O(S) is a property such as the two-point correlation function (at distance d)
I'(d) = L™* %} jj=a5is; (where |i — j| indicates the geometric distance between sites
i and j), the magnetization M = L%, s;, etc. It is of special interest to calculate
the thermodynamic limits (i.e., the limit as L — o00) of such averages at the critical
temperature T, (K,, = .4406868) associated with the magnetic phase transition. The
high temperature disordered phase is characterized by zero magnetization (M = 0),
while as the system is cooled it undergoes a transition to the magnetically ordered
phase in which most spins tend to align.

The prime mission of Monte Carlo simulations is to generate a sequence of configura-
tions 51, o, ..., Sp, such that each configuration appears a number of times proportional
to its probability as given by Eq. (2). This restricts the sampling mainly to the most
probable (important) configurations. The evaluation of < O > is then obtained by a
direct average over those n configurations: < O >=n"t ¥ O(S;), thus avoiding the
enormous summation in Eq. (3). The traditional MC creates the next configuration by
changing the spins one by one. Consider a single spin s;. According to the Heat Bath
rule, for example, the probability of replacing it by —s; is given by

1

P(Si*—si)ZW’

(4)
where AH = 3 ,.; ;s 8;5; , which depends only on the four nearest neighbors of 7, the
spins at sites marked by 1 in Figure 1.

The accuracy of the calculations depends on the size of the statistical sample n,
on the lattice size L and on the correlation length £. (£ is characterized by the fact
that two spins separated by a distance small compared with & are expected to be found
more parallel than anti-parallel.) Near the critical temperature the correlation length
diverges as

E~(T-T,)™", (as long as L > §) (5)

where v is the universal correlation-length critical exponent known for this model to
be equal to unity. (According to the “universality hypothesis” all other systems of
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two-dimensional uniaxial magnets share the same v as well as other critical exponents.)
Because ¢ diverges at 1., long heat-bath runs are needed to counter the well known
critical slowing down, (i.e., the phenomenon, typical to simulations of critical systems,
that when L increases so does the number of MC passes needed to produce a new con-
figuration which is substantially independent of a former one). This problem has been
extensively addressed using cluster algorithms (consider [15] and references therein),
multigrid methods ([3], [4], [5] and [16]) and more. A different approach for study-
ing systems at the critical temperature is the renormalization group method which is
presented next.

1.2 The Renormalization Group Methods

The main difficulty posed by systems near their critical points is the necessity to deal
simultaneously with many length-scales. The phenomenological renormalization group
(RG) method has been widely used in MC simulations of such systems.

Consider a general action of the form

H(S) =3 KaSa (6)

where each “interaction” S, is a sum of all spin products of some type, (e.g., a sum of all
nearest-neighbor products, denoted by S,, in Eq. (1); a similar sum with nezt nearest
neighbors, etc.), each K, is the corresponding coupling constant and the sum runs over
all existing possible interactions on the given grid. The probability of a configuration
S is still given by Eq. (2).

The RG transformation R is defined as the projection of a larger (fine) grid onto a
smaller (coarse) grid, consisting of fewer degrees of freedom. In practice, the fine grid is
divided into cells (of linear size b). Each cell is then assigned with a single coarse variable
according to some prescription. For example, consider the majority-rule with b = 2:
The coarse grid consists again of a 2D array of Ising spins {s}}, each of which being a
“block-spin”, i.e., its sign representing the sign of the spin sum in a corresponding 2 x 2
block of fine-level spins. (The sign of zero is taken to be 4+ or —, each with probability
1/2). The coarse grid configuration S’, thus produced, is governed by a “renormalized
Hamiltonian” H' = R(H), which again has the general form

H(S) =D K.Se (7)

where the interaction S! has the same form as S,, but involving the block-spins
{s;}. Conventionally, R is viewed as operating in the space of the coupling constants:
{K.} R, {K_} . If the starting Hamiltonian is critical (i.e., given at 7.), by repeat-
ing R a sufficient number of times, the transformation eventually reaches its attraction
point, the critical fixed point H* = R(H*) .

Any action which is in the vicinity of the critical point H = H*+6H can be expanded
in terms of the eigenvectors ¢; of the linearized form of R, i.e.,

H=H+> aig; , ROH)=H + > a; g , (8)

where ); is the eigenvalue associated with ¢;. Thus, the deviation from H* either grows
or diminishes under renormalization according to whether |);| is larger or smaller than
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unity. In general, there may be few eigenvalues obeying |\;| > 1, each describing a
relevant direction along which R flows away from the fixed point. For the Ising model,
there is only one relevant eigendirection (the temperature-like). Its eigenvalue A\* gives
the rate of low away from the fixed point and is related to the correlation-length critical

exponent v,
log b
V= log N+ (9)

Hamiltonians that flow into a particular H* are all spanned by the irrelevant directions
¢; for which |);| < 1.

In the starting Hamiltonian, on the finest grid, all couplings but the one associated
with nearest neighbors vanish, i.e., Eq. (6) boils down to Eq. (1). The coarse grid action
‘H' has to compensate for all the fine interactions lost while coarsening, and clearly it
may need many more interactions than merely the nearest neighbors. More generally,
the coarse Hamiltonian should consists of all possible couplings that fit on a given size
lattice. Since not all could be included in the simulation, the main question is clearly
which couplings are most important. The basic assumption of the renormalization
group method is that the renormalized couplings K! fall off exponentially with the
distance between the spins and with the number of spins in each product in S,. Under
that assumption, the general approach is to take all (or most seemingly important)
couplings in a pre-chosen restricted distance of interacting spins, and ignore all other
(e.g., longer range) couplings. The fixed errors introduced by taking such a finite
number of couplings is referred to as “truncation errors”. Many different methods have
been proposed over the years for calculating those coarse couplings associated with
the renormalized Hamiltonian. For a brief review consider [17] and references therein.
However, to the best of our knowledge, no systematic approach has been developed that
would select the couplings according to their significance at a given level of statistical
sampling, to roughly match the truncation error with the statistical sampling errors.

An extensively used version of RG is the MC renormalization group (MCRG) [18].
In the MCRG, MC simulations (or, when applicable, some cluster updates) are carried
out only with the original Hamiltonian, on a grid of some given linear size L. On the
produced sequence of configurations a number of successive renormalization blockings is
performed, producing corresponding sequences of increasingly smaller configurations of
block-spins. The method enables approximate calculation of properties of the RG flow,
such as critical exponents, without direct knowledge of the renormalized Hamiltonian.
However, it still involves the explicit definition of the coarse action. The number of
times R can be applied is limited by L, the starting-lattice size. This may result in lack
of convergence (to the fixed point) which is the second source of systematic error in
the MCRG calculation (the first being the truncation error). A third source of error is
finite-size effects caused by the consistent decrease of the linear size of the configurations
being analyzed. For more details, consider for instance [19].

Our present work is aimed at overcoming the above drawbacks. To avoid the finite-
size effects and to allow enough renormalization steps we choose, once more, to actually
do calculate the renormalized Hamiltonian. Indeed, as explained below, we have suc-
ceeded in developing a novel numerical method that automatically and systematically
constructs the transition probabilities of the block-spin (coarse) level.



2 Systematic Representation of Block-Level Transition Prob-
abilities

We introduce our method first for the simplest case of nearest neighbors Hamiltonian.
We will then generalize it to a larger range of interactions. Next, we describe the
automatic adaptive approach in which this range grows optimally as function of the
invested amount of statistical work. Finally, we present some results, exhibiting the
statistical optimality of the method.

2.1 Recovery of Nearest Neighbors Hamiltonian

The numerical method presented here is based on the following, rather simple obser-
vation. In order to perform a Monte Carlo simulation over the lattice, one need not
actually know the explicit structure of the Hamiltonian as given, for example, by Eq. (1).
Instead, this formula can be replaced by a table of numbers which gives the conditional
probability Pl(s1, s, 53,54) for a spin to be +1 given the values (s1, $a, S3, 54) of its 4
nearest-neighbor spins (the spins marked by 1 in Figure 1). These conditional probabili-
ties are exactly all one needs for carrying out the MC sweep and generate configurations
with the desired Boltzmann weights. Conversely, from a given sequence of configura-
tions in equilibrium, the Pj_ table can easily be estimated by a simple pointwise scan:
For each entry (s1, $9, 83, 54) the total number of occurrences of this neighborhood, and
the number in which the middle spin is +1, are counted. The ratio between the latter
and the former clearly gives an estimation for P}(s1, g, s3, 4). In fact, in this case (of
just 4 neighbors), due to the symmetries of the model (flipping, rotating and reflect-
ing), only two “equivalence classes” of neighborhoods need to be distinguished: The
one in which all 4 spins have the same sign and the one where exactly one of them has
an opposite sign. The case for which s; + s3 + s3 + s4 = 0 is a-priori assigned with
P} (s1,52,83,84) = 1/2. All the neighborhoods within the same class must have the
same Pf_, or the same Pi upon flipping, hence only their collective statistics needs be
gathered.

This observation can be further used to calculate an estimation for the coarse grid
Hamiltonian. From an MC simulation of equilibrium on a given fine grid, construct
P} for the corresponding sequence of coarse configurations obtained by applying the
majority-rule projection R. Then this (coarse) P table can be used to simulate the
block-spin system and calculate the P} table for the next coarse level (consisting of
blocks of block-spins) and so on.

The problem is, of course, that the coarse grid action has a longer range than
merely nearest neighbors. Next we explain how the conditional probability tables can
be extended to represent more general Hamiltonians.

2.2 Generalization: Larger Neighborhoods

A table of conditional probabilities, similar to P}, can of course be constructed for bigger
neighborhoods. For example, P? is produced by considering the 8-spin neighborhood
consisting of the nearest and next-nearest neighbors, correspondingly marked by 1 and
2 in Figure 1. By using the above symmetries, the total number of possible different
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Figure 1: The marked 40-spin neighborhood of a spin s;: Each mark is associated with a layer of all
the spins sharing the same distance from s;.

neighborhoods 28 = 256 in the Pfﬁ table is reduced to just 27 equivalence classes (out
of which 3 are automatically assigned with the probability 1/2). By considering even
more distant spins (those marked by 3), the P{? table can be constructed (with 314
entries, one for each equivalence class), and so forth.

Clearly, the size of the P, tables, thus constructed, grows rapidly. A closer obser-
vation would immediately indicate, however, that not all entries have the same impor-
tance: Only few are probable, while the rest are rare and contain little statistics. This
leads to the following (relatively slowly growing) adaptive structure.

2.3 Adaptive Construction of the P Tables

The size m of the considered neighborhoods and that of the corresponding PT* table
should actually depend on the amount of statistics being gathered upon running the
MC simulation. If only a small amount of statistics is gathered, only the four nearest
neighbors are considered and P is constructed. With more statistics, all eight closest
(nearest and next-nearest) neighbors (marked by 1 and 2 in Figure 1) are considered to
construct P? (consisting of 27 equivalence classes). Since not all appear with similar
frequencies, some being much more common than others, it is natural and straight-
forward to further increase the size of the considered neighborhood only for the most
probable ones. That is, when the amount of statistics for a particular entry, say in Pfﬁ,
is sufficiently large, that neighborhood is split, i.e., statistics is gathered for its “child
neighborhoods”: These are neighborhoods consisting of 12 spins (marked by 1,2 and
3 in Figure 1) with the same inner 8 spins as in the “parent” (split) neighborhood,
but with some (or all) combinations of the four subsequent neighbors (marked by 3 in
Figure 1). Thus, the obtained P}* table contains information only for the children of
the most probable configurations in the Pf table and does not necessarily include all
12-spin neighborhood possibilities.



The general rule is to split a neighborhood when some of its children have enough
statistics to make the difference between their P, wvalues significant, i.e., larger than
their standard deviations. Furthermore, not all offsprings of such a split parent have
a separate P, entry: Only those children exhibiting a significant change in their P,
compared with their parent’s P, are tabled separately, while all others (insignificant in
their P, deviation, mostly due to lack of enough statistics) are grouped (merged) into
just one additional equivalence class.

Thus, the P} table has a variable size, with the number of entries depending on the
number of splits (and on the type of the splits, as explained in Section 2.4) occurring
from P?. Note that the merging rules are important only for reducing the size of the
constructed tables. The MC simulation which uses these tables is not affected if the
splits are employed less carefully and even if merging is completely avoided, as the
effective P, value for the parent remains the same either way.

The splitting process can be repeated: Children with enough statistics (in Piz) may
further be split into grand-children with a larger neighborhood (including also spins
marked by 4 in Figure 1 to create P°), and so on.

The overall resulting table will have the structure of an unbalanced tree: unequal
number of offsprings for different nodes. The tree root connects all possible equivalence
classes of some small m-spin neighborhood. The most probable nodes (neighborhoods)
split into children, the most probable of those further split into grand-children, etc. A
schematic possible tree-like structure for 12-spin neighborhoods is shown in Figure 2:
The 11 double-framed nodes (i.e., exactly all leaves) are the entries of the associated
Pf table, where by “all others” we refer to the merged offsprings, as explained above.

2.4 Additional Algorithmic Details

For convenience, in order to construct the adaptive table of conditional probabilities
we usually use a pre-run of length, say, 1/10 of the upcoming actual run. During
that pre-run all the decisions concerning splitting are made. Thereafter the structure
of the tree is known and remains unchanged. In the current status of the algorithm
we haven’t fully optimized the process of splitting, further code development is still
needed. Nevertheless, we found that the splits (of some particular neighborhood to its
subsequent children) should better be executed gradually. That is, all possible children
should first be grouped into a small number of “clans”. For instance, all those having
the same sum of all spins in the outer layer can be put in the same clan. If the
number of spins in the outer layer is &, this sum can assume only & + 1 different values
(k,k —2,...,0,...,—k), and thus splitting into such clans can generate at most k + 1
offsprings (compared to 2* different children without this grouping). Only clans with
enough statistics will further split. With this approach the number of neighborhoods
grows at a much slower pace.

In fact, an even better strategy should be the following. For each probable neigh-
borhood, a candidate for splitting, consider at first more than just one possible split,
e.g., the split to the next layer’s clans, versus the split of the current clan into detailed
configurations. Each possible split is then being evaluated, the one with the largest
spread (average child deviation) should be adopted. (Statistics for several possible
splits can be accumulated simultaneously in the same MC run.) This would enable a
better tuning of the algorithm for achieving full optimality while reducing the number
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Figure 2: A typical schematic tree-like structure of the P} table constructed for all the spins marked
by 1,2 and 3. The leaves, i.e., the double-framed nodes, correspond exactly to all the entries of this
particular P}? table.

of neighborhoods altogether. This last idea has not yet been implemented.

2.5 Optimal Results in Calculating the P, Tables

The P, tables represent the coarse-level transition probabilities. Indeed, it is all we need
(and exactly what we need) to run an MC simulation on that level (the level of blocks).
Also, due to the adaptability in the size of the neighborhoods, the calculation of the
P, tables is statistically optimal, in the sense that it automatically acquires accuracy
¢ when the amount of statistics (the total number of random-number generations in
producing the P, tables) is O(¢7?), without assuming any self-averaging. This claim
has been confirmed by the following numerical tests, in which the observables of interest
are themselves particular values of the P table — for the next, still coarser level.

From simple heat-bath MC simulations on the finest level we calculate the PT* tables
of the first coarse level, denoting them by P". From MC simulations on this first coarse
level (the level of blocks of spins), using those PI” tables, we then also calculate ﬁf,
the P tables for the second coarse level (the level of blocks of blocks). Note that
several different PT* tables can be calculated simultaneously in a single MC simulation

on a given fine grid. So in the same MC run on the finest grid (using H., the original
Hamiltonian at 7.), we actually construct four different PP tables: three tables, those



with m = 4,8 and 12 (where for m = 12 the four spins marked by 3 in Figure 1
are grouped into their 5 possible sums), are used only as the observables measured on
the first coarse level; the fourth table, which we will denote by (P)c, is typically
constructed for a much larger m (or a more detailed one in case m = 12), depending
on the length of the MC run (i.e., the amount of statistics). This (P{")ac is the table

used for applying the MC simulations on the first coarse level, from which the P\f

tables are measured. Three such tables are actually measured: P}, P{ and P}?; in this
experiment the second-coarse level serves merely for the observable calculations and no
MC passes are ever executed on it. At each level, the resulting tables (for m = 4,8
and 12) are then compared with those obtained by a very long Monte Carlo simulation
on the original grid, using a cluster algorithm (e.g., Wolff). During this original-grid
simulations, for each configuration we perform two successive majority-rule projections
to obtain the first (blocks) as well as the second (block of blocks) coarse configurations,
for both of which P tables (denoted by P and PT", respectively) are measured. The
errors we measure are then defined by

Error(m,1) Z\ Pm — (P f™ 5 Error(m,2) Z\(P+ P:f) \f,:m, (10)

where i runs over all the entries (in the corresponding table) and f* is a non-negative
number proportional to the amount of statistics gathered for each (P}*);, with 3>, f7* =

1, and f/™ is analogously defined.

The results of such calculations on a 32 x 32 finest grid at the critical temperature 7,
(Kp, = .4406868 in Eq. (1)), are presented in Table 1, where we use the notation n(L;H)
to specify the number of MC sweeps employed on an L x L grid using the Hamiltonian
‘H. Equilibration on the 32 x 32 grid was first achieved by 1000 MC sweeps starting from
a uniform configuration. In all columns (1-7) we present the errors measured for the
first and the second coarse levels (averaged over an ensemble of 16 systems). Clearly,
in columns 1-4, the errors are halved as the amount of statistics (with correspondingly
growing number of neighborhoods) is quadrupled, demonstrating typical optimal be-
havior. The number of neighborhoods grow faster than it optimally should, since we
haven’t completely automatized the algorithm with respect to employing minimal num-
ber of splits. We have, however, succeeded in reducing the number of neighborhoods
much further, as shown in column 6 (compared with column 2), by manually tuning the
parameters controlling the necessary splits of the 12-spin neighborhood into its 20-spin-
neighborhood children. Also observe (by comparing Error(m,2) in columns 1-2 with
those in columns 5-6, especially for m = 12) that all errors should of course be reduced
by sufficiently increasing n(16;(P™)yc), the amount of MC sweeps (i.e., the statistics)
carried on the coarse grid, if one wants to isolate the errors introduced only by the finite
statistics n(32;H.) used for producing (P{")nc and not by the lack of enough statistics

in measuring on it the corresponding “observables” /ﬁf In particular note that for
large enough n(16;(P{*)yc) the Error(m,2) becomes essentially independent of m.

Finally note that by increasing only the amount of statistics, while keeping the
number of neighborhoods in (P7*)y¢ fixed (compare columns 5 and 7), the optimal
behavior no longer holds: The errors of the second coarse level are dominated by the
truncation error (i.e., truncated neighborhoods) and remain practically unchanged. The
required increase in the number of neighborhood is, however, modest: the increase from
304 (column 5) to 461 (column 6) is enough, while the further increase to 1406 (column
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2) is no longer helpful.

Table 1: The errors in measuring P of the first and the second coarse levels (for
m = 4,8 and 12), using increasingly better approximations and larger neighborhoods
for the first coarse level. 'H. is the original Hamiltonian at 7, and the numbers in
parenthesis indicate the deviations in the last decimal digits.

1 2 3 4 5 6 7
n(32;H.) 10* 4x10* | 42x10* | 43 x 104 10* 4 x 10* 4 x 10*
the m in (PJ*)mc 12 20 60 84 12 20 12
number of
entries 304 1406 5666 23198 304 461 304
in (Pin)MC
n(16;(P™) mc) 4x10% | 42x10% | 43x10% | 4% x 10* || 4% x 10* | 4* x 10* | 4% x 10*
Error(4,1) .00050(4) | .00031(4) | .00010(2) | .00005(1) || .00050(3) | .00023(2) | .00022(2)
Error(8,1) .00064(2) | .00032(1) | .00017(1) | .00008(.4) || .00064(2) | .00032(1) | .00032(1)
Error(12,1) .00122(2) | .00062(2) | .00030(1) | .00015(.4) || .00122(2) | .00061(1) | .00060(1)
Error(4,2) .00126(20) | .00061(9) | .00029(6) | .00011(1) || .00134(8) | .00061(4) | .00105(4)
Error(8,2) .00150(11) | .00074(6) | .00038(3) | .00020(1) || .00140(4) | .00068(3) | .00123(2)
Error(12,2) .00197(11) | .00101(6) | .00050(3) | .00025(1) || .00149(5) | .00074(3) | .00130(2)

2.6 Errors

The principal sources of errors in the above processes are the finite statistics, the trunca-
tion error imposed by the truncated size of the neighborhoods for which P, is calculated,
and the finite size of the lattice employed at each level.

The latter type of error is easily removed since arbitrarily large lattices can be used
at any coarse level, as the simulation is done directly there, and not through simulations
at the finest level. Because of the general numerical form of the P, tables, the cluster
techniques are inapplicable on those coarse levels. However, they are also unnecessary,
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Figure 3: A double logarithmic plot of Error(8,1) (defined in Eq. (10)) as a function of n, the
number of overall MC sweeps, starting from a random configuration. Results are shown for simple
MC simulations (on lattices 162, 322 and 642) and for the TCFE (on 162 and 322) using the critical
Hamiltonian (see Section 5; in this case the CMC and PR passes are included in n).

first of all due to the near-locality (see Section 3) nature of the P, calculations at all
levels. That is, a very good first approximation for the P, tables is already obtained by
employing just few simple (heat-bath) MC passes (their number is independent of the
lattice size, even starting from a completely random configuration). In particular, it is
not necessary to obtain global equilibrium; it is enough to achieve equilibrium only in a
scale comparable to the size of the considered neighborhood. This is evident in Figures 3
and 4, where the errors in calculating P? and P}? of the first-coarse-grid (Error(8,1)
and Error(12,1) defined in Eq. (10)), are plotted (on a double logarithmic scale) versus
n, the number of MC sweeps employed starting from a random configuration. For small
n (n < 10) results for different gridsizes practically coincide, exhibiting a power law
decay (e.g., Error(8,1) o n='®). For larger n, apparently due to finite-size effects, the
rate of convergence for smaller grids is somewhat slower, while results for large enough
grids still coincide with each other. Also observe that all results easily exceed the speed
needed for optimal behavior, shown by the dashed lines (where the error decreases by
a factor of 1/10 when the amount of work increases by a factor of 100).

If a case arises for which faster equilibration and sampling may be needed, they can
be achieved by the method of Section 5.

The finite-statistics errors are well controlled so as to keep all of them, at all levels, at
the same optimal order €, where the amount of statistics is O(¢7?%), as was demonstrated
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Figure 4: A double logarithmic plot of Error(12,1) (defined in Eq. (10)) as a function of n, the
number of overall MC sweeps, starting from a random configuration. Results are shown for the same

cases as in Figure 3.

above. The truncation errors are also kept at O(g), by adjusting the neighborhood
sizes; it is estimated that the linear size of the considered neighborhoods should grow
very slowly, e.g., proportionately to log(¢™'). The only remaining trouble is the error
enhancement from level to level, due to the renormalization flow divergence away from
the critical surface, whose treatment will be discussed in Section 4.2.

3 On the Form of Coarse Actions

A general property of coarse (block) levels, in the present model as in most other phys-
ical systems, is the near-locality of the dependence on neighborhood. That is: the con-
ditional probability distribution of the state at a point A, given fized states at all other
points, depends mainly on the states of the closest neighbors: the average dependence
decays exponentially with the distance from A. (For example, if the neighborhood of A
is changed only at points at distances larger than r from A, the conditional probability
to have +1 at A can change at most by O(exp(—cr)), with some (unknown) constant

c.)

[A comment for more general models: The near-locality property of the blocked
variables indirectly holds even in the case of long-range interactions, such as electrostatic
or gravimetric interactions. Indeed, each such interaction can be decomposed into the
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sum of a smooth part and a local part (where “smooth” and “local” are meant relative
to the particular scale of the next coarser level). All the smooth parts can be transferred
(anterpolated) directly to the coarse level (see [20] and [21]), hence it is only the local
parts that remain to be expressed on the coarse level. For this expression the near-
locality property still holds.]

The near-locality property is of course the motivation behind our approach for the
construction of the tree of neighborhoods in terms of which the P, table is expressed.
It allows us a very systematic branching, which can take far neighbors into account only
at the particular combinations and circumstances where their influence is statistically
significant. The traditional framework of constructing a coarse-level Hamiltonian (by
fitting coupling constants) does not allow this flexibility. Moreover, it forces one to
introduce unnecessarily strong far interactions.

To see this, consider again the P} table (see Section 2.1), the table related to nearest
neighbors. It contains fwo entries, i.e., two conditional probabilities, while there is
only one nearest-neighbor coupling constant K, (as in Eq. (1)). Thus, the P} table
can describe a system which is not governed by a nearest-neighbor Hamiltonian. To
fit such a Pf_ table, a Hamiltonian description is forced to add farther interactions.
Similarly, to fit any PT* table the Hamiltonian description is forced to add substantially
farther interactions. But by the near-locality property, these farther interactions would
generally be much weaker than the PT" interactions one attempts to fit.

Note also the fact that the Boltzmann form of probability distributions results from
direct physical reasons (like equipartition of energy) which no longer hold for coarse
(block) levels (where only a (small) portion of the energy is active). It is thus reasonable
to expect that at those levels a more general form of probability distribution will be
more suitable.

In particular, our presentation does not suffer from the “peculiarities” of the com-
monly used discrete-spin RG transformations pointed out by Griffiths and Pearce [22].
As explained in [23], all such pathologies arise form the usual assumption that the
renormalization map is defined as a map from Hamiltonians to Hamiltonians. Under
this assumption, there are special cases where the renormalized Hamiltonian may fail
to exist altogether. Our conditional probability tables have no such restriction. These
tables can always be calculated and in the special cases where the renormalized system
must include significant longer range interactions, this will be detected by the auto-
matic adaptive construction of the tables and will be taken into account (to the extent
that those interactions are indeed significant at the current amount of statistics). This
will provide a possible cure for describing those (rare) events.

4 Fixed Point Algorithms and Critical Exponent

As an application of the RMG scheme, we next present two different algorithms which
converge to the fixed point of the RG flow. We assume that the RG transformation R
has a unique fixed-point (in terms of P, table of conditional probabilities) and show
that it is obtained in a certain number of iterations (renormalization steps), all carried
out with the same lattice size L (unlike the MCRG iterations, where the measurements
must be performed on successively decreasing gridsizes). The first method is based on
a perturbation (in the relevant direction) introduced into the current approximation
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to the fixed point, while in the second we employ a “back-to-criticality” mechanism as
explained below. Results for the correlation-length critical exponent follow.

4.1 Fixed Point Algorithm by Isolating the Relevant Direction

In the case of the 2D Ising model, the fixed point is quickly approached by a short
sequence of coarsening projections (renormalization steps). Let, at a certain stage, the
vector P represent the current fine-grid P, table of conditional probabilities previously
calculated. The RG transformation R operates on P° to produce the coarse-grid P,
table, which we denote P!:

P'=R[P°] . (11)

The vector P*, which obeys P* = R(P*), is the desired fixed point. As explained in
Section 1.2, by applying R enough times (on a P close enough to P*), all irrelevant
directions diminish, leaving the relevant direction as the dominant perturbation to P.
For any perturbation ¢ to a vector P (representing a P, table) we define the norm

lal® = sz‘%@, (12)

where w; is determined by some rules aimed at minimizing the error in the calculation
of A below (i.e., minimizing the statistical errors in Eq. (14)), from which it follow that
w; ~ f;/(Pi(1=PF;)), with f; as in Eq. (10) , P; being the i-th entry in the P vector and
Y;w; = 1. If the construction of P has been performed very carefully (as described
in Sections 2.3 and 2.4) then § = ¢. Otherwise, § should better be obtained from ¢
by replacing for each parent all entries (g;) of child neighborhoods which have little
statistics, with their weighted average (using w; for the weighting). This to avoid a
possible bias in the norm calculation (Eq. (12)) that may occur due to the contribution
of large deviations (whose multiplication each by itself would not average out). A vector
q is called normalized if || ¢ ||=1. Let ¢° be a normalized approximation to ¢* (the
exact normalized relevant direction) obtained at the previous stage of the algorithm,
together with the approximation P°. Denote by \* the eigenvalue associated with g¢*
(which is in magnitude the largest eigenvalue).

Each steration of the fixed point algorithm combines two parts. In the first part we
calculate better approximations for ¢* and A*. This is achieved by applying R twice
using the same gridsize (L x L) for both projections:

P'=R(P%) ; P*=R(P"+Cy"), (13)

where C, < 1 is a constant, called the perturbation coefficient. At criticality P! =
P® = P* while P?> = P* + C,\*¢* + O(Cg) .

The desired critical exponent can immediately be derived from A* by Eq. (9), which
in turn is estimated by

A= wigii ) D wiCeli: (14)

where ¢ = P? — P! . The new approximation to ¢* is then defined as § = ¢*/ || ¢' || .

In the second part of the iteration the task is to calculate P, a better approximation
for the fixed point P*. We choose

P=P' +2)\j, (15)

15



where z is such that | P — (P° + z§) ||? is minimal. z is thus designed so that z§
(nearly) cancels any remaining component in the relevant direction still appearing in
PO,

The next iteration is repeated for ¢° «— ¢ and P° — P , applied again on the same
grid size as the previous iteration.

In principle, the fixed point algorithm should consist of a sequence of steps, each
consisting of several iterations of the (two-part) type defined above. From step to step
the amount of statistics should significantly increase, for instance by a factor of 16 (ei-
ther by employing a growing number n of MC sweeps on a given fixed L x L grid, or
by increasing L, or both), along with the automatized, adaptive increase of the neigh-
borhood’s size, supported also by a more accurate equilibration. Also, the perturbation
constant C, should correspondingly be reduced. (Observe that the statistical error in-
volved in the calculations of the P, tables is proportional to L='n~/2, while the error
in P? is O(Cg). Since both errors need to be reduced approximately at the same rate,
it follows that upon increasing the amount of statistics by a factor of 16, i.e., decreasing
the statistical error by a factor of 1/4, C, needs to be reduced by a factor of 1/2.) The
first iteration (in each step) is mainly dedicated for obtaining the new current variables
from the former ones. That is, the new P, table is constructed for larger neighborhoods
(whose choice is based on the neighborhood-frequency information accumulated in the
P, table of the previous step), and its values are initialized by substituting the parent
value into all its new children; the new ¢ vector is similarly initiated and the current
initial configuration is simply the last one in the former iteration; then all those values
are being updated during the first iteration and serve as (the most updated at this
stage) input for the following iterations. These additional iterations in the same step
(i.e., more iterations each with the same amount of statistics, the same set of neighbor-
hoods and the same C,) are needed, because the accuracy in calculating A depends not
only on the accuracy of the iteration but also on that of the input (¢° and P?).

Thus, step by step, a sequence of systematically improved approximations for the
fixed point should in principle be generated, where the overall amount of work is dom-
inated just by the work invested in the very last step.

In practice, each of our A calculations was conducted mostly with one step and many
iterations, all using the same (arbitrarily large) lattice, the same amount of statistics,
the same set of neighborhoods and the same C,. (Previous steps with smaller neighbor-
hoods and much less amount of statistics were used only to obtain first approximations
for ¢° and P°.) We have calculated the average and standard deviation of A\ over
the ensemble of iterations, discarding the first several of them. Results are given in
Section 4.3.

4.2 Fixed Point Algorithm by Repeated Criticalization

In critical calculations, errors introduced at any level are magnified in the level derived
from it (the next coarser level), and so on, due to the strong divergence of the renormal-
ization flow away from the critical surface. To check this magnification, a mechanism
should be added at each level to project the action P, tables back onto the critical
surface. Such a “criticalization” mechanism also facilitates calculating renormalization
flows toward a fixed point when the critical temperature of the initial (finest-level)
Hamiltonian is not known in advance.
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The criticalization of a given P, table is done by multiplying the temperature by a
suitable factor 1/6. In terms of the P, tables, this means to raise each probability to
the power 6, then normalize; i.e., to replace each value of P by P?/[P{ + (1 — P;)?].
The criticalization factor # can be estimated in a number of ways. In our fixed-point
calculations we found it convenient to derive  from quantities we were calculating
anyway, such as the next-level P, values and the estimated value of the correlation-
length critical exponent (whose derivation is discussed above).

More exactly, in the same MC runs in which P, statistics are gathered for the 2 x 2
block-spins, similar P, statistics are also gathered for the 4 x 4 blocks (meaning, more
precisely, 2 x 2 block of 2 x 2 blocks), and for the 8 x 8 blocks, etc. At criticality, these
different statistics for different block sizes would coincide (at least for sufficiently large
blocks; but close to the fixed point even for small blocks; the use of the latter is preferred
since their P, tables are based on more statistics and faster equilibration). The differ-
ences between P, at two different block sizes, together with an (even rough) knowledge
of the critical exponent, easily yields an estimate for the needed criticalization factor 6.

This criticalization process may be repeated several times, until those differences
between the P, values at different block sizes become comparable to the statistical
noise. Actually, however, such a repetition is not needed: Applying the process just
once at each coarsening step (each renormalization stage) is enough to drive the P,
table at subsequent levels ever closer to the critical surface. Even better is to apply
the criticalization factor directly to the nezt P, table (the one that has currently been
calculated for the 2 x 2 blocks). The return-to-criticality cost is then really negligible.

The fixed point of the renormalization group is quickly approached by a sequence of
coarsening steps (all implemented successively on the same L x L gridsize), as described
above, with a criticalization factor applied to each new P, table in the sequence. Since
each iteration should involve a growing amount of statistics (together with an enlarged
neighborhood size), the amount of work is, again, dominated by the last iteration.
As the fixed point is obtained, the derivation of the eigenvalue A\* is as described is
Section 4.1.

A note on calculating 7.. By observing the P, tables over few subsequent
renormalization transformations for a given temperature, it is easy to determine whether
the temperature is super- or sub-critical. One can therefore trap increasingly narrower
intervals around 7.. Provided of course that the P, tables become increasingly more
accurate (more statistics and correspondingly larger neighborhoods) when narrower
intervals are reached. At the same time also increasingly higher levels of renormalization
(higher levels of blocking, each with its P, table) should be produced. Note however
that the algorithm needs only infrequently return to the lower levels, because, to a first
approximation around the fixed point, there exists a linear relation between temperature
increment at the finest level and increments in the P, tables at all coarser levels.

4.3 Results for \*

The calculation of A\*, as given by Eq. (14), has been extensively tested for varying m-
spin neighborhoods, values of the constant C;, amounts of statistics (in calculating P")
and gridsizes. As results from Eq. (14), the standard deviation in the calculation of A is
proportional to 1/C,, taking into account that the statistical errors in the calculations
of P* and P? are not related to each other, so they do not cancel out in their difference
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q'. The standard deviation marginally grows also as a function of the neighborhood’s
size, but this may well be due to the imperfection of the current implementation (as
mentioned above). Indistinguishable results were obtained for lattices 64%, 128% and
2562.

Figure 5 shows the resulting A as a function of the perturbation C; (in the relevant
direction) for 20-spin neighborhood, (consisting of 2826 neighborhoods, where the layer
of spins marked by 4 in Figure 1 is considered only via its 9 sums, as explained in
Section 2.4) and for 36-spin neighborhood (consisting of ~ 30000 neighborhoods, where
all spins marked by 5,6 and 7 are taken via their 17 sums). Each result was averaged over
more than hundred iterations (as defined in Section 4.1) so as to guarantee negligible
error bars: smaller than .0004 and .0008, respectively. Each of the two R projections
involved in each iteration (see Eq. (13)) was calculated over 10° MC passes on a 1282
grid. The first approximation for the fixed point was obtained from previous steps
with less statistics and smaller (8-spin and 12-spin) neighborhoods (consider again
Section 4.1).

Since the expansion of P in Cj is linear only near the fixed point, it is clear that if
C, is too large, the perturbation away from the fixed point is too strong and certainly
falls off the linear regime. Also, if C, is too small, the statistical errors, proportional as
mentioned to 1/C,, violate the calculations. Moreover, we found that even when the
amount of statistics grows indefinitely, the results for small C, fall out of the expected
linear dependence on C,. This is due to the truncation error, and can be explained as
follows.

Each neighborhood N; that has an entry (P, ); in our P, table can be regarded as
the union of “offsprings” (e.g., its “children”): N; = U; N;;. Each Nj; is a neighborhood
coinciding with NN; in its inner layers, and in addition has some specified spin signs in
the first layer not included in NV;. It has a frequency w;; and a certain probability, Pi;-’,
for having a positive spin at its center. Clearly

(Pp)i = Y wi;Py (16)
j

where wéj = w;;/ >p Wik- The perturbation Cyg from the fixed point changes each
P at the next (renormalized) level by Cy(Ag; + €45) + O(C?), where e is small (for
large IV;). This contributes C,(Ag; + X wisei;) + O(CZ) to (P? — P'); in our algorithm,
which has the desired size (although including the small O(g;;) error in A). However,
the perturbation Cyq also changes the weights w;; at the renormalized level, thereby
adding an undesired contribution to P? — P!, which, by Eq. (16) and the following

argument, can be large.

For any fixed neighborhood NV;, the changes in w;; can mainly be regarded as changes
in the expected number of negative (or positive) spins among the spins just outside N;.
This number is proportional to the average energy £ =< s;s; >, where s; and s; are
neighboring spins (at the renormalized level). Hence the changes in wj; are proportional
to the change in E. Since C, is proportional to a corresponding perturbation 7 =
T — T. in the temperature, the changes of w;; per unit change of C, are proportional
to derivative of E with respect to 7', which is the heat capacity C,. It is well known
that C, diverges at T, hence for C, tending to O (vanishing 7) the changes in wj;
per unit change in C; will be unbounded, thus introducing an unbounded error in .
This unbounded error results directly from the truncation of neighborhoods; it can be
avoided by suitably increasing their size whenever Cj is reduced.
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Figure 5: Approximations for A as a function of the perturbation C, (in the relevant direction) using
P20 (o) and P3¢ (%). The (linear) extrapolated values for C;, = 0 are given at the intersections with
the y axis.

The unbounded truncation error explains the unusual difficulties we have experi-
enced in this particular calculation (computing A), unlike other RMG calculations. It
implies that to achieve higher accuracy in A one cannot reduce C, before adequately
increasing the neighborhood sizes (as well as the amount of statistics, as mentioned
above). Thus, for fized neighborhood sizes, there is a limited range of C, values for
which the computed approximation to A behaves linearly in C|,.

In Figure 5, the linear regime is clearly shown by the excellent linear fit drawn for the
intermediate values of C,, obtained by comparing to other possible (linear) fits over the
data and choosing the one which exhibits minimal (least squares per unit length of the
C, interval) error. The resulting estimate for A\* is obtained by linear extrapolation to
C, = 0. For 20-spin neighborhood we obtained A* ~ 2.022, for 36-spin neighborhood the
improvement was to \* ~ 2.009. This improvement is not so impressive because even
in the 36-spin neighborhood we still have the outer layer of the 20-spin neighborhood
(marked 4 in Figure 1) taken only in terms of sums, which introduces an error not much
smaller than that resulting from omitting the next layer (marked 5, 6, 7 in Figure 1).
Any of these results can, of course, be improved by increasing the amount of statistics
and including more neighborhoods.
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5 Coarse-to-fine Monte Carlo Acceleration

For a given lattice with a given action (possibly in the form of P, tables), suppose now
that the P, tables for all its coarser levels (the level of blocks, the level of block of
blocks, etc.) are also given. Then a new equilibrium of the given action can accurately
and fast be produced using a Monte Carlo coarse-to-fine equilibration (CFE) method,
defined as follows.

First an equilibrium is easily obtained at the coarsest level, by few MC passes with
the corresponding P, table. From this, an equilibrium in the next level is derived, and
so on, until the target level (the given lattice) is reached. To obtain an equilibrium in
any level of spins given an equilibrium of its blocks, we use “stochastic interpolation”,
i.e., a number of “compatible Monte Carlo” (CMC) passes. By this we mean Monte
Carlo passes at the spin level which keep the values of the blocks unchanged (that is,
avoid the processing of every spin whose flipping might change the block variables).

The CMC has a very short autocorrelation time: Actually very close to 1 in all our
tests. (More generally, for any model: If (and only if) the CMC autocorrelation time is
not short, then the definition chosen for the block variables has been inadequate.) So
only few CMC passes are really needed: Their number increases only logarithmically
with the desired accuracy; just 4 or 5 of them typically already yield fine results and
each additional CMC pass enhances the equilibration by approximately a factor of e
(corresponding to autocorrelation time being close to 1). For example, we compared
the results for the 2-point correlation function (at distance v/2) obtained on a 16 x 16
lattice employing 4,6 and 8 CMC passes. The difference between the results with 6
and 8 CMC passes was ~ .0012, while the difference between 4 and 8 was ~ .0092. The
ratio between the two differences being 8.0 which is close to e2.

If the coarse-level (the block) P, table has not been fully accurate, the CMC passes
should be followed by a small number of regular MC passes, a process we call “post-
relaxation” (PR), following classical multigrid nomenclature. In fact, following again
this nomenclature, the above process can be viewed as a “half-V-cycle” in which only
the second, coarse-to-fine, part of a multigrid V-cycle is employed.

In case of criticality the P, tables should have been calculated with criticalization,
to avoid the drift away from the critical surface, as explained in Section 4.2.

An extremely simple way to obtain a very good approximation to equilibrium at
the critical temperature on a given lattice with a critical action, is by CFE employing
this same action (e.g., the Hamiltonian given by Eq. (1) at T¢.) at all levels, with p PR
sweeps at each level. We call this process the trivial CFE, or TCFE. The produced con-
figurations are completely decorrelated as each one is constructed individually starting
from a different small configuration chosen randomly at equilibrium. We have mea-
sured 0 autocorrelation time for various observables on up to 2562 lattices. The cost
of a new independent configuration depends on the employed number of CMC passes
and on p, but as explained below is independent of the lattice size. It can be shown
that the required number p of PR sweeps is small whenever the convergence to a fixed
point of the renormalization flow is fast. If the Hamiltonian used is fairly close to the
fixed point (i.e., a good approximation for the fixed point is obtained in just few RG
steps), then using it on a particular grid produces nearly the correct equilibrium for
block-spins of somewhat coarser levels. Thus, the PR is needed mainly to equilibrate
only the smaller, local scales. This is indeed evident in the following numerical results,
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Table 2: The errors in measuring the two-point correlation function (at distance v/2
meshsizes) by TCFE, with 8 CMC passes and p post-relaxation sweeps, on an L x L
grid.

L =16 | .00513 | .00068 | .00044 | .00017

L =32 || .00682 | .00139 | .00079 | .00039

L =64 || .00772 | .00174 | .00094 | .00049

L =128 || .00825 | .00233 | .00100 | .00049

L =256 || .00851 | .00215 | .00095 | .00046

L =512 || .00869 | .00210 | .00109 | .00059

which exhibit the excellent quality of equilibria obtained by TCFE.

In Table 2 we present the errors measured for the two-point correlation function (at
distance v/2 meshsizes). The errors are calculated by comparing to results obtained
from long runs of the Wolff algorithm. The table shows that the errors are fixed as the
lattice grow and decrease rapidly with the number of post-relaxations independently of
the lattice size. Similar results were obtained for other observables (e.g., the energy).

Also, as shown in Figures 3 and 4, very small errors were measured in Pfﬁ and
P}? of the first-coarse-level over an ensemble of configurations produced by the TCFE
(with 4 CMC sweeps) starting from a completely random configuration at the coarsest
level. The errors were again calculated by comparing figures with those of the Wolff
algorithm. Results are shown for p = 0, 1, 2 and 4 PR sweeps for grids 162 and 322, where
the amount of work taken into account includes the 4 CMC sweeps, the p PR passes
and an additional one which roughly stands for the work accumulated on all coarser
levels of the TCFE. Thus, the four results are drawn versus 5,6,7 and 9 MC sweeps,
respectively. Note the much accelerated pace of convergence per MC pass brought
about by the TCFE. Also observe that measurements for the larger neighborhood (e.g.,
of 12-spins) is less sensitive to finite-size effects than smaller neighborhood (of 8-spins),
hence the former exhibits a more regular behavior than the latter.
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Remember that these results refer only to the trivial CFE. They can be improved by
using on all coarse levels not the finest grid critical Hamiltonian H but the Hamiltonian
R(H) (in the form of P, tables). For example, we have calculated P}* and P} of the
first-coarse-level over 4 x 10° MC sweeps on an 1282 lattice at 7.. As shown in Table 3
the accuracy in calculating the two-point correlation function is significantly improved
(compare with Table 2) by using these P, tables on all coarse levels (even with p = 0
PR sweeps). Still further improvement can presumably be obtained by using H at
the finest level, R(H) on the next coarser level and R?*(H) on all other levels; etc,
provided each additional projection R involves a proper criticalization. Without such
criticalization, on sufficiently coarse level it is better to use the original Hamiltonian ‘H
(if it is known to be critical).

Table 3: The errors in measuring the two-point correlation function (at distance /2
meshsizes) by CFE using Pf and Pfo on all coarse levels with 8 CMC passes and p = 0
on an L x L grid.

12-spin 20-spin
neighborhood | neighborhood

L =64 .00143 .00076

L =128 .00135 .00089

6 Extension to Continuous-State Models

Initial steps of applying the above coarsening and acceleration techniques to the XY
model are reported in [7]. Each 2 x 2 block spin is here defined to be the average of
its four constituent spins, without normalization (whereby the original XY group of
length-1 vectors is not preserved at the coarse levels). Compared with the +1 majority
spins discussed above, each coarse spin here contains much more information; as a
result, much smaller neighborhoods are needed in the probability tables to attain a
given truncation accuracy. Still, these tables are more complicated than the above P,
tables, since they should describe a continuous distribution, conditioned on continuous
neighboring values.

To accumulate continuous-variable statistics, one of course partitions the range of
this variable into bins: Counting the number of MC hits in each bin gives an estimate for
the integral of the continuous variable over that bin. From those integrals, the value of
the variable at any particular point can be interpolated (by a polynomial each of whose
integrals over several adjacent bins fits the estimate). The same is true for a vectorial
variable, such as the one representing the entire (truncated) neighborhood, whose bins
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may each be a tensor product of elementary bins, where each elementary bin is one of
the bins of one of the real variables making up the vector. More generally, the bins of
the neighborhood are constructed adaptively, similar to the adaptive neighborhoods in
the Ising case above, except that here a bin can be split into several bins in two ways:
either by adding another variable to the description of that particular neighborhood,
or by refining the current bin partition of one of the existing variables.

The set of tests with the XY model reported in [7], though still limited to the
simplest neighborhood, clearly indicates that ideal MC performance is obtained in cal-
culating various thermodynamic limits, such as the two-point correlation and the scaled
susceptibility.

After further program improvements (more accurate and automatic implementation
of the rules described above) and further testing of optimality for various observables,
we plan to extend the RMG techniques to more advanced physical problems, including
gauge field models such as U(1), SU(2) and SU(3).
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