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General Framework for Achieving
Textbook Multigrid E�ciency�

One�Dimensional Euler Example

James L� Thomas�� Boris Diskin�� Achi Brandt	� and

Jerry C� South� Jr��

Abstract

A general multigrid framework is discussed for obtaining textbook e�ciency
to solutions of the compressible Euler and Navier�Stokes equations in
conservation law form� The general methodology relies on a distributed
relaxation procedure to reduce errors in regular �smoothly varying� �ow
regions� separate and distinct treatments for each of the factors �elliptic and�or
hyperbolic� are used to attain optimal reductions of errors� Near boundaries
and discontinuities �shocks�� additional local relaxations of the conservative
equations are necessary� Example calculations are made for the quasi�one�
dimensional Euler equations� the calculations illustrate the general procedure�

Introduction

Computational �uid dynamics �CFD� has become an integral part of the
aircraft design cycle because of the availability of faster computers with
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� THOMAS� DISKIN� BRANDT� AND SOUTH

more memory and improved numerical algorithms and physical models�
More impact is possible if reliable methods can be devised for o��design
performance� generally associated with unsteady� separated� vortical �ows
with strong shock waves� Such computations demand signi�cantly more
computing resources than are currently available�
The current Reynolds�averaged Navier�Stokes �RANS� solvers with

multigrid algorithms require on the order of ���� residual evaluations to
converge the lift and drag to one percent of their �nal values� even for
relatively simple wing�body geometries at transonic cruise conditions� It is
well known for elliptic problems that solutions can be attained optimally by
using a full multigrid �FMG� process in far fewer �on the order of � to ��
residual evaluations� A multigrid method is de�ned by Brandt ��� �� 	� as
having textbook multigrid e�ciency �TME� if the solutions to the governing
system of equations are attained in a computational work that is a small �less
than ��� multiple of the operation count in the discretized system of equations�
Thus� operation count may be reduced by several orders of magnitude if TME
can be attained for the RANS equations�
State�of�the�art multigrid methodologies for large�scale compressible �ow

applications use a block�matrix relaxation and�or a pseudo�time�dependent
approach to solve the equations� signi�cant improvements have been
demonstrated with multigrid approaches� but the methods are not optimally
convergent� The RANS equation sets are systems of coupled nonlinear
equations which are not� even for subsonic Mach numbers� fully elliptic�
but contain hyperbolic partitions� The distributed relaxation approach of
Brandt ��� �� decomposes the system of equations into separable� usually
scalar� factors that can be treated with optimal methods� Several years ago� an
investigation was started to extend this approach to large�scale applications�
at that time� several TME demonstrations for incompressible simulations had
been completed and Ta�asan had shown promising results for the subsonic
Euler equations ��	�� Progress has been shown in extending the methodology
to viscous compressible �ow applications ���� and to compressible Euler
equations using a compact di�erencing scheme ����� Further incompressible
�ow applications have been made� including complex geometries ���� and high�
Reynolds�number viscous �ow in two ���� and three dimensions ����� Brandt
has summarized the progress and remaining barriers in TME for the equations
of �uid dynamics �	��
The purpose of this paper is to discuss the general framework expected

to be required for large�scale compressible �ow applications� The quasi�one�
dimensional Euler equations are solved to illustrate the framework� Fully
subsonic and supersonic applications� as well as transonic applications with a
captured shock� are shown�
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GENERAL FRAMEWORK FOR TEXTBOOK MULTIGRID EFFICIENCY �

General Framework

The viscous compressible equations for the time�dependent conservation of
mass� momentum� and energy can be written as

�tQ�R � �� �����

where the conserved variables are Q � ��� �u� �v� �w� �E�T � representing
the density� momentum vector� and total energy per a unit volume� and
R�Q� is the spatial divergence of a vector function representing convection
and viscous and heat transfer e�ects� In general� the simplest form of the
di�erential equations corresponds to nonconservative equations expressed in
primitive variables� here taken as the set composed of velocity� pressure� and
internal energy� q � �u� v� w� p� ��T � These equations are found readily by
transforming the time�dependent conservation equations to time�dependent
primitive variable equations� Similarly� a set of nonconservative correction
equations can be derived� with a right hand side vector composed of a
combination of the conserved residual terms� given as

L �q � �
�q

�Q
R� �����

In Eq� ������ �q
�Q

is the Jacobian matrix of the transformation and the

correction �q � qn�� � qn� where n is an iteration counter� For steady�state
equations� the time derivative is dropped� At the discrete level� the right side
of the correction equation ����� is a combination of conservative�discretization
residuals while the left side is the principal linearization of the nonconservative
operator�
Note this is not a Newton linearization� only the principal terms in a

linearization ofR are retained� The principal terms are those terms that make
a major contribution to the residual per a unit change in q� The principal
terms thus generally depend on the scale� or mesh size� of interest� For a
scalar equation� the discretized highest derivative terms are principal on grids
with small enough mesh size h� In deriving the principal linearization for
high�Reynolds�number simulations� it is essential to consider both inviscid
and viscous scales � the inviscid scales dominate over most of the �ow �eld
and the viscous scales are important in the thin viscous layers near bodies and
in their wakes� Note that� for a discretized system of di�erential equations�
such as R � �� the principal terms are those that contribute to the principal
terms of the determinant of the matrix operator �R

�q
� The coe�cients of the

principal terms in L are evaluated from the current approximation�
The principal linearization is applied to the correction equation based on

a nonconservative approximation� Thus� we expect the correction to be good
away from discontinuities �shocks� slip lines� in the �ow �eld� It is in these
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� THOMAS� DISKIN� BRANDT� AND SOUTH

regular �smoothly varying� �ow regions that we apply distributed relaxation�
The distributed relaxation method replaces �q by M�w so that the resulting
matrix LM becomes a diagonal or lower triangular matrix� as

LM �w � �
�q

�Q
R� ���	�

The diagonal elements of LM are composed ideally of the separable
components of the determinant of the matrix L and represent the elliptic or
hyperbolic factors of the equation� Brandt termed the �w variables as �ghost
variables�� because they need not explicitly appear in the calculations�
The distributed relaxation approach yields fast convergence for both steady

and unsteady simulations if the constituent scalar diagonal operators in LM
are solved with fast methods� The approach can be applied to quite general
equations� Brandt has derived a set of matrices M that provide a convenient
lower triangular form for the compressible and incompressible equations of
�uid dynamics �including a variable equation of state� ����
For the compressible Euler equations� the scalar factors constituting the

main diagonal of LM are convection and full�potential operators� An e�cient
solver for the former can be based on downstream marching� with additional
special procedures for recirculating �ows ��� �� ��� the latter is a variable
type operator� and its solution requires di�erent procedures in subsonic�
transonic� and supersonic regions� In deep subsonic regions� the full�potential
operator is uniformly elliptic and therefore standard multigrid methods yield
optimal e�ciency� When the Mach number approaches unity� the operator
becomes increasingly anisotropic and� because some smooth characteristic
error components cannot be approximated adequately on coarse grids�
classical multigrid methods severely degrade� The characteristic components
are those components that are much smoother in the characteristic directions
than in other directions �	� ��� ���� In the deep supersonic regions� the
full�potential operator is uniformly hyperbolic with the stream direction
serving as the time�like direction� In this region� an e�cient solver can be
obtained with a downstream marching procedure� However� this procedure
becomes problematic for the Mach number dropping towards unity� because
the Courant number associated with the downstream marching procedure is
large� Thus� a special procedure is required to provide an e�cient solution
for transonic regions� This local procedure ��� �� �� is based on piecewise
semicoarsening and some rules for adding dissipation at the coarse�grid levels�
Boundaries introduce some additional complexity in distributed relaxation�

The determinant of LM is usually higher order than the determinant of
L� Thus� as a set of new variables� �w would generally need additional
boundary conditions� In relaxation� because the ghost variables can be added
in the external part of the domain� it is usually possible to determine
suitable boundary conditions for �w that satisfy the original boundary
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GENERAL FRAMEWORK FOR TEXTBOOK MULTIGRID EFFICIENCY �

conditions for the primitive variables� Examples are given by Thomas� Diskin
and Brandt ���� in incompressible �ow for entering and no�slip boundaries�
However� to construct such a remedy may be di�cult and�or time�consuming
in general� In addition� enforcing these boundary conditions causes the
relaxation equations to be coupled near the boundaries� not decoupled as
they are in the interior of the domain�
Thus� near boundaries and discontinuities� the general approach ��� 	� is to

relax the governing equations directly in terms of primitive variables� Several
sweeps of robust �but possibly slowly converging� relaxation� such as Newton�
Kacmarcz relaxation� can be made in this region� The additional sweeps will
not a�ect the overall complexity because the number of boundary and�or
discontinuity points is usually negligible in comparison with the number of
interior points�
This general framework is used below to solve the quasi�one�dimensional

Euler equations in fully subsonic� fully supersonic� and transonic �with and
without shock� �ow regimes� The regular �ow regions are relaxed with
distributed relaxation� Boundaries and shocks are treated by applying local
relaxation � corresponding here to updates through a direct solution of an
approximate�Newton linearization of the conservative equations�
In all cases� an FMG algorithm is used� at each level� the equations are

solved with an FV����� full approximation scheme �FAS� ��� ��� multigrid
cycle� Six levels are used in the cycle wherever possible�

Quasi�One�Dimensional Equations

The quasi�one�dimensional equations express the conservation of mass�
momentum� and total energy as

�t�bQ� � bR � �� �����

where

bQ � Q� � ��� �u� �E�T�� �����bR � �x�F�� � S� �����

and � � ��x� is the area term� The �ux F and the source term S are de�ned
as

F �

�
� �u

�u� � p
�uE � up

�
A � �����
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� THOMAS� DISKIN� BRANDT� AND SOUTH

S � �

�
� �

p
�

�
A d�

dx
� �����

The pressure p� internal �thermal� energy �� and sound speed c are related
through the equation of state as

p � �� � ����� �����

� � E � u���� ������

c� � �p��� ������

and � is the ratio of speci�c heats�
A discrete conservative upwind�biased di�erencing approximation to bR can

be de�ned for �rst� or second�order accuracy as

bRj �
�

h
��F��j� �

�

� �F��j� �

�

�

� ��� pj � ��
T ��j� �

�

� �j� �

�

�� ������

Here� a �nite�volume discretization is used� where subscripts j � �

�
and j � �

�

denote the right and left interfaces� respectively� of the cell centered at location
j and the cell spacing in the x�direction is h� The �ux�di�erencing splitting
of Roe ���� is used to construct the interface �ux Fj� �

�

� pertinent details
are described in appendix I� We consider only �rst� or second�order accuracy
and do not di�erentiate between average and pointwise values of Q� The area
distribution is de�ned as ��x� � �����x���x�� For all of the results presented
below� we overprescribe the boundary values from the exact solution of the
di�erential problem at the cell centers that lie outside of the domain � � x � ��

Relaxation Schemes

Several schemes are considered below for relaxation of the steady�state
equations

bRj � �� ����	�

The schemes are all written in delta form� so that the correction to the solution
is solved at each iteration� denoted as �Q � Qn�� �Qn�
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GENERAL FRAMEWORK FOR TEXTBOOK MULTIGRID EFFICIENCY �

Conservative Relaxation Scheme

The exact Newton linearization of the discrete conservative equations
generally leads to an overly complicated linear system to solve� In practice�
a quasi�Newton �approximate� linearization is used to reduce the algebraic
complexity of the construction and�or the bandwidth of the resulting linear
system� For the purpose of constructing a conservative relaxation scheme�
an approximate but conservative linearization of the operator ������ can be
written as

���x A
� � ��x A

���Q�� ������

The operators ��x and ��x denote backward and forward �rst�order�accurate
di�erence operators� respectively� and A� and A� denote the positive and
negative eigenvalue contributions to the similarity matrices �see appendix I��
The conservative relaxation update �Q is computed from

���x A
� � ��x A

����Q� � �
�

�j
bRj � ������

The residuals in the right side of Eq� ������ are computed for the target
discretization ����	�� The relaxation procedure requires a tridiagonal equation
to be directly solved


��A�

j��� jAjj �A
�
j�����Q� � �

h

�j
bRj � ������

Barth ���� analyzed this relaxation with �xed�point analysis and showed the
relaxation is nearly as good as a full Newton iteration� An underrelaxation
parameter� e�g�� a pseudo�time step� can be introduced in the relaxation
scheme to improve robustness and stability� Extensive computations made
during the course of this investigation veri�ed that this relaxation method
can be used throughout the domain� including shocks and boundaries� In the
general framework described and used in this paper� this relaxation is used
only locally to reduce residuals near boundaries and shocks and to solve the
coarsest grid equation�

Nonconservative Relaxation Scheme

A nonconservative relaxation scheme is derived from a conservative scheme�
Eq� ������� with the assumption that the Jacobian matrices are locally
constant�

�A���x �A���x ���Q� � �
�

�j
bRj � ������
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� THOMAS� DISKIN� BRANDT� AND SOUTH

This formulation is expected to be a good approximation to Eq� ������� except
near discontinuities� The corresponding tridiagonal equation is

��A�

j � jAjj �A
�
j ���Q� � �

h

�j
bRj � ������

Subtracting the two tridiagonal equations� ������ and ������ yields

��A�

j�� �A�

j � ��A
�
j�� �A

�
j ���Q� � �� ������

where the coe�cients � �A�

j�� � A�

j and A�
j�� � A�

j � are O�h�
small on su�ciently �ne meshes in regular �ow regions� Near shocks�
the nonconservative linearization used in Eq� ������ does not satisfy an
order property and the nonconservative relaxation scheme would not be
e�ective� These expectations were con�rmed through computations with
both the conservative and nonconservative relaxation schemes� where update
Eqs� ������ and ������ were solved precisely� Barth ���� analyzed a similar
nonconservative relaxation scheme with �xed�point analysis and showed poor
performance of the nonconservative scheme for a �ow with a shock�

Distributed Relaxation

Away from boundaries and shocks� the linear update scheme Eq� ������ is
relaxed with distributed relaxation� Transforming the corrections in Eq� ������
to primitive variables q � �u� p� ��T gives

� �A���x � �A���x ���q� � ��
�q

�Q
�j

�

�j
bRj � ������

with a right�side vector composed of a combination of the conserved residual
terms� The Jacobian matrices are related through a similarity transformation
to the conservative Jacobians


�A �
�q

�Q
A
�Q

�q
� ������

Alternately� by de�nition� the primitive variable correction equation is

L �q � ��rj � ������

where

�rj � �
�q

�Q
�j

�

�j
bRj � ����	�

The elements of the matrix operator L are given in appendix II�
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As follows from Appendices I and II� the determinant of L for �u 	 �� in
deep subsonic or supersonic regions is

det�L� � ��u� � c�� �xx�u �
�
x � ������

where

�xx �

�
��x ��x for fully subsonic �ow�
��x ��x for fully supersonic �ow�

������

The �rst term in Eq� ������ represents an approximation to the full�potential
operator and the second term represents an upwind approximation for
the convection of entropy� In subsonic �ow� �xx is a central discretization
associated with the ellipticity of the full�potential operator� In fully supersonic
�ow� �xx is a one�sided or upwind�biased approximation in accordance with
the hyperbolic nature of the full�potential operator� For �rst�order upwind
di�erencing� the full�potential factor is a 	�point operator� for second�order
upwind�biased di�erencing� the factor is a ��point operator �see appendix II��
In this one�dimensional case� the �rst two equations in the matrix operator

L are uncoupled from the third� Thus we need only consider distributed
relaxation of the �rst two equations� the third equation can be solved for
�� in its primitive variable form once �u and �p are found from distributed
relaxation� Denoting the upper � � � block of L as L� an obvious choice for
M is the matrix of cofactors of L� which gives a diagonal matrix for LM with
the full�potential factors along the diagonal� i�e��

LM �

�
�u� � c�� �xx �

� �u� � c�� �xx

�
� ������

Boundary Treatment

As pointed out by Sidilkover ����� there is a connection between distributed
relaxation and the characteristic variables� For subsonic �ow� a Jacobi update
to the operators in LM is equivalent to a Kacmarcz relaxation of the
characteristic equations� cast in terms of a characteristic combination of
corrections as�

�u� c���x ��c�u� �p�
�u� c���x ��c�u� �p�

�
� �

�
�c�r� � �r�
�c�r� � �r�

�
j

� ������

With �rst�order di�erencing� an equal and opposite correction to the
downstream propagating characteristic variable �c�u��p is sent in Kacmarcz
relaxation of the �rst equation to the local cell j and to the upstream cell j���
the correction to cell j is exactly one half of that found from a point Jacobi
relaxation of the corresponding characteristic equation� Likewise� an equal
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 THOMAS� DISKIN� BRANDT� AND SOUTH

and opposite correction to the upstream propagating characteristic variable
�c�u� �p is sent in Kacmarcz relaxation of the second equation to the local
cell j and to the downstream cell j��� With a local update of the solution at
each point� the smoothing rate should be equivalent to Gauss�Seidel relaxation
of the standard 	�point Laplacian operator� However� the relaxation at cells
adjacent to the boundary is inconsistent with the boundary conditions of
the original problem� for example� characteristic boundary conditions would
prescribe �c�u� �p and �c�u � �p as zero at the upstream and downstream
boundaries� respectively�
This example demonstrates the general result mentioned earlier
 that

distributed relaxation needs to be modi�ed near the boundaries� A simple
boundary speci�cation for the ghost variable �w � ��w�� �w��

T can be
found in this case� enforcing a Neumann condition on �w� ��w� � and a
Dirichlet condition on �w� ��w� � at in�ow �out�ow� in subsonic relaxation
is consistent with characteristic boundary conditions in terms of primitive
variables� We instead use the more general formulation and apply another
local conservative relaxation procedure at the boundary points to reduce the
residuals� Distributed relaxation is then applied in the interior with simple
Dirichlet conditions for the ghost variables �w�

Relaxation Sequence

The general solution procedure was to reduce the local residuals at least
two orders of magnitude at the in�ow boundary� the out�ow boundary�
and then at the shock region � both before and after sweeping the entire
domain with distributed relaxation� The local conservative relaxation is made
over the �rst two cells adjacent to the boundary� In the shock region�
the local conservative relaxation was applied to nine cells centered on the
upstream �supersonic� side of the shock� A pseudo�time step corresponding
to a Courant number of ��� was used as an underrelaxation factor in the
local conservative relaxations� otherwise purely steady�state equations were
relaxed� In distributed relaxation� the variables ��w�� �w��

T were explicitly
used in the implementation� they were �rst relaxed over the interior cells�
then distributions to ��u� �p�T were made� and then the corrections to �� were
computed� As a check� single�grid computations veri�ed that the convergence
of the error per relaxation of subsonic equations ����	� with �rst�order
di�erencing was identical to that found with a Gauss�Seidel relaxation of
the one�dimensional 	�point Laplacian operator with Neumann boundary
conditions applied at one end of the domain�
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Computational Results

Computational results are shown in this section for fully subsonic� fully
supersonic� and transonic �ow with and without a shock� The Mach number
distribution with second�order accurate discretization on a grid of ��� points
is shown in Fig� � for fully subsonic� fully supersonic� and transonic �ow with a
shock� the shock location is speci�ed at x � ����� There is no limiting applied
in the transonic cases so there are some oscillations at the shock� In this one�
dimensional case� the solution can easily be repaired by using an essentially
nonoscillatory �ENO� ���� approach �see appendix III� but the emphasis of
this work is on the solution procedure and not on the steady�state results�

Fully Subsonic Flow

The smoothing rate of distributed relaxation for the primitive variable
equations is expected to be equal to the worst among the smoothing rates
obtained in relaxation of the scalar factors of the determinant of L� in our
case convection and the full�potential factor� With the full�potential operator
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	� THOMAS� DISKIN� BRANDT� AND SOUTH

h jjedjj 
 p
��� jjetjj�jjedjjjjedjj

��� 
 p
��	� ������x���� 
����
���� ���	��x���� 
����
����� ������x���� 
����
����� ��	���x���� 
����

Table � The discretization errors in p at convergence and the relative L��norm

errors after the FMG�	 algorithm for fully subsonic �ow


relaxed �Gauss�Seidel� and the convection operator solved by downstream
marching from the in�ow boundary� the convergence rate of the multigrid
cycle per relaxation sweep for the �rst�order accurate discretization should
be close to the smoothing factor� ������ of Gauss�Seidel relaxation for the
one�dimensional 	�point Laplacian operator�
Defect correction is often used in the solution of higher order implicit

discretizations to reduce the arithmetic operation count while retaining the
target accuracy� One seemingly possible implementation of defect correction
is to use �rst�order accurate discretizations for the convection operators in L�
The corresponding distribution matrixM consists of the �rst�order operators
as well� This implementation� however� is not a good idea for obtaining
good smoothing rates� because in terms of high�frequency components� a low�
order operator and a corresponding high�order operator do not necessarily
approximate each other well� Indeed� this implementation caused a slowdown
in the convergence� and the smoothing rate corresponding to that of the
Laplace equation was not attained�
To illustrate this phenomenon� consider the Laplacian operator alone�

The elliptic operator �xx�wj� arising from di�erencing the primitive variable
equations with the second�order upwind�biased operator used here is a ��
point operator �see appendix II�� Corrections ��w�j to the current approximate
solutions wj computed in Gauss�Seidel defect�correction relaxation with the
	�point Laplacian as a left�side �driver� operator can be found from

�

h�
���w�j�� � ���w�j � � ��xx�wj�� ������

The smoothing factor� computed with local mode analysis� of this defect�
correction relaxation ������ is gs � ������ which is substantially smaller
than the convergence rate per distributed relaxation of ��� observed with
a multigrid FV����� cycle applied to Eq� ������� The smoothing factor of
distributed relaxation for Eq� ������ is computed by using local mode analysis

as a norm of the matrix bG� de�ned as
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h jjedjj 
 p
��� jjetjj�jjedjjjjedjj

��� 
 p
��	� ������x���� 
����
���� ������x���� ����
����� ������x���� 
����
����� ���	��x���� 
����

Table � The discretization errors in p at convergence and the relative L��norm

errors after the FMG�	 algorithm for fully supersonic �ow


bG � I � ��� gs��
c
Md�

��cMt� ������

where matrix symbols associated with distribution matrices for target �second�

order� and driver ��rst�order� operators are denoted cMt and
c
Md� respectively�

The calculated smoothing factor is ������ appreciably greater than the
expected value of ������ The increased smoothing factor is explained by the

fact that �cMd�
��cMt is far di�erent from the identity matrix�

With corrections distributed by the second�order distribution matrix
operator �Md � Mt�� the smoothing factor of distributed relaxation for
Eq� ������ should be identical to that for relaxation of the Laplacian equation�
Implementing the defect�correction relaxation ������ of the Laplacian equation
but distributing corrections with the second�order distribution yielded an
FV����� cycle convergence rate per smoothing of ���� � close to �����
predicted by the mode analysis of the defect�correction relaxation �������
Results for an FMG�� algorithm� denoting a full multigrid algorithm with

one FV����� cycle at each level� are shown for fully subsonic �ow in Table ��
All of the norms used in this and the following tables are L��norms� The
discretization error in pressure is de�ned pointwise as ed � �pj � p�xj�

exact�
where p�x�exact is the steady�state solution of Eq� ����� and �pj is the discrete
solution of Eq� ����	�� A second�order spatial convergence in the L��norm of
ed is evident� The total error in pressure is de�ned as et � p�xj�

exact � pj �
where pj is the approximate solution obtained in the FMG�� algorithm� Small
relative di�erence between L��norms of the total and discretization errors �see
Table �� indicates that optimal e�ciency has been attained� The asymptotic
convergence rate of the FV����� cycle was ���� ���� per relaxation for any of
the four grids�

macbook ��������� �	
���PAGE PROOFS for D� A� Caughey 
 M� M� Hafez �macbook�sty v���� �����������



	� THOMAS� DISKIN� BRANDT� AND SOUTH

Fully Supersonic Flow

In fully supersonic �ow� it is generally possible to construct marching methods
to solve the full�potential equation� For �rst�order di�erencing� the one�sided
operator can easily be solved over the domain� For the second�order operator
considered here� the defect�correction relaxation with the �rst�order upwind
driver can be de�ned as

�

h�
���w�j�� � ���w�j�� � ��w�j � � ��xx�wj�� ���	��

This scheme can be solved by marching but� unfortunately� its ampli�cation
factor is larger than � for some error components� A suitable full�potential
driver operator to replace the left�side operator of Eq� ���	�� can be found in
the form

���x � h� ��x �
�
x �

�� ���	��

where the backward di�erence operator is de�ned to be �rst�order in the above
expression� This is a ��point operator that can be solved by marching� The
maximum ampli�cation factor of the supersonic defect�correction relaxation
with the driver ���	�� and � � ���	 is ����� With the second�order distribution
operator� computations for the fully supersonic �ow corresponding to Mach �
at in�ow converged asymptotically at this rate�
Results for the FMG�� algorithm are shown in Table �� The L��norm of

the discretization error in pressure shows the expected second�order spatial
convergence� Optimal e�ciency is attained with the FMG�� algorithm� Here�
the performance of the single�grid iteration at each level is the same as an
FV����� cycle� because the full�potential factor is being solved �rather than
just smoothed� by marching� The asymptotic convergence rate per relaxation
was ���	 ���� for any of the four grids�

Transonic Flows

Results for the FMG�� algorithm are shown for a smooth transonic �ow
in Table 	� The L��norm of the discretization error in pressure shows the
expected second�order spatial convergence� The relative deviations of the L��
norm of the total errors from the L��norm of the discretization errors are
increased from the fully subsonic or fully supersonic levels but still exhibit
optimal performance� The asymptotic convergence rate per relaxation was
��������� for any of the four grids�
Results for the FMG�� algorithm are shown for the transonic �ow with a

shock in Table � � The L��norm of the discretization error in pressure shows a
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h jjedjj 
 p
��� jjetjj�jjedjjjjedjj

��� 
 p
��	� ������x���� ����
���� ������x���� ����
����� ����	�x���� ���	
����� ������x���� ����

Table � The discretization errors in p at convergence and the relative L��norm

errors after the FMG�	 algorithm for transonic �ow without a shock


h jjedjj 
 p
��� jjetjj�jjedjjjjedjj

��� 
 p
��	� ���	��x���� 
����
���� ������x���� �����
����� ������x���� �����
����� ������x���� 
����

Table � The discretization errors in p at convergence and the relative L��norm

errors after the FMG�	 algorithm for transonic �ow with a shock


�rst�order spatial convergence� because there is no limiting of the interpolation
at the shock� i�e�� maximum local errors occur at the shock and do not diminish
with grid re�nement� The relative deviations of the L��norm of the total error
with the FMG�� algorithm from the L��norm of the discretization error again
exhibit optimal performance� The average convergence rate per relaxation over
�� cycles varied from ��	� on the coarsest mesh to ���� on the �nest mesh�
Computations for this case with ENO di�erencing are presented in appendix
III and show a similar performance with a monotone solution behavior in the
shock region�

Concluding Remarks

A general multigrid framework for obtaining textbook e�ciency to solutions of
the compressible Euler and Navier�Stokes equations in conservation law form
has been discussed� The general methodology relies on a distributed relaxation
procedure to reduce errors in regular �smoothly varying� �ow regions� separate
and distinct treatments for each of the factors �elliptic and�or hyperbolic�
are used to attain optimal reductions of errors� Near the boundaries and near
shocks� additional local relaxations of the conservative equations are necessary�
Example calculations are made for the quasi�one�dimensional Euler equations
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for situations with fully subsonic and fully supersonic �ow� as well as transonic
�ows with and without a shock� All of the calculations showed that the FMG��
algorithm provides a very accurate approximation of the exact solution�
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Appendices

I � Conservative Fluxes

The �uxes are constructed by using the �ux�di�erence splitting of Roe ����
and are given as

Fj� �

�

�
�

�
�F�QR� �F�QL�� jeAj�QR �QL�� ���	��

where bA � �F��Q is evaluated with a speci�c average of the left and right
states� QL and QR� in order to exactly satisfy the jump conditions for a
shock ����� The left and right states are constructed for �rst�order accuracy
as

QL � Qj � ���		�

QR � Qj��� ���	��

and for second�order accuracy with Fromm�s discretization as

QL � Qj �
�

�
�Qj�� �Qj���� ���	��

QR � Qj�� �
�

�
�Qj �Qj���� ���	��

The dissipation matrix jeAj � T je�jT�� where T�T�� are diagonalizing
matrices� the matrix of eigenvalues is

� �

�
� �� � �

� �� �
� � ��

	

 � ���	��
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and

���� ��� ���
T � �u� c� u� c� u�T � ���	��

The tilde superscript denotes that the eigenvalues are limited away from zero
as�

je�ij �
�
j�ij if j�ij � e��
���i � �e�������e�� otherwise�

���	��

mainly to prevent expansion shocks at sonic points for the �rst�order
discretization accuracy� but also to make a smooth transition through
the sonic point for the full�potential operator� The value e� is taken as

maxfj��j� j��j� j��jg� This �entropy �x� is not optimal in any sense� as larger

 values for sonic points are required for the �rst order scheme on coarser grids�
The value of 
 was nominally set at ��� and was arbitrarily increased to ���
for grids of � points or less in the implicit �rst�order Jacobian matrices�

II � Distribution Matrices

The coe�cient matrices �A� are de�ned as the positive and negative eigenvalue
contributions to �A� where

��i � ��i � je�ij��� ������

and �A is written in terms of its eigenvalues� �A���� ��� ���� as�
� �

�
��� � ���

�

��c
��� � ��� �

�c
�
��� � ���

�

�
��� � ��� �

c
��
��� � ���

�

���
��� � �� � ���� ��

	

 � ������

The upper �� � block of L � �A���x � �A���x can be written as

L �

�
t�

�

�c
�t��

�c�t�� t�

�
� ������

and the corresponding matrix of cofactors is

M �

�
t� � �

�c
�t��

��c�t�� t�

�
� ����	�

where

t� �
�

�
����� � ��� ��

�
x � ���� � ��� ��

�
x �� ������

t� �
�

�
����� � ��� ��

�
x � ���� � ��� ��

�
x �� ������
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The determinant of L is

t�� � t�� � ���� ��� � �
�
x �

�
x

� ���� ��� � ��� ��� � �
�
x �

�
x

� ���� ��� � �
�
x �

�
x ������

The operators for second�order upwind�biased di�erencing are de�ned as

��x ��x �wj� � �

��h�
��wj�� � �wj�� � ��wj��

�	�wj � ��wj�� � �wj�� � wj���� ������

��x ��x �wj� �
�

��h�
�wj�� � ��wj�� � 	�wj��

���wj�� � wj � �wj�� � wj���� ������

III � Transonic Shock � ENO Di�erencing

h jjedjj 
 p
��� jjetjj�jjedjjjjedjj

��� 
 p
��	� ��	���x���� 
����
���� ������x���� ����
����� ����		x���� ����
����� ������x���� ���	

Table � The discretization errors in p with ENO di�erencing at convergence and

the relative L��norm errors after the FMG�	 algorithm for transonic �ow with a

shock


Uniform application of the upwind�biased interpolations for state variables
of appendix I �Fromm�s scheme� leads to oscillations at the shock� These
oscillations can be eliminated by a limiting procedure to reduce locally the
order of approximation in the region of the shock� Here� an ENO approach ����
is used to prevent state�variable interpolations from crossing the shock� At the
shock interface� the left �right� state variables� QL�QR�� are found by one�
sided second�order extrapolation� at the �rst interface upstream �downstream�
of the shock� the state variables� QL�QR�� are found by second�order central
averaging�
Fig� � presents the Mach number distribution in the region of the shock

and shows a nonoscillatory behavior with a one�point representation of the
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Figure � Mach number distribution near the shock computed with the FMG�	

algorithm compared to the exact discrete solution �h � 	�����


shock� The discretization errors and relative deviations of the L��norm of
the total error with the FMG�� algorithm are shown in Table �� comparison
with Table � shows that the ENO discretization errors are smaller than
the discretization errors of the unlimited interpolations� although �rst�order
behavior is still found� In both situations� for this one�dimensional case�
second�order accuracy is attained if the L��norm is restricted to regions either
far upstream or far downstream of the shock� Although not shown� we note
that for this case� uniform second�order accuracy can be found with the ENO
procedure above if the entropy �x is dropped at the shock� the shock jump
is then recovered identically� and a zero�point shock is recovered� The focus
of this investigation is on convergence and both Fig� � and Table � indicate
optimal e�ciency has been attained with the FMG�� algorithm�
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