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Abstract. Helmholtz equations with their highly oscillatory solutions play an important role in
physics and engineering. These equations present the main computational difficulties typical to acous-
tics, electromagnetic and other wave problems. They are often accompanied by radiation boundary
conditions and are considered on infinite domains. Solving them numerically using standard pro-
cedures, including multigrid, is too expensive. The wave-ray multigrid algorithm efficiently solves
the Helmholtz equations and naturally incorporates the radiation boundary conditions. Important
accuracy properties of the wave-ray solver are discussed in this paper.

Using various mode analyses, we show that, with the right choice of parameters, this algorithm
can obtain an approximation to the differential solution with accuracy that equals the accuracy of
the target grid discretization. Moreover, the boundary conditions can be introduced with any desired
accuracy. Our theoretical conclusions are confirmed by numerical experiments.
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1. Introduction. These studies are aimed at constructing fast and accurate
numerical algorithms for the Helmholtz equation

∆u(x, y) + k2u(x, y) = f(x, y), (x, y) ∈ R2,(1.1)

with the radiation boundary conditions. Our goal is to approximate the solution of
(1.1) on a finite domain Ω of diameter d. We primarily consider domains with d that
satisfies kd À 1. This makes the problem highly indefinite, and hard to solve.

Although the solution process we describe can solve more general problems, our
analysis here is focused on the model problem (1.1) when the wave number k is
constant, f(x, y) has compact support Ωf ⊂ R2 and employed is the second-order
discretization of (1.1)

(Lhuh)i,j =
uh

i−1,j + uh
i+1,j + uh

i,j−1 + uh
i,j+1 − 4uh

i,j

h2
+ k2uh

i,j = fi,j ,(1.2)

where uh
i,j approximates u(xi, yj) and fi,j ≈ f(xi, yj), i = 0, . . . , Nx, j = 0, . . . , Ny,

Ωf ⊂ Ω, and Ω is much wider than Ωf . For simplicity, Ω is chosen to be the square:

Ω = {(x, y), −d/2 ≤ x ≤ d/2, −d/2 ≤ y ≤ d/2},(1.3)

and hence Nx = Ny = N , xi = −d/2 + ih, and yj = −d/2 + jh.
For kd À 1, the cost of solving (1.2) can be overwhelming. To provide an accurate

approximation to the differential solutions, discretization of (1.1) must employ many,
actually more than O(k3d3), grid points. Moreover, to converge to the numerical
solution, a conventional solver should employ many, actually more than O(k6d6),
sweeps of a slow (e.g., Kaczmarz) relaxation scheme, since faster schemes diverge for
some components. So the total work grows at least proportionally to O(k9d9).
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2 I. LIVSHITS AND A. BRANDT

The above provides motivation to use multigrid methods ([8], [10], [14], [15]).
However, standard multigrid procedures are not efficient for the highly indefinite
Helmholtz equations. This is because there is a range of Fourier error components
ei(ω1x+ω2y) that the standard multigrid cycle cannot reduce efficiently. Those are
the components with ω2

1 + ω2
2 ≈ k2; we call them characteristic. On fine grids their

amplitudes are much larger than the amplitudes of the corresponding normalized
residuals, making them almost invisible to any local processing. Hence, they are
only very slowly reduced by relaxation. On the other hand, unlike regular smooth
components, these have poor approximations on coarse grids, which, therefore, cannot
serve to correct the finer-grid solutions.

As a result, the characteristic components need a special multigrid treatment,
and this is the basis of the wave-ray algorithm. Its fast convergence was the subject
of [5] . There it was shown that the algorithm has high multigrid efficiency at a cost
comparable to the cost of solving Poisson equation with the standard cycle.

In the present paper we study the accuracy aspects of the wave-ray algorithm.
The goal of this algorithm, employing the second-order discretization, is to provide
accurate O(h2) approximation to the differential solution while costing only O(h−2)
computer operations. This is not as straightforward as for definite elliptic systems,
both due to the phase errors and because the radiation boundary conditions need to
be brought accurately from the coarsest level of the algorithm to the target level.

Obviously, by choosing a smaller finest grid mesh-size h, we should
expect a more accurate solution. Moreover, since the second-order scheme
is employed in (1.2), the accuracy should improve as O(h2). In the wave-
ray algorithm, however, the following scenario is possible: after choosing
a smaller h, the approximation error remains almost unchanged. In this
paper we discuss different factors and the error they cause that lead to
such accuracy inefficiency. We then suggest the ways to deal with them. The
ultimate goal is to minimize the effect of these errors on the total error to
the level of becoming negligible compared to the finest-grid discretization
error, which then regains its principal error term status (as in traditional
multigrid solvers).

This paper will not address a difficult issue of pollution that appears
when the Helmholtz equation with the wave number k must be discretized
on a grid with a given mesh-size h such that kh is large. Then even the
finest discrete Helmholtz equation is not accurate enough: its solution will
be a poor approximation to the differential solution. Pollution and how to
deal with it (when possible) is in detail discussed in [3], [9], [13], et al.

The outline of the paper is as follows: We start with a description of the algorithm.
Its efficiency is achieved by using two types of solution representation: wave and ray.
(This gave the algorithm its name wave-ray. The grids on which the wave and the
ray equations are discretized are called the wave grids and the ray grids, respectively.)
This technique can cause inaccuracies, unless the algorithmic parameters are properly
chosen.

In section 2 we discuss discretization errors and their influence on the choice of
the finest mesh-sizes in the wave and in the ray discretization. Unlike in standard
multigrid procedures, coarse ray grids often (away from Ωf ) provide more accurate
approximation to the differential solution than the finer ray or wave representations.

In section 3 our subject is the approximation of the differential problem on an
infinite domain by a solver which employs finite domains on many levels. In particular,
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we deal with the question of how to impose the radiation boundary conditions.
We conclude the paper with numerical results and discuss their agreement with

our theoretical conclusions.

1.1. Wave – Ray Algorithm for Helmholtz Equations. First, we define the
circle of principal Fourier components to be the subset of characteristics components
with frequencies ω2

1 + ω2
2 = k2. They satisfy (1.1) with f ≡ 0 and have a significant

role in the algorithm. Among all principal components we consider a finite set of
lattice principal components uniformly spaced on the principal circle. We denote
them (k`

1, k
`
2), ` = 1, . . . , L; L is the number of lattice components. We use the word

lattice to describe the discretization of the principal circle and to distinguish it from

grids in the physical space. For the principal lattice component ei(k`
1x+k`

2y), we define
a rotated Cartesian coordinate system (ξ`, η`) with ξ` being parallel to (k`

1, k
`
2), the

propagation direction.
Each characteristic component can be represented as a product of a lattice prin-

cipal component and a smooth envelope function. Hence, a general representation of
the error that cannot be efficiently reduced by a regular multigrid cycle can be given
by

v(x, y) =

L
∑

`=1

v̂`(x, y)ei(k`
1x+k`

2y),(1.4)

where v̂`(x, y) are smooth functions. Note that the functions v̂`(x, y) are not uniquely
defined: Fourier components of v with frequencies between two lattice points can be
assigned to these points with arbitrary weights, yet still yielding the desired smooth-
ness. Considered in the corresponding rotated coordinates, the scale of smoothness of
v̂`(x, y) is O(L2/k) in the propagation direction ξ`, and O(L/k) in the η` direction.
(In other words, the function v(x, y) essentially consists of Fourier components with
frequencies in a ring of width O(k/L2) around the principal circle.)

We call the functions v̂`(x, y) the ray functions; the equations we derive for them
– the ray equations. The residual ray equation for v̂`(x, y) is

∆v̂`(x, y) + 2ik`
1

∂

∂x
v̂`(x, y) + 2ik`

2

∂

∂y
v̂`(x, y) = r̂`(x, y).(1.5)

This results directly from the Helmholtz equation, with r̂`(x, y) being the smooth
weights in the ray representation of the wave residual function:

Lv(x, y) = r(x, y) =
L
∑

`=1

r̂`(x, y)ei(k`
1x+k`

2y).(1.6)

Each principal component ei(k`
1x+k`

2y) in its rotated coordinates has the form eikξ`

, so
Eqs. (1.5) can be simplified there to

∆v̂`(ξ`, η`) + 2ik
∂

∂ξ`

v̂`(ξ`, η`) = r̂`(ξ`, η`), (ξ`, η`) ∈ Ω̂`.(1.7)

Since the problem is defined over the entire space (x, y) ∈ R2, we have to define a
large enough finite computational domain Ω̂` over which v̂` will be computed. For
convenience we choose Ω̂` to be rectangular

Ω̂` = {(ξ`, η`) : ξ`
0 ≤ ξ` ≤ ξ`

1, −η`
0 ≤ η` ≤ η`

0},(1.8)
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where appropriate values for ξ`
0, ξ

`
1 and η`

0 will be a subject of the analysis below. We
call the set of points (ξ`, η`) on the lines ξ` = ξ`

0, ξ` = ξ`
1 and η` = ±η`

0 the entrance,
the exit and the side boundaries, respectively.

(Each equation (1.7) in the rotated coordinates allows the most ag-
gressive discretization ratio: by the factor of four (instead of two) in the
propagation direction. The use of the standard Cartesian (x, y) coordi-
nates is also possible. Moreover, it too allows a special coarsening at least
for some components: for instance, for L = 8, a half of the components
propagates in either x or y direction, and, therefore, for them the same
coarsening can be applied. For a higher value of L, for most of the compo-
nents their propagation direction is closer to either x or y, and therefore
some stronger coarsening can be applied there, with the factors of three or
four, depending on the component in question and the accuracy require-
ments.)

The error for which the usual multigrid cycle is not effective can efficiently be
reduced by a multigrid procedure which on coarse grids represents the smooth ray
functions v̂`(x, y) rather than the non-smooth function v(x, y) itself. The coarser the
grid the larger the scale of smoothness of v̂`(x, y) represented on it. This requires a
larger L, i.e., a finer lattice of principal components.

Let the ray levels be enumerated by n = 1, . . . , N so that n = N is the level with
the coarsest grid and the finest lattice. For the n-th level, the principal lattice is then
composed of the frequencies

(kn,`
1 , kn,`

2 ) = (k cos θn,`, k sin θn,`), ` = 1, . . . , Ln,(1.9)

where θn,` = 2π`/Ln; the corresponding ray functions are denoted v̂n,`. At each level
n, each ray function v̂n,`(x, y) in its rotated coordinates (ξn,`, ηn,`) is discretized on a
uniform grid with mesh-sizes hn

ξ = O((Ln)2/k) and hn
η = O(Ln/k). Our actual choice

of parameters, based on a careful mode analysis, has been:

Ln = 2n+2, hn
ξ = C(Ln)2/(32k), hn

η = C(Ln)/(8k),(1.10)

where typically 1.25 ≤ C ≤ 2.5.
The wave-ray cycle is composed of two parts. The first one, the wave sub-cycle,

is a standard multigrid cycle applied to (1.2). It proceeds from the finest wave grid to
the coarsest; there is actually no need to go to grids with mesh-size coarser than 4/k
(this is because for such h the system (1.2) becomes so strongly diagonal dominant
that the Gauss-Seidel relaxation converges very fast). Few Kaczmarz or Gauss-Seidel
relaxation sweeps are performed on each wave level except for the ones with mesh-sizes
h ≈ 2/k. Relaxation on the coarsest grid reduces the smoothest part of the error, while
relaxation on the fine levels reduce its high-frequency components. The wave sub-
cycle does not change the characteristics components effectively, and, consequently,
it leaves an error of the type (1.4). Also it does not treat the radiation boundary
conditions, which are associated only with principal components and, therefore, ray
representation. In this part of the algorithm the sole role of the coarse grids is to
produce smooth non-characteristic corrections to the finer grid approximations in the
interior of the finer grid computational domains.

The second part of the algorithm starts with a ray sub-cycle, which is needed to
reduce characteristic errors and to impose the radiation boundary conditions. First,
the wave residual r(x, y) is calculated on some sufficiently fine wave level with mesh-
size h = O(d−1/2k−3/2) – still fine enough to produce small phase errors throughout
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the computational domain. From this grid, the wave residual is transferred directly
to the wave grid with h ≈ 1/k. There, for each 1 ≤ ` ≤ L1 this wave residual is

multiplied by e−i(k`
1x+k`

2y) resulting in

r(x, y)e−i(k`
1x+k`

2y) = r̂`(x, y) +
∑

m6=`

r̂m(x, y)ei(∆km
1 x+∆km

2 y),(1.11)

where km
j = k1,m

j , ∆km
j = km

j − k`
j , j = 1, 2. Notice that the first term on the right-

hand-side of (1.11) is very smooth compared to each term of the sum. The next step
is to approximate each r̂` in the rotated coordinates (ξ`, η`) = (ξ1,`, η1,`). For this
purpose a procedure called separation is applied, denoted

r̂` = r̂1,` = W1,`(r(x, y)e−i(k`
1x+k`

2y)), ` = 1, . . . , L1.(1.12)

Here W1,` is a product of two weighting operators that accurately transfer smooth
components from the wave grid with mesh-size h ≈ 1/k first to an intermediate ray
grid with mesh-size (hξ, hη) ≈ (2/k, 2/k), and then to the ray grid (ξ1,`, η1,`) with
mesh-size (h1

ξ , h
1
η) ≈ (4/k, 2/k). The operators are designed to almost annihilate

components that are highly oscillatory on the current scale.
It is important to note here that the entire solver employs the Full Approximation

Scheme (FAS, see e.g. [4]). This means that, although the equations at each level
are basically equations for the correction v̂n,`, driven by the next-finer-level residuals,
as in (1.7), they are modified (by adding an appropriate term to the right-hand-side)
so that their solution always represents the full approximation ûn,` = v̂n,` + ũn,`,
where ũn,` is an approximation to ûn,`. The algorithm employs the value of ûn,` at
the end of the previous cycle, as the first approximation to ũn,`. Such approximation
satisfies the radiation boundary condition, and it does not require an update from the
wave part of the cycle since characteristic components are not changed there. At the
first cycle ũn,` satisfies the radiation boundary conditions at the entrance and side
boundaries, and it is zero elsewhere.

The FAS right-hand-side is calculated by

f̂n,` = r̂n,` + L̂nũn,`.(1.13)

The FAS is chosen to enable the imposition of the radiation boundary conditions
at the coarsest ray level.

As the model boundary conditions, we have chosen the Dirichlet ra-
diation boundary conditions that can be formulated as follows: for each
direction, the amplitude of the ray propagating in this direction from in-
finity into Ω is given.

After the discrete ray equations are relaxed on the finest ray level (n = 1), and the
new solution approximations are calculated, the ray sub-cycle proceeds (if necessary)
to increasingly coarser ray levels (n = 2, . . . , N). This includes recursive derivation
of ray equations on increasingly coarser ray grids, having increasingly finer lattices
(larger L = Ln). The equations on each grid have the ray form (1.7), discretized;
they are the result of a separation process applied to the residuals of the next finer
neighboring grids. Namely, to calculate r̂n,` for odd `, the corresponding ray residual
function from the finer grid is used:

r̂n,` = Wn,`
n−1,(`+1)/2r̂

n−1,(`+1)/2,(1.14)
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where here and below W n,`
n−1,j consists again of a product of two weighting operators,

acting from the grid (ξn−1,j , ηn−1,j) to the target (ξn,`, ηn,`) designed to approximate
the smooth components and annihilate high-frequencies on the considered scale.

For even `, r̂n,` is calculated from two finer grid residuals:

r̂n,` = Wn,`
n−1,`/2

(

r̂n−1,`/2ei((k
n−1,`/2

1
−kn,`

1
)x+(k

n−1,`/2

2
−kn,`

2
)y)

)

+(1.15)

Wn,`
n−1,`/2+1

(

r̂n−1,`/2+1ei((k
n−1,`/2+1

1
−kn,`

1
)x+(k

n−1,`/2+1

2
−kn,`

2
)y)

)

.

The lattice count should be taken modulo L, i.e., for ` = Ln take `/2+1 = Ln−1+1 ≡
1(mod Ln−1).

On the coarsest grid the radiation boundary conditions are imposed, facilitated
by the nearly pure ray representation at that grid. The ray equations are solved
there fast by a line Gauss-Seidel relaxation. Then the boundary conditions along
with corrections are interpolated through the intermediate ray grids (without any
relaxation) to the finest ray grid.

Interpolation from a coarser ray grid (with a finer lattice) to the next finer ray
grid (with coarser lattice) is performed differently on the boundary of the finer grid
domain and in its interior. On the boundary Γ̂n,` of the computational domain Ω̂n,`

the solution values are interpolated directly from the three neighboring coarser grids:

ûn,` =
1

2
In,`
n+1,2`−2

(

ûn+1,2`−2ei((kn+1,2`−2

1
−kn+1,2`−1

1
)x+(kn+1,2`−2

2
−kn+1,2`−1

2
)y)

)

+

In,`
n+1,2`−1û

n+1,2`−1 +
1

2
In,`
n+1,2`

(

ûn+1,2`ei((kn+1,2`+1

1
−kn+1,2`−1

1
)x+(kn+1,2`

2
−kn+1,2`−1

2
)y)

)

,

where the interpolation operator In,`
n+1,j interpolates from the coarser grid Ω̂n+1,j to

the finer grid Ω̂n,l. This interpolation of the boundary conditions is the reason for
using FAS, since it requires to approximate solutions rather than corrections on all
grids.

In the interior, the solution is only corrected by the coarse-grid approximations:

ûn,` = ûn,` +
1

2
In,`
n+1,2`−2

(

v̂n+1,2`−2ei((kn+1,2`−2

1
−kn+1,2`−1

1
)x+(kn+1,2`−2

2
−kn+1,2`−1

2
)y)

)

+

In,`
n+1,2`v̂

n+1,2` +
1

2
In,`
n+1,2`

(

v̂n+1,2`ei((kn+1,2`
1

−kn+1,2`−1

1
)x+(kn+1,2`

2
−kn+1,2`−1

2
)y)

)

.

Here corrections v̂n+1,j are given by v̂n+1,j = ûn+1,j − ũn+1,j , where ũn+1,j again is
the value of ûn+1,j at the end of the previous cycle.

No relaxation is performed on the way to the finest ray grid. From there, the ray
solutions (for the boundary) and the ray corrections (for the interior) are interpolated
to the wave grid with h ≈ 1/k, where they are summed as in (1.4) and used to
correct the previous wave solution. Similar to the ray-to-ray interpolation, the wave
correction (at the interior) and the solution values (at the boundary) are interpolated
to the finer wave grids, with a small number of relaxation sweeps performed on each
grid.

See the Appendix below for a formal description of the entire algorithm.
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2. Discretization Errors. In this section we discuss how to achieve an accurate
approximation to the differential solutions in the interior of the finest computational
domain. We examine the point-wise approximation to the differential solutions, an-
alyze the influence of discretization errors, and conclude that the main source of
inaccuracy are the phase errors, coming from both the wave and the ray representa-
tions. In our studies we measure only the errors eventually resulting in the interior of
the target finest wave grid.

2.1. Phase Errors. The phase error is the difference in phases of the discrete
and differential waves, accumulated along their propagation path due to their different
wavelengths. This error can become very significant when the solution propagates
along many wavelengths.

A peculiarity of our algorithm is that, unlike common discretization schemes, in
the regions where the equation is homogeneous, the coarse ray grids provide more
accurate approximations to the differential solution than the finer ray, and often are
better than the wave grids. The ultimate role of the fine wave grids is to resolve the
right-hand-side f at scales smaller than or just comparable to the wavelength 2π/k.
The details are discussed in this section.

2.1.1. Wave Phase Error. We define a wave discrete principal component

ei(kh
1 x+kh

2 y) as any one that satisfies the discrete homogeneous equations (1.2),

Lhei(kh
1 x+kh

2 y) = 0.(2.1)

By Taylor expansion in (1.2) it can be shown that, for kh ¿ 1, the value of the

corresponding discrete wave number |kh| =
√

(kh
1 )2 + (kh

2 )2 can be approximated by

|kh| ≈ k

(

1 +
k2h2

γ

)

, 24 ≤ γ ≤ 48,(2.2)

where the exact value of γ depends on the ratio kh
1 : kh

2 . The accumulated value
of the relative phase error (the phase error over the period 2π/k) propagating
through the kd/2π wavelengths of Ω can therefore be estimated as

E(kd, kh) ≈ kd
k2h2

2πγ
.(2.3)

To provide an accurate approximation to the differential solution on the target wave
grid, the finest mesh-size h should be chosen so that E(kd, kh) is small:

E(kd, kh) ¿ 1.(2.4)

2.1.2. Ray Phase Error. In standard multigrid procedures the accuracy of
discretization on coarse grids influences the speed of convergence of the solver rather
than the accuracy of the solution. In our algorithm the ray grids serve not only
to correct the characteristic error components, but also to introduce the radiation
boundary conditions, and to approximate the principal components invisible on the
finest wave grids. Hence, the quality of the solution approximation on the ray grids
needs to be addressed. (Since the discussion below is relevant for any `th ray function
and ray operator on any nth level, we omit the superscripts ` and n.)

We define a ray discrete principal component ei(θξξ+θηη) as any one which satisfies

L̂hei(θξξ+θηη) = 0,
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where L̂h is a second-order discretization of (1.7), given in the (ξ, η) coordinates by

L̂hv̂i,j =
v̂i−1/2,j−1 + v̂i−1/2,j+1 − 2v̂i−1/2,j

2h2
η

+
v̂i+1/2,j−1 + v̂i+1/2,j+1 − 2v̂i+1/2,j

2h2
η

+

v̂i−3/2,j − v̂i−1/2,j − v̂i+1/2,j + v̂i+3/2,j

2h2
ξ

+ 2ik
v̂i+1/2,j − v̂i−1/2,j

hξ
.(2.5)

On the scale of the employed grid, the term 2ikvξ is the principal term,
and its most accurate (second-order) discretization is the main factor in
our choice of the discrete scheme. Our operator provides an accurate short
central discretization for 2ikvξ, and also a second order accuracy for the
remaining terms (it employs the Crank-Nicholson scheme for vηη). (The
standard 5-point stencil for the Laplace operator would come with the long
central differences for the principal term leading to a weak diagonal term.)
Discreization (2.5) also allows an efficient η-line relaxation (marching from entrance
to exit, solving (2.5) simultaneously for all v̂i,j with the same j, cf. Sec 3.2) on the
ray grids. (Substitution of ei(θξξ+θηη) into (2.5) gives

2

h2
η

cos

(

φξ

2

)[

cos(φη) − 1

]

− 4k

hξ
sin

(

φξ

2

)

+
1

h2
ξ

[

cos

(

3φξ

2

)

− cos

(

φξ

2

)]

= 0,

where φξ = θξhξ and φη = θηhη. Note that the highest frequency (θξ, θη), which must
be represented on each ray grid (so that any principal and characteristic component
has an accurate representation on at least one of the L ray grids) is given by

θξ ≈ k
π2

2L2
, θη ≈ k

π

L
.(2.6)

This is the frequency associated with the principal component at the mid-point be-
tween two neighboring lattice points. With (1.10), the arguments of sines and cosines
are sufficiently small for (2.6) to be replaced by its approximation:

−θ2
η +

1

8
θ2

ηφ2
ξ − 2kθξ +

k

12
θξφ

2
ξ − θ2

ξ ≈ 0.(2.7)

Using (2.7) we can approximate the size of a discrete ray wave number k̂L = (θξ +
k, θη):

|k̂L|2 = k2 + 2kθξ + θ2
ξ + θ2

η ≈ k2

(

1 +
1

8k2
θ2

ηφ2
ξ +

1

12k
θξφ

2
ξ

)

,(2.8)

or, by (1.10) and (2.6),

|k̂L| ≈ k

(

1 +
β

L2

)

,(2.9)

with β ≈ 0.039C2, 1.25 ≤ C ≤ 2.5. The phase error arises from the propagation of
principal components emanating from the radiation boundary conditions or from the
right-hand-side source. For instance, at a distance d̂ from the entering boundary, the
phase error can be estimated as

E(kd̂, L) ≈ kd̂
β

2πL2
.(2.10)
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2.2. RHS Truncation Errors. The phase error is the main discretization er-
ror in approximating the homogeneous equations. To estimate those truncation er-
rors which arise in approximating the effect of a non-homogeneous right-hand-side,
consider a right-hand-side f(x, y), a differential solution u(x, y) and an approximate
difference solution uh(x, y) in Ω of the form

f(x, y) =

∫

t

f̂(t)ei(t1x+t2y)dt, u(x, y) =

∫

t

û(t)ei(t1x+t2y)dt,

and

uh(x, y) =

∫

t

ûh(t)ei(t1x+t2y)dt.

For any frequency t = (t1, t2), t = |t|, the following holds

û(t) =
f̂(t)

k2 − t2
(2.11)

and

ûh(t) ≈ f̂(t)

k2 − t2(1 − 2t2h2/γ)
,(2.12)

where γ is defined in (2.2). The difference between (2.11) and (2.12) is O(t2h2),
meaning that the finest wave mesh-size should be fine enough to resolve the highest-
frequency components of f which one cares to approximate. More precisely, for |t −
k|/k ≥ O(1), the relative error

E(t) =
|û(t) − ûh(t)|

|û(t)|(2.13)

is small when t2h2 is small.
The more severe requirements on the mesh-size arise however from the character-

istic components, where t is close to k. For |t − k|/k = δ ¿ 1, using (2.11) – (2.12),
one can show that

E(t) =
k2h2(1 + O(δ)

γδ + k2h2(1 + O(δ))
≈ k2h2

γδ
.(2.14)

For this truncation error to be small, the target mesh-size h should satisfy

k2h2

γδmin
¿ 1,(2.15)

where δmin = mint=|t|,û(t)6=0
|t−k|

k . The problem (1.2) is considered on a computa-
tional domain of size d and a grid with mesh-size h. Only a finite number of Fourier
components is distinguished on this grid. The minimal distance between such compo-
nents, in the phase space, is 2π/d. Therefore, δmin = 2π

kd , and (2.15) can be replaced
by

kd
k2h2

2πγ
¿ 1.(2.16)
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Note that requirement (2.16) is identical with the condition resulting from the wave
phase error. Indeed,

E(t) = E(kd, kh)(1 + O(δ)).(2.17)

We have excluded from consideration the special case of resonance, when f̂/(k2−
t2) is not integrable, which would require a different formulation in the time domain.

3. Boundary Conditions. One of the possible reasons for slowness of
multigrid solvers is inefficient introduction of boundary conditions. If done
on a sufficiently fine grid, it takes many (expensive) iterations until the
boundary information propagates from the boundaries into the domain.
The remedy from such slowness is to use coarse grids. This, however,
is not a good solution for the standard multigrid solvers applied to the
Helmholtz equation since coarse wave grids are not suitable for represent-
ing accurate solutions. Instead, the wave-ray algorithm employs its ray
grids to introduce the boundary conditions. These grids are very coarse
and also very accurately resolve the ray functions.

In this paper we consider the Dirichlet radiation boundary conditions
given by the amplitudes of the waves incoming to the computational do-
main from infinity. These boundary conditions are actually formulated as
Dirichlet boundary conditions for the ray functions: at the coarsest ray
level each entering ray is represented on the grid (or divided between two
grids) with the closest propagation direction, on which its boundary val-
ues are indeed very smooth. Let us note that all exiting-only rays (rays
which do not enter the computational domain but are originated in Ωf) can
actually exit only through the exit boundary. Hence on all other bound-
aries of each of the ray domains we can impose as boundary conditions the
incoming rays (or zero, if no incoming rays are assumed). No boundary
conditions are needed at the exit boundaries since the discrete equations
(2.5) and the order in which we relax them (from entrance to exit) en-
sure that information propagation in the negative ξ direction is effectively
prohibited.

The wave-ray approach can be also used for an efficient introduction of
other RBCs: for instance, Sommerfeld-like boundary conditions (discussed
for instance in [1], [2]). This can be done since near the boundaries (remote
from Ωf), any solution is purely of a ray nature and can be represented in
the ray form of type (1.4). Then from the RBC conditions formulated as
differential equations for a wave function, it is easy to find a set of differ-
ential equations that describe boundary conditions for its ray functions.
This set can be separated into conditions for individual components or, at
most, for a pair of components with opposite propagation direction. In
this case, these two components should be approximated together, still
very efficiently since considered on coarse grids. The transition to these
other boundary conditions has not yet been done by the authors.

The radiation boundary conditions (RBC) can be introduced by imposing the
values of the ray functions v̂` in (1.7) at the entrance and the side boundaries on the
coarsest ray level as Dirichlet boundary conditions. Since khξ À 1 on all ray levels,
the second derivative term v̂ξξ in (1.7) is negligible on the scale (hξ, hη), making (1.7)
almost parabolic. Therefore, no condition is needed at the exit. There, instead of
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(2.5), the algorithm employs strictly upstream discretization, and the solution values
are treated as the interior rather than the boundary.

To guarantee an accurate introduction of the RBC, we have to avoid a possible
influence of the interior solution on the boundary values, that can in its turn affect
the solution in the domain of interest. First we discuss how an implementation of the
wave-ray algorithm can pollute the boundary conditions, and how to introduce the
RBC accurately – on finite domains and with a finite number of ray functions. The
second question is how to transfer these conditions to the finer ray, and then wave,
grids. In our algorithm the wave solution on the boundary is evaluated by direct in-
terpolation from the coarser (eventually, ray) grids. It means that some interpolation
error is necessarily introduced on the boundaries and affects the solution accuracy
there and in the interior. However, we will show that this influence decreases fast as
the error propagates inside the computational domain. We analyze the interpolation
from both wave and ray domains.

3.1. Side Boundaries: Reflected Rays. When imposing the radiation bound-
ary conditions at the coarsest ray level, at the entrance these conditions are naturally
defined as Dirichlet boundary conditions without having any negative effects. How-
ever, this is not so for the side boundaries, because on each ray grid there are principal
components that actually exit through one or the other side boundary.

For the sake of explanation, we define the inclination angle as follows: if a prin-
cipal components in the (ξ, η) coordinates has a frequency k(cos α, sin α) then α is its
inclination angle on the corresponding grid.

In the assignment of the RBC at the coarsest ray level, each principal compo-
nent with inhomogeneous boundary conditions is distributed only between the two
neighboring lattice components, hence on each of the two corresponding ray grids
its inclination is less than 2π/L. The distribution weights are proportional to the
distances between the corresponding principal frequency and the lattice points in the
phase space. Hence, on each ray grid only principal components with inclinations in
the range |α| ≤ 2π/L are represented.

Let us consider, for example, the side boundary η = −η0. This is an entrance
boundary for all components with α ≥ 0. Therefore, we have to impose Dirichlet
boundary conditions for the ray function there as we do at the entrance. For the prin-
cipal components with α < 0, this boundary is obviously an exit. Since the boundary
conditions are already imposed, upon reaching this boundary these components do
not leave the ray domain. Instead, they turn into erroneous reflected rays. To avoid
their influence, we choose the parameters of the algorithm so that these rays will not
enter Ω as defined in (1.3). This can be achieved by moving ray side boundaries away
from Ω. We thus define the ray domain Ω̂` by

Ω̂` = {(ξ`, η`) : −d`/2 − ∆dξ ≤ ξ` ≤ d`/2, −d`/2 − ∆dη ≤ η` ≤ d`/2 + ∆dη},

where d` = c`d and c` is chosen so that the ray domain, even for ∆dη = 0, completely
covers the wave domain (1 ≤ c` ≤

√
2 depending on the lattice point). Here ∆dη is

how far the ray domains should be extended in the η direction, and ∆dξ is how far
they should be extended in the negative ξ direction (as discussed in the next section).
On the finest ray level, with L = 8 and the maximum inclination angle α = π/4, if
∆dη satisfies

∆dη = tan(π/4)
d

2
=

d

2
,(3.1)
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then no reflected rays enter the target domain Ω.
If the algorithm employs more than one ray grid, the coarser ray domains must

meet two requirements. First, similar to the finest ray grids, they should be large
enough not to allow the erroneous reflected rays into the target domain. Since the
maximum inclination angle decreases as the algorithm proceeds to the coarser grids
and the finer lattices, extension (3.1) is sufficient for all grids. More importantly,
the coarser ray domains should cover neighboring finer ray domains, i.e., they should
be of the size of the finer ray domains or larger (if the propagation directions are
not aligned). The latter effect, however, diminishes as the difference between the
propagation directions of neighboring principal components becomes smaller on the
finer lattices. Moreover, since the involved grids are coarser, this effect is negligible
in terms of the overall computational work.

Let us notice that since the algorithm allows to avoid the effect of
reflected rays in the computational domain, there is no need to impose
artificial absorbing boundary conditions, such as Perfect Matching Layers
(PML), e.g., [11], [12], which are actually used for the purpose of avoiding
reflection.

3.2. Entrance: Backward Residual Influence. In the nearest neighborhood
of the entrance boundary, on each ray grid we assume the solution to be purely of
the ray form, i.e., it is governed only by the RBC. Ideally, there should be no impact
of the interior solution on the upstream values. This would be true if we used a
strictly upstream discretization for the ray equations. To provide an accurate ray
discretization, we have however chosen the discretization (2.5) which employs one
downstream grid point. This implies upstream spread of changes in the solution from
the region with non-zero residuals in the right-hand-side of (1.7). The question then
arises: how far back to place the entrance boundary from the region where residuals
from the finer grids are defined so that the entrance RBC is not polluted by the
solution behavior in the interior.

An easy way to see the upstream impact of residuals is to analyze the changes
in neighboring-line residuals introduced upon relaxing equations on one line, e.g., the
line ξ = ξ̃. Such equations are relaxed using line Gauss-Seidel relaxation to change
the solution values on the line ξ = ξ̃ + hξ/2. Assuming that a Fourier component

r(η) = R0e
iωη of residuals exists on the line ξ̃, one line Gauss-Seidel relaxation sweep

will change the solution on the line ξ̃ + hξ/2 by V0e
iωη, where by (2.5)

(

2ik

hξ
− 1

2h2
ξ

+
cos(ωhη) − 1

h2
η

)

V0 = −R0.(3.2)

Such a change will add R−1e
iωη, R1e

iωη and R2e
iωη to the residuals on the lines

ξ = ξ̃ − hξ, ξ = ξ̃ + hξ, and ξ = ξ̃ + 2hξ, respectively, where by (2.5)

R−1 = R2 =
1

2h2
ξ

V0(3.3)

and

R1 =

(

−2ik

hξ
− 1

2h2
ξ

+
cos ωhη − 1

h2
η

)

V0.(3.4)

Hence, and by (1.10),

|R−1|
|R0|

<
1

4khξ
=

4

L2
(3.5)
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Since the smallest value of L in our algorithm is 8, the ratio always satisfies

|R−1|
|R0|

≤ 1

16
.(3.6)

If mξ relaxation sweeps are performed, the backward influence of the residual will

continue to propagate and will reach the line ξ = ξ̃ − mξhξ. The size of the residual
there, however, will not exceed R0L

−2mξ . Thus, at the distance of only few mesh-
sizes the backward influence of the interior residuals becomes really negligible. It also
follows from (3.5) that on coarser ray grids the backward influence per unit length
remains the same.

In our solver, for technical reasons, near the boundaries the solution is always
defined by the ray formulation with the homogeneous right-hand-side. Therefore,
there is no need to extend the computational domain in the negative propagation
direction.

3.3. Interpolation of Boundary Conditions. The subject of this section is
how to diminish the influence of errors in boundary interpolation. Unlike many other
boundary conditions, the RBC are defined on the coarsest (ray) grid. From there
the boundary values are gradually interpolated to the finer ray grid, then to the
intermediate wave grids, and, eventually, to the target wave grid.

Unlike the interior values, the boundary values are never changed (improved) on
the finer grids, and, therefore, the errors that arise in the boundary interpolations are
never corrected there. Therefore, to obtain accurate solutions, it is necessary to be
possible to obtain for all principal components (those participating in the RBC) as
small interpolation errors as one wishes. We show below that this is always possible
by employing high enough interpolation orders along the boundaries. (No such high
orders are needed in the interior of the fine grid.) Furthermore, we show that the
effect of these boundary errors on the solution inside the domain remains equally
small.

3.3.1. Interpolation from a Ray Grid. In the coming discussion we need to
distinguish between entrance and side boundaries.

Let us first consider a Fourier component of the error originated from interpolating
a principal component on the entrance boundary, ξ = ξ0, and thus having the form

v(ξ, η) = V (ξ)eiωηη.(3.7)

Substitution of (3.7) into (1.7) leads to an ODE for V (ξ):

V ′′(ξ) + 2ikV ′(ξ) − ω2
ηV (ξ) = 0.(3.8)

All principal components that should be approximated on a given ray grid have the
frequencies that satisfy

(wξ, wη) = k(cos θ − 1, sin θ), −π/L ≤ θ ≤ π/L.(3.9)

This, in particular, means that |ωη| is always less or equal to k, and therefore the
error amplitude

V (ξ) = V (ξ0)e
−i(k±

√
k2−ω2

η)ξ(3.10)

is oscillatory and neither decreases nor increases as the error propagates from the
boundary into the domain. The initial amplitude V (ξ0) can be made arbitrarily



14 I. LIVSHITS AND A. BRANDT

small, because by (3.8) and (1.10), the ray functions represented on each grid are
relatively smooth in the η direction:

|wηhη| ≤ 1,(3.11)

where hη is the mesh-size in the η direction of the coarse grid. Such functions can be
interpolated from the coarse ray grids to the finer grids very accurately just by using
an interpolation of a high enough order.

Let us next consider a side boundary, for definiteness the boundary η = −η0.
Substituting an interpolation error component of the form

v̂(ξ, η) = V̂ (η)eiωξξ(3.12)

into the ray equation (1.7), we obtain an ODE for V (η):

V̂ ′′ − (ω2
ξ + 2kωξ)V̂ = 0.(3.13)

By (3.9), −2k < ωξ < 0, and therefore ω2
ξ + 2kωξ < 0, any solution of (3.13) is again

oscillatory, with an amplitude that neither decreases nor increases as it propagates
into the computational domain. Fortunately, it too can be reduced as much as one
wishes by increasing the interpolation order. This is because, by (1.10) and (3.9), for
the highest principal frequency that still needs to be accurately represented on the
fine ray grid there holds

|ωξ|hξ < 0.4.(3.14)

Comparison between (3.11) and (3.14) shows that the order of interpolation operators
used along the side boundaries can be lower than that needed along the entrance.

3.3.2. Interpolation from a Wave Grid. We consider here two wave grids: a
fine one, with a mesh-size h in both directions, and a coarse, with the mesh-size 2h.
We examine the propagation of a component of an interpolation error, resulted from
interpolating a principal component ei(k1x+k2y), k2

1 + k2
2 = k2, in the form

v(x, y) = V (y)eik1x,(3.15)

introduced, for example, on the boundary y = y0 = −d/2. Its amplitude, V (y)
satisfies the equation

V ′′(y) + (k2 − k2
1)V (y) = 0,(3.16)

hence

V (y) = V (y0)e
±ik2

2y,(3.17)

so |V (y| ≤ |V (y0)|. Using interpolation operators of a sufficiently high order, the
initial amplitude V (y0) for such values of k2 can be made as small as desired, since
|k2|2h ≤ k2h ≤ 1; this is because for any wave grid to which the boundary conditions
are interpolated, its mesh-size satisfies kh ≤ 0.5. These are grids finer than the
reconstruction level scale hb, where khb ≈ 1; no boundary conditions are interpolated
to the coarser levels.

All these results show that the boundary interpolation errors do not decay as they
propagate into the computational domains; they can be diminished only by achieving
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small initial (on the boundaries) error amplitudes. To guarantee that, for the compo-
nents of interest, the algorithm should employ interpolations of high orders (possibly
higher than the typical, for standard multigrid solvers, second or fourth orders). For-
tunately such high-order, and therefore expensive, interpolation procedures are only
needed for interpolation to the ray entrance boundaries and to the boundaries of
the wave grids with kh ≈ 1 and kh ≈ 0.5. (For the finer wave grids the principal
components are smooth and can be accurately approximated by regular interpolation
procedures). Since this interpolation work is needed only on the boundaries and only
on the coarse grid domains, its total cost is insignificant.

The results in Table 3.1 show how the increase of the interpolation order decreases
the interpolation error.

Table 3.1

Error amplitudes obtained in interpolation of the Fourier component exp(iωx) from the grid
with ωh ≈ 1 (the most oscillatory component that appear in the boundary interpolation) in the x
direction . The parameter of the Table is the interpolation order.

order 2 4 6 8
error 1.2e-01 2.1e-02 4.1e-03 8.4e-04

4. Numerical Experiments. In all numerical experiments the wave-ray al-
gorithm was applied to the model problem (1.1) considered on the computational
domain

Ω = {(x, y) : −d/2 ≤ x, y ≤ d/2}(4.1)

and with the right-hand-side support

Ωf = {(x, y)| x2 + y2 ≤ 52}.(4.2)

In all experiments with the non-homogeneous right-hand-side, f(x, y) is chosen to
satisfy

f(x, y) = Lu(x, y),(4.3)

where u(x, y) is a polynomial of r =
√

x2 + y2 for |r| ≤ 5, a Hankel function of r for
|r| > 5 , and it is in C4(R2). The right-hand-side f(x, y) is therefore a polynomial
for |r| ≤ 5 and zero elsewhere. In most experiments we assume k = 1.

The size d of the target domain Ω varies for different tables. The algorithm
employs only one ray level, with eight lattice components (n = 1, L = L1 = 8). The
RBC are either homogeneous, or inhomogeneous with just one principal component.
This component is imposed on one ray grid that corresponds to the lattice principal
component (cos(0), sin(0)). The algorithm employs (except Tables 4.10-4.12) cubic
interpolation. The number of extended mesh-sizes in the ξ direction for ray domains
is usually mξ = ∆dξ/hξ = 5. In the η direction, the extension of the ray domains
depends on the size of the target computational domain, and is given by (3.1). The
values of ∆dξ and ∆dη become experimental parameters in Tables 4.5–4.7.

The errors, calculated in the L2 norm, measure the difference between the discrete
solution uh

i,j and the differential one u(xi, yj). In most experiments the errors are
calculated in the domain

Ωe = {(x, y) : −15 ≤ x, y ≤ 15},(4.4)
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unless stated otherwise. Note that Ωe is located at the center of Ω. Therefore, the
wave and the ray phase errors arising from the right-hand-side do not depend on d. On
the other hand, the phase errors caused by the non-homogeneous radiation boundary
conditions depend on d, since d defines the distance that the principal component
travels before reaching Ωe.

The goal of our numerical experiments is to show the influence of different error
terms and to confirm our theoretical conclusions.

Table 4.1

Errors for different finest mesh-sizes h and computational domain sizes d; the results shown
are for the model problems with the right-hand-side defined by (4.3). The RBC are homogeneous.
The errors are calculated in Ωe, using the L2 norm.

d = 32 d = 64 d = 128
h = 0.5 2.01e-02 2.24e-02 2.25e-02
h = 0.25 4.27e-03 5.11e-03 5.20e-03
h = 0.125 3.10e-03 3.07e-03 3.12e-03

4.1. Wave Truncation Errors. Since the RHS in Table 4.1 is not homoge-
neous, the error includes the wave truncation (non-phase) and the wave phase errors.
For this model problem (with homogeneous RBC) and for the error measured in Ωe,
none of these errors depend on d and both are proportional to h2. The errors for
h = 0.25 and h = 0.5 indeed exhibit these properties, and therefore we conclude that
there the wave errors are dominant. This, however, changes for h = 0.125, where the
error decrease with h weakens, meaning that the resulting error is a combination of
other errors, such as ray phase errors (the non-polynomial part of the solution is of
the ray nature, and consists of a variety of ray components) and interpolation errors.
In the next experiments we will investigate the behavior of such errors and the ways
to diminish them.

4.2. Phase Errors. In Table 4.2, there is neither RHS related errors (the right-
hand-side is homogeneous), nor RBC phase ray errors , since the solution ray functions
are constant (because the RBC are defined at a lattice component). The errors depend
linearly on the domain size d and quadratically on the target mesh-size h. These are
the properties of the wave phase error (2.3), which is the main error source in these
experiments.

Table 4.2

Errors for different finest mesh-sizes h and computational domain sizes d; the results shown
are for the model problems with the homogeneous right-hand-side. The RBC are non-homogeneous
for the lattice component (cos(0), sin(0)). The errors are calculated in Ωe, using the L2 norm.

d = 32 d = 64 d = 128
h = 0.5 1.64e-01 3.64e-01 6.87e-01
h = 0.25 4.03e-02 8.74e-02 1.66e-01
h = 0.125 1.05e-02 2.09e-02 4.12e-02

In the experiments presented in Table 4.3, the RBC conditions are defined for
a non-lattice principal component, and this introduces the RBC ray phase errors.
Unlike the wave phase errors, they should not depend on the target mesh-size h but
still depend on d.

The results show that the errors depend almost linearly on d confirming their
phase nature. Their dependence on h, however, is mixed: the error is a combination
of the O(h2) wave and the O(1) ray phase errors (by (2.3) and (2.10), respectively).
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Table 4.3

Errors for different finest mesh-sizes h and computational domain sizes d. The right-hand-
side is homogeneous. The RBC are non-homogeneous for the non-lattice principal component
(cos(π/16), sin(π/16)). The errors are calculated in Ωe, using the L2 norm.

d = 32 d = 64 d = 128
h = 0.5 1.72e-01 3.32e-01 6.42e-01
h = 0.25 5.09e-02 9.31e-02 1.74e-01
h = 0.125 2.24e-02 3.43e-02 5.83e-02

In the next Table we compare the errors obtained for different values of the wave
number, k. The range of k is chosen to allow the use of the same same wave and
ray grids for all values of k. (For any pair of values k = k0 and k = 2k0, different
grids should be chosen for separation (kh ≈ 1) and for the ray representation (1.10).
Therefore, in our experiments we consider k such that k0 = 0.7 ≤ k < 1.4 = 2k0.)

Table 4.4

Errors for different values of k; the RHS is homogeneous, the RBC are non-homogeneous for
the principal component (cos(α), sin(α)), h = 0.125, d = 64.

k 0.7 0.9 1.0 1.1 1.2 1.3
α = 0 2.82e-02 6.05e-02 8.05e-02 1.06e-01 1.38e-01 1.76e-01

α = π/16 5.50e-02 6.69e-02 8.97e-02 1.16e-01 1.48e-01 1.83e-01

For α = 0, the error ratios are proportional to the cubic power of the wave number
ratios, which is a characteristic of the wave phase error. For α = π/16, instead of
cubic dependence, the power is 2 + ε, 0 < ε < 1, reflecting the fact the error is a
combination of the O(k3) wave and the O(k) ray phase errors (by (2.3) and (2.10)).

4.3. Reflected Rays.

Table 4.5

Errors for different values of ∆dη, the size of the extension of ray domains in the η direction.
The model problem is with the non-homogeneous RHS defined by (4.3), the RBC are homogeneous,
d = 64, h = 0.125. The errors are calculated in the entire computational domain Ω.

∆dη 0 5 10 20
error 2.53e-03 2.52e-03 2.52e-03 2.52e-03

The results in Table 4.5 show no difference for different values of ∆dη, and this is
because of the character of the solution near the boundary: the solution decays as it
propagates toward boundaries, and therefore the size of the reflected waves is small
and does not affect the total error. This, however, changes if the solution amplitudes
remain large near the boundary, as in Table 4.6.

Table 4.6

Errors for different values of ∆dη, the size of the extension of ray domains in the η di-
rection. The model problem is with the homogeneous RHS; the RBC is non-homogeneous for
(cos(π/12), sin(π/12)), d = 64, h = 0.125. The errors are calculated in the entire computational
domain Ω.

∆dη 0 5 10 20
error 1.57e-01 9.61e-02 7.16e-02 7.16e-02

Table 4.6 shows the influence of ∆dη (Section 3.1) on the accuracy of the solution.
The result confirm that in order to avoid influence of the reflected rays, the side
boundaries of ray domains should be sufficiently extended.
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4.4. Backward Residual Propagation. As discussed at the end of Section
3.2, the results in Table 4.7 show no influence of the number of extra mesh-sizes in
the direction opposite to the propagation direction ξ on the solution accuracy.

Table 4.7

Errors for different values of mξ = ∆dξ/hξ is the number of additional mesh-sizes in the
negative ξ direction for ray domains. The model problem is with the non-homogeneous RHS defined
by (4.3), the RBC are homogeneous, d = 64, h = 0.125. The error is calculated in the entire
computational domain Ω.

mξ 0 5 10
error 2.52e-03 2.52e-03 2.52e-03

4.5. Ray Phase Errors. There are two ways to decrease ray phase errors. First,
one can employ a high order discretization for the ray equation (1.7). In the next two
Tables the accuracy of the solution obtained by the solver that employs the second-
and the fourth-order discretization schemes for the ray equations are presented and
compared.

Table 4.8

Errors for the solver that employs ray discrete operators of second order (2.5); the solver
employs cubic interpolation, both in the interior and on the boundaries; the RHS is homogeneous,
and the RBC are non-homogeneous for the principal component (k1, k2) = (cos(α), sin(α)).

h d α = 0.0 α = π/16 α = π/8
0.125 64 2.09e-02 3.47e-02 2.91e-01
0.25 64 8.69e-02 9.13e-02 3.45e-01
0.25 128 1.61e-01 1.74e-01 4.79e-01

Table 4.9

Errors for the solver that employs ray discrete operators of fourth order; the solver employs
cubic interpolation, both in the interior and on the boundaries; the RHS is homogeneous, and the
RBC are non-homogeneous for the principal component (k1, k2) = (cos(α), sin(α)).

h d α = 0.0 α = π/16 α = π/8
0.125 64 2.08e-02 2.22e-02 1.60e-01
0.25 64 8.67e-02 8.34e-02 2.03e-01
0.25 128 1.61e-01 1.74e-01 3.41e-01

Comparing the results in Tables 4.8 and 4.9 shows that the higher-order dis-
cretization does not improve the accuracy for α = 0, the expected results since no
discretization error is committed for a pure lattice component. The dominant error
in this case is the wave phase error. For α = π/16, the improvement is significant,
and the dominant part of the remaining error is also clearly of the wave nature: it
depends almost quadratically on h and linearly on d. For α = π/8, however, even
the reduced error consists mostly of the ray errors. This shows the limitations of the
higher-order discretization approach: at given sizes of k and computational domain d
for sufficiently small finest wave mesh-sizes h the ray error will still dominate. This
happens because the wave phase errors are reduced as h becomes smaller, and the ray
phase errors remain the same.

Another, much more general approach is to reduce ray phase errors when needed.
To reduce the ray phase errors without increasing discretization orders, one needs to
employ not one, as in the experiments discussed above, but several ray grids, with
increasingly finer lattice discretization on the coarser grids. The finer is the lattice
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dicretization, the smaller are the ray phase errors (2.10). The goal of the intermediate
(finer) ray grids is to reduce errors to the almost pure rays. The overall accuracy of the
ray representation is then defined by the coarsest ray grid with the largest number
of lattice components, L = 2N+2, where N is the number of ray levels employed.
There the radiation boundary conditions are imposed, facilitated by the nearly pure
ray representation at that grid. With the right choice of N and, correspondingly, L,
one can make the ray phase errors arbitrary small.

This approach is perfectly suitable for the problems considered on large compu-
tational domains: it requires significant coarsening in space, as L grows (1.10), which
makes the ray approximation very inexpensive even for large L and d.

4.6. Interpolation of Boundary Conditions. In Tables 4.10–4.12 the influ-
ence of the interpolation orders is tested. The difference between the tables is in
the choice of the inclination angle α of the principal component for which the non-
homogeneous RBC are imposed. The influence of the interpolation orders on the
accuracy of the solution is tested for different values of h and d, as well. Fourth order
discretization is employed to the ray operators in order to reduce phase ray errors, by
this making the influence of interpolation errors visible.

We start with the RBC non-homogeneous for the lattice principal component with
α = 0. In this case the ray functions are constant, and therefore the accuracy of the ray
interpolation does not matter, since interpolation of any order accurately interpolates
constant functions. In the wave representation, however, this eix component is the
most oscillatory principal component that yields the highest truncation (phase) and
boundary interpolation errors.

The results in Table 4.10 show that as long as the cubic interpolation (p = 4) is
employed in the wave interpolation the errors depend quadratically on h and linearly
on d, meaning that the wave phase errors is the main error source. The influence
of the interpolation errors is insignificant (for instance, increasing the interpolation
order on the boundary barely improves the accuracy). This, however, changes for
p = 2 in the wave interpolation, for which the interpolation errors become visible.
The ray interpolation order does not influence the accuracy of the solution for this α.

Table 4.10

Errors for interpolation operators of different orders; here (pw(pb
w), pr(pb

r)) are the order of
wave and ray interpolation operators used in the algorithm, both in the interior and on the bound-
aries; the numbers in parenthesizes are the orders of the operators used to interpolate to the bound-
aries from the wave and the ray coarser grids, respectively, if they are different from the orders used
for the interior interpolation; the RHS is homogeneous, and the RBC are non-homogeneous for the
principal component (cos(0), sin(0)).

h d (4, 4) (4, 2) (2, 2) (4(6), 4) (2(4), 2)
0.125 64 2.08e-02 2.08e-02 6.24e-02 2.05e-02 6.03e-02
0.25 64 8.67e-02 8.69e-02 1.00e-01 8.64e-02 9.98e-02
0.25 128 1.60e-01 1.61e-01 1.70e-01 1.60e-01 1.69e-01

Next we consider the principal component with α = π/16. Linear interpolation
p = 2 from the ray grids sufficient for the previous example (α = 0) introduces
a significant error here. For α = π/16, |ωηhη| ≈ 0.4 (Sec. 3.3.1), and therefore
interpolation from the ray grid can be accurately performed using cubic interpolation
(p = 4). For the wave representation, however, on the reconstruction level |wh| ≈ 1
(Sec. 3.3.2), and the higher order interpolation (p = 4 or p = 6) from the wave grids
(especially on the boundaries) leads to a better accuracy.
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Table 4.11

Like Table 4.10, except that the RBC are non-homogeneous for the principal component
(cos(π/16), sin(π/16)).

h d (4, 4) (4, 2) (2, 2) (4(6), 4) (2(6), 2(6))
0.125 64 2.22e-02 2.44e-02 4.53e-02 2.18e-02 4.50e-02
0.25 64 8.34e-02 9.36e-02 9.81e-02 8.30e-02 9.35e-02
0.25 128 1.61e-01 1.63e-01 1.74e-01 1.61e-01 1.73e-01

In Table 4.12 the non-homogeneous RBC are imposed for the principal compo-
nent (cos(π/8), sin(π/8)), the mid-point between the neighboring lattice components
(cos(0), sin(0)) and (cos(π/4), sin(π/4)). For this component, both the ray principal
components (—ωηhη| ≈ 0.8) and the wave principal components (—ωh| ≈ 1 at the
reconstruction level) are rather oscillatory, and it seems that the algorithm could
benefit from increasing interpolation orders, at least for the boundary interpolation.
This, however, is not reflected in the results shown in Table 4.12.

Table 4.12

Like Table 4.10, except that the RBC are non-homogeneous for the principal component
(cos(π/8), sin(π/8)).

h d (4, 4) (2, 2) (4(6), 4(6))
0.125 64 1.60e-01 1.82e-01 1.58e-01
0.25 64 2.03e-01 2.14e-01 1.98e-01
0.25 128 3.41e-01 3.43e-01 3.39e-01

The errors in Table 4.12 are almost independent of the interpolation accuracy.
They, however, depend on the size of the computational domain, meaning that the ray
phase errors discussed in Sec. 4.5 are the main reason of inaccurate approximations.

5. Conclusions and Future Application. For most multigrid procedures the
accuracy of the solution is defined by the discretization accuracy at the finest grid.
This is not always so for problems on unbounded domains, where it is computationally
beneficial to use progressively extended coarse grid domains, so that in its outer
part each coarse grid provides not a correction to the fine grid solution, but the
solution itself. This feature is present in the wave-ray algorithm for solving indefinite
Helmholtz equations with radiation boundary conditions. The developed solver shows
a textbook multigrid efficiency for highly indefinite problems on unbounded domains.
With the right choice of parameters (such as computational domains, wave and ray
mesh-sizes, order of interpolation operators) the produced solution has the accuracy
defined by the finest grid discretization. The analysis offered here can be applied
to other problems given on infinite domains with boundary conditions defined at
infinity. When restricted to finite computational domains, the numerical solvers for
such problems have to deal with interpolation and other errors, similar to the ones
discussed in this paper.

The wave-ray algorithm discussed in the paper is obviously very tech-
nical and employs several special techniques such as rotated coordinate
systems, staggered grids, special weighting operators, etc. Most of these
technicalities however could be avoided, and the obtained simplified al-
gorithm would still be an efficient (though less efficient) solver for the
Helmholtz equation. The main restriction that cannot be lifted in this geo-

metric multigrid solver is a necessity to represent principal components in
their analytical form, and this is available only for constant or very smooth
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k. These principal components are used to obtain differential equations for
the ray functions, which are then discretized and solved.

Our next step (currently in progress, preliminary results in [7]) is to
use the wave-ray approach in the algebraic multigrid framework, with only
numerical approximation to the principal components are needed and used
to obtain discrete ray equations (skipping on differential equations step).
This modified approach allows application of the wave-ray algorithm to
problems with non-smooth wave numbers.
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Appendix. Pseudocode. A brief pseudocode of the wave-ray algorithm is
given next. It describes the solver that was used in all experiments presented in this
paper.

Begin wave ray cycle
Wave sub cycle: from the finest to the coarsest wave grid
Finest wave grid m = Mt

Relaxation Lmum = fm

Residual calculation by full weighting rm−1 = Wm−1
m (fm − Lmum)

Solution initialization by injection um−1 = Im−1
m um

for m = M − 1, . . . , 2
FAS right-hand-side fm = rm + Lmum

if (khm 6≈ 2) Relaxation Lmum = fm

Residual calculation by full weighting rm−1 = Wm−1
m (rm − Lmum)

Solution initialization by injection um−1 = Im−1
m um

Coarsest wave grid (m = 1) Relaxation Lmum = fm

Wave sub cycle: from the coarsest to some fine wave grid
for m = 2, . . . ,Mf , Mf ≤ M is the wave grid with a small phase error

Interpolation um = um + Im
m−1v

m−1

if (khm 6≈ 2) Relaxation Lmum = fm

Wave residual calculation for ray sub cycle (m = Mf ) rm = fm − Lmum

for (m = Mf − 1, . . . ,Mc), Mc is the wave grid with khc ≈ 1
Residual transfer by full weighting rm = Wm

m+1r
m+1

Ray sub cycle with N ray levels
Finest ray grid n = 1
for (` = 1, . . . , L1)

Residual separation r̂1,` = W 1,`
Mc

(rMce1,`),

e1,` is the complex conjugate of e1,`, the `th component on the 1st lattice
Ray FAS right-hand-side

f̂1,` = r̂1,` + L̂1û1,`, where (r̂1,` 6= 0) and f̂1,` = 0, elsewhere
for (n = 2, . . . , N)

Residual separation

for (` = 1, . . . , N, ` = ` + 2) for odd `

r̂n,` = Wn,`
n−1,(`+1)/2(r̂

n−1,(`+1)/2)

for (` = 2, . . . , N, ` = ` + 2) for even `

r̂n,` = Wn,`
n−1,`/2(r̂

n−1,`/2en−1,`/2en,`) + Wn,`
n−1,`/2+1(r̂

n−1,`/2+1en−1,`/2+1en,`),

where en,` is the `th component on the nth lattice
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for (` = 1, . . . , Ln)
Ray FAS right-hand-side

f̂n,` = r̂n,` + L̂nûn,` where (r̂n,` 6= 0) and f̂n,` = 0 elsewhere

if (n 6= N) Relaxation Lnun,` = fn,`

else
Imposition of RBC at entrance and side boundaries

ûn,`(ξ, η) = û0(η) for ξ = ξ0; ûn,`(ξ, η) = û±(ξ) for η = ±η0

Solving L̂nûn,` = f̂n,`

for (n = N − 1, . . . , 1)
Interpolation to the next finer ray grid

for (` = 1, . . . , Ln)

Interior interpolation: ûn,` = ûn,` + In,`
n+1,2`−1v̂

n+1,2`−1+
1
2In,`

n+1,2`−2(v̂
n+1,2`−2en+1,2`−2/en,`) + 1

2In,`
n+1,2`(v̂

n+1,2`en+1,2`/en,`)

Boundary interpolation: ûn,` = 0 on Γ̂n,`

ûn,` = In,`
n+1,2`−1û

n+1,2`−1 + 1
2In,`

n+1,2`−2(û
n+1,2`−2en+1,2`−2/en,`)+

1
2In,`

n+1,2`(û
n+1,2`en+1,2`/en,`)

Wave solution reconstruction m = Mc:
Zero initialization at boundaries um = 0 on Γm

for (` = 1, . . . , L1)
In interior um = um + e`Im

1,`v̂
1,`; At boundaries um = um + e`Im

1,`û
1,`

End wave reconstruction

for (m = Mc + 1, . . . ,M)
Zero initialization at boundaries um = 0 on Γm

In interior um = um + Im
m−1v

m−1; At boundaries um = um + Im
m−1u

m−1

Relaxation Lmum = fm
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