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Abstract. We present a novel multilevel algorithm which computes N roots of the secular equa-
tion inO(CN) computer operations, where C depends on the desired accuracy. Since current methods
of solution require O(N2) operations, this algorithm can drastically reduce the computational effort in
various applications, including updating the singular value decomposition and symmetric eigenvalue
problems, and solving constrained least squares problems. The algorithm is based on the multilevel
approach for fast evaluation of integral transforms. It has been adapted for the efficient solution of
the secular equation. We have also incorporated discontinuous kernel softening, a technique which
improves the implementation of multilevel summation algorithms toward theoretical optimality. We
present and discuss numerical results, parallelization, and other related applications of the multilevel
approach, including a possible substitute for current symmetric tridiagonal eigenbasis solvers (such
as the Divide and Conquer method).
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1. The secular equation. We consider the computational task of finding all
the roots {λ∗k}Nk=1 of the secular equation

f(λ) := 1 + σv(λ) = 0, v(λ) :=
N
∑

k=1

uk

dk − λ
,(1.1)

which are strictly separated by the values {dk}Nk=1, namely [21, 25, 32]

d1 < λ∗1 < d2 < λ∗2 < . . . < dN < λ∗N < dN + σ
N
∑

k=1

u2k,(1.2)

assuming d1 < d2 < . . . < dN are real, σ > 0 and uk > 0 for all k. This problem has
various applications in numerical linear algebra, such as

1. Updating the singular value decomposition of matrices [1, 10].
2. Modifying the symmetric eigenvalue problem [11, 14, 15, 16, 24, 25, 27].
3. Solving constrained least squares type problems [13, 18, 20, 21, 23, 28, 36,

37, 44].
4. Computing the eigenvalues of a matrix using the escalator method [19].
5. Invariant subspace computations [17].

A thorough literature survey may be found in [32, 33, 34, 35].

1.1. Current methods of solution. Secular equations are often a “subproblem
of a larger one” [34], as in the Divide and Conquer method [26, 16]. Consequently,
they “typically have to be solved to high accuracy many times, which requires fast
and stable methods” [34]. Many root-searching algorithms for solving (1.1) have been
extensively studied and developed, among these are the following:
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1. The quadratic BNS methods [10, 11, 38], based on a rational interpolation.
2. Melman’s methods [32, 33, 34, 35], that use a change of coordinates trans-

forming the original equation into an equivalent problem for which Newton’s method
exhibits global quadratic convergence.

3. Gragg’s third order zero-finder [24] and other high-order methods [34, 35].
These methods (e.g., Melman’s) can compute any root of (1.1) to machine accuracy
using a small number of direct evaluations of v and its derivative (O(log(log(1/ε)))
iterations are needed to obtain an ε-accuracy). Since each such evaluation costs O(N)
operations, N roots are computed in O(N 2).

1.2. Objectives. Our goal is to design a linear complexity algorithm for com-
puting N roots of (1.1) in only O(CN) operations, where C depends on the desired
accuracy ε, C = O((log(1/ε))q) for some small q ∈ R+. This is achieved in a two-stage
procedure:

(a) Designing an algorithm for evaluating v at N values of λ in O(N) operations.
(b) Adapting this fast evaluation to the solution of (1.1) in O(N), using any of

the root-search methods mentioned in §1.1.
Both stages are handled efficiently and naturally by the multilevel approach pre-

sented in [5]. In §2 we present our fast multilevel evaluation algorithm (stage (a)),
for uniformly dense {dk}Nk=1. §3 discusses the fast solution of (1.1) (stage (b)). We
conclude in §4 by discussing non-uniform density, generalizations, parallelization, and
other related applications of the multilevel approach, including a possible substitute
for current symmetric tridiagonal eigenbasis solvers (such as the Divide and Conquer
method [14, 16]).

2. Fast evaluation of v(λ). A necessary stage toward the fast solution of (1.1)
is the fast evaluation of v. Let {λj}Nj=1 be any sequence satisfying (1.2) (e.g., approx-

imations to {λ∗j}Nj=1 at a certain root-searching step); we wish to calculate

v(λj) =
N
∑

k=1

G(dk − λj)u(dk), j = 1, . . . N ; u(dk) := uk, G(r) :=
1

r
(2.1)

in O(N) operations. The algorithm for computing {v′(λj)}Nj=1, if desired, is discussed

in §3.2. For simplicity let us first assume that {dk}Nk=1 have a uniform density α,

i.e., it is possible to place a uniform grid {D1
K}N1

K=1 with meshsize H over [d1, dN ],
so that in each interval [D1

K , D1
K+1] there lies a uniformly bounded number (about

αH =: m) of dks. The interlacement property (1.2) implies that {λj}Nj=1 are also
uniformly dense (for nonuniform densities, see §4.1).
Our algorithm is a straightforward application of the general multilevel approach for
fast evaluation of integral transforms with asymptotically smooth kernels, which is
described in detail in [5, 7, 8, 9]. We also incorporate a technical modification (discon-
tinuous softening) that improves the work-accuracy relation of multilevel summation
algorithms toward optimality. This may be of interest in practical implementations.

2.1. Kernel softening. The kernel G(r) = 1/r is asymptotically smooth, that
is, increasingly smooth for larger r. As in [5, 7, 9] it can be decomposed into

G(r) = GS(r) +Glocal(r),(2.2)

so that
(i) GS(r) = G(r) (or Glocal(r) = 0) for all |r| ≥ S.
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(ii) GS is suitably smooth on the scale S, namely, for any ε > 0 there exists
p = O(log(1/ε)) ∈ N such that GS can be uniformly approximated to an accuracy
ε by a p-order interpolation from its values on any uniform grid with a meshsize
comparable with S [9].
Traditional multilevel algorithms [5, 8, 9, 40] used a polynomial softened kernel

GS(r) =
1

S
G∗(

r

S
), G∗(r) :=

{

∑2p−1
n=0 anr

n, |r| ≤ 1,
G(r), |r| ≥ 1,

(2.3)

that fits G,G′, . . . , G(p) at r = ±S. In this paper we propose a novel piecewise smooth
kernel softening in the form

GS(r) =
1

S
G̃(

r

S
), G̃(r) :=

{

0, |r| ≤ 1,
G(r), |r| > 1,

(2.4)

which is suitably smooth only for r ∈ R\{−S, S}. Nevertheless, the discontinuous
softening (2.4) has the following advantages over the continuous softening (2.3):

1. The derivative G̃(p)(r) vanishes for |r| ≤ 1; hence its magnitude is certainly
less than (G∗)(p)(r) for all r 6= ±1. Moreover, (G∗)(p) may have a large magni-
tude (typically, (G∗)(p) ∼ O((p!)1+ν) ∼ O(p!pνp) for some ν > 0). This is observed
especially in kernels that fully depend on r, rather than on |r| only (in [8, 9, 40],
G = G(|r|)). For instance, in the secular problem, G’s sign flip across r = 0 causes a
“fold” in G∗ (see Figure 1), consequently causing a large ‖(G∗)(p)‖L∞(R) (see Table 1).
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Fig. 1. The kernel G(r) = 1/r (solid line) and its softenings, G∗(r) (dashed line) and G̃(r)
(dashed-dotted line), for p = 2 (left picture) and p = 12 (right picture).

Table 1
The powers ν corresponding to the magnitudes of the p-order derivatives of G∗, G̃, which de-

termine the interpolation error εI , versus p.

p log(‖(G∗)(p)‖L∞(R)/p!)/(p log(p)) log(‖G̃(p)‖L∞(R\{−S,S})/p!)/(p log(p))

2 0.8582 0
4 0.4275 0
6 0.3357 0
8 0.2934 0
10 0.2681 0
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The relative error εI in approximating the scale-S softened kernel GS(r) := G̃(r/S)/S
by a p-order central interpolation from its values on a meshsize-H uniform grid (when
the discontinuities are not straddled by the interpolation interval) satisfies

εI . 2

(

pH

2eS

)p

,(2.5)

as explained in Appendix A.
2. An evaluation of G∗ costs O(p) operations, versus none per G̃ evaluation.
3. Computing {an}2pn=0 of (2.3) requires O(p3) operations, whereas G̃ requires

no “preparatory work”. This is usually a pre-processing step, but if the softened
kernel needs to be repeatedly updated, this would mean a major saving of work.
On the other hand, G̃’s jumps at r = ±1 require additional correction steps, which are
described in §2.2. Overall, the cost efficiency of the multilevel summation algorithm
is improved by using (2.4) instead of (2.3), because of the first two advantages. This
is shown in §2.4 for the secular equation, and in §4.3, for general integral transforms
in higher dimensions.

2.2. Derivation of the algorithm. Following the terminology of [5, §3–4],
observe that

v(λj) = v0S(λj) + v0local(λj), j = 1, . . . , N,(2.6)

where

v0S(λj) :=
N
∑

k=1

GS(dk − λj)u(dk), j = 1, . . . , N(2.7)

and

v0local(λj) :=
∑

k:|dk−λj |≤S

G(dk − λj)u(dk), j = 1, . . . , N.(2.8)

The sum (2.8) extends over O(s) points dk, if we choose S = sH. The softened kernel
can be represented as

GS(dk − λj) =
∑

K∈σk

ω1,0
kKGS(D

1
K − λj) +O(εI),(2.9)

where σk := {K : |D1
K − dk| < pH/2}, ω1,0

kK are the weights of interpolation from the

gridpoints D1
K to dk, and εI is bounded by (2.5). The grid {D1

K}N1

K=1 may include
O(p) points to the left of d1 and to the right of dn to keep the interpolation central;
from now on, p is assumed to be even. In fact, for a given j, (2.9) holds for all
k = 1, . . . , N except the set

Ωbad
j := {k : ∃K,K+1 ∈ σk, b ∈ {−1, 1}, sgn(D1

K−λj−bS) 6= sgn(D1
K+1−λj−bS)},

since GS(dk−·) is not continuous in the interpolation stencil for k ∈ Ωbad
j . Neglecting

O(εI) terms, it follows that

v0S(λj) =
N
∑

k=1

∑

K∈σk

ω1,0
kKGS(D

1
K − λj)u(dk) + ω0(λj) = V 0

S (λj) + ω0(λj),(2.10)
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where

V 0
S (λj) :=

N1
∑

K=1

GS(D
1
K − λj)U

1(D1
K), j = 1, . . . N,(2.11)

U1(D1
K) :=

∑

k∈τK

ω1,0
kKu(dk), τK := {k : K ∈ σk}, K = 1, . . . , N1,(2.12)

ω0(λj) :=
∑

k∈Ωbad
j

GS(dk − λj)u(dk)−
∑

K∈ΩBAD
j

GS(D
1
K − λj)Ũ

1
j (D

1
K),(2.13)

Ũ1
j (D

1
K) :=

∑

k∈τ̃jK

ω1,0
kKu(dk), τ̃jK := Ωbad

j ∩ τK , K ∈ ΩBAD
j ,(2.14)

ΩBAD
j := {K : τ̃jK 6= ∅}, and (2.13), (2.14) are defined for all j = 1, . . . , N . Note

that the sums in (2.12), (2.13), and (2.14) extend over O(p) points; hence, they are
local. {U1

K}K is the “aggregation” of {uk}k from the non-uniform fine locations {dk}k
(denoted “level l = 0”) to the uniform coarse locations {DK}K (denoted “level l = 1”),
a procedure referred to as anterpolation in [5], since it is the adjoint of interpolation.
Similarly, we can use the smoothness of GS(d− λ) in λ to write

GS(D
1
K − λj) =

∑

J∈σ̄j

ω̄1,0
jJ GS(D

1
K − Λ1

J) +O(εI), j = 1, . . . , N,(2.15)

for all K = 1, . . . , N1 except the set

Ω̄BAD
j := {K : ∃J, J+1 ∈ σ̄j , b ∈ {−1, 1}, sgn(D1

K−Λ1
J−bS) 6= sgn(D1

K−Λ1
J+1−bS)},

where σ̄j := {J : |Λ1
J−λj | < pH/2}, ω̄1,0

jJ are the λ-interpolation weights, and {Λ1
J}N̄1

J=1

is a uniform grid with meshsize H over [λ1, λN ] (again including O(p) points to the
left of λ1 and to the right of λN ), from which we can use p-order central interpolation
to all points λ1, . . . , λN . Up to an O(εI) error,

V 0
S (λj) = V̄ 0

S (λj) + z0(λj), j = 1, . . . , N,(2.16)

where

V̄ 0
S (λj) :=

∑

J∈σ̄j

ω̄1,0
jJ V 1

S (Λ
1
J),(2.17)

V 1
S (Λ

1
J ) :=

N̄1
∑

K=1

GS(D
1
K − Λ1

J)U
1(D1

K), J = 1, . . . , N̄1,(2.18)

z0(λj) :=
∑

K∈Ω̄BAD
j

GS(D
1
K − λj)U

1(D1
K)−

∑

J∈σ̄j

ω̄1,0
jJ Ṽ 1

j (Λ
1
J),(2.19)
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and

Ṽ 1
j (Λ

1
J) :=

∑

K∈Ω̄BAD
j

GS(D
1
K − Λ1

J)U
1(D1

K), J = 1, . . . , N̄1.(2.20)

The sums in (2.17), (2.19) are over local sets and defined for all j = 1, . . . , N ; (2.18)
is a uniform coarser version of (2.1). We have reduced the original evaluation of v at
the non-uniform fine level (l = 0) to the evaluation of V 1

S at the uniform coarse level
(l = 1). In order to keep the evaluation of (2.8) inexpensive, the coarsening ratio m
cannot be too large (e.g., m = 2 [9]) and s should not increase with N . To sum up,
the multi-summation (2.1) is replaced by the following:

(i) Anterpolation: calculate the “aggregated” {U 1
K}K from (2.12).

(ii) Coarse grid summation: carry out the task (2.18).
(iii) Interpolation: interpolate {V 1

S (Λ
1
J)}J to {V̄ 0

S (λj)}j using (2.17).
(iv) Local corrections: add the local correction vlocal(λj) defined by (2.8) to V̄ 0

S .
(v) w-correction: compute w0 from (2.13),(2.14) and add it to V̄ 0

S .
(vi) z-correction: compute z0 from (2.19), (2.20) and add it to V̄ 0

S .
The number of nodes at level 1 is roughly N/2, which may still be too large to calculate
directly. Instead, the task (2.18) can be further reduced to summation at level l = 2
on twice as coarse (meshsize 2H) λ- and d-grids, using the same algorithm [(i)–(vi)]:
decomposition of GS into G2S plus a local part, anterpolation of U 1 to level 2, level 2
summation, interpolation of V 2

2S to level 1, and addition of the three local corrections.
The above-described procedure can be repeated recursively until a grid is reached at
which direct summation can be done in at most O(N) operations.

2.3. Computational cost and evaluation error. The local correction (iv)
costs O(sN) operations, since each G-evaluation costs O(1). However, it is less ob-
vious to implement the w-correction in O(pN) operations. It may seem that for
any given j it takes O(p) points to compute every Ũ1

j (DK),K ∈ Ω̄BAD; hence,

O(p2N) operations are required for evaluating the right-hand term in the right-hand-
side of (2.13). Instead, we can use a “sliding window” approach (see for example
[41, 42, 45]): {Ũ1

1 (D
1
K)}K are calculated in O(p2) and then repeatedly updated in

O(p) operations to obtain {Ũ1
2 (D

1
K)}K , and so on. This is possible since the sets

(τjK∪τj+1,K)\(τjK∩τj+1,K) contains only O(1) points for every j = 1, . . . , N−1. The
same approach can be applied to the z-correction, interpolations, and anterpolations.
Thus, the total computational complexity of steps (i),(iii)-(vi) is W = O((p + s)N),
which is smaller than the O(psN) cost of the multilevel summation with the “tradi-
tional” softening [5, 8, 9, 40]. Generally, if the order of anterpolation/interpolation
from/to level l to/from l − 1 is denoted by pl and the softening scale is denoted by
Sl := 2l−1Hsl−1, the total work W per fine grid point in evaluating (2.1) (omitting
some constants and neglecting the direct evaluation at the coarsest level) is given by

W

N
=

t−1
∑

l=0

2−l(pl +Asl),(2.21)

where t = O(logN) is the number of levels and A > 0 is a constant. The error εv in
evaluating v satisfies (as implied by (2.5))

εv . 2

t−1
∑

l=0

(

pl
2esl

)pl

.
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2.4. Parameter optimization. The values of s, p at each of the levels l =
0, . . . , t − 1 should be determined to minimize the computational work under the
constraint of a controlled evaluation error, εv = ε.

2.4.1. Two-level parameter optimization. Let us first consider the case t =
1. Discarding the coarse level summation portion of the work and omitting constants,
the constrained minimization problem for p := p0, s := s0 is

{

W/N ∝ p(1 +Aκ/(2e)) −→ min., κ := 2es/p,
εv ∝ κ−p = ε.

The optimum is attained if and only if

[

d

dκ

(

1 +Aκ/(2e)

log(κ)

)]

k=kopt

= 0, popt =
log(1/ε)

log(κopt)
.

This implies

κopt(log(κopt)− 1) = (2e)/A =⇒ (e.g.) κopt ≈ 6.376, A = 1,
κopt ≈ 9.045, A = 0.5.

Thus,

popt = popt(ε) = K1 log

(

1

ε

)

, sopt = sopt(ε) = K2 log

(

1

ε

)

,(2.22)

where for instance K1 ≈ 0.54,K2 ≈ 0.63 for A = 1 and K1 ≈ 0.45,K2 ≈ 0.75 for
A = 0.5. Consequently, the computational complexity of evaluating (2.1) to accuracy
ε is

W = (K1 +AK2)N log(1/ε) =: KN log(1/ε).(2.23)

2.4.2. Multilevel parameter optimization. Clearly, if we use pl = popt(ε),
sl := sopt(ε) at all levels l = 0, . . . , t− 1, the error εv would be tε. Instead, we use

pl = popt(2
−l−1ε), sl = sopt(2

−l−1ε), l = 0, . . . , t− 1,(2.24)

so that

εv =

t−1
∑

l=0

2−l−1ε ≤ ε

and

W ≤ KN

t−1
∑

l=0

2−l log

(

2l+1

ε

)

≤ 2KN

(

log

(

1

ε

)

+ 4 log (2)

)

,(2.25)

using (2.21). This cost is smaller than the total cost of the multilevel summation algo-
rithm with continuous softening. Indeed, with the latter we getW = O(N(log(1/ε))2).
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Fig. 2. The optimal interpolation order (popt(ε)/ log(1/ε), left picture) and the optimal
softening distance (sopt(ε)/ log(1/ε), right picture) versus log(1/ε), for N = 64 (dashed line),
N = 256 (dashed-dotted line), and N = 1024 (solid line). For small ε, popt ≈ 0.3 log(1/ε) and
sopt ≈ 1.1 log(1/ε).

2.5. Numerical results. First, we performed two-level (t = 1) evaluation ex-
periments of (2.1) for different values of N , to show that the optimal p, s indeed
satisfy (2.22). The pair (popt(ε), sopt(ε)) corresponding to the minimal W (out of
all 0 ≤ p ≤ 16, 0 ≤ s ≤ 64) was computed for various ε values, and stored in a
table. The values of W were averaged over 20 experiments, each using a uniformly
random sequence pair {dk}Nk=1, {λj}Nj=1 ⊂ [0, 1] that satisfied (1.2). Figure 2 shows
that popt(ε)/ log(1/ε), sopt(ε)/ log(1/ε) are indeed bounded independently of N .
Second, we performed the multilevel evaluation of (2.1) for various N and ε values
(t = O(logN) being the maximum possible, so that level l = t grids contained O(pt)
points) using {pl, sl}t−1l=0 , which were computed using the table generated at the two-
level stage and (2.24). Table 2 summarizes the computational cost of evaluating v in
these experiments; each experiment was averaged over 20 uniformly random sequence
pairs {dk}Nk=1, {λj}Nj=1 ⊂ [0, 1] satisfying (1.2) (this was a sufficiently large sample).
The l∞ error ε̃ of the differences between the directly computed v values and the
values computed using the fast evaluation algorithm was always less than the desired
ε. It can be observed that W behaves according to the desired (2.25).

Table 2
The computational cost W/(N log(1/ε̃)) versus N and ε. Each column (starting from the sec-

ond) corresponds to a different log10(ε) value, that is, ε = 10−2 through 10−12; W is the arithmetic
operations count. It can be observed that W/(N log(1/ε̃)) is practically uniformly bounded, as claimed
by (2.25).

N −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12

64 36.0 33.1 31.7 30.0 26.9 21.6 8.1 5.5 5.5 5.5 5.5
128 41.0 40.4 37.0 40.3 45.3 51.0 37.4 42.3 38.2 33.6 30.1
256 46.8 46.0 40.4 43.1 59.6 61.3 57.0 60.3 64.6 62.4 60.4
512 46.2 44.0 40.6 40.4 51.6 62.8 61.4 65.3 72.7 71.4 71.5
1024 42.5 41.1 40.4 38.7 56.5 49.4 62.9 64.0 68.2 75.0 74.2
2048 44.1 43.2 42.3 39.8 58.3 48.1 64.9 64.6 69.2 77.7 77.1
4096 43.0 41.8 40.8 36.8 51.1 45.2 63.2 64.0 67.6 77.3 76.9

3. Fast solution of f(λ) = 0. The fast evaluation algorithm presented in §2
can be naturally adapted to any root-search method for solving f(λ) = 0. For demon-



N ROOTS OF SECULAR EQUATION IN O(N) 9

stration purposes, we used Melman’s improved Newton method [32]. Let 1 ≤ j < N
(for simplicity we avoid the case j = N , which is also treated in [32]). The iterations
take the form

λ
(n+1)
j = dj +

(λ
(n)
j − dj)

2f ′(λ
(n)
j )

f(λ
(n)
j ) + (λ

(n)
j − dj)f ′(λ

(n)
j )

, n = 0, 1, 2, . . . .(3.1)

It was proved that these iterations converge quadratically to λ∗j , provided that the
starting point is

λ
(0)
j = dj +

2A

−B −
√
B2 − 4AC

,(3.2)

where

a := 1 + ∆j , δ := dj+1 − dj ,
A := −uj

δ
, B := aδ + uj , C :=

uj+1

δ
− a,

and

∆j :=
∑

k:k 6=j

uk

dk − dj
, j = 1, . . . , N.(3.3)

Our algorithm for finding the roots {λ∗j}n−1j=1 to an accuracy ε consists of the following
steps:

(i) Compute {∆j}N−1j=1 of (3.3) using the fast evaluation algorithm (§2).
(ii) For j = 1 to N − 1, set λj to the expression of (3.2).

(iii) Compute {V 1
S (Λ

1
J)}N1

J=1 using the fast evaluation algorithm (§2).
(iv) For j = 1 to N − 1, do steps (v)–(viii).
(v) While (STOP–CRITERIONj = FALSE) do steps (vi)–(viii).
(vi) Compute f(λj) (see §3.1).
(vii) Compute f ′(λj) (see §3.2).
(viii) Set λj ← dj + ((λj − dj)

2f ′(λj))/(f(λj) + (λj − dj)f
′(λj)).

Step (i) is executed in O(N log(1/ε)) using the fast evaluation algorithm of §2 for
computing {v(λj)}Nj=1 to accuracy ε, with one modification: the kernel G(r) is defined
to be 0 at r = 0. Here we can accept a low accuracy, since we only provide initial
conditions for the roots.
The initialization of {λj}j (step (ii)) requires O(N) operations.
Step (iii), using an accuracy ε, is a preparatory step for the fast evaluation of f, f ′ in
steps (vi),(vii) (see §3.1,3.2). We execute the algorithm for evaluating {v(λj)}Nj=1 to

accuracy ε, except the last four steps (i.e., the steps before interpolating {V 1
S (Λ

1
J )}J

to level 0). This takes O(N log(1/ε)) operations.
The stopping criterion may be chosen in different ways. We use the criterion

|λ(n+1)
j − λ

(n)
j | ≤ ε|dj+1 − dj |.

Provided that each evaluation of f or f ′ at steps (vi),(vii) costs O(log(1/ε)) operations
(see §3.1,3.2), the total cost of the algorithm (i)–(viii) is O(N log(1/ε)). The numer-
ical stability of algorithm (i)–(viii) depends solely on the stability of the root-search
methods; the fast evaluation introduces in addition central interpolation, which is a
numerically stable process.
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3.1. O(log(1/ε)) evaluation of v. Once {V 1
S (Λ

1
J)}J is computed and stored

(step (ii)), a value f(λ) for a given λ may be calculated in additional O(log(1/ε))
operations, using the last four steps of the evaluation algorithm: interpolation of
V 1
S to the point λ, followed by the three local corrections to vs(λ). Here a “sliding

window” (see §2.3) is used (for every j) to update Ũ1
j (D

1
K), Ṽ 1

j (Λ
1
J) from their values

at the previous root-search step. Since the approximations λ
(n)
j to the jth root λ∗j

remain in the interval [dj , dj+1] for all n (see melman1) the interpolation stencils in
the w- and z-corrections can “move” only by at most O(1) meshsizes in every Newton
step. Hence, each correction costs only O(p = log(1/ε)) operations per Newton step
for a single root.

3.2. O(log(1/ε)) evaluation of v′. If we also want to evaluate f ′, we can again
use the pre-computed values of {V 1

S (Λ
1
J )}J . As in §3.1, we perform the last four steps

of the evaluation algorithm, with two modifications:
1. In the interpolation step, we use different interpolation coefficients {ξ1,0J (λ)}J

for interpolating V 1
S from {Λ1

J}J∈σ̄j
to λ, instead of {ω̄1,0

J (λ)}J (used for interpolating

V 1
S from {Λ1

J}J∈σ̄j
to λ in the v-evaluation step; {ω̄1,0

J (λj)}J = {ω̄1,0
jJ }J ). These coef-

ficients are computed from differentiating the interpolation polynomial for GS(D
1
K−·)

(see also [40]), so that (except when discontinuities are straddled by the interpolation
stencil)

−G′S(D1
K − λ) =

∑

J∈σ̄j

ξ1,0J (λ)
[

−GS(D
1
K − Λ1

J)
]

+O(εI).(3.4)

2. The three local corrections are executed with the kernel −G′ instead of G
(note that (d/dλ)[GS(d− ·)] = −G′(d− ·)).
We remark that we can evaluate v′ to a lower accuracy than the one required for
v, without spoiling the convergence of the Newton iterations (3.1). In fact, we can
avoid computing the derivative by switching to the secant root-search method, thereby
reducing the overall computing time by a factor 1.8.

3.3. Numerical results. Table 3 compares the computational cost of evaluating
the roots {λ∗j}Nj=1 of (1.1), using a direct evaluation of v (with ε = 10−10) versus a fast

evaluation of v with ε = 10−20, 10−10. The results were averaged over 20 uniformly
random sequence pairs {dk}Nk=1, {λj}Nj=1 ⊂ [0, 1] satisfying (1.2) (this was a sufficiently
large sample). Indeed, the average cost per root for the direct evaluation method
increases linearly with N , whereas it remains constant for our proposed method, as
desired. The cross-over (using direct evaluation versus the fast evaluation, the roots
being computed to the same accuracy ε) was detected at N ≈ 200 for ε = 10−10 and
at N ≈ 450 for ε = 10−20 (for ε = 10−5 at N ≈ 70).

4. Concluding remarks. In the previous sections we described the basic ele-
ments of the fast evaluation of v and the fast solution of (1.1) for uniformly dense
{dk}k (N roots are computed in only O(N) operations). The following are some im-
portant insights and generalizations of these algorithms, that can be further explored
in a future research.

4.1. Non-uniform d-density. Recursive local grid refinement is essential to
maintain the above work-accuracy relationship wherever the number of dk points per
meshsize is large, including pathologically high concentrations (for instance, dk =
1/k, k = 1, . . . , N).
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Table 3
The computational cost (number of arithmetic operations) of the proposed novel algorithm ver-

sus current algorithms: the fourth column is the number of Newton steps (3.1) in the algorithm
(i)–(viii) for ε = 10−10, and its cost per root (number of arithmetic operations for computing a
single root) is given in column 5. Columns 2 and 3 are the corresponding measurements when f, f ′

in the algorithm (i)–(viii) are directly computed from (1.1), (2.1) to accuracy ε = 10−10. Columns
6,7 are the corresponding values to columns 4, 5, for ε = 10−20.

Direct (−10) Direct (−10) Fast (−10) Fast (−10) Fast (−20) Fast (−20)
N # iter. cost/N # iter. cost/N # iter. cost/N

64 5.43 2.66 · 103 5.50 4.01 · 103 6.52 4.70 · 103

128 5.59 5.44 · 103 5.53 8.29 · 103 6.62 1.16 · 104

256 5.58 1.08 · 104 5.55 8.37 · 103 6.66 2.09 · 104

512 5.56 2.15 · 104 5.66 8.09 · 103 6.71 2.36 · 104

1024 5.57 4.30 · 104 5.69 7.34 · 103 6.73 2.50 · 104

2048 5.56 8.59 · 104 5.68 7.49 · 103 6.76 2.61 · 104

4096 5.56 1.72 · 105 5.68 7.45 · 103 6.75 2.65 · 104

Importantly, the algorithm will be based on patches of uniform grids; therefore inter-
polations are highly efficient compared with those involving non-uniform meshsizes.
In the rest of this section we first explain where these patches should be introduced,
and then we discuss the adaptation of the evaluation algorithm to such patches.

4.1.1. Refinement strategy. Since in the secular problem the local average
density of {λj}j is the same as the {dk}k’s density, local refinements are introduced
in the same regions for both d and λ spaces; in general, we may need to construct
different patches for the λs (see §4.3).
A direct application of the evaluation algorithm described in §2.2 does not efficiently
address the v-evaluation task on non-uniform sets {dk}k, {λj}j . In regions where the
number α of d-points per meshsize H of the finest grid employed in the evaluation
algorithm is large, the work involved in the local corrections increases like O(α2). To
avoid this, we introduce a patch of a twice finer grid, defined only over these regions. It
is possible to construct an optimal quantitative criterion to decide where to introduce
such a local refinement, based on its cost effectiveness. For example: a twice finer
patch should be introduced in any region with length of at least s cells (where S = sH
is the softening distance, see §2.1), that includes more than αcS d-points, where αc

is a small integer whose optimal value can be determined experimentally. Clearly, if
two close regions need to be locally refined, it is more efficient to unify them into just
one patch.

If yet more dense regions exist within the twice finer patches, we create yet finer
patches within the former patches, using the same criterion. This is recursively re-
peated until no further refinement is needed.

4.1.2. The evaluation algorithm with patches. Here we start the algorithm
on the finest patches, where we anterpolate u from the original {dk}k which lie within
the region of these patches and have the highest local density, to the equally spaced
gridpoints of the finest patches. Thus we have eliminated the regions of the highest
density from the original evaluation task. By recursively anterpolating u to yet coarser
and larger patches, we finally arrive at the original everywhere uniform grid covering
the full domain of the original {dk}k, where the algorithm of §2.2 can be directly
applied.

Note that the local refinement create intermediate levels with kernels G(d, λ) which
no longer depend only on d−λ; but this changes only their local part, Glocal, and the
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local corrections still cost O(s) per λ-point.

4.2. General kernels. The multilevel approach for evaluating (2.1) provides
the same efficiency for computing integral transforms involving any asymptotically
smooth kernel G(r), as shown in [5]. In particular, other secular equations such as

1 + σ

N
∑

k=1

uk

(dk − λj)ζ
= 0

can be solved in linear time (N roots in O(N) operations), for any {uk}k ⊂ R and
ζ > 0. Importantly, the same multilevel approach can be used to address other
multi-summation tasks with other types of kernels (e.g., oscillatory) [5].

4.3. Higher dimensions. The secular equation (1.1) does not admit a higher
dimensional analogue; nevertheless, it may still be interesting to extend the discon-
tinuous softening technique to the multilevel summation of the transform

v(λj) =
N
∑

k=1

G(dk, λj)u(dk), {dk}Nk=1, {λj}N̄j=1 ⊂ Rd,(4.1)

with an asymptotically smooth G(x, y). The discontinuous softening (2.4) can be
extended to this case, specifically,

G̃(x, y) =

{

0, |x− y| < 1,
G(x, y), |x− y| > 1,

|x− y| := maxµ|xµ − yµ|.(4.2)

This kernel is singular on the sphere |x−y| = S; hence the w- and z-corrections involve
points in a high-dimensional ring including |x−y| = S (for kernels G = G(|x−y|2), it
might be more efficient to use |x− y|2 :=

√

∑d
µ=1(xµ − yµ)2 in G̃ instead of |x− y|).

It can be shown that they can be implemented in O(pd) operations per λj , again using
the “sliding window” technique (see §2.3). In addition, the local correction costs here
only O(sd) per λj , versus O(sdp) for the usual softening, e.g., (2.3). Substituting the
optimal p = s = O(log(1/ε)), the total work amounts to

W = O

(

N

(

log

(

1

ε

))d
)

,

whereas it is O(N(log(1/ε))q) when using everywhere-smooth softened kernels, with
q = d + 1 + η, η ≥ 0 depending on the magnitude of the p-order derivatives of the
softened kernel for r ≤ S (see §2.1).
Importantly, discontinuous softening cannot replace the original smooth softening of
[5] because

1. The original smooth softening is much simpler to implement, and the cost per
node (for a fixed accuracy) may be smaller. It is also easier to adapt local refinements
to it (see 4.1) than to discontinuous softening.

2. In many physical problems (e.g., evaluation of potential or dipole fields [8, 9,
40]), η is small and d = 2, 3, hence the relative loss (q − d) is not too large.

3. An important advantage of continuous softening is that it gives the kind of
multiscale description of the interactions needed in dynamic situations, where the par-
ticles carrying these interactions participate in multiscale movements, as in molecular
dynamics [3, 5, 6, 39].
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However, the cost-efficiency of the multilevel summation algorithms may be sig-
nificantly improved by discontinuous softening when

1. The dimension d is low (in the extreme case, when d = 1);
2. The kernel G is inherently “hard-to-soften”, as in the secular problem or in

some problems where G is not a function of r := |x − y| (i.e., unlike the cases of
[8, 9, 40], where G(r) = log(r) or 1/r).

The power d of log(1/ε) in the total work seems to be generally the smallest pos-
sible, since the local corrections involve O(pd) points per evaluation; in this sense,
discontinuous softening leads to the optimal work-accuracy relation.

4.4. Parallelization. Our presented algorithms can be efficiently parallelized.
The number of unparallelizable steps is theoretically only O(log(N)), since we mostly
rely on interpolations and local corrections, which can be fully parallelized (see also
[5]).

4.5. Eigenbasis computation. The Divide and Conquer method [14, 16, 26] for
finding the full spectrum (eigenvalues and eigenvectors) of an N ×N symmetric tridi-
agonal matrix requires O(N 2) computer operations (although it runs in O(N logN)
for some very special matrices, the storage always increases as O(N 2)). Even if we
incorporate our fast evaluation algorithm for the secular equation, the computational
cost remains the same. Instead, the recently developed approach of multiscale eigen-

basis (MEB) [6, 29, 30, 31] seems more reasonable and efficient in addressing such
eigenbasis computations. For instance, this method can be directly applied for com-
puting N eigenvectors and eigenvalues of the symmetric tridiagonal eigenproblem,
as well as many other sparse eigenproblems, in O(N logN) operations and storage.
This cost can be reduced to O(N) in special cases, e.g., for discretizations of constant
coefficient differential operators. Of course, singular cases (e.g., when the ratio of
two adjacent diagonal elements is very large) need to be treated (e.g., deflated), as
demonstrated in [10, 11, 14, 26] for O(N 2) eigenbasis solvers.

5. Acknowledgement. The authors are thankful to the referees of this paper.
In particular, they brought to our attention that the idea of evaluating the secular
equation in O(N) operations is not new. In [26, §5], Gu and Eisenstat describe how the
fast multipole method [12] can be used to compute all the roots of the secular equation
in O(N) operations. The resulting Divide and Conquer algorithm for the symmetric
tridiagonal eigenproblem computes all the eigenvalues in O(N logN) operations, and
all the eigenvectors in O(N 2 logN) operations.

We can add that the idea of fast multilevel evaluation of integral transforms with
very general kernels, on which the method presented here is based, appears already
in [4, §8.6], although the specific case of the secular equation is not mentioned there.
Also, the recent multiscale eigenbasis approach (see §4.5) shows how to reduce the
O(N2 logN) cost of calculating the entire eigenbasis, to only O(N logN) operations.

Appendix A. The error of a pth order central interpolation of G̃ defined by (2.4)
from its values on a grid of meshsize H satisfies [43]

εI ≤
1

p!
‖G̃(p)‖L∞(R) ·

(

H

2
· 3H

2
· . . . · (p− 1)H

2

)2

=
1

p!
p!Hp

(

p!

2p(p2 )!

)2

,

for any positive even p. Simplifying the expression and using Stirling’s formula, we
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get

εI . Hp

( √
2πp(p

e
)p

2p
√
πp( p

2e )
p

2

)2

= 2

(

pH

2e

)p

.

When we scale GS(r) = G̃(r/S)/S, the pth derivative is scaled by S−p−1, and the
relative error by S−p. This implies (2.5).
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