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Introduction

Considerable progress over the past thirty years has
been made in the development of large�scale computa�
tional �uid dynamics �CFD� solvers for the Euler and
Navier�Stokes equations� Computations are used rou�
tinely to design the cruise shapes of transport aircraft
through complex�geometry simulations involving the
solution of ������ million equations	 in this arena
 the
number of wind�tunnel tests for a new design has been
substantially reduced� However
 simulations of the en�
tire �ight envelope of the vehicle
 including maximum
lift
 bu�et onset
 �utter
 and control e�ectiveness
 have
not been as successful in eliminating the reliance on
wind�tunnel testing� These simulations involve un�
steady �ows with more separation and stronger shock
waves than at cruise� The main reasons limiting fur�
ther inroads of CFD into the design process are� ���
the reliability of turbulence models and ��� the time
and expense of the numerical simulation� Because of
the prohibitive resolution requirements of direct sim�
ulations at high Reynolds numbers
 transition and
turbulence modeling is expected to remain an issue
for the near term�� The focus of this paper addresses
the latter problem by attempting to attain optimal
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e
ciencies in solving the governing equations� Typi�
cally current CFD codes based on the use of multigrid
acceleration techniques and multistage Runge�Kutta
time�stepping schemes are able to converge lift and
drag values for cruise con�gurations within approxi�
mately ���� residual evaluations� More complexity in
the geometry or physics generally requires many more
residual evaluations to converge
 and sometimes con�
vergence cannot be attained� An optimally convergent
method is de�ned��� as having textbook multigrid e
�
ciency �TME�
 meaning the solutions to the governing
system of equations are attained in a computational
work which is a small �less than ��� multiple of the
operation count in the discretized system of equations
�residual evaluations�� Thus
 there is a potential gain
of more than two orders of magnitude in operation
count reduction if TME could be attained�

In this paper
 a distributed relaxation approach to
achieving TME for Reynolds�averaged Navier�Stokes
�RANS� equations is discussed along with the founda�
tions that form the basis of this approach� Because the
governing equations are a set of coupled nonlinear con�
servation equations with discontinuities �shocks
 slip
lines
 etc�� and singularities ��ow� or grid�induced�

the di
culties are many� The TME methodology in�
sists that each of the di
culties should be isolated

analyzed
 and solved systematically using a carefully
constructed series of model problems� An important
aspect of the distributed relaxation approach is a sep�
arate treatment of each of the factors �elliptic and
hyperbolic� constituting the system of partial di�er�
ential equations� Another distinguishing aspect of the
approach is that these factors are treated directly for
steady�state �ows rather than through pseudo�time
marching methods	 time�dependent �ow solvers can be
constructed within this approach and in principle are
simpler to develop than steady�state solvers� An ex�
tensive list of envisioned di
culties in attaining TME
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for CFD simulations
 along with possible solutions
 are
discussed elsewhere�	� � This paper also summarizes re�
cent progress towards the attainment of TME in basic
CFD simulations�

Foundations for Textbook Multigrid

E�ciency

The basic framework for TME solvers is full multi�
grid �FMG� algorithms��� 
� ��� In FMG algorithms

the solution process is started on a very coarse grid
where the computational cost of solution is negligible�
The coarse�grid solution is then interpolated to the
next �ne grid to form an initial approximation� Few
multigrid full approximation scheme �FAS� cycles
 or
possibly just one
 are performed next to obtain an im�
proved �ne�grid solution approximation� Then
 the
process proceeds to �ner grids until the solution on
the target �nest grid is achieved�
In solution of highly nonlinear problems
 a good ini�

tial guess is important� A general way to obtain such
an initial guess is by continuation
 in which the so�
lution to the target problem is approached through
the solutions of a sequence of parameterized problems�
Usually the problem starting the continuation process
is easy to solve
 and di
culty gradually increases with
control parameter approaching the target value	 this
continuation process can often be integrated into an
FMG solver� For example
 with viscosity as the control
parameter
 at the coarse grids more arti�cial viscosity
can be used
 then gradually be taken out as the algo�
rithm proceeds to �ner levels� Such FMG continuation
is often natural because larger numerical viscosity is
introduced on coarse grids
 even without aiming at
continuation�
A version named ��FMG algorithm provides the

device needed for optimal adaptive local re�nement�
E
cient multigrid solvers based on this approach have
been demonstarted���

The objective of FMG algorithms �and TME meth�
ods in particular� is fast convergence to the solution of
the di�erential equations
 not necessarily fast asymp�
totic residual convergence� The natural solution toler�
ance is the discretization error de�ned as the di�erence
between the exact solutions of discrete and di�erential
problems� Thus
 the quality of a solution approxima�
tion on a given grid can be measured by the relative
magnitude of algebraic errors in comparison with the
discretization error level� The algebraic error is de�ned
as the di�erence between the exact and approximate
solutions of the discrete problem� On any grid in an
FMG algorithm
 we expect the algebraic errors after
few multigrid cycles to be always less than the dis�
cretization error�
On the other hand
 a fast residual convergence is

considered as an important monitoring tool� In many
practical cases
 it is possible to develop a solver ex�
hibiting fast residual convergence rates without com�

promising TME� Note however that sometimes the
quality of the target�grid solution can be much im�
proved by double discretization methods applying for
relaxation a di�erent scheme than that used in cal�
culating residuals transferred to the coarse grid	 zero
target�grid residuals might not be the aim in this case�

Standard multigrid methods e
cient for elliptic
problems separate the treatment of oscillatory and
smooth error components� The former are e
ciently
reduced in single�grid iterations �relaxation�	 the lat�
ter are well approximated on coarse grids and
 hence

eliminated through the coarse�grid correction� The dif�
�culties associated with extending TME for solution of
the RANS equations relate to the fact that these equa�
tions are a system of coupled nonlinear equations that
is not
 even for subsonic Mach numbers
 fully ellip�
tic
 but contain hyperbolic partitions� The e
ciency
of classical multigrid methods severely degrades for
nonelliptic problems because some smooth characteris�
tic components cannot be adequately approximated on
coarse grids�����
 The characteristic components are
much smoother in the characteristic directions than in
other directions� To be e
cient
 a multigrid solver for
nonelliptic problems has to adequately address three
types of errors� ��� high�frequency error components

��� uniformly smooth error components
 ��� character�
istic error components�

If the target discretization is strongly h�elliptic

�or semi�h�elliptic� one can design a local �or block�
wise� relaxation procedure e
ciently reducing all high�
frequency error components� By de�nition
�� 
� 
� �� a
discrete scalar �not necessarily elliptic� operator L�u�
possesses a good measure of h�ellipticity
 if the abso�
lute value of its symbol jL����j � je�i�

���j�L�ei�
���j��j is

well separated from zero for all high�frequency Fourier
modes� Here j � �jx� jy� jz� are the grid indexes and
�� � ��x� �y� �z�� � � j�xj� j�yj� j�z j � � are normalized
Fourier frequencies� High�frequency Fourier modes are
the modes satisfying max�j�xj� j�yj� j�zj� �

�
� � For sys�

tems
 the measure of h�ellipticity is de�ned as the
measure of the determinant operator�

Coarse�grid correction is usually e
cient for uni�
formly smooth error components� An e�ective reduc�
tion of characteristic error components can be achieved
either by designing a proper relaxation scheme reduc�
ing not only high�frequency but smooth error com�
ponents as well �which can be done in many non�
uniformly�elliptic cases by downstream ordering of re�
laxation steps��� ��� or by adjusting coarse�grid opera�
tors for a better characteristic�component approxima�
tion�

Multigrid methods e
ciently reducing all the three
aforementioned types of error have been developed for
scalar nonelliptic operators��
��� Similar e
ciency for
solution of the RANS system of di�erential equations
can be achieved by exploiting the system factorizabil�
ity� Factorizability is a property of the system deter�
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minant to be factored as a product of simple scalar
factors representing the �elliptic and hyperbolic� par�
titions contributing to the target di�erential system�

For the subsonic compressible Euler equations
 the
�rst TME solvers exploiting factorizability of the sys�
tem have been developed by Ta�asan��
��� New canon�

ical variables have been introduced
 and in these vari�
ables
 the Euler system of equations has a block upper
triangular form with the main diagonal blocks con�
sisting of the basic components of the system��� The
main disadvantage of this formulation is that it is not
easily generalized to viscous and unsteady problems

especially in three dimensions�

Another approach toward achieving TME for so�
lution of the Euler and incompressible Navier�Stokes
equations����	 is based on the pressure�equation for�
mulation which e�ectively separates elliptic and hy�
perbolic factors of the system� This formulation
has been extended to generalized coordinates���� ��

Grid�independent convergence rates have been demon�
strated for inviscid �ow around airfoils and for viscous
incompressible �ow past a �nite �at plate and a non�
lifting airfoil� This approach has met di
culties in
generalizing to viscous compressible �ows�

A more general approach is the distributed relaxation
method��� 
� ��� ����� The details of the method are pre�
sented in the next section� An important feature of
this approach is that the separation of di�erent fac�
tors constituting the system determinant occurs only
in computing updates at the relaxation stage of an
outer multigrid solver	 the original coupled �conser�
vative� equations are always used to compute resid�
uals� This feature allows a lot of freedom in relax�
ation scheme design since di�erent schemes may be
applied to di�erent �ow regions� The distributed re�
laxation approach reduces the problem of relaxing a
complicated system of discretized coupled di�erential
equations to relaxation of scalar factors constituting
the system determinant� Note that relaxation schemes
for the scalar factors may include separate multigrid
solvers� Usually
 distributed relaxation can be ap�
plied throughout the entire domain having the full
e�ect away from discontinuities �shocks
 slip lines� in
the regular �smoothly varying� �ow �eld� Some local
relaxation sweeps should be applied in these special
regions after �and perhaps also before� the distributed
relaxation pass to reduce residuals� The general rule
for e
cient adaptive relaxation is to apply additional
relaxation sweeps wherever local residuals signi�cantly
exceed the average level characterizing the neighboring
regular �ow �eld�

The distributed relaxation scheme design for the
RANS system of equations can be signi�cantly simpli�
�ed if the target discretization is also factorizable
 i�e�

the discrete system determinant can be represented as
a product of discrete scalar factors
 each of them ap�
proximating a corresponding factor of the determinant

of the di�erential RANS equations� In fact
 since dis�
tributed relaxation is applied only for solution updates
in a relaxation sweep
 the factorizability property is
only required for the principal linearization opera�
tor� The principal linearization of a scalar equation
contains the linearization terms that make a major
contribution to the residual per a unit change� The
principal terms thus generally depend on the scale
 or
mesh size
 of interest� For example
 the discretized
highest derivative terms are principal on grids with
small enough mesh size� For a discretized system of
di�erential equations
 the principal terms are those
that contribute to the principal terms of the system
determinant� If the principal linearization is discretely
factorizable and e
cient relaxation schemes for the
corresponding discrete scalar factors are available
 dis�
tributed relaxation e
ciently reduces high�frequency
and characteristic error components as well�
For nonfactorizable �but h�elliptic� discretizations of

the RANS equations
 the general scheme for relaxation
updates should include two di�erent passes� ��� Di�
rect relaxation of the target discrete scheme that is
e
cient for high�frequency error reduction and ��� dis�
tributed relaxation based on reasonable discretizations
of the scalar factors of the di�erential system determi�
nant �these discretizations are not derived from the
target discrete system� that eliminates characteristic
error components�

Distributed Relaxation

The system of time�dependent compressible Navier�
Stokes equations can be written as

�tQ�R�Q� � �� ���

where the conserved variables are Q �
��u� �v� �w� �� �E�T 
 representing the momentum
vector
 density
 and total energy per unit volume

and R�Q� is a spatial divergence of a vector function
representing convection and viscous and heat transfer
e�ects� In general
 the simplest form of the di�erential
equations corresponds to nonconservative equations
expressed in primitive variables
 here taken as the set
composed of velocity
 pressure
 and internal energy

q � �u� v� w� p� ��T � For a perfect gas
 the primitive
and conservative variables are connected through the
following relations

p � �� � �����

� � E �
�

�

�
u� � v� � w�

�
�

c� � �p���

where c is the speed of sound and � is the ratio of
speci�c heats�
The time�dependent nonconservative equations are

found readily by transforming the time�dependent con�
servative equations�
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�q
�Q

��tQ�R� � ��

�tq� �q
�Q
R � ��

where �q
�Q

is the Jacobian matrix of the transforma�
tion� For steady�state equations
 the time derivative
is dropped� In an iterative procedure
 the correction
	q � qn�� � qn
 where n is an iteration counter
 can
be computed from the equation

L 	q � �
�q

�Q
R� ���

where L is a linear operator containing the viscous and
inviscid terms of the nonconservative operator that
are principal at the scale h� Thus
 a good correction
is expected away from discontinuities in the regular
�smoothly varying� �ow �eld�
Usually
 the principle linearization operator L is de�

rived under the assumption of solution smoothness
that requires the magnitudes of all solution di�erences
to be smaller than the solution magnitude� The ap�
proximation inherent in this principal linearization can
be illustrated by using the nonlinear convection equa�
tion


N�u� � u�hxu � f


A full linearization for a correction 	u results in

�N

�u
	u � 	u�hxu� u�hx	u � f �N�u�


The principal linearization of this correction equation
at scale h is

u�hx	u � f �N�u��

where the term 	u�hxu can be neglected as h � � as�
suming that �hxu is bounded� This approximation is
also termed Picard iteration
 which is exact for the lin�
ear case� Note that on coarser grids
 the term 	u�hxu
may not be so small� The FMG algorithm plays a very
important role in preventing �ne�grid initial approxi�
mations with large high�frequency algebraic errors vi�
olating the smoothness assumption�
While signi�cantly simpli�ed by retaining only prin�

cipal terms
 the system ��� is still a set of coupled
equations containing elliptic and hyperbolic compo�
nents� Therefore
 collective Gauss�Seidel relaxation of
L is not often e�ective
 and factorizability of L must
be exploited� The distributed relaxation method re�
places 	q in ��� byM	w
 so that the resulting matrix
LM becomes lower triangular� The diagonal elements
of LM are composed ideally of the separable factors
of the matrix L determinant� These factors are scalar
di�erential operators of �rst or second order
 so their
e
cient relaxation is a much simpler task than relaxing

the entire system associated with L� In relaxing scalar
factors
 the changes introduced in the �ghost� vari�
ables 	w �the variables 	w are �ghost� because they
need not be explicitly used in computations� during
relaxation are distributed
 with the pattern of distri�
bution matrixM
 to the primitive variables� To obtain
the optimal �textbook� e
ciency
 relaxation of each
factor should incorporate the essential part of an ef�
�cient multigrid solver for its corresponding operator�
sometimes this essential part is just the relaxation part
of that solver
 sometimes this may even be an entire
separate multigrid solver applied at some proper sub�
domains�

Incompressible Navier�Stokes Equations

The steady�state incompressible Navier�Stokes
equations can be written as

Q�u��p � ��
� � u � ��

where u � �u� v� w�T is the velocity vector and Q� �
u ����� is a convection�di�usion operator� �Q � Q�

denotes the particular case with zero �� � �� physical
di�usion�� Under the solution smoothness assumption
the principal linearization operator is given by

L �

�
���

Q� � � �x
� Q� � �y
� � Q� �z
�x �y �z �

�
��� � ���

detL � �Q�
� �� ���

where the coe
cients �u� v� w� in Q� are computed
from the previous solution approximation and �xed
during each distributed relaxation step� An appropri�
ate matrix M is

M �

�
���

� � � ��x
� � � ��y
� � � ��z
� � � Q�

�
��� 
 ���

yielding the lower triangular operator

LM �

�
���

Q� � � �
� Q� � �
� � Q� �
�x �y �z ��

�
��� 
 ���

Euler Equations

The conservation form for the Euler equations is
given by ��� with

R�Q� � �xF�Q� � �yG�Q� � �zH�Q�� ���

� of ��
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F�Q� �

�
BBBB	

�u� � p
�uv
�uw
�u

�uE � up



CCCCA � G�Q� �

�
BBBB	

�uv
�v� � p
�vw
�v

�vE � vp



CCCCA �

H�Q� �

�
BBBB	

�uw
�vw

�w� � p
�w

�wE � wp



CCCCA 


The Jacobian matrix of the conservative�to�
nonconservative transformation is de�ned as

�q

�Q
�

�
BBBB	

��� � � � �
� ��� � � �
� � ��� � �
� � � � � � �
� � � � ���



CCCCA�

�
BBBB	

� � � �u �
� � � �v �
� � � �w �

�u �v �w u��v��w�

� �

�u �v �w ��� u��v��w�

� �



CCCCA 


In the regions of smoothly varying solution
 the prin�
cipal linearization of the nonconservative operator is

L �

�
������

Q � � �
�
�x �

� Q � �
�
�y �

� � Q �
�
�z �

�c��x �c��y �c��z Q �
c�

�
�x

c�

�
�y

c�

�
�z � Q

�
������

 ���

The determinant of the matrix operator L is

detL � Q

�
Q� � c��

�
� ���

where � is the Laplace operator
 and Q�� c�� repre�
sents the full�potential operator�
A possible distribution matrix M is given by

M �

�
�����

� � � � �
�
�x �

� � � � �
�
�y �

� � � � �
�
�z �

� � � Q �
� � � � �

�
����� ����

and

LM �

�
�����

Q � � � �
� Q � � �
� � Q � �

�c��x �c��y �c��z Q� � c�� �
c�

�
�x

c�

�
�y

c�

�
�z � c�

��
� Q

�
����� 
 ����

Compressible Navier�Stokes Equations

The conservative compressible Navier�Stokes equa�
tions are formulated in the form ��� withR�Q� de�ned
in ����

F�Q� �

�
BBBB	

�u� � p� ���xu� ��� � u�
�uv � ���xv � �yu�
�uw � ���xw � �zu�

�u
�uE � up� �u�� � u�� �
� � ��x�



CCCCA �

G�Q� �

�
BBBB	

�uv � ���xv � �yu�
�v� � p� ���yv � ��� � u�

�vw � ���yw � �zv�
�v

�vE � vp� �v�� � u�� �
� � ��y�



CCCCA �

H�Q� �

�
BBBB	

�uw � ���xw � �zu�
�vw � ���yw � �zv�

�w� � p� ���zw � ��� � u�
�w

�wE � wp� �w�� � u�� �

 � ��z�



CCCCA �

where


� � �u�xu� v��xv � �yu� � w��xw � �zu��

� � �v�yv � u��xv � �yu� � w��yw � �zv��


 � �w�zw � u��xw � �zu� � v��yw � �zv��

� and � are viscosity coe
cients
 and � is the coe
�
cient of heat conductivity�
The corresponding nonconservative formulation is

given by

�
�u � ��� �

�
��

��
�
�xx

�
u�

��
�
��xyv � �xzw� �

�
�
�xp � ���

�u � ��� �
�
��

��
�
�yy

�
v �

��
�
��xyu� �yzw� �

�
�
�yp � ���

�u � ��� �
�
��

��
�
�zz

�
w �

��
�
��xzu� �yzv� �

�
�
�zp � ��

�c��� � u� � �u � ��p� �� � ���������� � ��
c�

�
�� � u� � �u � ��p� �

�
��� �� � ��

where

� � �
�
���xu�

� � ���yv�
� � ���zw�

�

���xv � �yu�
� � ��xw � �zu�

� � ��yw � �zv�
�
�

����xu� �yv � �zw�
�


Assuming solution smoothness and constant viscos�
ity and heat conduction coe
cients
 the principal lin�
earization operator L
 keeping the terms principal on
both the viscous and inviscid scales
 is given by
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L �

�
��������

Q�
�
�

��
�
�xx �

��
�
�xy �

��
�
�xz

�

�
�x �

�
��
�
�xy Q�

�
�

��
�
�yy �

��
�
�yz

�

�
�y �

�
��
�
�xz �

��
�
�yz Q�

�
�

��
�
�zz

�

�
�z �

�c��x �c��y �c��z Q ��� ����
c�

�
�x

c�

�
�y

c�

�
�z � Q�

�

�
��������
� ����

detL � Q�
�
�

h
�c�

��
�� �Q��c��� �������

��
���

�Q� ������
�

��Q

i
�

����

where
 nondimensionalizing by density and sound
speed and applying Stokes hypothesis for the bulk
viscosity term
 the coe
cients become ��� �

M���� Re�� � �M����Re Pr�
 and �� � ��� � ���

M� is the free stream Mach number
 and Re and Pr
are Reynolds and Prandtl numbers respectively� In�
stead of devising a suitable relaxation method for the
complicated scalar factor in the brackets of ����
 one
can opt to a distributed relaxation partially decoupling
the linear system associated with operator L ����� In
particular
 the distribution matrix

M �

�
������

� � � � �
�
�x �

� � � � �
�
�y �

� � � � �
�
�z �

���x ���y ���z Q ����
�

�

� � � � �

�
������

����

results in

LM �

�
��������

Q�
�

� � � �

� Q�
�

� � �

� � Q�
�

� �

P�x P�y P�z QQ ����
�

�c�� ��� ����

c�

�
�x

c�

�
�y

c�

�
�z �

c�

��
� Q�

�

�
��������
� ����

where P � �c� � ��Q� The last two equations re�
main coupled
 requiring a block ��by�� matrix solution�
This distributed relaxation scheme is still much less
expensive than direct relaxation of matrix L requiring
solution for a block ��by�� matrix�

Relaxation of Scalar Factors

E
ciency of the distributed relaxation schemes out�
lined in the previous section is determined by the ef�
�ciency of the relaxation �solution� schemes for scalar
factors appearing at the main diagonal of the matrices
LM�
For uniformly elliptic operators such as Lapla�

cian
 di�usion�dominated convection�di�usion opera�
tor
 and subsonic full�potential operator many e
�
cient relaxation techniques are available �see text�
books
� �� 
� ��� For such operators
 an important re�
laxation requirement is e
cient reduction of high�
frequency errors� All the smooth components are well

approximated on coarse grids built by standard �full�
coarsening	 therefore
 the coarse�grid correction is ef�
�cient in reduction of smooth errors�
For nonelliptic and weakly elliptic factors
 e�g�
 con�

vection
 convection�dominated convection�di�usion

transonic and supersonic full�potential operators

�smooth� characteristic components cannot be approx�
imated with standard multigrid methods�����
� ��� 
�

Several approaches aimed at curing the
characteristic�component problem have been studied
in the literature� These approaches fall into two
categories� ��� development of a suitable relaxation
scheme �single�grid method� to eliminate not only
high�frequency error components but the characteris�
tic error components as well	 ��� devising an adjusted
coarse�grid operator to approximate well the �ne�grid
characteristic error components�

Single�Grid Methods

Downstream marching

For hyperbolic problems
 the simplest �rst�category
method is downstream marching� If the correspond�
ing discretization is a stable upwind discretization and
the characteristic �eld does not recirculate
 then down�
stream marching is a very e
cient solver that yields
an accurate solution to a nonlinear hyperbolic equa�
tion in just a few sweeps �a single downstream sweep
provides the exact solution to a linearized problem��
The downstream marching technique was successfully
applied in solving many CFD problems associated with
non�recirculating �ows �see
 e�g�
��� ��� ��� ��� �
�� How�
ever
 if a discretization operator is not fully upwind
�e�g�
 is only upwind biased�
 straightforward down�
stream marching is unstable� For the schemes that
cannot be directly marched
 there are two possible al�
ternatives �also of marching type�� defect�correction
and predictor�corrector methods�

Defect Correction

Let us consider a defect correction method for a dis�
cretized hyperbolic equation

Lhui�	i� � fi�	i� � ����

with speci�ed in�ow boundary conditions u�	i� �
Let  ui�	i� be the current solution approximation�

Then the improved approximation �ui�	i� is calculated
by defect�correction scheme in the following two steps�

�� The correction vi�	i� is calculated by solving oper�
ator Lh

d with a right�hand side represented by the
residual of ���� computed for the current approxi�
mation  ui�	i� � The in�ow boundary conditions for
v are initialized with the zero values�

Lh
dvi�	i� � fi�	i� � Lh ui�	i� 
 ����

�� The current approximation is corrected as

�ui�	i� �  ui�	i� � vi�	i� 
 ����
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The operator Lh
d is called the driver operator� It is

chosen to be easily solvable and usually less accu�
rate than the target operator Lh	 the latter can be
very general� If the iteration converges
 steps ����
and ���� can be repeated until the desired accuracy
is reached� Usually the e
ciency of defect�correction
methods is quite satisfactory
��� �
� 
��

 even though
in principle the convergence rate of a defect�correction
method for nonelliptic operator is normally mesh�size
dependent

	�
� as explained below�

In several papers �e�g�

�� 
��
 authors studying the
defect�correction method for nonelliptic problems ob�
served a slow convergence or even a divergence in some
common error norms for the initial iterations and good
asymptotic convergence rates afterward� This behav�
ior is di�erent from that observed in solving elliptic
problems by the defect�correction method
 where the
asymptotic convergence rate is the slowest one� This
nonelliptic feature is explained by some properties as�
sociated with the cross�characteristic interaction �e�g�

dissipation and!or dispersion� in the operators in�
volved in the defect�correction iterations� Speci�cally

this cross�characteristic interaction de�nes the pene�

tration distance �also termed �survival distance����
of a characteristic component� The penetration dis�
tance is the distance from the in�ow boundary within
which the discrete solution of the homogeneous prob�
lem reasonably approximates the continuous one �i�e�

the discretization error is substantially smaller than
the solution��

The penetration distance of a characteristic com�
ponent is roughly proportional to �����h��

p
q 
 where

q is the highest order of di�erentiation in the hy�
perbolic operator under considerations
 p is the
discrete�operator approximation order
 � is the cross�
characteristic frequency of the characteristic compo�
nent
 and h is the mesh size� The ratio of penetration
distances of the operators Lh and Lh

d is an important
factor for determining the number of defect�correction
sweeps required to reduce the algebraic error to the
discretization�error level or to reach the asymptotic
convergence regime�

When the operators Lh and Lh
d have the same

approximation order �p � r�
 e
ciency of the
defect�correction method is optimal and mesh�size h�
independent If however the operators Lh and Lh

d have
di�erent approximation orders �p and r
 respectively

p � r�
 then e
ciency of the defect�correction method
is h�dependent	 i�e�
 the maximal number of sweeps
which might be required to reduce the algebraic er�
ror to the discretization�error level �or to reach the
asymptotic convergence rates� is larger on �ne grids
than on coarse grids� This is because one has to iterate
Lh
d as many times as needed to attain accuracy up to

the Lh penetration distance� The worst �largest� ratio
of penetration distances is obtained for characteristic
components for which the penetration distance in the

target p�order accurate discretization approaches the
depth R of the computational domain in the charac�
teristic direction� It follows that the required number

of iterations is proportional to



R
h

� p�r
p�q

�

Predictor�Corrector

One potentially e
cient but yet unexploited
method to overcome grid�dependent convergence expe�
rienced in defect�correction iterations is the predictor�
corrector technique� A detailed look into the defect�
correction iteration reveals that the computational
work distribution is unbalanced� ��� Driver operator
iterations at locations beyond the penetration distance
do not improve the solution approximation� ��� In suc�
cessive iterations
 the solution approximation near the
in�ow boundary becomes much more accurate than in
the interior	 the computational e�orts spent in this re�
gions could be more pro�tably invested at the accuracy
frontier�
The predictor�corrector method has been exten�

sively used for ordinary and time�dependent di�eren�
tial equations	

� 
� however
 applications for steady�
state nonelliptic problems have been very limited� In
predictor�corrector schemes
 the �nal update of the so�
lution at a particular point is computed from the local
solution of the target operator� The solution values
at downstream points included in the target�operator
stencil are predicted from the solution of the driver
�predictor� operator� In order to de�ne a family of
predictor�corrector schemes
 one can divide the com�
putational domain into several time�like layers	 the
�rst layer contains all the grid points adjacent to the
in�ow boundary� Each next layer is composed of the
grid points that contribute to the stencils of target op�
erators de�ned at the points of the previous layer and
do not belong to any of the previous layers�
Now
 a family of predictor�corrector schemes for

solving the correction equation

Lhvi�	i� � Rh
i�	i�

� fi�	i� � Lh ui�	i� � ����

where Lh is the target operator
  ui�	i� is the current
solution approximation with residual Rh

i�	i�

 and vi�	i�

is the desired correction function
 can be de�ned as

PC�� The solution of ���� is approximated by solving

Lh
dvi� 	i� � Rh

i�	i�

 ����

This scheme is identical with the defect�correction
scheme�

PCk� Recursive de�nition of the derived predictor�
corrector schemes �recursion with respect to k�
can be done as follows� Assume the �j����th layer
have already been �nally updated in the current
sweep� Then
 to calculate new values at the next
j�th layer one has to perform the following three
steps�
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�� To predict values at the j�th layer with
PCk�� scheme�

�� To predict values at the �j����th layer with
PCk�� scheme�

�� To update values at the j�th layer by directly
relaxing �����

The schemes for k � �� �� � have been tested for a
linearized supersonic full�potential operator���

Multigrid methods

Recirculation

Downstream marching methods are not viable for
problems with closed characteristics� Alternative dis�
cretization and solution techniques should be consid�
ered� The discretization issue becomes especially im�
portant for �ows with streamlines that do not start
and end at boundaries
 but constitute closed curves� In
such cases
 even a very small viscosity plays an impor�
tant role in determining the �ow throughout the do�
main� The solution in the limit of vanishing viscosity
depends very strongly on how the viscosity coe
cients
tend to zero� The propagation of information from the
boundary into the domain is governed by the viscous
terms no matter how small they may be� It has been
shown	� for both the scalar convection�di�usion prob�
lem and the incompressible Navier�Stokes equations
that varying cross�stream numerical viscosity �caused
usually by varying angles between the stream and the
grid lines	 e�g�
 in standard upwind and upwind bi�
ased schemes� may prevent convergence to a physically
realizable solution� In the most general case
 it can
be shown that even isotropic viscosity is not su
�
cient for convergence to a physical solution
 and one
must actually specify a uniform viscosity� However

for the homogeneous problems there are several indi�
cations	�� 	� �though no proof� that isotropy su
ces�

To obtain a discretization scheme that exhibits the
appropriate physical�like behavior for vanishing viscos�
ity
 one must either add su
cient explicit isotropic
viscosity that will dominate the anisotropic numeri�
cal viscosity of the convection operator
 or else derive
a discrete convection operator with numerical viscos�
ity satisfying the condition of isotropy� An upwind
isotropic�viscosity discretization has been derived�	�

One general approach to the algebraic solution
of nonelliptic equations with closed characteristics is
to apply a multigrid method with an overweighted
upwind�biased residual restriction� E
cient multigrid
solvers for recirculating convection equation have al�
ready been demonstrated�	�� 	� This approach is well
combined with the distributed relaxation method for
the RANS equations
 because within a distributed
relaxation sweep a multigrid solver with optimal over�
weighting can be applied to a separate scalar nonellip�
tic equation with closed characteristics�

Another solution approach is to apply some gen�
eral techniques to approximate indirectly smooth char�
acteristic components� Among helpful techniques
are recombination of iterants
 cycles with high in�
dexes
 and implicit alternative�direction relaxation�
Recombination of iterants �solution approximations
on di�erent stages of a multigrid algorithm� at each
grid level eliminates several �number of iterants mi�
nus one� error components
 those
 more speci�cally

that are most prominent in the residual function�
Making increasingly many coarse�grid iterations per
each �ne�grid iteration
 cycles with high indexes
solve the characteristic�component problem on coarser
grids� Implicit alternative�direction relaxation simu�
lates downstream marching in the regions with open
characteristics and e
ciently transfers information in
the regions with characteristics closely aligned with
the grid� Theoretically
 each of these methods can�
not completely resolve the problem of poor coarse�grid
correction to the �ne�grid smooth characteristic error
components� The problem already manifests itself in
two�level algorithms with any type of local relaxation�
On �ne grids the number of problematic error compo�
nents may increase
 and many cycles may be needed to
collect the necessary number of the �ne�grid iterants to
exclude all the troubling error components� However

it has been shown experimentally	
 that a combination
of implicit alternative�direction defect�correction type
relaxation
 recombination of iterants on all the levels

and W�cycles can result in a relatively e
cient multi�
grid solver for recirculating �ow problems on practical
grids�

Full�Potential Operator

The full�potential operator is a variable type oper�
ator
 and its solution requires di�erent procedures in
subsonic
 transonic
 and supersonic regions� In deep
subsonic regions
 the full�potential operator is uni�
formly elliptic and therefore standard multigrid meth�
ods yield optimal e
ciency� When the Mach num�
ber approaches unity
 the operator becomes increas�
ingly anisotropic and
 because smooth characteristic
error components cannot be approximated adequately
on coarse grids
 classical multigrid methods severely
degrade� In the deep supersonic regions
 the full�
potential operator is uniformly hyperbolic with the
stream direction serving as the time�like direction� In
this region
 an e
cient solver can be obtained with a
downstream marching method� However
 downstream
marching becomes problematic for the Mach number
dropping towards unity
 because the Courant number
associated with this method becomes large� Thus
 a
special procedure is required to provide an e
cient
solution for transonic regions� A possible local pro�
cedure�
� ��� ��� 
� is based on piecewise semicoarsening
and some rules for adding dissipation at the coarse�
grid levels�
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Fig� � Staggered arrangement of primitive vari�

ables for Navier�Stokes discretization�

A similar technique can be used to construct an
e
cient marching�free multigrid solver for convection�
dominated equations� This method�� employs a col�
ored relaxation scheme and is very attractive for mas�
sive parallel computing� A highly parallel multigrid
solver for the supersonic full�potential operator may
be obtained by methods similar to the wave!ray multi�
grid��	

Discrete Equations
Traditional Factorizable Schemes

As mentioned in the introduction
 factorizability of
a target discrete scheme signi�cantly simpli�es the
distributed relaxation design� The main obstacle in
this case to e
cient solution is that the discretiza�
tions obtained for the scalar factors in the discrete
determinant are not always convenient� The search for
new factorizable discretization schemes �see Summary
of Recent Progress below� is chie�y motivated by the
need to derive discrete schemes with the resulting dis�
cretizations of scalar factors satisfying some desired
properties �e�g�
 correct alignment with the physical
anisotropies
 compactness
 availability of an e
cient
relaxation scheme
 etc���

Staggered�Grid Discretization for Navier�Stokes

Equations�

The staggered�grid discretization dating back to the
mid ���s		�	� is one of the �rst factorizable discretiza�
tions for incompressible �ow equations� Compress�
ible �ow discretizations with a staggered arrangement
of variables have also been studied�
� ��� 	� A usual
placement of primitive variables in two dimensions is
depicted in Figure �� With this staggering
 �a� the
o��diagonal �rst derivatives in ���
 ���
 and ���� can
be approximated as short central di�erences	 �b� the
second derivatives in ���� can be compositions of cor�
responding central �rst derivatives	 �c� the convection�
di�usion operators
 Q� 
 can be approximated by any
proper discretizations Qh

� � For discrete factorizability


it is important to have the same discretization for each
of the Q��operators in the momentum equations	 the
convection�di�usion operators in other equations can
be di�erent� The convection terms in the momentum
and energy equations are usually upwind or upwind�
biased	 for simplicity
 below we assume that all these
terms are the same� With such di�erencing
 the dis�
crete schemes mimic the factorizability property of the
di�erential equations
 and the discrete system deter�
minants can be factored as detLh � �Qh

� �
��h �incom�

pressible Navier�Stokes� or detLh � �Qh�
�Qh �Qh �
c��h� �compressible Euler�
 where �h in three dimen�
sions is the seven�point h�Laplacian
 Qh is an upwind
or upwind biased discretization of the convection op�
erators in the momentum and energy equations
 �Qh

is a convection�operator discretization for the pressure
term in the fourth equation of ���
 hence Qh �Qh�c��h

is a discrete approximation to the full�potential op�
erator� The discrete determinant computed for the
compressible Navier�Stokes equations is similar to the
di�erential determinant �����

The discrete distribution matrices follow directly
from the continuous matrices ���
 ����
 and ����� The
short central di�erences are used for the approxima�
tion of all the o��diagonal �rst derivatives	 the con�
vection parts in the Q�operators are the same as those
in the momentum equations� The resulting products
LhMh are similar to those for the continuous prob�
lems with the main diagonals composed of the factors
of the discrete determinants�

Distributed�relaxation solvers have been success�
fully applied to the staggered�grid discretization
schemes for subsonic compressible�� and incompress�
ible��� �
 �ow problems�

In computing the Euler system of equations
 the
main disadvantages of the staggered�grid scheme relate
to the discrete stencil of the full�potential operator�
For subsonic �ow problems
 the downwind di�erencing
applied for the �Qh term results in a full�potential�
operator stencil that is somewhat wide �because of
the Qh �Qh term� and poorly aligns with the physical
�cross�stream� anisotropies in approaching the tran�
sonic regime� For supersonic �ow
 where the problem
is purely hyperbolic
 the stencil is not fully upwind
�even if the �Qh term is upwind di�erenced� implying
more involved marching schemes�

Recently
 a new approach to building discretization
schemes that allows any desired di�erencing for the
full�potential factor of the system determinant with�
out compromising the scheme factorizability has been
discovered� This approach is discussed subsequently
in application to central collocated�grid discretizations
�see also	
�
 but it applies to staggered grids as well�
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Collocated�Grid Discretizations for the Euler

Equations�

Another example of a factorizable scheme is a
collocated�grid scheme with the second�order central
di�erencing for the o��diagonal �rst derivatives in ���

���
 and ����� The convection operators in the mo�
mentum and energy equations are again upwind or
upwind biased	 the di�erencing of the convection term
applied to the pressure may alternate from down�
wind �downwind�biased� in subsonic mode to upwind
�upwind�biased� in supersonic mode�
A typical di
culty associated with this type of

schemes is a poor measure of h�ellipticity in the dis�
crete approximation for the full�potential factor of the
system determinant� To be more speci�c
 let us de�ne
the collocated�grid discretization Lh of the matrix op�
erator ��� as

Lh �

�
������

Qh � � �
�
��hx �

� Qh � �
�
��hy �

� � Qh �
�
��hz �

�c���hx �c���hy �c���hz
�Qh �

c�

�
��hx

c�

�
��hy

c�

�
��hz � Qh

�
������
�

����

where the discrete derivatives
 ��hx � ��hy � ��hz 
 in all o��
diagonal terms are the wide �with mesh spacing �h�
second�order�accurate central�di�erencing approxima�
tions� All the diagonal terms
 Qh
 except �Qh in the
fourth equation
 are discretized with the same second�
order�accurate upwind �or upwind�biased� discretiza�
tion scheme� In the subsonic regime �juj� � �u� � �v� �
�w� � c��
 the �Qh�term is discretized with a second�
order�accurate downwind �or downwind�biased� dis�
cretization� The determinant of the matrix operator
Lh is given by

�
Qh
�
 �

Qh �Qh � c���h
�
� ����

where ��h is a wide discretization of the Laplace
operator� The full�potential�operator approximation
appearing in the brackets has two major drawbacks�
��� For slow velocities �juj 	 c�
 the discrete oper�
ator is dominated by the non�h�elliptic wide Lapla�
cian
 and e
ciency of any local relaxation severely
degrades� ��� For near�sonic regimes �the Mach num�
ber M � juj�c 
 ��
 the discrete operator stencil does
not re�ect the physical anisotropies of the di�erential
full�potential operator	 the discrete operator exhibits a
very strong coupling in the streamwise direction
 while
the di�erential operator has strong coupling only the
cross�stream directions�
Several approaches to cure the lack of h�ellipticity

�mainly in applications to incompressible��ow equa�
tions� have been proposed in the literature �e�g�
	�� ����
Some of the approaches are associated with introduc�
tion of additional terms increasing the measure of

h�ellipticity in the system of equations
 others pro�
pose averaging ��ltering� spurious oscillations� The
problem of wrong anisotropies in the full�potential�
operator has not been su
ciently investigated� In
two dimensions
 it is possible to construct a discretiza�
tion that satis�es the following properties� ��� At low
Mach numbers
 the discretization is dominated by the
standard �with mesh spacing h� h�elliptic Laplacian�
��� For the transonic Mach numbers
 the discretiza�
tion tends to the optimal discretization�
� ��� 
� for the
sonic��ow full�potential operator� ��� For supersonic
Mach numbers
 the discretization becomes upwind
�upwind�biased� and can be solved by marching� The
problem of constructing a good high�order discretiza�
tion for the transonic full�potential operator in three
dimensions is still open�

Non�Factorizable schemes

The majority of discrete schemes in current use
 es�
pecially for compressible �ow but also more recently
for incompressible �ow
 are based upon a �ux�splitting
approach� The basis of this approach is the solution of
the Riemann problem �i�e�
 the time evolution of two
regions of �ow initially separated by a diaphragm� ap�
plied on a dimension by dimension basis� This method�
ology has enabled the robust treatment of �ows with
strong shocks and complex geometries� However
 the
derived schemes are not discretely factorizable
 except
in one dimension�

These discrete equations have always been solved us�
ing collective relaxation �or pseudo�time�stepping� in
multidimensional multigrid algorithms� A better e
�
ciency should be realizable with a relaxation scheme
that e
ciently reduces both the high�frequency and
characteristic error components� Such a scheme should
combine two di�erent relaxation methods� ��� A local
relaxation scheme treating directly the conservation
equations and reducing the high�frequency error com�
ponents� ��� For reduction of characteristic error com�
ponents
 a defect�correction �or predictor�corrector�
method with a factorizable driver �predictor�� This
approach has not been tried as yet�

Boundary Conditions and

Discontinuities

Boundaries and discontinuities introduce some ad�
ditional complexity in distributed relaxation� The
determinant of LM is usually higher order than the
determinant of L� Thus
 as a set of new variables

	w would generally need additional boundary condi�
tions� In relaxation
 because the ghost variables can be
added in the external part of the domain
 it is usually
possible to determine suitable boundary conditions for
	w that satisfy the original boundary conditions for
the primitive variables� Examples are available�
 for
incompressible �ow with entering and no�slip bound�
aries� However
 to construct such extra boundary
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conditions may be di
cult and!or time�consuming in
general� In addition
 enforcing these boundary con�
ditions causes the relaxation equations to be coupled
near the boundaries
 not decoupled as they are in the
interior of the domain�

Thus
 near boundaries and discontinuities
 the gen�
eral approach
�� is to relax the governing equations
directly in terms of primitive variables� Several extra
sweeps of robust �but possibly slowly converging� re�
laxation
 such as block�Newton�Kacmarcz relaxation

can be made in these special regions after �and perhaps
also before� the distributed relaxation pass to reduce
residuals to the average level characterizing the regu�
lar �ow �eld� The additional sweeps will not seriously
a�ect the overall complexity because the number of
boundary and!or discontinuity points is usually small
in comparison with the number of interior points� An
example of TME using local relaxation at shocks and
boundaries and distributed relaxation over the rest of
the domain has been demonstrated���

Analysis

As mentioned previously
 it is important in attain�
ing optimal e
ciency to understand all the di
culties
that present themselves in application� Analysis meth�
ods are quite helpful in this regard
 and the main tools
are discussed below� In iterative methods solving el�
liptic problems
 the main mechanism of convergence is
damping of error components� In solution of hyper�
bolic scalar equations
 there is another very important
convergence mechanism� the downstream evolution of
the error components� In the presence of this addi�
tional mechanism
 the accuracy �rst achieved near the
in�ow boundary and is then propagated into the inte�
rior of the domain�

The recognition of this additional convergencemech�
anism urges modi�cations in the standard analysis
developed for elliptic problems� Basically
 one can
distinguish four types of analysis applied to nonel�
liptic problems� ��� standard linear�algebraic matrix
analysis
 ��� modi�ed zero�mode�exclusion full�space
Fourier mode analysis
 ��� half�space analysis of the
�rst di�erential approximations �FDA�
��� ��� �� and ���
discrete half�space analysis� Brie�y
 the �rst di�eren�
tial approximation �also called modi�ed equation� to
a di�erence operator on a grid with mesh size h is the
Taylor expansion of this di�erence operator in terms
of h truncated to the �rst terms including the least
nonzero power of h� The quality of an analysis applied
to nonelliptic problems is determined by how well the
analysis handles the characteristic components�

Matrix analysis

The most general and precise analysis methods are
the linear�algebra matrix analysis methods applied to
the corresponding linearized problem� This analysis
considers the di�erence operators without assump�

tions about the solution and boundary conditions� It
can be applied to variable�coe
cient problems as well�
This analysis was found very useful for analyzing one�
dimensional problems� However
 the enormous compu�
tational complexity of this analysis makes it not viable
for multidimensional problems� Although
 the analysis
complexity can be reduced considerably by assuming
Fourier modes in two of the three spatial directions�

Modi�ed full�space Fourier mode analysis

The modi�ed full�space Fourier mode analysis is a
modi�cation of the standard full�space Fourier mode
analysis excluding from the consideration all the zero
modes �the modes with vanishing symbols��� It is the
simplest and most popular type of analysis �e�g�
 see
applications in
�� 

�� This analysis estimates only the
ampli�cation �damping� factor� Its inherent disadvan�
tage is the inability to take the in�uence of the in�ow
boundary into account� This explains its failure in
describing the downstream error evolution� However

the modi�ed full�space analysis can also be useful for
analyzing the e�ect of forcing terms�

FDA half�space analysis

The FDA half�space analysis is a relatively simple
and e
cient tool for analyzing the e�ect of the in�ow
boundary� Examples of applications of this analysis
are available���� ��� ��� �� The �rst di�erential approxi�
mations are considered on a half�space including cut
by an in�ow boundary� The boundary conditions are
represented by one Fourier mode at a time� The FDA
analysis provides a good qualitative description of the
downstream error evolution� This analysis focuses
on characteristic components and
 therefore
 consid�
ers homogeneous problems� Note that a combination
of the FDA analysis with the modi�ed full�space anal�
ysis can provide a good insight for nonhomogeneous
problems as well� The disadvantages of this analy�
sis are the inability to provide quantitative estimates

to analyze the e�ect of di�erent boundary condition
discretizations
 and to address the asymptotic conver�
gence rate�

Discrete half�space analysis

The discrete half�space analysis
�� 
�� 
� considers the
discretizations in their exact form rather than their
di�erential approximation
 while the boundary data
are represented by a Fourier component� This analy�
sis translates the original multidimensional problem
into a one�dimensional discrete problem
 where the
frequencies of the boundary Fourier components are
considered as parameters� To regularize the half�space
problem
 the solution is not allowed to grow faster than
a polynomial function� This tool is very accurate	 it
can be used to explain in detail many phenomena ob�
served in solving nonelliptic equations and provides a
close prediction of the actual solution behavior�

The one�dimensional solution obtained in the dis�
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crete half�space analysis has two di�erent representa�
tion forms� ��� away from the boundary
 the solution
is de�ned as a linear combination of a �nite number of
analytical components	 this region is called the analyt�
ical representation region	 ��� in the region adjacent to
the in�ow boundary
 the solution is de�ned pointwise	
this zone is referred to as the pointwise representa�

tion region� With each further iteration described
by the analysis
 the pointwise representation region
penetrates by a �nite number of mesh sizes into the
interior� By using these representations
 the compu�
tational complexity of the analysis becomes much less
than that associated with the one�dimensional matrix
analysis� In the asymptotic regime
 when the point�
wise representation zone covers all the domain
 this
analysis becomes a discrete one�dimensional matrix
analysis of the multidimensional problem�
The discrete half�space analysis provides a quantita�

tive description of the approximate solution	 it predicts
the convergence rate for each iteration and the asymp�
totic convergence rate� It can be easily adjusted to
analyze the global e�ect of any local discretization of
the in�ow boundary conditions� This adjustment can
be done just by widening the initial pointwise repre�
sentation region at the in�ow boundary� If necessary

the analysis can take into account the in�uence of
the discretized out�ow boundary conditions as well�
Generally
 this discrete half�space analysis treats com�
pletely both mechanisms of convergence
 damping and
downstream evolution of errors
 associated with nonel�
liptic problem solvers�

Summary of Recent Progress

The �rst TME solver applying the distributed re�
laxation approach for solution of a free�stream in�
compressible Navier�Stokes equations has been demon�
strated long ago��� Recently
 TME has been achieved
for high�Reynolds�number incompressible wake �ow
and the boundary layer �ow associated with a ��
nite �at plate��
 An initial extension of this work
to compressible �subsonic� viscous �ow has also been
completed��� In all these calculations
 a staggered ar�
rangement of variables on Cartesian grids has been
used� With distributed relaxation
 the system of equa�
tions has been decomposed �i�e�
 factored� everywhere

except near boundaries where the equations remained
coupled� Two�dimensional FMG solvers with just one
multigrid cycle per grid level and a total computa�
tional work equivalent to about �� target�grid residual
evaluations converged the drag to the discretization
accuracy�
Recently
 a new multidimensional factorizable

scheme for the Euler equations has been developed�


for Cartesian coordinates and extended through gener�
alized coordinates to external lifting �ows around air�
foils with both subcritical and supercritical freestream
Mach numbers��	� �� This scheme is the �rst �ux�

di�erence�splitting discretization factorizable in mul�
tiple dimensions� The starting point for the scheme
is the �rst�order discretization of the �ux�di�erence
splitting scheme of Roe� Correction terms are added in
the form of mixed derivatives to make the scheme both
second�order accurate and discretely factorizable� The
resulting scheme is second�order accurate and compact
in comparison to other scheme� Discrete factorizabil�
ity is achieved by using some non�standard wide ap�
proximations for spatial derivatives to ensure that the
identities

�xx�yy � �xy�xy�
�xx�y � �xy�x�
�yy�x � �xy�y

are satis�ed on the discrete level� The determinant
of the resulting scheme is composed of an upwind
di�erenced convection factor and an h�elliptic approx�
imation for the full�potential factor� The distributed
relaxation is possible by using a left and right distri�
bution matrix
 although this has not been applied as
yet�
In numerical tests performed for this scheme
 the

multigrid solver employed alternating�direction col�
lective Gauss�Seidel relaxation� The alternating�
direction relaxation is necessary since the full�potential
factor is not separately treated� Computations for sub�
sonic and transonic channel �ows with essentially grid�
independent convergence rates have been presented��	

Grid�independent convergence rates have also been
attained for a �ow with stagnation points��� The
subsonic��ow convergence rates observed in multigrid
V�cycles were quite fast �about �
� per cycle� and only
slightly grid dependent� The rates somewhat deteri�
orate in transonic!supersonic computations� Further
developments of this scheme are presented in two pa�
pers at this conference���� �� The scheme applies at low
Mach numbers although it has yet to be extended to
viscous �ows�
Another approach to building factorizable schemes

with suitable discretizations for scalar factors has
been explored in papers of the second and third au�
thors�	
� �� The approach is based on a collocated�grid
scheme with a mechanism that allows one to improve
the h�ellipticity measure by obtaining any desired dis�
cretizations for the full�potential factor of the system
determinant without compromising the discrete factor�
izability� Also
 the distribution matrices follow directly
from the discrete forms for M presented earlier� The
same approach can be applied for incompressible��ow
problems and to staggered�grid discretizations as well�
The starting point is the discretization ����� The

way proposed to improve the discrete full�potential op�
erator is to change the discretization of �Qh to �Qh�Ah�
Then the discrete full�potential operator is changed to

QhAh �Qh �Qh � c���h�
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where Ah �
�
Qh
���

Dh
 Dh � Fh � �Qh �Qh �

c���h�
 and Fh is a desired approximation for the full�
potential factor� In smooth regions
Ah is second�order
small �proportional to h��
 hence the overall second�
order discretization accuracy is not compromised� The

operator
�
Qh
���

is a nonlocal operator and its intro�

duction can be e�ected through a new auxiliary vari�
able �h and a new discrete equation Qh�h � Dhph�
Thus
 the corrected discrete approximation to ��� is

de�ned as

Lh �

�
��������

Qh � � � �
�
��hx �

� Qh � � �
�
��hy �

� � Qh � �
�
��hz �

� � � Qh �Dh �
�c���hx �c���hy �c���hz � �Qh �
c�

�
��hx

c�

�
��hy

c�

�
��hz � � Qh

�
��������



����

The corresponding distribution matrix
 Mh
 for dis�
tributed relaxation is de�ned as

Mh �

�
�������

� � � � � �
�
��hx �

� � � � � �
�
��hy �

� � � � � �
�
��hz �

� � � � Dh �
� � � � Qh �
� � � � � �

�
�������
� ����

so that the resulting matrix LhMh becomes lower tri�
angular as

L
h
M

h �

�
��������

Qh � � � � �

� Qh � � � �

� � Qh � � �

� � � Qh � �

�c���hx �c���hy �c���hz � F
h �

c�

�
��hx

c�

�
��hy

c�

�
��hz � �

c�

��
��h Qh

�
��������
� ����

The scheme as de�ned above is valid for noncon�
servative �ows� A version to be used for distributed
relaxation of conservative equations has also been de�
signed���

Concluding Remarks

A general multigrid approach to attain TME solvers
for large�scale CFD applications has been outlined�
This approach focuses on fast convergence to the solu�
tion of the di�erential equations
 not necessarily pro�
viding fast asymptotic convergence rates� The consid�
ered measure of the method e
ciency is convergence
to the di�erential solution
 i�e�
 fast reduction of alge�
braic errors below the discretization error level on each
mesh�
Because the governing equations are a coupled set of

nonlinear conservation equations with discontinuities

and singularities
 attainment of full e
ciency requires
that each of three error components be addressed� ���
high�frequency errors ��� uniformly smooth errors and
��� characteristic errors� These errors are reduced
through a combination of distributed relaxation and
local relaxation at each grid� The relaxations are fol�
lowed by an FAS correction from a coarser grid where
the initial coarse�grid residuals are found from the
�ne�grid residuals of the conservative equations with
�conservative� full�weighting restriction�
The distributed relaxation procedure is designed to

reduce errors in the smoothly varying regions of the
domain and relies on the factorizability property of
the governing di�erential equations to isolate and treat
optimally di�erent factors arising in the determinant of
the di�erential operator� Optimal relaxation of some
particular factors may itself involve a separate inner
multigrid cycle over a limited subdomain�
Local relaxation is a procedure designed to reduce

large residuals of the conservative equations at dis�
continuities!singularities!boundaries and is applied in
these regions as well as in general where the residu�
als are largest� It empl�ys a robust scheme �e�g�
 some
block relaxation� applied before and after a distributed
relaxation sweep�
The particular factors arising in distributed relax�

ation of the Euler and Navier�Stokes equations have
been discussed from the standpoint of the di�erential
and the discrete equations� Methods for relaxing and
analyzing these factors within the multigrid context
have been presented and evaluated� Recent progress in
development textbook�e
cient multigrid solvers based
on the distributed relaxation approach has been sum�
marized�

References
�Rubinstein� R�� Rumsey� C� L�� Salas� M� D�� and Thomas�

J� L�� �Turbulence modeling workshop�� ICASE Interim Report
��� NASA CR����������
�� March �����

�Brandt� A�� �Guide to multigrid development�� Multigrid

Methods� edited by W� Hackbusch and U� Trottenberg� Lecture
Notes in Math� ���� Springer�Verlag� Berlin� �����

�Brandt� A�� �Multigrid Techniques� ���
 Guide with appli�
cations to �uid dynamics�� Lecture Notes for the Computational
Fluid Dynamics� Lecture Series at the Von�Karman Institute

for Fluid Dynamics� The Weizmann Institute of Science� Re�
hovot� Israel� ���
� ISBN�����
��������� GMD�Studien Nr� ���
Available from GMD�AIW� Postfach ����� D������� St� Au�
gustin �� Germany� Also available from Secretary� Department
of Mathematics� University of Colorado at Denver� CO ����
�
�����

�Brandt� A�� �Barriers to achieving textbook multigrid ef�
�ciency in CFD�� ICASE Interim Report ��� NASA CR������
����
�� April ����� Updated version available as Gauss Center
Report WI�GC��� at The Weizmann Institute of Science� Re�
hovot� Israel� December �����

�Brandt� A�� �Recent developments in multigrid e�ciency in
computational �uid dynamics�� Appendix C of Multigrid by U�
Trottenberg� C� W� Oosterlee and A� Sch�uler� Academic Press�
London� ����� pp� ��������

�Briggs� W� L�� McCormick� S� F�� and E�Henson� V��Multi�

grid Tutorial� �nd edition� SIAM� USA� �����

�� of ��

American Institute of Aeronautics and Astronautics Paper ���������



�St�uben� K� and Trottenberg� U�� �Multigrid methods� Fun�
damental algorithms� model problem analysis and application��
Multigrid Methods� edited by W� Hackbusch and U� Trotten�
berg� Lecture Notes in Math� ���� Springer�Verlag� Berlin� �����
pp� ������

�Trottenberg� U�� Oosterlee� C� W�� and Sch�uler� A�� Multi�

grid � Academic Press� London� �����
	Wesseling� P�� An introduction to multigrid methods� Pure

and Applied Mathematics� John Wiley � Sons� Chichester�
�����

�
Bai� D� and Brandt� A�� �Local Mesh Re�nement Multilevel
Techniques�� SIAM J� Sci� Stat� Comput�� Vol� �� No� �� March
����� pp� ��������

��Brandt� A�� �Multigrid solvers for non�elliptic and singular�
perturbation steady�state problems�� �unpublished	� The Weiz�
mann Institute of Science� Rehovot� Israel�

��Brandt� A� and Yavneh� I�� �On multigrid solution of
high�Reynolds incompressible entering �ow�� J� Comput� Phys��
Vol� ���� ����� pp� ������
�

��Brandt� A� and Diskin� B�� �Multigrid solvers for non�
aligned sonic �ows�� SIAM J� Sci� Comp�� Vol� ��� No� �� �����
pp� 
�������

��Brandt� A� and Livshits� I�� �Way�ray multigrid meth�
ods for standing wave equations�� Electronic Trans� Num� An��
Vol� �� ����� pp� ��������

��Diskin� B�� �Multigrid algorithm with conditional coars�
ening for the non�aligned sonic �ow�� Electronic Trans� Num�

An�� Vol� �� ����� pp� �������� Also in Proceedings of the Eighth
Copper Mountain Conference on Multigrid Methods� �����

��Diskin� B�� �Solving upwind�biased discretizations II�
Multigrid solver using semicoarsening�� ICASE Report ������
NASA CR������������� July ����� To appear in Applied Math�
ematics and Computation�

��Diskin� B�� E�cient multigrid solvers for the linearaized

transonic full potential equation� Ph�D� thesis� The Weizmann
Institute of Science� �����

��Ta�asan� S�� �Canonical�variables multigrid method for
steady�state Euler equations�� ICASE Report �
��
� NASA CR�
��
���� ���
�

�	Ta�asan� S�� �Canonical�variables multigrid method for
steady�state Euler equations�� ��th International Conference on
Numerical Methods in Fluid Dynamics� edited by Deshpande
and et al�� Proceedings Bangalore� Lecture Notes in Physics�
Springer Verlag� India� ���
�

�
Ta�asan� S�� �Essentially Optimal multigrid method for
steady state Euler equations�� AIAA Paper �������� ��rd
Aerospace Sciences Meeting and Exhibit� January �����

��Ta�asan� S�� �Canonical forms of multidimensional steady
inviscid �ows�� ICASE Report ����
� NASA CR����
��� �����

��Sidilkover� D� and Asher� U�� �A multigrid solver for the
steady�state Navier�Stokes equations using the pressure�Poisson
formulation�� Matematica Aplicada e Computational � Vol� �
�
����� pp� ������

��Roberts� T� W�� Sidilkover� D�� and Swanson� R� C�� �Text�
book multigrid e�ciency for the steady Euler equations�� AIAA
Paper �����
�� ��th AIAA CFD meeting� Snowmass Village�
CO� June�July �����

��Sidilkover� D�� �Some approaches toward constructing opti�
mally e�cient multigrid solvers for the inviscid �ow equations��
Computers and Fluids� Vol� ��� ����� pp� ��������

��Roberts� T� W�� Sidilkover� D�� and Swanson� R� C�� �An
algorithm for ideal multigrid convergence for the steady Euler
equations�� Computers and Fluids� Vol� ��� ����� pp� 
���

��

��Swanson� R� C�� �Towards optimal multigrid e�ciency for
the Navier�Stokes equations�� AIAA Paper ��������
� ��th
AIAA CFD Conference� Anaheim� CA� June �����

��Thomas� J� L�� Diskin� B�� and Brandt� A�� �Distributed
relaxation multigrid and defect correction applied to the com�
pressible Navier�Stokes equations�� AIAA Paper ������
� �
th

Computational Fluid Dynamics Conference� Norfolk� VA� July
�����

��Thomas� J� L�� Diskin� B�� and Brandt� A�� �Textbook
multigrid e�ciency for the incompressible Navier�Stokes equa�
tions� High Reynolds number wakes and boundary layers��
ICASE Report ������ NASA CR������������� December �����
To appear in Computers and Fluids�

�	Thomas� J� L�� Diskin� B�� Brandt� A�� and South� J� C��
�General framework for achieving textbook multigrid e�ciency�
Quasi���D Euler example�� Frontiers of Computational Fluid

Dynamics � ���� � edited by D� A� Caughey and M� M� Hafez�
World Scienti�c Publishing Company pte� ltd�� Half Moon Bay�
California� June ����� Also ICASE Report �������� NASA�CR�
������������

�
Brandt� A� and Diskin� B�� �Multigrid solvers for the non�
aligned sonic �ow� The constant coe�cient case�� Computers

and Fluids� Vol� ��� No� 
��� May�June ����� pp� �����
�� Also
Gauss Center Report WI�GC�� at The Weizmann Institute of
Science� Rehovot� Israel� October �����

��B�ohmer� K�� Hemker� P� W�� and Stetter� H� J�� �The de�
fect correction approach�� Defect Correction Methods� edited by
K� B�ohmer and H� J� Stetter� Comp� Suppl� �� Springer�Verlag�
Wien� New York� ���
� pp� �����

��D�esid�eri� J� A� and Hemker� P� W�� �Convergence analy�
sis of the defect�correction iteration for hyperbolic problems��
SIAM J� Sci� Comp�� Vol� ��� No� �� ����� pp� �������

��Oosterlee� C� W�� Gaspar� F� J�� Washio� T�� and Wien�
ands� R�� �Multigrid line smoothers for higher order upwind
discretizations of convection�dominated problems�� J� Comput�
Phys�� Vol� ���� ����� pp� ��
�����

��Brandt� A�� �The Weizmann Institute of Science Research
in Multilevel Computations� ���� Report�� Proc� �th Copper

Mountain Conf� on Multigrid Methods� edited by J� Mandel
and et al�� SIAM� ����� pp� ������

��Diskin� B� and Thomas� J� L�� �Half�Space analysis of the
defect�correction method for Fromm discretization of convec�
tion�� SIAM J� Sci� Comp�� Vol� ��� No� �� ����� pp� ��������

��Diskin� B� and Thomas� J� L�� �Solving upwind�biased
discretizations� Defect�correction iterations�� ICASE Report ���
�
� NASA CR������������� March �����

��Thomas� J� L�� Bonhaus� D� L�� Anderson� W� K�� Rumsey�
C� L�� and Biedron� R� T�� �An O�N m�	 plane solver for the
compressible Navier�Stokes equations�� AIAA Paper ��������
��th Aerospace Sciences Meeting � Exhibit� Reno� NV� Jan�
uary �����

��Burrage� K�� Parallel and Sequential Methods forOrdinary

Di	erential Equations� Claredon Press� Oxford� �����
�	Hirsch� C�� Numerical computation of internal and external


ows� Vol� �� Fundumentals of numerical discretization of A
Wiley�Interscience publication� John Wiley � Sons� Inc�� ���
Third Avenue� New York� NY ����������� USA� �����

�
Brandt� A� and Yavneh� I�� �Inadequacy of �rst�order up�
wind di
erence schemes for some recirculating �ows�� J� Com�

put� Phys�� Vol� ��� ����� pp� �����
��
��Yavneh� I�� Venner� C�� and Brandt� A�� �Fast multigrid

solution of the advection problem with closed characteristics��
SIAM J� Sci� Comp�� Vol� ��� No� �� ����� pp� ��������

��Brandt� A� and Yavneh� I�� �Accelerated multigrid con�
vergence and high�Reynolds recirculating �ows�� SIAM J� Sci�

Comp�� Vol� �
� ����� pp� ��������
��Oosterlee� C� W� and Washio� T�� �Krylov subspace accel�

eration of nonlinear multigrid with application to recirculating
�ows�� SIAM J� Scient� Comp�� Vol� ����	� ����� pp� ����������

��Harlow� F� H� and Welch� J� E�� �Numerical calculations
of time�dependent viscous incompressible �ow of �uid with free
surface�� Physics of Fluids� Vol� �� ����� pp� ����������

��Patankar� S� V�� Numerical Heat Transfer and Fluid Flow �
Hamisphere Publishing Co��McGraw�Hill Co�� New York� �����

��Peyret� R� and Taylor� T� D�� Computational Methods for

Fluid Flow � Springer Verlag� New York� �����

�� of ��

American Institute of Aeronautics and Astronautics Paper ���������



��Karki� K� C� and Patankar� S� V�� �Pressure based cal�
culation procedure for viscous �ows at all speeds in arbitrary
con�gurations�� AIAA Journal � Vol� ��� ����� pp� ��������
�

��Diskin� B� and Thomas� J� L�� �One�dimensional analysis
of a factorizable h�elliptic discretization of the Euler equations��
�to be published soon as ICASE Report	�

�	Arm�eld� S� W�� �Ellipticity� accuracy� and convergence
of the discrete Navier�Stokes equations�� J� Comput� Phys��
Vol� ��
� No� �� October ���
� pp� ������
�

�
Brandt� A� and Ta�asan� S�� �Multigrid solutions to quasi�
elliptic schemes�� Progress and Supercomputing in Computa�

tional Fluid Dynamics� edited by E� M� Murman and S� S�
Abarbanel� Birkh�auser� Boston� MA� ����� pp� �
����
�

��Yanenko� N� and Y�I�Shokin� First di	erential approxima�
tion method and approximate viscosity of di	erence schemes�

High�speed computing in 
uid dynamics� The Physics of Fluids�
Supplement II� New York� �����

��Yanenko� N� and Y�I�Shokin� �On the �rst di
erential ap�
proximations of di
erence schemes for hyperbolic systems of
equations�� Siberian Mathematical Journal � Vol� ��� No� 
�
����� pp� ���
������

��Sidilkover� D�� �Factorizable scheme for the equation of
�uid �ow�� ICASE Report ������ NASA CR����������
�� June
�����

��Roberts� T� W�� Sidilkover� D�� and Thomas� J� L�� �Multi�
grid relaxation of a factorizable conservative discretization of the
compressible Euler equations�� June ����� AIAA Paper �����
�����

��Roberts� T� W�� �The development of a factorizable multi�
grid algorithm for subsonic and transonic �ow�� AIAA Paper
���������� ��th AIAA CFD meeting� Anaheim� CA� June �����

��Sidilkover� D�� �Factorizable upwind schemes� The trian�
gular unstructured grid formulation�� AIAA Paper ����������
��th AIAA CFD meeting� Anaheim� CA� June �����

��Diskin� B� and Thomas� J� L�� �Distributed relaxation
for conservative discretizations�� AIAA Paper ���������� ��th
AIAA CFD Conference� Anaheim� CA� June �����

�� of ��

American Institute of Aeronautics and Astronautics Paper ���������


