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1. INTRODUCTION

The main computational problem of statistical physics consists in the difficulty of aver-
aging over the enormous space of possible configurations. In order to estimate the value
of this average the Monte Carlo technique for the canonical ensemble was proposed [1].

The Monte Carlo simulations both in canonical and grand canonical ensembles are
very local. Since many independent features are needed for calculating accurate averages,
and since very-large-scale features need to be sampled, especially in the vicinity of phase
transitions, the computations often become extremely expensive, sometimes even losing
practical ergodicity.

An approach which allows to simultaneously overcome slowness and finite size effects of
the conventional Monte Carlo method consists of a multilevel view of the system, realized
by multilevel algorithms [2], [3]. The efficiency of multilevel methods in solving problems
of statistical physics has been shown on examples with sufficiently simple systems [4].

The successful application of the multilevel methods to lattice systems excites interest
in adapting them to more complicated cases.

2. Conventional Monte Carlo Method

The Monte Carlo method in the statistical theory of liquids is used to evaluate numer-
ically the average A of any functional A, defined by:

A= [AX) w(X) dX~ =3 AX) (1)

where w(X) is the probability density of the state X in the configuration space 2, and
the nodes X; are generated by a random walk in Q that satisfies detailed balance.
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The simplest definition of the probability to walk from X to X' in detailed balance is
given by :

) [ wXD)
w(X_—)L)—mm[l,w(&)] , 2
provided that the probability P(X'?|X) for having chosen the state X' as the candidate
to replace the current state X is symmetric, i.e., P(X'?|X) = P(X?| X").

The transition between states is made by the shift of one particle at a time [1] by a
small amount. For shifting the particle with the number 4, say, one can see from (2) that
it is enough to use, instead of the Gibbs function , the conditional probability defined by:

P(7; | R;) = const - exp(—u;(R;)/ks T) (3)

where u;(R;) is the energy of the particle with the number ¢ when the locations of all
other particles, defined by the set R; = {7, ...,Ti=1,Tit+1,...,7n}, are fixed.

3. Coarse variables

A possible way to introduce a coarse description of liquid consists in the discretization
of space. The periodicity cell is divided into M disjoint subdomains (e.g. cubes) V;! of
equal volume with linear size h;, 1 < i < M (each V}! being associated with a gridpoint 4
of the first coarse-level lattice). Configurations of the finest (particle) level are mapped to
the first coarse level by the operation of coarsening, which creates the coarse-level variable
set. For example, for each particle configuration the corresponding coarse-level variables
can be defined by coarsening the particle number:

n} = Number of particles in V;! (4)

M
with }°n; = N, where N is the total number of particles in the periodicity cell. The

i=1
set {n}} defines the current configuration on the first coarse-level: instead of particle
locations the occupation numbers at gridpoints are used.
The extension of the coarsening operation (4) to coarser levels is defined by:

’n;c = Z nf‘l, k>1 (5)
Vik-l CVJ-"

for each volume element Vj'c of level k, assuming it to be a union of volume elements of the

level k — 1. The coarsening can be repeated till the coarsest level, whose choice depends

on the scale of the phenomena one wants to compute.

A general criterion for the quality of coarse variables set is the speed of equilibration
of compatible Monte Carlo (CMC) runs. By this we mean Monte Carlo processes on the
fine level which are each restricted to the subset of fine-level configurations whose local
spatial averages coincide with a fized coarse-level configuration.
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4. Coarse-Level Transition Probabilities

In order to conduct coarse-level simulations, conditional probabilities similar to (3)
should be derived for each level. Such conditional probabilities are expressed in the
form of a Conditional Probability (CP) table, which in principle tabulates numerically the
probability distribution of any pair of neighboring coarse-level variables given the values
of all others.

For example in terms of variables (4), (5) defined at gridpoints a conditional probability
tables Py(nf, n; n® | s,J ye sf}) can be constructed from a given sequence of configurations
in equilibrium on the next finer level £k — 1. These tables give us the dependence of the
probability to find n¥ and n¥ particles at the two neighboring gridpoints ¢ and j on I
values in their neighborhood by:

fr= > o -nf, 1<m<I (6)

q € neighborhood of i and j

where of" are preassigned, suitably chosen coefficients, with of" = o* = 0 for all m.

For example, in one dimension j = i+1 and a possible ch01ce isl=1a_,=0f,=1,
otherwise a =0.

Such ta.bles are all one need to conduct coarse-level simulations that conserve the total
number of particles. Indeed in the coarse level Monte Carlo run, each trial move consists
of particle exchange between two neighboring gridpoints, i.e. nf — n¥ =nf+An, n¥ -
n¥ = n¥ — An.In accordance with (2), the acceptance probability for this move is:

kl
,S

Pi(n¥',n¥ | sk, .
" o3 (7)

Pk(n,, | s,,, .y 88

w(X = X') =min |1,

The CP tables for any coarse level k are calculated by gathering appropriate statistics
during Monte Carlo simulations at the next finer level k — 1. Because of the near-locality
property [2],[5], no global equilibration is needed.

5. DISCUSSION

The multilevel method was applied for a test case of one-dimensional fluids. A suitable
quantity for comparing simulation results at different levels is the fluctuation v of the
particle number in the subdomain of size V*. For the hard rods system the dependence of
this quantity on the subdomain size coincides with the expression of the grand canonical
ensemble [6], and five levels are enough in order to achieve the bulk value (exact result
follows from the Tonk’s equation). In the case of the Lennard-Jones fluid this dependence
is shown in Fig.1. At high temperatures the properties of the Lennard-Jones fluid are
similar to the hard rods system. At low temperatures the behavior of fluctuations drasti-
cally changes. The results obtained indicate that in contrast to the hard rods system the
Lennard-Jones system loss homogeneity at low temperatures on fine scales.

The advantage of the multilevel Monte Carlo method consists in fast convergence of
measured mean values due to the selfconsistent equilibration on different levels, each mode
being well equilibrated and sampled on grids with meshsize comparable with the wave
lengths.The computational work on each level is proportional to the number of gridpoints



248

Figure 1. Particle num-
ber fluctuation at different
levels (1D Lennard-Jones
fluid, hy = 25-0,p-0 =
0.2. Tpeye is the Boyle
temperature.)

2 Kk (hk=h13 2k—1) 4 5

and is independent of the particle number associated with the gridpoint. It leads to the
high speed of the method as compared with conventional algorithms.

The equilibrium on fine levels (and in particular the frequency of the appearance of a
given particle number in the simulation domain) is determined by the canonical ensemble
configurations on coarsest level. The particle number in fine level simulation domains is
variable and its distribution agrees with the result of the grand canonical ensemble sim-
ulation [7]. The multilevel Monte Carlo method is not concerned with the equilibrium in
accordance with the value of a chemical potential. It opens a new way for the development
of a one-phase approach to the phase-transition problem [8].
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