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Abstract. Motivated by quantum chemical calculations, we explore a novel multi-
scale approach for computing, storing, and expanding in many eigenfunctions of dif-
ferential operators. This approach leads to efficient multiscale eigenbasis algorithms,
which typically scale as O(N logN), where N is the number of eigenfunctions. In
particular, they provide a vast generalization of the Fast Fourier Transform (FFT)
algorithm, which expands in Fourier series, to expansions in terms of eigenfunc-
tions of a general 1D linear differential operator with general boundary conditions.
Generalizations to higher dimensional eigenproblems are discussed. A complete and
detailed discussion of the methods can be found in [14,15].

1 Motivation: Electronic Structure Computations

The basic equations of condensed matter, e.g., the Kohn-Sham equations
in ab-initio quantum chemistry [22] have been known for several decades.
In principle, one could utilize them for computerizing chemistry: control-
ling chemical interactions and designing materials with prescribed properties
(from drugs to missile coating), instead of conducting expensive empirical
experiments.

Despite their dazzling speed, even modern supercomputers cannot sur-
mount the highly complicated eigenbasis computations involved. Current nu-
merical eigenbasis algorithms are slow, thus limited to computing moderately
complex electronic structures. Linear-complexity algorithms (“O(N) meth-
ods”) [3,11] have been constructed only under localization assumptions on
the electronic orbitals.

Our research goal was to design linear-complexity multiscale algorithms
for computing, storing, and manipulating many eigenfunctions of the peri-
odic Schrödinger operator and other related differential operators, without
localization assumptions on the eigenfunctions.

We have focused mainly on the periodic Schrödinger eigenproblem

(−∆+ V (x))ψ(x) = λψ(x), x ∈ Ω ⊂ Rd , (1)

where V (x) is an Ω-periodic potential function containing O(N) general “fea-
tures”, such as wells representing screened atomic nuclei [20].
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Our work has four computational aims:

1. Computing and storing N distinct eigenfunctions ψj(x) and eigenvalues
of (1) in O(N logN) operations;

2. Integrating (or summing) N eigenfunctions of (1) into the electronic den-
sity function %(x) =

∑

j |ψj(x)|2 in O(N logN) operations;

3. Expanding a given function in N eigenfunctions of (1) in O(N logN)
operations;

4. Expanding a given function in N eigenfunctions of a general 1D linear
differential operator, in O(N logN) operations.

The last computational task stems from a natural generalization of the 1D
Schrödinger operator to Sturm-Liouville operators and general parameter-
dependent ODEs.

1.1 Example: The 1D Linear Case

In actual ab-initio electronic structure computations we encounter the non-
linear (self-consistent) 3D Schrödinger eigenproblem, where V depends on
non-local integrals involving the electronic density % [18]. Nevertheless, we
chose to start with the 1D linear case ((1) for d = 1), because of the follow-
ing reasons:

– Isolation of the main obstacle: the multiplicity of eigenfunctions. Other
aspects of the general equations, such as nonlinearity, systems of PDEs,
and singularities, have already been treated by multiscale methods in
other contexts [4,7].

– Feasibility. One cannot hope to construct collective representations of
eigenfunctions in 2D and 3D if it cannot be accomplished in 1D. It is true
that the 1D implementation includes devices that do not seem to man-
ifest direct higher-dimensional generalizations, most important of which
is the concept of monodromy. But indirect generalizations do exist; the
monodromy concept can be replaced by coarse-level difference equations
(see Sect. 6).

– Applications to other important 1D problems. We have generalized our
fast expansion and integration algorithms to expansions in eigenfunc-
tions of general linear differential operators and, in particular, to Sturm-
Liouville transforms. Although efficient transform procedures already ex-
ist for very special cases (such as FFT and FLT – Fast Legendre Trans-
form [15]), our fast transform algorithm is robust and generic, and hence
should have broad applications. The 1D Schrödinger eigenproblem itself
has important physical applications to 1D conductors and soliton theory
[2,16].
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2 The Main Complexity Factors

There are three main complexity factors in computing, storing, and manipu-
lating N eigenfunctions of the Schrödinger operator:

1. Many features in V (x). The number of spatial points needed for a good
resolution of V (x) is O(N); hence each eigenfunction needs at least an
O(N)-point resolution in x.

2. Many distinct eigenfunctions. A large number N of distinct eigenfunc-
tions and eigenvalues need to be computed, representing N electrons.

3. Many orthogonalization steps. In order to orthonormalize the eigenbasis,
O(N) orthogonalization steps per eigenfunction are needed, each requir-
ing O(N) operations.

Whereas the first two factors result in O(N 2) storage, which is needed
to represent O(N) eigenfunctions in the current eigenbasis algorithms (from
early algebraic solvers [17] to modern multigrid eigensolvers [9,10]), the third
factor raises their complexity to O(N 3).

Our novel approach and methodology is based on the observation that
“neighboring” eigenfunctions (with close “momenta”) are distinguishable fr-
om each other only at large scales. Using collective representations of eigen-
functions that share the common description of their details at finer scales,
and progressively separate them out only on increasingly coarse grids, we have
developed algorithms that require only O(N logN) computer operations and
storage, without localization assumptions on the electronic orbitals (the the-
oretical complexity is O(N(logN)2) at worst, but it reduces to O(N logN)
in most problems). Even in localized systems, our approach requires only
O(N(logNlocal)

2) operations in the worst case, versus O(NN 2

local) needed

by current localization methods [11], where Nlocal is the number of orbitals
in the localized cell.

3 The Main Principle

The 1D collective-eigenfunction approach involves the concept of monodromy
transformation, which represents the propagation of solutions of

∂xU(x) =

(

0 1
V (x)− λ 0

)

U(x) , U(x) :=

(

ψ(x)
∂xψ(x)

)

, (2)

where ∂x = d/dx. Equation (2) is equivalent to (1) in one dimension.

3.1 The Monodromy Transformation

Equation (2) can be regarded as a parameter-dependent ODE. Hence, every
solution U(x) is uniquely determined by its initial value, say, at x = a.
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In other words, the value U(b) depends uniquely on U(a) for any interval
[a, b]. Since (2) is linear, the transformation U(a) 7−→ U(b) is a 2× 2 matrix
M([a, b];λ), called the monodromy matrix [19]. Some important properties
of the monodromy transformation are:

1. Locality: the monodromy depends on λ and the values of V (x) inside [a, b]
only.

2. Non-degeneracy: det(M([a, b];λ)) = 1; in particular, M([a, a];λ) = I.
3. Multiplicativity: for every a < b < c,

M([a, c];λ) = M([b, c];λ) ·M([a, b];λ) . (3)

4. Relation to boundary value problems: the function M(λ) := M(Ω;λ) and
the specific boundary conditions determine the spectrum of (2) [19]. Two
examples:
– Dirichlet B.C.: ψ(0) = ψ(L) = 0 . Equivalently, the eigenvalues are

the roots of the equation

M12(λ) = 0 . (4)

– Quasiperiodic B.C.: given a periodic potential V (x + L) = V (x),
−∞ < x <∞, Bloch-type solutions [19]

ψ(x+ L) = eiβLψ(x), β ∈ R,∀x ∈ R

form a band spectrum [19]. They represent all the bounded eigenfunc-
tions on the entire space, as required in electronic structure calcula-
tions. This spectrum is characterized by the inequality

|D(λ)| := |M 11(λ) +M22(λ)| ≤ 2 .

3.2 Complementary Smoothness of the Monodromy

The monodromy function M(I;λ) of a fixed interval I of length x is an
analytic function of λ [19]. Furthermore, its scale of smoothness is inversely
proportional to the size of I. For example, in regions where λ − V (x) > 0,
each of its entries is an oscillating function of λ, with a frequency directly
proportional to the length of I.

This can be easily observed in the special case of V ≡ 0, for which

M([0, x];λ) =

(

cos(ωx) ω−1 sin(ωx)
−ω sin(ωx) cos(ωx)

)

, ω :=
√
λ . (5)

The frequency of the entries as functions of ω is x. This holds for all nonnega-
tive λs and for the monodromy M(I;λ) of any interval I of length x, since for
a constant potential the monodromy does not depend on the starting point
of the spatial interval, but on its length only.
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This property of monodromies is called the complementary smoothness
principle, resembling the Heisenberg Principle of quantum mechanics, where x
and λ are the complementary dimensions: the product of the spatial and eigen-
value resolutions depends only on the desired accuracy in the monodromy
transformation.

This principle is proved in [14] for monodromies of any 1D linear differ-
ential eigenproblem. It does not depend on the smoothness of the coefficient
functions (such as the potential function V (x)). We apply this principle to
the construction of efficient multiscale eigenbasis algorithms.

4 The Multiscale Eigenbasis Structure

Our basic tool in fast eigenbasis computations is the Multiscale Eigenbasis
(MEB) structure, which implicitly represents O(N) eigenfunctions of a dif-
ferential operator to accuracy ε in O(N logN log(1/ε)) computer operations
and storage. In Sect. 5 we present some applications of MEB to the effi-
cient execution of some typical computational tasks involving the Schrödinger
eigenproblem, as well as more general classes of eigenproblems.

In the spirit of electronic structure computations [11,18], we consider (1)
with a potential V (x) containing N “features” (e.g., wells), over a spatial
periodicity cell Ω = [0, L], L = O(N), and a fixed energy domain [λmin, λmax]
of interest.
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Fig. 1. A four-level (m = 4) MEB construction algorithm. The algorithm executes
the steps (E), (I11), (I12), . . . , (Im1), (Im2)
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The MEB consists of m+1 = O(logN) levels {T l}ml=0; each T
l embodies

nl×(kl+1) monodromy functions
{

{M(Ωl
j , Λ

l
t)}nl

j=1

}kl

t=0
, where ∪nl

j=1Ω
l
j = Ω,

Λlt = λmin + t(λmax − λmin)/kl, nl = 2−ln0 and kl = 2lk0, so that nl · kl is
constant throughout stages l = 0, . . . ,m.

The MEB construction consists of the following stages (the precise algo-
rithm can be found in [14,15]):

(E) Evaluation: for each Λ0
t , we discretize (2) in each interval Ω0

j and use a

marching scheme to approximate the monodromy matrix M(Ω0
j , Λ

0
t ). By

the complementary smoothness principle, a small k0 suffices to resolve
well the dependence on λ, since Ω0

j are of short length (see Fig. 1). Con-
sequently, the computed monodromies can be interpolated to any other
λ ∈ [λmin, λmax] with any desirably small interpolation error.

(I11) Interpolation: in particular, {M(Ω0
j ;Λ

0
t )}n0,k0

j=1,t=0 can be interpolated to

a λ-lattice twice as fine, obtaining {M(Ω0
j ;Λ

1
t )}n0,k1

j=1,t=0.

(I12) Merging: since Ω1
j := Ω0

2j−1 ∪Ω0
2j , we can calculate

M(Ω1
j ;Λ

1
t ) := M(Ω0

2j ;Λ
1
t ) ·M(Ω0

2j−1;Λ
1
t ) (6)

for j = 1, . . . , n1, t = 1, . . . , k1. The new monodromies, of spatial inter-
vals twice as large, are smooth on the finer λ lattice.

(I21), . . . Recursion: since the monodromies of level 1 are smooth on their lattice,
they can be interpolated to a finer lattice and then merged to mon-
odromies of intervals twice as large, yielding {M(Ω2

j ;Λ
2
t )}j,t. The stages

of interpolating and merging are repeated until the monodromy of Ω is
reached on the appropriate λ resolution.

A precise analysis of errors [14, Sect. 4.2.1] indicates that a minimal
amount of work per fixed error ε is attained for p ≤ O(log(N/ε)), q ≤
O(log(N/ε)), where p is the discretization order at step (E), and q is the
interpolation order of monodromies (steps (Il1)). The complexity of the MEB
construction is bounded by O(N(logN)2 log(1/ε)). In actual cases (where er-
rors do not always reinforce each other), p = O(q) = O(log(1/ε)) prove to be
satisfactory. Consequently, the MEB construction requires in practice only
O(N logN log(1/ε)) operations.

5 MEB Applications

The MEB structure is the basis for the efficient execution of general eigenbasis
computations. Here we briefly list some of its applications. For a complete
description, see [14, Chaps. 4–5].

– Fast Electronic Density Integration (FEDI). The Kohn-Sham equations
of Density Functional Theory [3,18] involve the computation of the elec-
tronic density %(x) of the periodic Schrödinger operator, whose integrals
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are used to determine the self-consistent potential function V (x) in the
nonlinear version of the Schrödinger equation. It is possible to compute
% in only O(N logN log(1/ε)) operations, using the MEB structure and
the fast multilevel summation algorithm [5].

– Discrete eigenvalue evaluations. A common computational task in eigen-
problems is evaluating the smallest N eigenvalues of a general 1D dif-
ferential operator with general boundary conditions. The eigenvalues are
the roots of an equation involving the entries of the monodromy trans-
formation on the full spatial domain (e.g., (4)). Once the MEB structure
has been constructed for the operator, we can evaluate any eigenvalue
to an accuracy ε in O(log(1/ε)) computer operations, regardless of the
specific boundary conditions [14, Sect. 4.2.1].

– Fast expansion in discrete eigenfunctions. The FEDI algorithm can be
applied for computing N coefficients

f̂n := (f, un) =
1

L

∫ L

0

f(x)un(x)dx, n = 1, . . . , N

of the expansion

f(x) =
N
∑

n=1

f̂nun =
N
∑

n=1

(f, un)un

to an accuracy ε in O(N logN log(1/ε)) operations, where {un}Nn=1 are
the eigenfunctions corresponding to the smallest N eigenvalues {λn}Nn=1

of a general 1D linear differential operator. Similarly, inverse transforms
can be computed to an ε-accuracy in O(N logN log(1/ε)) operations [14,
Sect. 5.3]. In particular, it is possible to expand fast in eigenfunctions of
general self-adjoint Sturm-Liouville eigenproblems

(P (x)u′(x))′ +Q(x)u(x) = λR(x)u(x) , (7)

which are of particular interest in mathematical physics. These fast trans-
forms also generalize the FFT algorithm (the case of Q ≡ 0, P = R ≡ 1)
[14, Sect. 4.2.1].

– Fast computation of moments. The FEDI algorithm can be extended to
the computation of moments, namely,

µn :=
1

L

∫ L

0

|u(x;λn)|κdx, n = 1, . . . , N ,

which are important in applications to photonic and phononic crystals
[13] (typical values for κ are 2, 4). The computational complexity of cal-
culating {µn}Nn=1 to accuracy ε is O(κ2N logN log(1/ε)) [14, Sect. 5.4].
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6 Summary and Generalizations

In this paper we presented a class of fast eigenbasis algorithms, based on the
multiscale eigenbasis structure for the collective representation of eigenfunc-
tions.

These algorithms are not limited to localized electronic structures of quan-
tum chemistry, and can be shown to be highly parallelizable. Although we are
mainly motivated by ab-initio chemical problems, these algorithms address
a much broader variety of 1D expansions in orthogonal systems of general
linear differential operators, with general boundary conditions, on general
(non-uniform) grids.

Our main future research direction is concerned with the generalization
of our 1D algorithms to higher dimensional problems, which are of great im-
portance in condensed matter physics. Although not trivial, indirect higher-
dimensional generalizations of our 1D devices do exist.

– In a higher dimension, the concept of a monodromy on a given interval
should be replaced by that of a finite-difference equation on a compa-
rable meshsize. Analogous to the construction of monodromies of larger
intervals from those of smaller intervals (by multiplication), a coarse grid
difference equation can be constructed from the next-finer-grid difference
equations, using only a certain local set of the latter. The error in the
constructed coarse equations decreases exponentially with the size of that
local set. General algebraic approaches and examples for such construc-
tions are described in [6].

– Finite-difference equations could of course be also used in the one-dimen-
sional problem. In the present study the main reason that monodromies
were used instead is a certain complication associated with the construc-
tion of coarse equations for highly indefinite equations. Indeed, for a
large meshsize H and for the main range of λ values (those for which
(λ − V (x))H2 is not small), (1) is highly indefinite on scale H. Specifi-
cally, for each such value of λ, solutions of (1) are too oscillatory to be
directly represented, even locally, on a grid with such a meshsize. Instead,
MEB algorithms should employ a construction similar to the method de-
veloped in [8]. The yet unknown solution uH(x) is expanded as

uH(x) =

M
∑

m=1

aHm(x)wHm(x) . (8)

The wHm(x) are known oscillatory “basis functions”, found by relaxing at
the fine levels the “root equation”

∂ξw(x) + i(λ− V (x))1/2w(x) = 0 , (9)

where ξ is the “propagation direction” associated with the particular ba-
sis function w; each basis function of a coarse level is constructed by locally
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recombining neighboring basis functions of the next finer level (“locally”
meaning in space x, whereas “neighboring” denotes close eigenvalue and
propagation direction). The functions aHm(x) are smoothly varying, yet
unknown “amplitudes”. These amplitudes are to be calculated on grid H;
for each of them we can construct an equation on grid H, using a local
set of the next-finer-grid equations.

– The expansion of the form (8) for each eigenfunction should include only
a number (M) of terms which is independent of H, even for d > 1. This
can be achieved since the known functions wH

m(x) provide a suitable basis
of local approximate eigenfunctions on each scale. The local accuracy ob-
tained by relaxation is enough, since the basis functions are subsequently
modified by the coarse-level smooth amplitudes. However, the number of
different basis functions (or different finite-difference equations) for each
value of λ scales linearly with Hd−1. At the same time, the number of
different λs represented on grid H will be O(H), as with 1D. Thus, the
total number of basis functions represented on grid H will be O(Hd).

This outline implies that before tackling higher dimensional extensions
of the MEB algorithms, special studies should be first conducted on the
following two types of tasks:

1. 1D MEB algorithms based on finite-difference equations instead of mon-
odromies.

2. Extensions of the wave-equation algorithms of [8] to non-constant coef-
ficients, and possibly to more general boundary conditions. The cases of
discontinuous coefficients and/or boundary singularities are particularly
challenging. However, in applications to electronic-structure problems we
do not usually encounter such extreme conditions, since the effective po-
tential is very smooth and boundaries are practically absent.

Having developed MEB structures in higher dimensions, an intriguing
question will be whether O(N logN) computational work is indeed really
necessary. It is reasonable to expect that O(N), and sometimes even less,
would be enough. First because for many low values of λ, the eigenfunctions
are essentially local, lying only in areas where the potential V (x) is sufficiently
low. On the other hand, for high values of λ, the eigenfunctions approach an
asymptotic behavior that can be used to describe them all. At that range
of high λs, the main difference between eigenfunctions belonging to different
eigenvalues is only in the frequency associated with the base functions, a
quantity that can be singled out of the equations by choosing an appropriate
form for those functions. Thus, it is expected that the amount of work will
not really depend on λmin and λmax, but instead will be only proportional to
the number of discrete variables needed to resolve the potential V (x); that
is, the work is expected to be proportional to the number of atoms.

For very large structures, even that amount of work may not be needed,
since such structures are usually highly repetitive. Once coarse-level equa-
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tions have been constructed, they can be used in other areas where the po-
tential repeats itself (unlike coarse-level solutions, which cannot generally be
re-used). This aspect is emphasized in other papers on multiscale methods
[1,12,21]. In [1], for example, coarse-level Hamiltonians for polymer chains
are constructed using local simulations with fine-level Hamiltonians, which
are assumed to be known. In a similar manner, the fine-level Hamiltonians
themselves (the force field) could presumably be constructured, once and for
all, by using local simulations with electronic-structure dynamics.
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