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1 Introduction

Fourier analysis, also known as Local Mode Analysis (LMA) in the multigrid
community, dates back to the early days of multigrid development [1] and
has been well-established since then as the main tool for designing multigrid
algorithms and predicting their asymptotic convergence (see for example [1,
2,4, 14, 16, 15, 17, 18]). The most common variants of LMA are smoothing
analysis and two-level multigrid cycle analysis.

Herein, we develop Fourier analysis for general situations that may occur in
the practical design of multigrid methods, where many Fourier modes are
coupled during the numerical process. Such a process can be a general (k-
grid) multigrid cycle (as in [3]; see [17, 18] for a thorough 3-grid Fourier
analysis), a complicated relaxation scheme, or any other numerical process
with similar coupling characteristics.

In §2 we develop tools for analyzing a general multicoupling process. We

restrict ourselves to linear scalar constant-coefficient difference equations on
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an infinite uniform grid, which is the standard LMA setting [2, 4, 15, 16]. In
the two-level multigrid cycle predictions, we have also assumed a standard
1:2 uniform coarsening in all dimensions, with standard intergrid transfers.
However, our results are by no means restricted to such cases, and the quan-
titatively sharp predictions obtained are applicable to practical problems on
general domains, with general boundary conditions and smoothly varying co-
efficients, provided that supplementary processing is performed at and near
boundaries, at a negligible additional cost [3, 4].

The core of Fourier analysis is the computation of the symbol, or the ampli-
fication matrix of the process under consideration. In §2 we obtain general
formulae for the symbol of a multicoupling process, from which its conver-
gence and smoothing rates can be predicted. We extend the discussion to
products (compositions) of such processes.

The general analysis of §2 is then applied to two important examples, in
83 and §4. Section §3 discusses multicolor point relazation schemes, which
generalize the well-known Red-Black (RB) Gauss-Seidel (GS) relaxation [2,
6, 14, 15, 16, 19, 20]. These multicolor schemes couple ¢? Fourier modes
in d-dimensions, where c¢ is the number of colors. Numerical examples are
presented.

Our main application is the analysis of the novel approach of composite relaz-
ation for relaxing a product of two discrete operators, provided that a relax-
ation scheme has already been designed for each factor (see §4). Our Fourier

analysis and the numerical examples presented shed light on the behavior of
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a composite relaxation, and provide guidelines for its proper implementation
in practice. In particular it shows that for the biharmonic operator, a suit-
able composite relaxation is about four times as efficient as the Gauss-Seidel
scheme.

Section §5 is devoted to some closing remarks. Although not required in all
problems, the general analysis of highly multicoupling processes constitutes
an important tool for the design of efficient multigrid algorithms (see for
example [10]).

A detailed version of this paper is available as a technical report [11].

2 Fourier Analysis of c-Processes

In this section we develop local mode analysis for general “c-processes”, which
are linear numerical processes that couple c¢? Fourier modes in d-dimensional
problems. Similar analyses [1, 2, 3, 4, 6, 8, 9, 14, 16, 19, 20] usually refer to

the case ¢ = 2.

2.1 Notation and Basic Principles

The rigorous foundations of local mode analysis in the context of multigrid
are elaborated in [4, 12]. We follow the formulation of [4, 17, 18], start with
a simplified framework and discuss its generalizations in §5.

We consider a general linear scalar constant-coefficient system of difference
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equations

(A"u")(2a) = D aju(Tary) =" (2a), a€Q” (1)

YES

on the infinite uniform grid
Q" i={za=ah | a=(ay,...,aq) € 2%

with meshsize h, where {a,},cs are stencil coefficients, and without loss of
generality

S = [l ] X ... x [~lg, 14 € Z°

is a compact index set, for some {l;}4_; € N (a general stencil set may be
inscribed in such a d-dimensional cube, by zero-filling the stencil coefficients

wherever necessary). We will also use the notation

h h h
ay 1 G1p Q1

A" =] ar_, aby aby | S =[-1,1] x [-1,1],
a_q1,—1 a’i1,0 a}l1,1

with I; = Iy = 1, for a compact two-dimensional 9-point stencil [A"], and
similarly for a general stencil. The notation f« stands for ¢ - o := Z?:l 0;a;

whenever there are two adjacent symbols 6, « representing d-vectors. As

presented in [17, 18], every bounded infinite-grid function v in
B':={v:Q">cC | |v||:=(v,0)? < oo}
is a linear combination of pure Fourier modes of the type

P(0,2) =P/t = reQh 0e0:=(-nn7]
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which are the eigenfunctions of A", and orthonormal with respect to the

scaled Euclidean inner product [14, 17, 18]

(v,w) := nlli_rgo(Qm)’d | |2: v(ah)w(ah),

la] == llgaéimj\, Yo, w: Q" — C.
SIS

In other words, the Fourier space
F'.=span{e® | €O}

contains B".

2.2 Harmonics, Coupling, and c-processes

In the spirit of “classical” LMA, our Fourier analysis provides analytic ex-
pressions for the “response” of Fourier modes under some inspected processes,
that is, linear transformations from F onto itself. In particular, these expres-
sions can be used, in the context of multigrid methods, to accurately predict
the overall convergence of the processes, as well as the convergence of partic-
ular sets of modes (e.g., high-frequency modes, related to the “smoothing”
property of relaxation schemes; see for example [2, 15, 16]). We will concen-
trate on processes P that transform any pure mode into a general periodic
modulation of this mode, with a mode-independent period c, where c is a pos-
itive integer. For simplicity, we have assumed here that the period c is the
same for all the d dimensions; analogous results can be similarly obtained for

general periods ¢y, ..., cq.
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Definition 1 (c-modulation) A function v € F is called a c-modulation of
the mode €*, if ¢ is the smallest natural number such that v(z,)e °* is

c-periodic in aq, . ..,aq. That s, if
i0 d
V(Zatey) = V(24)e", Va,v € Z°

Definition 2 (c-process) A process P : F — F that transforms any mode

€% to a c-modulation of €* is called a c-process.

Examples of c-processes are as follows:
1. Any point relaxation for (1) in lexicographic ordering is a 1-process.

2. Any point relaxation for (1) in red-black ordering is a 2-process (in

fact, it couples only two modes, not 2%).

3. A two-level coarse grid correction operation [2, 15] is a 2-process, for a

1 : 2 uniform coarsening in all dimensions.

4. A similar three-level coarse grid correction is a 4-process; a g¢-level

coarse grid correction is a 297 1-process [3, 17, 18].

In §3 and §4 we consider two special classes of relaxation schemes that are

c-processes for a general ¢ € N.

Definition 3 (c-harmonics) The frequency 6' € © is a c-harmonic of 0 € ©
if 0 = 0;(mod 27“) forall j =1,...,d. The set of all c-harmonics of 0 is

2
(= @+ mmod 2m) | k=0,..,¢" =1}, n="",
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where (mod a) := (6;(mod a),...,0;(mod a)), and 7

the base-c representation of the integer k, i.e.

d
kZZTijdij, OSTk]’<C, j=1,.
Jj=1

= (Tkla PN ,de) 18

...d.

The subspace of linear combinations of the modes {e® Y1 will be de-

noted by Fy.

Lemma 1 (Equivalence Lemma) A function v € F is a c-modulation of the

mode €®® if and only if v € F§.

Proof. Consider first the case d = 1, and let B := (B, ...,

function
By, «a(mod ¢) =0,

v(xy) =

B. 1, a(modc¢)=c—1,

can be expressed as
c—1 e (k)
v(za) =) Ape®e, a €7,
r=0

where A 1= (Ay,..., A, 1)T € C° satisfies [11, §2.2]

c—1
ZA,"e"’sza, a=0,...,c—1.
r=0

This is a ¢ x ¢ linear system of equations

V(1’£7""SC_1)A:B7 5 = 6,”77

Bc_l)T € C°. The

aEZ (2)

3)

(4)

()
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where
1 rt
V(zo, o oyTer)i=| + = ..+ |. (6)
1 2.1 ... xzj
The Vandermonde matrix V(1,¢&,...,£1) is regular, since all the numbers

{¢€7}e2y are different [13]. Moreover, [11, Lemma 3] implies
1 c c—1
A:EV({: =1,¢7,...,¢B. (7)

Thus, there is a 1:1 correspondence between the forms (2) and (3) of the
function v. The d-dimensional case can be proved recursively (see [11] for a
complete proof); the matrix (6) in (5) is replaced by a matrix V(¥ composed

of blocks of Vandermonde matrices. O
Corollary 1 A c-process P keeps the c-dimensional subspace Fg invariant.

Proof. By Lemma 1, there exist functions ~{141k(9)}~2d:_01 such that

(Pv)(za) = Cdf A(0)e P va ezt (8)

k=0

Thus, the P-image of a general element

of Fy is

c?—1cd—1
(Pv)(za) = Z Z CLA,, (gc,(k)) (65 ()= (Mg
oty

= > > G, (907(’6)) g a

k=0 m=0
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since
(00’('“))0’("‘) = (0 + n(7 + 7)) (mod 27) = (0 + NTp1m)(mod 27) = o ktm),

where g := a(mod ¢?). We interchange the order of summation and substi-

tute k' := k + m to obtain

cd—1 -cd—l—m—l

(Po)(za) = X | Y. ChomAn (ecw—m)] i

m=0 | k'=m

-1 [ed—1

= Y'Y (eexw)]
k'=0

Interchanging the order of summation again and substituting m' := k' —m

yields
-1 [e?—1 , -1 ,
(Po)(za) = Y. | D CovAp—m (06’('"'))] e —, > Crei®™ e
k'=0 | m=0 k'=0
where
Co Ag(0°O) Ay (050) L Ay (0oD) Co
Gl A (9640)) Ao (90,@)) LAy (96,@&_1)) Cy
Cu_, Ag_, (9040)) Aga_y (ecm) . A (96,@4_1)) Cua_,

Hence, Pv € F5. m
We have shown that a c-process couples sets of ¢ modes, which are additive
groups (in coordination with the required symmetry of all the properties of

c-processes discussed previously).
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2.3 The symbol of a c-process

Analogously to the definitions of [2, 4, 17, 18, 19, 20|, the symbol P of a

c-process P given by (8) denotes its amplification matrix of any v € Fj.

Specifically,
Ag (05O) Ay (0=0) Ay (9o(4D)
<,(0) c(1) c,(c?—1)
P(Q):: A1(9 0) A0<9 1) AQ(G 1) o)
Ay (96’(0)) Aa_y (96’(1)) .. A (9‘3:(6‘1*1))

In the context of multigrid, we are usually interested in computing

pp = glelgp(P(H)) (10)
fip, = (gg@pp(C(C)(G)P(G)”));, (11)

where

d O’ ‘9‘ S %’
C(0) = diag {c(0°), ..., c(0° ")}, c(0) :=

1, otherwise.

The quantity (10) is the asymptotic convergence factor of P. (11) represents
the smoothing factor per sweep, for v consecutive sweeps of P; that is, the
reduction of high-frequency modes that cannot be represented on a coarse
grid with meshsize 2h. C?)(#) is a projection on this set, and reflects an ideal
coarse grid correction operator. Thus, 7ip, predicts the ideal performance
expected from a two-level multigrid cycle containing v relaxation sweeps,
when P represents the relaxation scheme at the fine level (see [2, 15, 16]).

We will also use in 4.3 the following analogous definitions for the Ly, norm.
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Definition 4 (Ls-factors) The Ly-convergence and Ly-smoothing factors of

a c-process P are defined by (see [4])

Mp = sup P, (12)
Mp, = (328 |c o) Po)” 2>_, (13)

where ||Al|, = (p(AT A))2 is the mazimal singular value of A.

We will also briefly denote Mp := Mp;. Note that Mp > pp, Mp, > Bipy,
and for a uni-coupling process, e.g., lexicographic point relaxation (¢ = 1),
Mp = pp,Mp, = Kpy-

The supremum in (10),(11) can be analytically computed for some special
cases (see [19, 20]). However, in general, it is computed numerically by
sampling the Fourier space © by a sufficiently fine lattice, with meshsize 6,

and explicitly computing P over that lattice. & need not be too small, as

1

35, that gives

noted in [3]; all the numerical results presented here use § =
an adequate resolution of the symbols discussed. However, the total number
of lattice points is O ((%’)d), which can be quite large for d = 3, for instance.
When the power iteration is used to compute p (P(H)) [3, §10.3], the total
cost of computing (10) is O ((27”)"’03’1 = (%)d), and a similar, somewhat
larger cost is required for computing (11) for the v-values of interest, which

are small [2]. This cost can be reduced using the following result.

Lemma 2 (Symmetricity Lemma) For any c-process P, p (P(@)) and
p (C(C) (9)15(9)”) are 2 -periodic in 61, . .., 0.
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The lemma follows by observing that the sets of c-harmonics of (61, ...,0,)
and of (6; + 27“, ...,04) are identical, up to a permutation. See [11] for the
complete proof. O

As a result, we can restrict the supremum search in (10) and (11) to the basic
cell ©, == (%, %]d, thereby reducing the cost of computing pp,7ip, from
O ((%)d) to O ((%)d) Even for practical values (e.g., ¢ < 4,d < 3), this
improvement may prove valuable. It is certainly significant when up, {7ip, }.

need to be repeatedly computed.

2.4 Products of c-Processes

Often we wish to analyze the behavior of a composition of processes, that
is, the compound action of consecutive processes. For instance, a two-level
multigrid cycle consists of several pre-relaxation sweeps, followed by a coarse
grid correction, and finally, some post-relaxations. Another important exam-
ple occurs in the study of composite relaxations (see §4). Here we analyze a

product P = P, P, of a general c;-process P; and a general cy-process Ps.
Theorem 1 (Product Color Theorem) P is an lem(cy, cg)-process.

Here ¢ := lem(ey, ¢9) is the least common multiple of ¢, .
Proof. A mode € is transformed by P, to an element vy € Fp?. Py is linear,

thus Pyvs is a linear combination of Py (exp(wc?’(k)a)) for all g°>*) ¢ Fg2.
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Since P, is a c¢;-process, P; (exp(i@‘”’(k)a)) € F,l, o, thus

Pl/UZ E U 06612,(k).

keF,?
The last set can easily be shown to equal fgcm(cl’”) (see for example Fig. 1).
|
0 ------ -0 6 12 -6

4o -4 2 8 -10

Figure 1: An example of confounded coupling (d = 1,c3 = 6,¢; = 4). Given
an original frequency 6, we denote a coupled frequency &' by the integer
c1c((0'—80)/(2m)(mod 27)). 0 (denoted by 0 on the left) is first coupled by P,
(the solid arrows) with the six harmonics 6+ (0, 4, 8,12, —8, —4) x j—g Then,
each of these frequencies is coupled (through the P; process, denoted by the

dashed arrows) with four harmonics. However, there are only lem(cq, ¢) = 12

different harmonics on the right matrix.

The symbol of P is obtained by “embedding” Py, P, into a common matrix
size, and then multiplying the embedded symbols. For the example of Fig. 1,

P is computed as follows:
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Pixm

Po km

diag {151 (012’(0))

KM

K,M=0,....3,

P1,00
P10
P20
P30

diag (B, (970) By (970)

P11
P
P11
P13

P02
P12
P22

731 32

)

K,M=0,...,5,

P2,00
Pa,10
Pa,20
Pa.30
Pa.40

Pa 50

P2
P11
Pa.21
Pa.31
Pa.a1
Pa.51

]5(0) = 151(0)]52(0).

P2,02
Ps,12
Ps,22
Ps,32
Ps,42
Pa,52

’151 (912,(1))

P3,03
Ps,13
P3,23
Ps,33
P3,43

Py 53

2.4.1 Convergence and Smoothing

KM

P304
Ps 14
P304
Ps,34
Ps a4

Pa 54

! Pl (9127(2))1(

ul

P2,05
Ps,15
Ps,25
Ps.35

Ps a5

Pa 55

15

M}’ (14)

(15)

(16)

(17)

(18)

An important question is whether the convergence and smoothing of the

product process may be apriori estimated in terms of the convergence and

smoothing of each factor. Although general upper bounds can be obtained,

as shown in [11], they may be far above the realistic values that can be

directly computed using the procedure described in §2.3 for the symbol (18).
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An excellent example is provided by the two-level multigrid cycle: although
both the smoother (P;) and the coarse grid correction operator (P,) usually
have pp,, pp, = 1, their composition has far better convergence than pp, ip,,
which is (roughly) the general upper bound.

Moreover, by using the sparse structure of Py(6), Py(f) in the power itera-
tion, we can effectively reduce the cost of computing the convergence and
smoothing of P = P P, as explained in [3, §10.3].

For a detailed discussion and numerical illustrations of the upper bounds for
the convergence and smoothing of P, P, see [11].

Having acquired the general tools for Fourier analysis of c-processes, we can
now apply them to two important classes of c-processes: multicolor point
relaxations (§3) and composite relaxations (§4), and discuss some practical

implications of the theoretical analyses.

3 Multicolor Relaxations

To show an example of analyzing multicoupling processes, we will analyze
a particular generalization of the well known Red-Black Gauss-Seidel (GS)

relaxation scheme [2], namely, the multicolor GS scheme.

3.1 Definition

A c-color point GS relaxation sweep (denoted GS,) for (1) is defined as a GS

sweep [7] in which the variables are updated in the following order:
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Forr=0toc—1,
Color sweep 7: Update all u(z,) for which ¥,(mod ¢) = r.
End For

d
j=1

In these sweeps, %, := Y.¢_; ; for a € 24,

The motivation for using such “colored ordering” appears, for instance, in
2, 15, 16|, where a two-color (red-black) GS proves to be a better smoother
for the standard discretization of the Laplace operator than the lexicographic
GS: points of the same color do not appear in each other’s equation; hence
a high-frequency Fourier mode in the error is effectively converted to a low-
frequency mode. However, the red-black (RB) ordering is not always better
than the lexicographic ordering.

In general, stencils at points of the same color may overlap; therefore, the
result of a multicolor relaxation also depends on the ordering within each
color (unless ¢ is chosen large enough, see §3.2). For simplicity, we will
assume Jacobi ordering within each color (i.e., all points of the same color
are simultaneously updated). Of course, the definition of the color sweeps
and their internal ordering may be organized differently for various practical

problems (e.g., [11] considers lexicographic ordering within each color); here

we consider a particular setting, to demonstrate our analysis tools.

3.2 The Symbol

The underlying characteristic of GS, is summarized in the following result.
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Theorem 2 GS,. is a c-process.

Proof. Fix 0 and let v(x,) := €"*. After applying the color sweep 0 to v, we

obtain a new grid-function v(®) that satisfies

_ Jo(6), Xu(mod c) =0, _
e "0 (z,) = Jo(0) == j (0,{Do,0}acs)
1, otherwise,
where
. Yo doal e
J (05 {da}aes) = ES\{Q;GL ’ Q = (0’ R O)a DO,a = 1,VC¥ € 5.
= d

By following the results obtained after subsequent color sweeps, it can be
shown [11] that the final result v(c"Y) obtained after GS, is
((Jo(0), X,(mod c) =0,

, Ji(8), Xa(modc)=1,
D)= (19)

[ Je—1(0), 24(mod c) =c—1,
Jr—1(0), Xa(modc)=c—-1,
Jo(8) = j (0, {Drataes), DY = :
D;_14(a), otherwise,
where o(a) := ((a; +1)(mod ¢), s, ...,q) and D_; , := 0 for all @ € S (see
Fig. 2).

Equation (19) implies that the result of the GS, action on e* is a c-

modulation of e, Let

Ky = v(c’l)(:vaﬂ)e’w”‘, Yy =(71,---,7%), (20)
c—1

0<vy<e 0<k:=>) i <ct—1,
=0
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o :
‘2 VIV VEVEVERNR
J Bld L %id X
e 30, J, @ JJ[eee
b oL|[H % %[5
J, 3| J J, J,
. —

Figure 2: A two-dimensional example (d = 2) of a ¢ = 3-color relaxation
on a 5 x 5 stencil. After the full sweep on a Fourier mode €?*, we obtain
v®); the figure presents the values v(®)(z,)e™"" on the infinite spatial grid
{a = (a1, ay) € Z?}. The hexagon designates a reference point a = (0, 0).
For example, in the last color sweep, the point (0, 2) (denoted by a circle) was
updated using v(") values from the relevant stencil S inscribed in the large
square. Note that v is a e-modulation whose periodicity cell is marked by

the dashed square. The values {ICk}Zd:_Ol are computed from this basic cell

by (20).
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which are a-independent values (but depend on §). By the equivalence lemma

and (9) (see §2.2), GS,. is a c-process, whose symbol is

Ko (050) Ky (050) ... Ky (9o6"D)
GS (0) := (V@) Ky (96’(0)) Ko (96’(1)) e Ky (907(Cd—1))
ey (890) Kooy (650) ... Ko (6D)

(21)

where V@ is a block Vandermonde matrix (see [11, §2] for its definition).
Thus, we can compute (10),(11),(12),(13) for any GS, using (21), given the
stencil coefficients {a,},cs. ™

A proper choice of the number of colors ¢ may be an important feature
of relaxation design, although in many problems ¢ < 2 satisfies all practi-
cal requirements, and does not require special divisibility properties on the
number of gridpoints to avoid boundary effects.
For some problems, however, enlarging ¢ so that points of the same color do
not appear in each other’s equation, may significantly improve the smooth-
ness properties of the relaxation scheme (see for example [6, 10]). Another
helpful tool in relaxation design is the choice of ordering within each color
sweep, e.g., Jacobi, colored GS, or even distributive GS. A detailed example
of optimizing a multicolor relaxation scheme using these strategies appears

in [10].
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3.3 Numerical Examples

As a simple illustration, we applied our analysis to multicolor GS relaxation

for various colors, for the two operators

1
1 2 -8 2
An_ L N 29
=51 —41|; A)'=s11 -8 20 -8 1 (22)
1 2 -8 2
1

in d = 2 dimensions. For each relaxation, we computed the smoothing factor
(for v = 1,2 consecutive sweeps), and the asymptotic convergence factors
per work unit of a two-level multigrid cycle containing v = 1,2 fine grid
relaxation sweeps, with linear and cubic intergrid transfers (see for instance
[4, §3.2] for the definition of the symbol of a two-level multigrid cycle). The
convergence factor in all cases was up = 1. The results are summarized in
Table 1.

The results indicate that ¢ = 1 is the worst case for both operators, and
there was no improvement when ¢ was enlarged to more than 3. The case
of ¢ = 2 has the best performance (¢ = 3 yields similar results). Note
that the smoothing factor always predicts quite accurately the asymptotic
convergence of a two-level multigrid cycle.

For A" = (A%)" the smoothing of the second and third relaxations is as
efficient as for the first one, for all ¢ (for the Laplace operator, the third

sweep already “lags” behind). However, the smoothing per sweep is much
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worse than for the Laplace operator. This finding may be related to the
results of [19] for RB GS for the Laplace operator: the smoothing factor
turns out to be the maximum between a term that is independent of the
number of sweeps, and one that depends only on the number of sweeps. The
number of sweeps becomes important only when the latter term becomes
dominant. Since a point GS is less efficient for (A2)"  the “lagging” effect
arises here too, but after more sweeps.

In the next section we present an alternative and more efficient approach for

relaxing the biharmonic operator.

4 Composite Relaxations

In this section we analyze the novel “composite relaxation” (CR) scheme for
products of operators, which was first introduced in [5] and applied in [10]
for the 1D Schrodinger eigenproblem. This scheme may be applied to many
problems, e.g., for the compressible and incompressible Euler and Navier-

Stokes equations [5].

4.1 Definition

Suppose our discrete operator A" can be written as the product A» = 4,4,
(similar constructions can be made for an arbitrary number of factors, A" =
Ay ... A,). Let R, be a relaxation scheme for A;, ¢ = 1,2. A way to obtain

good smoothing for A" (provided that R;» have good smoothing factors) is
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by regarding Au = f (omitting the superscript h) as a 2 X 2 system

Ay =  f (23)
A2u = Y, (24)
which can be written as
A 0
1 Y _ f - (25)
-1 A2 Uu 0

According to the general principles of relaxation design for a system of equa-
tions [2], the smoothing factor will be max{7ig, 1,7, ,}- However, this
method requires twice the variables (u,y) instead of the original u through-
out the multigrid solver, and a more complicated overall setup is required for
the system (25) instead of the original scalar (1). Instead, a second and novel
approach that was stated in [5] and tested in [10] is much more convenient.
It might have slightly worse smoothing than system relaxation, but it typi-
cally has far better smoothing properties than with an optimized multicolor
distributive relaxation (see §3.2 and [10]) for the original operator A.
A single sweep of the composite relaxation scheme R :=CR(vq,v;) consists
of the following steps:

1. Let u° be the initial grid-function. Set y° = Ayu®.

2. Perform v, R;-relaxation sweeps on (23), starting with y = 3% denote

the result by .
3. Perform v, R,-relaxation sweeps on Ayu = y!, starting with u = u°;

denote the result by u'.
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That is, the result of relaxing u° by R is u!. We focus on computing
the symbol of a composite relaxation, and obtain some apriori bounds on its
convergence and smoothing, in terms of convergence and smoothing for each

factor.

4.2 The Symbol

In the rest of this section we assume that R; is a c;-process and R, is a

C2-Process.
Theorem 3 R is an lem(cy, ¢o)-process.

Proof. For simplicity, consider first the case of ¢; = ¢; =: ¢. Let Ay(6) be

the symbol of the operator A,, let
Ay(0) = diag{Ay(0°9), ..., Ay (0°""V)},  dee, (26)

and let RLZ(O) be the symbols of their relaxation schemes R; . We denote
the exact solution of A;Asu = f by @ and 7 := Ayu.
Starting from an initial error mode v°(x,) = {e?*}, our first approximation
to w is
0 . 0 o i
U (To) =U(2e) + v (To) = U(ze) + 7.

In the first step of the composite relaxation we obtain

¥0(24) = T(xa) + Aa(6)e™.
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After v; Rj-relaxation sweeps on (23) we obtain

A

y'(za) = P(za) + R ()" Az(0)e.

Thus, the equation to be relaxed at step 3 of the composite relaxation can

be written as
Agv =2z, 2(xo) := Ri(0)" Ax(0)e®, v:=u—T. (27)

The exact solution of this equation is (z,) = As(#) 1Ry (0)" Ay(0)ete.
Therefore, we start the vy Rs-relaxation sweeps on (27) with the function

V(@a) =T+ (L — Ax(0) " Ry(0)" Ay(0)) €,

corresponding to u°, where I,4 is the c¢? x ¢? identity matrix, and after these

relaxation sweeps we obtain the new function
1 I » v X —1p v A 0o
v (@a) =T+ Ry(0)" (La — As(0) " Ri(0)" As(0)) e

which corresponds to the final result u! after the full R-sweep. The error in
ul is

(A2(0) 7" Ry(8)" Aa(0) + Ra(0)” (Ia — An(0) ™" Ru(0)" Ay(0)) ) ™.

Hence,

~ A

R(0) = Ay(0) ' Ry(0) Ay(0) + Ry(0)" (Tt — As(0) ' Ry(0)" As(0)) . (28)

This implies in particular that R is a c-process. Note that (28) is also valid for

general ¢y, ¢y, with ~ being replaced with the appropriate = (see (14)—(17))
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and ¢ := lem(cy, ¢g). That is,

R(9) = Ax(8) " Ru(0)" Ax(6) + Ro(6)" (Ia — Ay(6) Ru(6) As()). m
(29)

4.3 Convergence and Smoothing

The convergence and smoothing of the composite relaxation can be directly
calculated from (29). However, the following theorem provides apriori upper
bounds that may serve as “rules of thumb”, based on the convergence and
smoothing of R, ».

To simplify the notation, we have assumed here that the rows and columns
in the symbols of R, R;, Ry have been properly interchanged for all § € ©, so
that all high frequencies 6 € Fy (for which ¢(f) = 1, denoted by “H”) appear
before all low frequencies 0 € F§ (with ¢(f) = 0, denoted by “L”). Thus, we

write

I, 0 . RHH(9) RLH(g
C(C)(e) = ) Rt(e)w = ' ( ) ' ( ) ) 1= 17 27
0 0 RTE(0)  REE(0)

where n denotes the number of high frequencies in F§5 and m := ¢? — n

denotes the number of low frequencies.

Theorem 4 (CR Convergence Theorem) Assume ¢; = 1. Then

Mp < My, + My, + My Mg, (30)

Mp < My + My +Mg My +e, (31)
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where

£ 1= zug | R5™(6) (Im - RfL(H)) 2.
€

In other words, the smoothing of R for ¢; = 1 is the sum of the smoothing
performed on each factor, plus two “cross-terms”, resulting from the interfer-
ence of high frequencies with high frequencies (Mz! My’ ), and from the feed-
back (¢) of the remaining low frequencies after the R;-action (I, — RI%(9))
through the action of Ry (R3¥(6)).

Proof of Theorem 4. For ¢; =1, (29) becomes

R(0) = Ry(0)" + Ra(0)” (e — Ru(0)").

Thus

IRO)ll> < IR (O)[I5" + (| Ro(0)]152 + 1R (O) 15" [| B2 (0) 152
for all § € ©, which implies (30), even for a general matrix norm || - || instead
of || - ||a- Furthermore,

COO)R(9) = COO) R (0)" + C(0) Ra(6)” (Ie — Ra(0)") .

The norm of the first term is bounded by M"; the second (denoted by T')

can be explicitly written as
RM(0) Ry™(0) I, — R{'(0) 0
0 0 0 I, — REL(9)
RY™(9) (I — RI™(6))  R™(0) (I — REM(9))
0 0
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Hence,
REH(0) (I, — REH(9)) 0
I, < | ( ) 2
0 0
0 RY(0) (Ln — RE“(0))
+| [E
0 0
= ||RE#(0) (I — R (0)) || + | RS (6) (L. — RE%(8)) |l
< Mg +Mp g+,

yielding (31). m

Remark 1 For ¢; = ¢ = 1, we obtain
pr < pg, + R, T IR R, (32)
ﬁR S ﬁgl + Eﬁz + E’;ﬂll Eﬁz’ (33)

which seems to be the ideal performance that can be expected from a CR.

The optimal smoothing per work unit, defined by 7z ™2, where m is the

ratio between the number of points in A’s stencil and A;, Ay’s stencils (as-
suming that the latter ones are comparable and a work unit to be the work
of one relaxation sweep on A) is attained when both smoothing 77", 775> are

comparable and < 1.

Remark 2 The bounds (30),(31) are not valid for general ¢1, and in §4.4 it
will be shown that if both ¢, co > 1, even ideal smoothing for A;, Ay cannot

guarantee i < 1. This observation and our numerical examples (see §4.4)
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led to the conclusion that a necessary condition for good smoothing of R is
that at least one relaxation (R; or Ry) should be uni-coupling (¢; = 1), e.g.,

a lexicographic or Jacobi type.

4.4 Numerical Examples

We considered the following four combinations of Py, P:

(a) P; = lexicographic (LEX) GS relaxation (¢; = 1), P, = LEX GS re-

laxation (cy = 1);
(b) P, = LEX GS relaxation (¢; = 1), P, = RB GS relaxation (c; = 2);
(¢) P, = RB GS relaxation (¢; = 2), P, = LEX GS relaxation (¢; = 1);
(d) P, = RB GS relaxation (¢; = 2), P, = RB GS relaxation (c; = 2),

for the biharmonic operator A" := (A?)", as a product of A; = Ay := A" (see
(22)). For each case, we computed for various vy, v, values the smoothing
factor e per work unit (with m = 13/5 = 2.6, see (22); m may change,
depending on the implementation, but will most likely still be between 2 and
3), and the asymptotic convergence factor C, per work unit of a two-level
multigrid cycle containing x fine grid relaxation sweeps, for k = 1,2. The
results are summarized in Table 2.

Table 2 can be used to choose the ¢y, ¢a, V1, V9, k that yield the optimal multi-

grid convergence. Although the results depend on the specific definition of a



OREN E. LIVNE ET AL.: LOCAL MODE ANALYSIS ... 30

“work unit”, the following observations provide general guidelines for choos-

ing the parameters:

e Case (d) (c; = 2, ¢y = 2) yields no smoothing. Indeed, it can be shown
that if we start with a highly oscillatory mode (e.g., with frequency
(01,05) ~ (m,m)), it will be coupled through R; with a very smooth
mode. This smooth harmonic enters the right-hand side of (24), con-
tributing a large smooth mode to the error in u of that equation. After
the Ry action, this smooth error regenerates the oscillatory mode, ex-
actly at the amplitude of the original oscillatory mode. This unwanted
feedback can be prevented by restricting at least one of the relaxation
schemes to be lexicographic, although R; and R, will still be somewhat

confounded.

e The best multigrid convergence per work unit (0.374) is attained when
k = 1 and both vy, vy > 2, but not excessively large. That is, it is better
to first perform 2 — 3 relaxation sweeps on A;, and only then perform
2 — 3 sweeps on A,, rather than alternate between the two. The latter
corresponds to the case v; = vy = 1, whose best error reduction per

work unit is Cy = 0.528.

e Since an error reduction of about 0.1 per cycle is adequate for practical
purposes (e.g., for adaptation to an FMG algorithm [2]), the cases ¢; =
l,ee=2,1n=3,1n=2,k=1land ¢y =2, =1,y =2, =3,k =1

seem to be optimal.
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e The smoothing factor e predicts the two-level convergence rate C; quite
accurately in most cases. A second cycle (Cy) is usually slower, since
the coarse grid correction rate of moderately smooth components lags

behind the smoothing rate of high-frequency components [2].

e The “rule of thumb” b (based on the left hand side of (33)) gives an up-
per bound for e almost in all cases, although Remark 1 is theoretically
limited to ¢; = ¢ = 1. Moreover, b usually gives a good approximation
for the smoothing factor and for the convergence factor of multigrid
cycles, especially for large vy, vy (where mi', 75> < 1). Hence, once
the smoothing factors of I;, are computed, b can be employed as a

practical estimate for the performance of composite relaxation.

e It is also possible to alternate between the LEX and RB ordering within
the sequence of 14 relaxation sweeps on A; (and similarly for A,). How-

ever, this technique did not improve the results presented in Table 2.

Note that a multigrid cycle that employ such CR relaxation sweeps is 4.4
times faster than a multigrid cycle with GS sweeps for the compound bihar-
monic operator (see Table 1). This justifies the CR approach for the bihar-
monic operator; similar accelerations are expected for more general product

operators.
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5 Concluding Remarks

In this paper we have presented formal local mode analysis for general mul-
ticoupling processes. As discussed in [4, 15, 16], the predicted convergence
and smoothing factors are quantitatively sharp and can be obtained, at least
for the case of discretized elliptic PDEs, provided that proper supplementary
processing is performed at and near the boundaries [4]. For generalizations of
our analysis to staggered grids, piecewise smooth stencil coefficients, systems
of equations, etc., we refer the reader to [3, 4].

The presented local mode analysis follows [4, 17, 18] in putting both “grid
functions” and “Fourier modes” in the same space. This formulation is by
no means unique; for instance, one may instead utilize the Fourier transform
(using the continuum of Fourier frequencies instead of a discrete set) to define
symbols of processes. While the latter formulation enjoys several advantages
(e.g., connecting the convergence factor up to an operator-norm of P by
Parseval’s identity), the resulting formulae for symbols are of course identical
in all the equivalent formulations.

Already at the formal level, the analysis of multicolor processes provides
important tools for the general design of relaxation. Moreover, the novel ap-
proach of composite relaxation provides a simple scheme for relaxing prod-
ucts of discrete operators. Its smoothing per work unit has proved to be good
enough, provided that the relaxations of the factors are good smoothers, and

their confounded coupling of Fourier modes has a small effect. The latter
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requirement was shown by our analysis to be fulfilled by using lexicographic
ordering for the factor whose relaxation is performed first.

In general, the convergence and smoothing theorems, such as those presented
here, provide some insights; however, they may be skipped by the practitioner
by directly computing the desired performance from the process symbol.
The discussion in this paper relates only to problems on grids. For disordered
problems there is no natural “ordering” of variables, and we cannot use
“colors” there. Any ordering would result in the coupling of modes, and
the design of relaxation (in general, and composite relaxation, in particular)

should be done with caution.
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Table 1: Smoothing per sweep (7ip,,, v = 1,2, 3), and two-level multigrid cycle

(containing v fine grid relaxations) asymptotic convergence factors per work

unit with linear and cubic transfers (denoted C’g,),, v=1,2,3and Cl(ﬁf,),, v =

1,2, 3, respectively) of multicolor GS relaxation for Poisson and biharmonic

operators, for various numbers of colors

Measure Al = AP Al = (AR
c=1|c=2|c=3|c=4|c=1|c=2|c=3|c=4
ip, | 0.500 | 0.250 | 0.300 | 0.364 | 0.800 | 0.700 | 0.737 | 0.750
CH) | 0.400 | 0.250 | 0.266 | 0.310 || 0.785 | 0.800 | 0.779 | 0.777
cS) | 0.400 | 0.250 | 0.273 | 0.310 || 0.785 | 0.800 | 0.785 | 0.777
fip, | 0.500 | 0.250 | 0.305 | 0.366 || 0.800 | 0.700 | 0.737 | 0.750
C%) || 0.437 [ 0.270 | 0.302 | 0.349 || 0.784 | 0.745 | 0.755 | 0.866
CS) || 0.416 | 0.261 | 0.263 | 0.200 || 0.784 | 0.745 | 0.758 | 0.758
fips | 0.500 | 0.321 | 0.314 | 0.366 || 0.800 | 0.700 | 0.737 | 0.750
Cyy | 0.491 | 0.371 | 0.398 | 0.440 || 0.785 | 0.732 | 0.752 | 0.752
C) | 0.436 | 0.385 | 0.378 | 0.356 || 0.785 | 0.732 | 0.752 | 0.752
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Table 2: The biharmonic: the theoretical bound b := (&g, + mg, +

—1

uRlﬂﬁ)"liuz (see (33)) versus the actual smoothing per work unit of com-

m

posite relaxation (e := 7y, "?, computed by (29)), and the asymptotic con-

vergence factor per work unit C, of a two-level multigrid cycle containing
k = 1,2 fine grid CR(vy, 1) sweeps, for various ci, ¢g, V1, V9 values. The con-
vergence factor in all cases is 1. In case (d), e =C; = Cy =1 and b < .491

for all C1,C9,V1,V9

R (a) LEX/LEX (b) LEX/RB (c) RB/LEX

b € Cl C2 b € Cl 02 b [ Cl 02

1,1 1.34 | .787 | .722 | .724 || .841 | .543 | .638 | .528 || .841 | .543 | .638 | .528

1,2 891 | .705 | .617 | .617 || .636 | .567 | .545 | .538 || .607 | .452 | .596 | .506
2,1 .891 | .705 | .617 | .617 || .607 | .452 | .596 | .506 || .636 | .567 | .545 | .538

1,3 .784 | .686 | .633 | .633 || .657 | .639 | .606 | .605 || .557 | .447 | .638 | .533
2,2 .688 | .628 | .531 | .554 || .485 | .422 | 410 | .448 || .485 | .422 | 410 | 477
3,1 784 | .686 | .633 | .633 || .557 | .447 | .638 | .533 || .657 | .639 | .606 | .605

14 .763 | .703 | .668 | .668 || .702 | .697 | .662 | .661 || .560 | .483 | .696 | .576
2,3 .626 | .590 | .514 | .576 || .506 | .487 | .450 | .513 || .428 | .361 | .374 | .527
3,2 .626 | .590 | .514 | .576 || .428 | .361 | .374 | .486 || .506 | .487 | .450 | .532
4,1 .763 | .703 | .668 | .668 || .560 | .483 | .696 | .576 || .702 | .697 | .662 | .661

2,4 .617 | .581 | .526 | .603 || .553 | .548 | .503 | .563 || .412 | .330 | .403 | .565
3,3 563 | 553 | .447 | .590 || .430 | .401 | .374 | .532 || .430 | .401 | .387 | .559
4,2 .617 | .581 | .526 | .603 || .412 | .330 | .403 | .511 || .553 | .548 | .503 | .576

3,4 .545 | 533 | 476 | .617 || .468 | .461 | .416 | .570 || .390 | .347 | .414 | .583
4,3 545 | 533 | 476 | 617 || .390 | .347 | 377 | .550 || .468 | .461 | .422 | .588

3,5 .551 | .530 | .499 | .640 || .510 | .508 | .457 | .602 || .371 | .339 | .448 | .617
4,4 514 | 512 | 487 | .634 || 415 | .403 | .418 | .589 || .415 | .403 | .445 | .615
5,3 551 | .530 | .499 | .640 || .371 | .339 | .394 | .578 || .510 | .508 | .459 | .618

4,5 .508 | .501 | .504 | .649 || .451 | 448 | 454 | .621 || .381 | .364 | .470 | .641
5,4 .508 | .501 | .504 | .649 || .381 | .364 | .430 | .610 || .451 | .448 | .474 | .642

4,6 517 | 500 | .522 | .670 || .487 | .486 | .487 | .648 || .360 | .386 | .489 | .664




