Computer simulations at the fixed point using
an inverse renormalization group

transformation

Dorit Ron!

Department of Computer Science and Applied Mathematics, Weizmann

Institute of Science, Rehovot 76100, Israel

Robert H. Swendsen

Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213

Achi Brandt

Department of Computer Science and Applied Mathematics, Weizmann

Institute of Science, Rehovot 76100, Israel

Abstract

Following Brandt and Ron’s suggestion of inverting the renormalization group trans-
formation used in Monte Carlo renormalization, it is shown that efficient computer
simulations of the fixed point of the transformation can be carried out on very large
systems without critical slowing down. We illustrate the new method with calcu-
lations of critical exponents for the two- and three-dimensional Ising models, based

on several different transformations.
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1 Introduction

The efficiency of computer simulations in many fields has been enhanced by
the introduction of multi-scale techniques. In the study of critical phenom-
ena, Monte Carlo renormalization group (MCRG) simulations have improved
the determination of critical exponents,[1] as well as shedding light on the
structure of the critical point. The multigrid approach, which exploits the
advantages of a multi-scale approach from a different point of view, has long
been a leading method for efficiently solving partial differential equations and
other computationally difficult problems. Recently, Brandt and Ron have com-
bined some of these ideas in a multiscale analysis of critical behavior in a spin
system using a new representation of the renormalized interactions.[2] Ron
and Swendsen have used the Brandt-Ron (BR) representation to improve the
numerical determination of the properties of renormalized systems [3] and

clarify the effects of multispin interactions. [4]

In this paper, we turn the usual renormalization-group (RG) analysis around
to use an inverse renormalization group (IRG) transformation to generate
large systems that correspond to the fixed point of a renormalization group.
The striking advantage of this approach is that it is completely free of critical

slowing down, even for the three-dimensional Ising model.
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The first use of a kind of inverse RG transformation to generate configurations
of the Ising model on a large lattice were carried out by Compagner, Hoogland,
and Blote in the late 1970’s.[5] Starting with a configuration of the d = 2
nearest-neighbor model at criticality on a small lattice, they replaced each spin
by a block of four spins with the same value and performed a few MC sweeps
using again the nearest-neighbor Hamiltonian at criticality. By repeating the
process, they moved to successively larger lattices. They never published their
work, but at conferences they did show a picture of a 1024 x 1024 lattice
that looks like a configuration at criticality. This was quite an achievement
at the time, even though it was not as exact criticality as obtained by the
method described below. Also, they never used the configurations found with

this technique for calculating critical properties.

The first use of inverting the renormalization group to calculate physical ob-
servables was done by Brandt and Ron.[2] They performed what they called
“coarse-to-fine Monte Carlo acceleration” under the assumption that they
knew the structure of the renormalized Hamiltonians at each stage. As an
“extremely simple example” they approximated the renormalized Hamiltoni-
ans by using the original nearest-neighbor Hamiltonian to demonstrate the
absence of critical slowing down, although in this simple case it was not very
accurate. They have further increased the accuracy to some extent by using

better approximations to the renormalized Hamiltonians.

The basic algorithm used in this paper is essentially the same as that used
in the simple approximation introduced by Brandt and Ron.[2] However,
instead of simulating the properties of a nearest-neighbor model, we develop
approximations for the simulation of the fixed point of an RG transformation.

The difference is of great importance in the efficiency of the calculations.



In an earlier Letter,[6] we applied the inverse RG method to some simple
cases, using transformations and fixed points that had already appeared in the
literature. [7] [8] [9] [10] In this paper, we extend our work by combining the
inverse RG method with the Brandt-Ron determination of the renormalized

fixed point.

In the following section, we will describe the method we are using for sim-
ulations without critical slowing down. We will use the Ising model for all
examples, but the method is not limited to this case. The Brandt-Ron rep-
resentation is reviewed in Section 3, while in section 4 it is used to calculate
approximations for the fixed point. Results for the two- and three-dimensional

Ising models are presented in Sections 5 and 6.

2 Inverse renormalization group Monte Carlo

In a normal MCRG calculation of an Ising model, an MC simulation is per-
formed on a large system. For each configuration generated, a renormalized
configuration can also be generated by grouping the spins into blocks and as-
signing a single, renormalized spin to each block on the basis of some rule.
The rule can be either deterministic or probabilistic. For example, if 2 x 2
blocks are used (as will be done for the examples in this paper), a “majority-
rule” RG transformation would assign a block spin according to the sign of

the majority of spins, while a random number would be used to decide a tie.

By such transformations, the linear dimensions of the lattice would be reduced
by a factor of b = 2, and the number of spins would be reduced by a factor of

b? = 24, If the original Hamiltonian was at a critical point, the repeated trans-



formations would carry the renormalized Hamiltonians toward the fixed point
(FP) of the particular transformation used. If not, the repeated iterations

would carry the renormalized Hamiltonians away from the critical sheet.

The nature of the trajectories of the renormalized systems is extremely impor-
tant for understanding the methods and approximations that we will introduce
in this paper. Under renormalization, the trajectories in the space of Hamilto-
nians will flow toward the fixed point in all directions except one. This means
that for a normal MCRG calculation, it is only necessary to determine the
critical temperature of the original system to insure that the RG trajectory

flows toward the FP.

The inverse RG transformation requires the knowledge of both the RG trans-
formation and the Hamiltonian of the previous renormalization step.[2] The
algorithm is quite simple. After equilibration of a small system, each spin is
replaced, for example, by a 2¢ block of spins of the same sign, and an MC sim-
ulation is carried out with the constraint that configurations are restricted to
those that are compatible with the unchanged smaller system. If a proposed
spin flip would violate the condition that the majority of spins in a block has
the same sign as the renormalized spin on the original (smaller) lattice, it is
rejected. If the spin flip would result in a block with an equal number of
positive and negative spins, the acceptance probability of the move is divided
by two. Brandt and Ron called this step “compatible Monte Carlo” (CMC)
for obvious reasons.[2] This procedure has a very small correlation time, inde-
pendent of the lattice size, because of the local nature of the relaxation, even
though the system is at criticality. The result of the procedure is a configura-
tion corresponding to a lower level of renormalization on a larger lattice. By

repeating this procedure, arbitrarily large lattices can be generated.



Each sequence of inversely renormalized lattices begins with a small lattice
with a short correlation time. Thus it is easy to simulate the small lattice long
enough to produce an independent configuration. Since the larger lattices are
all based on the configuration of the smallest lattice, this means that every
configuration at any given lattice size is independent, even for the largest

lattices.

Before discussing the approximations necessary for this calculation, first as-
sume that we could carry out this procedure exactly. For the IRG, the devia-
tion from the FP in the relevant direction would decrease by a factor of 1/\
(where A\; > 1 is the relevant eigenvalue of the RG transformation), moving
the system onto the critical sheet. On the other hand, the deviations from
the FP in all irrelevant directions would increase by factors of 1/);, where
{A;j| j > 1} is the set of irrelevant eigenvalues, since all irrelevant eigenval-
ues are less than one. In fact, most of the irrelevant eigenvalues are very
small, so that tiny deviations from the FP would be greatly magnified by this

procedure.

Curiously enough, while this feature of the exact inverse transformation makes
it unsuitable for application to general Hamiltonians, the approximate inverse

transformations we will apply to the fixed point are stable and efficient.

The key feature to notice is that while the MC generation of a renormal-
ized configuration requires only the original configuration and a well-defined
RG, the inverse process requires not only the coarse configuration, but also
the inversely renormalized Hamiltonian. It is the exact inversely renormal-
ized Hamiltonian that develops the pathological expansion of the irrelevant

operators.



In this paper, we will apply IRG transformations to the fixed point of the trans-
formation, which eliminates the pathology of inversely renormalized Hamilto-
nians. The approximations that we will use also eliminate instabilities that
could arise from the divergence of irrelevant operators under the IRG. A final

advantage of this approach is that it uses the same Hamiltonian at every level.

Although we cannot calculate the FP Hamiltonian exactly for any known RG
transformation, several methods have been developed for approximating such
Hamiltonians. Swendsen developed a method for calculating renormalized and
fixed point Hamiltonians. Brandt and Ron developed methods for approximat-
ing renormalized Hamiltonians in terms of tables of conditional probabilities.
These calculations can be aimed at systematically finding better and better
approximations for the FP as discussed below in Section 3. Blote et al devel-
oped an optimized RG transformation and found a good approximation for
its FP. In Sections 5 and 6, we apply the results of all of these calculations to
the creation of approximate realizations of the IRG. Gupta and Cordery also
developed an elegant method for calculating renormalized Hamiltonians,|[11]
but since they did not apply it to the determination of fixed points, we have

not included it.

The MC simulations presented in this paper were carried out with the g05caf
random number generator from the NAG library. To check for possible system-
atic errors due to this choice of random number generator, we have repeated
some of the calculations with the ran?2 random number generator from Nu-
merical Recipes, and no systematic deviations were found. Both generators
use a multiplicative congruential algorithm with cycle of 25°, while the later
also includes random shuffling of the generated sequence. It is of interest to

mention that for the high accuracy results we present here, the standard For-



tran random number generator rand (which has a cycle of only 2%?) was not

sufficient and indeed introduced systematic deviations.

3 The Brandt-Ron Representation

The Brandt-Ron representation is described in detail in [2] and [3]. A brief
description is given below. The main idea behind the BR representation is to
describe the interactions between spins by calculating the conditional proba-
bility of a specific spin to be 41 given explicit values of a set of its neighboring
spins. The set of spins and their values is called a “neighborhood”. This con-
ditional probability table is denoted by P{", where m is the number of spins

in the neighborhoods under consideration.

The P, tables can be easily calculated from a Monte Carlo simulation. In [2]
it has been shown for the d = 2 Ising model using the majority-rule transfor-
mation on 2 X 2 blocks, that it is only important to achieve local equilibrium,
i.e., at a scale comparable to the size of the neighborhood. It has also been
confirmed that the calculation of the P, table is statistically optimal in the
sense that it automatically acquires accuracy € when the amount of statistics

is O(e72).

In the rest of this work, all d = 2 Ising calculations involve the Py table
(consisting of 314 distinct neighborhoods) and the P table (consisting of
2826 neighborhoods, where only the sums of the 8 most distant spins were

taken into account).

The generalization of the BR representation to the d = 3 Ising model is

straightforward. We have confirmed that the calculation of the P, tables does



not suffer from critical slowing down. A very good approximation for the P,

tables is obtained from just few MC passes, independent of the lattice size.

4 Calculation of P, tables at fixed points

We determine the fixed point using a combination of the Brandt-Ron pertur-
bative algorithm and a new fixed-point criticalization (FPC) to be introduced

below.

The P, tables represent the block-spin conditional probabilities and can be
used to run an MC simulation on that level, which in turn can be used to
calculate the P, table of the next renormalized level. An approximation to
the fixed point P* is obtained by repeating such renormalization steps. Due to
the extreme sensitivity to deviations from criticality caused by the truncation
errors and statistical errors, each P, table needs to be modified by pushing
it back to the critical hypersurface. We have first used the BR perturbative
iteration method to obtain a P, table very close to the FP followed by one

FPC.

4.1 Brandt-Ron Fixed Point Perturbative Iterations

The BR perturbative algorithm was first introduced in [2]. We have used a

somewhat simplified version in this work.

Let the vector P° represent the P, table obtained for the current level, also
referred to as the fine level. Let ¢° be a normalized approximation to ¢* (the

exact relevant direction) obtained at the previous stage of the algorithm, i.e.,



l¢°|| = 1, where the weighted norm is defined by ||t||* = X; w;t2, i runs over all
the entries of the P, table (represented by P°) and w; ~ f;/ [(P°); (1 — (P°);)],
with f; > 0 being the frequency of (P°); and >, w; = 1. We first calculate
a better approximation for ¢*. This is achieved by applying the RG trans-
formation R twice: P' = R[P°] and P? = R[P® + C,¢"], where C, < 1 is
the perturbation coefficient and P' and P? are the P, tables produced at the
renormalized level or coarse level. As R is applied repeatedly, all irrelevant
directions diminish, leaving the relevant direction as the dominant perturba-
tion to P°. An approximation for \*, the eigenvalue associated with ¢*, is

then given by

1
o= D widlq; (1)
q

where ¢! = P? — P! and w; is defined above.
Next we calculate an improved approximation for P*. We choose
P =P +z)\
where ¢ = ¢'/||¢*||, and z is such that |P — (P° + zq)||* is minimal. Thus z

is chosen so that zq nearly cancels any remaining component in the relevant

direction still present in P°.

The next iteration is repeated for ¢° <+ ¢ and P° « P, applied again on the

same grid sizes as the previous iteration.

In principle, such iterations would generate a sequence of systematically im-
proved approximations for the fixed point, each using a larger neighborhood

and more statistics than the previous one. Also, it can be used for calculating
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A* as described in [2]. That is, calculating an approximation for \* for a set
of decreasing values for C,, using Eq. (1), and extrapolating towards Cy = 0
using a quadratic fit to the data in their paper gives a value of A = 1.9987,

which is quite close to the exact value of 2.

4.2  Fized point criticalization

The approximation for the FP, P° obtained by the BR perturbative iterations
can be further improved by a procedure of fixed point criticalization, which
is specifically designed to minimize the deviation of the approximate fixed
point from the critical hypersurface. We use P° to simulate the fine grid for
which we calculate P!, P?, P3, the P, tables associated with the coarse grids
obtained from the fine grid by applying the RG transformation R three times.

The improved approximation for the FP is then given by

P°— (AP2—P*) /(A —1)

where A is an approximation to A*.

It is easy to show that this criticalization not only moves P° towards the
critical hypersurface along the relevant direction, but it also moves it closer to
the FP. If the approximation to \ is already rather good, the deviation of P°
from the FP in the relevant direction is greatly reduced, while each irrelevant
direction is reduced by a factor proportional to the square of its eigenvalue. We
have not used P! for the criticalization because P° was already too accurate

for P! to reveal the relevant direction.
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An approximate FP, either calculated by the methods in this section or from
an alternative approach, can now be used to generate configurations for arbi-
trarily large lattice using the corresponding IRG transformation discussed in

Section 2.

5 Two-dimensional Ising model

As a first application of the IRG method to approximations for the fixed point,
we have used finite-size scaling of the large lattices available through these
calculations to calculate the critical exponent ratio v/v and the value of 7.
The ratio /v was obtained from a log-log plot of the magnetic susceptibility
as a function of the linear system size, since the magnetic susceptibility x
is proportional to L?/*. The exponent 7 was obtained from the spin-spin
correlation function, which decays as r~(¢=2*")_ using the finite size scaling of
the function at » = L/4. All simulations started on a 4 x 4 lattice, employing 20
CMC sweeps (see Section 2) on increasingly larger grids. The largest lattices

obtained were 1024 x 1024, although the method is not limited to this size.

The first approximate realization of the IRG that we have tried uses the
nearest-neighbor, two-dimensional Ising model at its critical point as an ap-
proximation for the fixed point of the 2 X 2 majority rule RG. This is clearly
a very poor approximation, since the FP of this RG transformation is known
to be quite far from the nearest neighbor model. However, the results of this
calculation, shown in the first line of Table 1, are surprisingly good. The error

in the estimate of v/v is only 0.7%.

As a systematic way of calculating successive approximations to the fixed

12



Table 1

The critical exponents /v and 7 are calculated for the two-dimensional Ising model
using the IRG method with the majority rule as the RG transformation and with
an approximation for the FP either by a Hamiltonian presentation or by the P,

tables.

Fixed-point v/v 7

Nearest-neighbor 1.76195(2) 0.23807(2)

P} 1.73227(2)  0.2676(1)
Cc(P?) 1.75285(3)  0.2469(1)
P20 1.74815(2) 0.25183(2)
C(P) 1.74953(3)  0.2504(2)

7-couplings FP 1.74991(3)  0.25004(4)

Exact 1.75 .25

point, we used the algorithms developed by Brandt and Ron.[2] The entries
in Table 1 for “P{*” and “P?°” refer to estimates of the fixed point in terms
of the Brandt-Ron conditional probability tables using neighborhood of 12
and 20 sites described in Section 3, while the entries marked “C'(P}?)” and
“C(P)” refer to refinements of the estimates for the FP using the fixed point
criticalization introduced in Section 4.2. Although the first estimate using 12
sites is actually worse than that using the simple nearest-neighbor Hamil-
tonian, after criticalization, the results are very good. The approximation is
improved by enlarging the neighborhood to 20 sites and applying another FP
criticalization. The “C'(P?°)” estimate has a systematic error of less than

0.03% for v/v.
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There are three types of errors involved in calculating v/v : One is due to
approximations in the fixed point that we used which will be discussed below:;
the two others are due to the statistical and finite-size effects. It turned out
that the finite-size errors in all our tests were much smaller than the statistical
errors. Even a 16 x 16 grid had finite-size errors smaller than 0.0001, and
perhaps much less: our statistics (comparing the up to 16 x 16 results with
those of up to 512 x 512 using the same Hamiltonian) could not resolve smaller
errors. We have calculated the statistical error by dividing the total amount
of statistics into a few independent runs and measuring the variance between

them.

The number of independent configurations needed to obtain high accuracy
is rather small: 10° configurations of sizes up to 512 x 512 are sufficient to
obtain small statistical errors of about 0.002%, provided the observables of all
lattices are measured from the same simulation to guarantee the compatibility
of their deviations to each other. Because the renormalized configurations
are correlated with each other, fluctuations in the ratios needed to calculate
critical exponents are much smaller than the fluctuations in the quantities
themselves. If the observables are calculated separately from different runs for

different lattice sizes, the statistical errors are at least 50 times larger.

After observing how small are the finite-size and the statistical errors, it is
clear that the main error is due to the uncertainty of the fixed point Hamil-
tonians used for the simulations. This error, which is explicitly seen in this
case since the analytical solution is known, can generally be estimated by fur-
ther iterations which either increase the neighborhood and/or perform another
criticalization as can be seen in Table 1. Sufficient increase of that or the other

will get us as close as we wish to the exact solution. The differences between
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two consecutive results in this sequence of experiments, which decrease as the
approximations are improved, can serve as a rough estimation to the error in
the fixed point Hamiltonian used for the simulation, (in other cases, where the

analytical solution is unknown).

Finally, we have used an approximated FP given by a seven-coupling Hamil-
tonian as calculated by Swendsen[7], using comparisons of different methods
for calculating correlation functions. This approximation gives a remarkable

small error of only 0.005% for /v as shown in the sixth line of Table 1.

Fig. 1 shows these results in the form of a log-log plot of the susceptibility
as a function of the linear size of the system. The first striking feature is
the extreme linearity of the plot, reflecting the lack of corrections to scaling.
The second feature is that the results for different approximations lie almost
exactly on top of each other, reflecting the fact that they all refer to the same

majority-rule RG transformation.

Fig. 2 shows data for the spin-spin correlation function, (SyS,), as a function
of separation, r, for lattices from 4 x 4 through 512 x 512. The separation
r is divided by L, and the correlation function is scaled by a factor of L%?°.
Because the lattices differed in size by powers of two and the correlation func-
tions were evaluated at points of the form L27", points from different lattices
coincide completely to demonstrate how well the scaling laws are satisfied.
The points corresponding to 7 = L/4 were used in Table 1 to calculate the

value of 7.
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10*

Fig. 1. A log-log plot of the linear size of the lattice L versus the average of the
squared magnetization for the two-dimensional Ising model with the majority rule

and the six different fixed points introduced in Table 1.

6 Three-dimensional Ising model

For the three-dimensional model, we have neither the exact location of the
critical point of the nearest-neighbor model, nor exact values of the critical
exponents to compare our results with. However, we do have numerical es-
timates of the locations of fixed points for a variety of RG transformations.
This lets us consider a variety of ways to implement the IRG approach. In all
simulations discussed here, we have started from a 4 x 4 x 4 lattice. Larger
lattices were obtained by employing 20 CMC sweeps up to a linear size of 128.

Each computation generated 5000 independent configurations.

16



3.5

3 -
& 25H |
(=}
-
/\l_
(92}
U)O
VvV 2f i
15F 1
1 I I I I —S
0 0.1 0.2 0.3 0.4 0.5

r/L

Fig. 2. A log-log plot of the spin-spin correlation function of distance r multiplied by
L% versus r/L, where L = 4,8,....,512 and r = 1,2, ..., L/2, for the approximated
FP P}r0 of the two-dimensional Ising model with the majority rule RG transforma-
tion.

Again, we have first investigated the majority-rule RG transformation using
the simple nearest-neighbor Ising model at its critical point. The expected
value of the exponent ratio v/v is 1.962(2) for the d = 3 Ising model[10],
and our simple approximation gave /v = 1.9158(5). The deviation from the
correct result is about 2.3%, which is considerably larger than for the two-
dimensional case. However, it is still rather good for such an obviously bad

approximation.

Next, we tried to improve on this result by approximating the FP Hamiltonian
for the majority rule RG in the Brandt-Ron representation. The number of

P.’s in three dimensions can be rather large, so we have begun by restricting
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our calculation to the first three neighbors of the central spin [(100), (110),
(111) and permutations| for a total of 26 spins that form a 3 x 3 x 3 cube
around its center. The 12 next nearest neighbors were taken only via their
sums, and so were the eight additional spins sitting at locations (111) from the
center. The FP estimate was criticalized twice using A = 3. The resulting IRG
calculation gave v/v = 1.9160(4), which is very close to the result obtained for
the nearest-neighbor critical Hamiltonian, implying that larger neighborhoods

must be considered for better results.

Another estimate of the FP Hamiltonian was made by Swendsen|[9], by com-
paring correlation functions calculated in different methods. His FP estimate,
consisting of 17 coupling constants, combined with the majority rule transfor-
mation, gave /v = 1.9507(2), which is only about 0.5% from the generally

accepted value.

Since the method is not restricted to the majority-rule RG, we tried other
possibilities. Blote et al[10] not only optimized the RG transformation, but
also approximated the location of the FP within a space of three coupling
constants. Using their transformation and FP location, we found that /v =

1.9467(4), which is about 0.7% off.

As a final example, we tried to find an improved estimate of the FP for Blote’s
RG transformation[10], using the Brandt-Ron representation. Again we have
used the 26-spin neighborhood described above which contains and thus re-
sembles the use of the three couplings in Blote’s fixed point Hamiltonian. The
FP estimate was obtained by the BR perturbative algorithm described in Sec-
tion 4.1. The result was v/v = 1.9463(4), which is essentially the same as the

one obtained using the three coupling Hamiltonian. An additional criticaliza-
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tion of this FP still results in almost the same estimate for the critical expo-
nent. This calculation provides confirmation of the accuracy of the calculation
of Bléte et al[10], as well as confirming the consistency of the criticalization

method.

Fig. 3 shows log-log scaling plots for the three-dimensional susceptibility as a
function of lattice size. As in the two-dimensional case shown in Fig. 1 , the
linearity of the plots is again quite clear. However, the lines no longer lie on
top of each other, reflecting the different RG transformations and the different
fixed points involved in each calculation: The upper two lines (marked by ’o’
and '+’) correspond to the majority RG transformation, while the bottom two
(marked by ’x’ and ’00’) are due to Blote’s transformation. (The line marked
by ’x’, which has a slightly different slope, is the one obtained with the nearest-
neighbor Hamiltonian.) The coefficient for the majority-rule transformation

is almost 30% higher than for that of Bléte et al.[10]

Fig. 4 shows data for the spin-spin correlation function as a function of sepa-
ration for lattices from 4 x 4 x 4 through 128 x 128 x 128. The separation r is
again scaled by dividing by L, but the correlation functions are now multiplied
by L% where the exponent is an approximation for d — 2 + 7. As was the
case for the corresponding two-dimensional plot, data from all lattices collapse
onto a single curve. Unfortunately, it is very difficult to extract an accurate
estimate for the value of 7 in three dimensions because the exponent in the

scaling behavior is dominated by d—2 = 1, and 7 is only a small perturbation.
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Fig. 3. A log-log plot of the linear size of the lattice L versus the average of the
squared magnetization for the three-dimensional Ising model. (The line connecting
the '+’ is obtained by the nearest-neighbor Hamiltonian and the majority-rule RG;
the ’o’ by the 17-couplings Hamiltonian and the majority-rule RG; the 4’ by the
BR representation with a neighborhood of 26 followed by 2 FPC; the ’x’ by Blote’s
Hamiltonian and RG transformation and the ’0° by the BR representation with a

26-spin neighborhood with Blote’s RG transformation).

7 Conclusions and future work

In this paper, we have presented a new approach to the renormalization-group
analysis of critical phenomena using Monte Carlo simulations. This method
eliminates the problem of critical slowing down completely, for the same rea-
sons that the coarse-to-fine equilibration of Brandt and Ron showed no critical

slowing down. However, our approach also eliminates the difficulty that the
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Fig. 4. A log-log plot of the spin-spin correlation function of distance r multiplied by
L% versus r/L, where L = 4,8,...,128 and r = 1,2, ..., L/2, for the approximated
FP of the three-dimensional Ising model consisting of 17-coupling constants with

the majority rule RG transformation.

coarse-to-fine equilibration method had in calculating appropriate Hamiltoni-

ans at every step.

Our results in two dimensions turned out to be better than we could have
expected; even the obviously bad approximation of estimating the FP of the
majority-rule RG with the nearest-neighbor model produced an error in /v of
only 0.7%. With a good estimate of the FP in the Brandt-Ron representation,
the error dropped to less than 0.03%. The striking accuracy obtained for the
FP approximation using seven couplings is actually greater than the errors in
calculating these couplings as reported in [7]. Thus, we suggest that this FP

approximation needs to be recalculated either by decreasing the truncation
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error, i.e., by adding more couplings, or by reducing the statistical errors, or

both.

In three dimensions, the best existing approximation of the FP of the majority-
rule RG with the 17 couplings Hamiltonian gives an error of 0.5% in v/v. The
first few simple attempts in improving this result by using the BR represen-
tation were not successful. It is important to emphasize, however, that this is
due to the fact that we have used only the sums of the next nearest neighbors
in our approximations. Further improvement is expected from taking larger

neighborhoods and/or including more information from the present neighbor-

hoods.

In future work, we intend to concentrate on developing systematic methods for
calculating improved estimations for the fixed point in both representation.
We may also return to the question of optimizing the renormalization group
transformation itself along with the calculation of the approximated fixed

point.

The IRG can also be used to calculate correlations between arbitrarily distant
spins on increasingly large lattices. This can be achieved by applying the
IRG on some remote windows rather than on the entire domain. The desired
statistics should then be measured only in the interior of each such window
(several meshsizes away from its border). In general, one can produce two
remote regions of the same equilibrium configuration without calculating (at

the fine levels) all the regions in between.

In summary, we have developed a new way of using the renormalization group
structure and Monte Carlo simulations to investigate critical behavior without

critical slowing down that we hope will open the way to further calculations of
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critical properties and insights into the structure of the renormalization group.
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