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Abstract

We present a novel multigrid algorithm for the fast evaluation

of the electrical field, required for the iterative analysis of three-

dimensional scattering by a large but finite quasi-planar structure,

whose height is small compared with its length and width. The algo-

rithm is an extension of the two-dimensional version presented in [6],

maintaining linear scaling with the number of spatial gridpoints.
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1 Introduction (from 1D Paper)

Wave scattering by periodic structures has been extensively treated by many

researchers since the pioneering works of Lord Rayleigh. However, scattering

by finite periodic and quasi-periodic geometries has received little attention,

especially, in terms of numerically rigorous analysis. Examples of such struc-

tures are Fresnel lenses and planar reflector antennas as well as realistic finite

Frequency Selective Surfaces (FSS) and patch antenna arrays.

Scattering by planar structures can be formulated in the integral equa-

tion form, which is conventionally discretized using the Method of Moments

(MoM) [8]. The computational cost of solving matrix equations poses the

main limitation on the electrical size of scattering problems that can be an-

alyzed using MoM. The direct solution of the MoM matrix equations for

electrically large geometries is impractical due to O(N3) complexity of direct

solvers, N being the number of unknowns. The solution of very large linear

systems is usually facilitated via iterative solvers, whose cost depends on the

cost of matrix vector multiplication representing discretized evaluation of a

field produced by a given current distribution. Recently, several fast direct

and iterative algorithms for the solution of the planar scattering problem

have been presented in [4, 3, 7].

In this paper, we propose an alternative iterative solution based on the gen-

eral multilevel approach for fast evaluation of integral transforms with oscil-

latory kernels presented in [1]. We consider two-dimensional scattering by a
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large but finite array of perfectly conducting strips. The problem requires

the solution of a one-dimensional (1D) electric field integral equation. In

the proposed approach, the integral equation is solved iteratively, and the

main computational task is the repeated evaluation of the electric fields pro-

duced by the candidate solutions for the current distribution. Thus, we focus

here on fast evaluation of the field. To this end, the 1D oscillatory kernel

is represented as a linear combination of two “directional” kernels. Each

such directional kernel is not oscillatory, but is asymptotically smooth: it

is singular at short distances, but gets increasingly smoother at larger dis-

tances. As a result, it can be further decomposed into a local part (whose

contribution to the total field is local and inexpensively computed), and a

smooth part, which can be efficiently recovered from its values on a coarser

grid. The task of evaluating the original field over N nodes is thus replaced

by the task of evaluating the contribution of the smooth part of the kernel

on a coarser resolution of about N/2 nodes, which may still be too large

to compute directly. Consequently, further coarsening is applied recursively

until a grid is reached on which the task can be computed directly in O(N)

operations. This implies that the original field evaluation can be carried out

in only O(N) computer operations, thereby reducing the O(N2) complexity

required for a direct evaluation.
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2 The Computational Task

Consider a problem of Three-Dimensional (3D) Transverse Magnetic (TM)

scattering from a finite quasi-planar perfectly conducting structure, whose

height is small compared with its length and width. The geometry and ex-

citation are assumed uniform in the z direction. For clarity, the following

formulation is presented for a strip of unit width depicted in Fig. ??. Gen-

eralizing the proposed method to geometries comprising multiple strips is

relatively straightforward and will be discussed in §4. We will assume the

structure’s landscape Γ to be a parametric curve

Γ := {(s, η(s)), 0 ≤ s ≤ L1}, |η(s)| ≤ L2

2
, (1)

where L1 is the width of the structure and L2 ¿ L1 is its height (see Fig. ??).

Generalizations to other geometries are discussed in 4. The structure is illu-

minated by a z-polarized incident field Einc with a harmonic time dependence

eiωt, which is assumed and suppressed throughout the paper. The scattering

from the strip is analyzed using the Method of Moments (MoM). An Elec-

tric Field Integral Equation (EFIE) is constructed in terms of a z-directed

electric current J. The EFIE, which requires the total electric field along the

perfect conductors to vanish, yields

Einc(x1, x2) =
ηk

4

∫

(y1,y2)∈Γ
H

(2)
0 (k

√
(x1 − y1)2 + (x2 − y2)2)J(y1, y2)ds, ∀(x1, x2) ∈ Γ,

(2)
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or in terms of the parametrization (1) (x1(s) = y1(s) = s, x2(s) = y2(s) =

η(s)),

Einc(t) =
ηk

4

∫ L1

0
H

(2)
0 (k

√
(t− s)2 + (η(t)− η(s))2)J(s)ds, ∀x ∈ [0, L1],

(3)

where H
(2)
0 denotes the zero-order Hankel function of the second kind, η is

the free-space impedance, and k = 2π/λ, λ being the free-space wavelength.

Iterative solution of the integral equation (3) for J calls for repeated evalu-

ation of its (3), thus we will concentrate on the fast numerical evaluation of

(3).

We will not explicitly impose any smoothness requirements on η, rather as-

sume that a desirable discretization of (3) has been already formed; that is,

the task (3) is replaced with the multi-summation

E(tj) =
N∑

m=1,m6=j

H
(2)
0 (k

√
(tj − sm)2 + (η(tj)− η(sm))2)J(sm), j = 1, . . . , N,

(4)

where {tm = sm = (m− 1
2
)h1}N

m=1 represents a uniform grid over [0, L1] with

N segments of width h1, which satisfies h1 < λ/10, although J and E may be

discretized in general on different grids {tj}j, {sm}m. The values {J(sm)}m

may be general and depend on the grid point values of the continous J and

the discretization weights. Since a direct summation of (4) requires O(N2)

computer operations, our goal will be to evaluate it instead in only O(N)

operations.
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3 The Evaluation Algorithm

Our fast evaluation of E is based on reducing the task (4) to a sum of one

dimensional (1D) integrals, each may be evaluated in O(N) operations using

the algorithm presented in [6].

3.1 Derivation of the Algorithm

Unlike the 1D case [6], we cannot directly utilize any smoothness property of

H
(2)
0 (k

√
(t− s)2 + (η(t)− η(s))2) as a function of s. However, H(x1, y1, x2, y2) =

H
(2)
0 (k

√
(x1 − y1)2 + (x2 − y2)2) is smooth as a function of y2 for sufficiently

large |x1 − y1| (see App. ??). Consequently, we can approximate H by a

p2th order polynomial interpolation in y2 from its values on a uniform grid

{Y2,β}N2
β=1 with meshsize h2 := L2/N2 and N2 points over [−L2/2,−L2/2],

which may include O(p2) points to the left of −L2/2 and to the right of L2/2

to keep the interpolation central. Namely,

H(tj, sm, η(tj), η(sm)) =
∑

β∈σm

ωβ(η(sm))H(tj, sm, η(tj), Y2,β) + O(εI), (5)

where ωβ(η(sm)) are the weights of interpolation from the gridpoints Y2,β to

y2, and εI is a bound on the interpolation error. It follows that

E(tj) =
∑N

j=1,j 6=m

∑
β∈σm

ωβ(η(sm))H(tj, sm, η(tj), Y2,β)J(sm) + O(εI)

=
∑N2

β=1

∑N
j=1,j 6=m H(tj, sm, η(tj), Y2,β)ωβ(η(sm))J(sm) + O(εI).

(6)

Note that ωβ(y2,m) = 0 for all β 6∈ σm, for any y2,m := η(sm), m = 1, . . . , N .

Similarly, we can replace in (6) H(tj, sm, η(tj), Y2,β)) by a p2th order poly-
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nomial interpolation in x2 from its values on the uniform grid {X2,α}N2
α=1 =

{Y2,α}N2
α=1. Thus we obtain up to an O(εI) error

E(tj) =
N2∑

α=1

ωα(η(tj))
N2∑

β=1

Eαβ(tj) := ES(tj), j = 1, . . . , N, (7)

where

Eαβ(tj) :=
N∑

j=1,j 6=m

g(|tj−sm|; Cαβ)Jβ(sm), α, β = 1, . . . , N2, j = 1, . . . , N,

(8)

Jβ(sm) := ωβ(η(sm))J(sm), β = 1, . . . , N2 (9)

and

g(|t− s|; C) := H
(2)
0 (k

√
(t− s)2 + C2), Cαβ := X2,α − Y2,β. (10)

Each of the N2
2 integrals {Eαβ}αβ is a “1D multi-summation task” similar

to the discretized integral transform considered in [6], with the kernel g(|t−
s|; C) replacing H

(2)
0 (k|t − s|) and Jβ replacing J. The function g(·; C) is

asymptotically smooth in the sense of [1, §4] for any C, as shown in App. ??.

Thus we can directly apply the fast multilevel evaluation algorithm of [6] to

obtain each of the Eαβ’s to accuracy ε in O(N log(1/ε)) computer operations.

The algorithm’s parameters (interpolation order p and softening distance

S = sh1) should be tuned as explained in §3.2. The integrals are then

summed up using (7) to obtain ES to accuracy ε.

The last neccessary computational stage consists of “local corrections” in the

manner of [6, (18) and §2.4] for all the points x1, y1, x2, y2 that satisfy

r =
√

(x1 − y1)2 + (x2 − y2)2 ≥ S2 := s2h1, (11)
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for some softening distance S2. s2 should be chosen as explained in §3.2.

The corrections ensure that the interpolation error εI = O(hp
2(∂

p/∂y2)
pH) is

annihilated whenever exceeding O(ε). To sum up, the multi-summation (4)

is evaluated to accuracy O(ε) using the following steps:

1. Splitting: calculate the “splitted” {Jβ}β from (9).

2. 1D summations: carry out the tasks (8) for all α, β = 1, . . . , N using

the multilevel algorithm of [6].

3. Aggregation: compute ES defined by (7).

4. Local corrections: add the local corrections as in cite[(18) and §2.4]Amir

to ES, for all x1, y1, x2, y2 satisfying (11).

Following this basic description of the evaluation algorithm, the next sec-

tion provides more details on how to choose the various parameters involved.

3.2 Complexity and Precision

The values of S, S2, p, p2, h, h2 should be determined to minimize the compu-

tational work W under the constraint of a desired evaluation error ε. In this

section we do not opt for an exact optimization and expressions for the work

and error, rather present the orders of magnitude main terms in them.

In step 1 of the algorithm we perform O(N2N) operations. At step 2 , (??)

(see App. ??) implies that the main terms in the evaluation error of Eαβ is

O(hp|( ∂

∂r
)pg(r; Cαβ)|) = O((

ph

r
)p + r−p). (12)
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Thus, in order to obtain a desirably small interpolation error (say, ε1) in the

1D algorithm of [6], the softening distance S = sh should satisfy p/S = C1

where C1 is a constant of order 1 and somewhat smaller than 1 (e.g. C1 = 1
4
),

i.e. s = O(p). The Thus, the argument of [6, §2.5–2.6] on optimal values of

p, s, h holds for g(·; C), and we obtain p = s = O(log(1/ε1)) and h = O(1) at

all levels of the multilevel evaluation of {Eαβ}αβ (plus O(log log(1/ε1)) neg-

ligible contributions). By choosing ε1 = ε/N2
2 , the total work in computing

{Eαβ}αβ is O(NN2
2 log(N2

2 /ε)) for an accuracy ε.

Step 3 (computing (7)) involves O(N2
2 N) operations. The interpolation error

introduced by (5) is bounded by

εI = O(

(
kh2

2

r

)p

+

(
p2h2

r

)
), (13)

where r =
√

(x1 − y1)2 + (x2 − y2)2, as explained in App. ??. Consequently,

we obtain a controlled εI by choosing

S2 = C2h2max{kh2, p2}, C2 = O(1) < 1. (14)

Finally, we determine p2 and h2, assuming p, S are determined by the previous

argument and S2 is given by (14). For kh2 ≤ 1, the computational work per

finest grid node in step 4 is O(p2L2/h1), since the local region consists of

O(N2s2) = O(N2p2h2/h1) and N2 = L2/h2. The total work per finest grid

node is therefore

W

N
= O(

L2
2

h2
2

log(
L2

2

h2
2ε

)
p2L2

h1

), (15)

which corresponds to the contributions of steps 2 and 4. The work in steps 1

and 3 is smaller and may be neglected hereafter. The total evaluation error
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is O(ε + εI), hence W should be minimized subject to the constraint

p2h2

S0

p2

= ε (16)

In fact, the right hand side in (16) should be O(e), but constants were omit-

ted. Since S2 was chosen by (14), (16) immediately implies p2 = O(log(1/ε)).

Substituting back into (15) implies

W

N
= O(

L2
2

h2
2

log(
L2

2

h2
2ε

) +
L2 log(ε)

h1

).

W is minimized if and only if

d

dh̃2

(
W

N
) ∝ d

dh̃2

(
log(h̃2)

h̃2
2

) = 0, h̃2 :=
L2h2

ε

. The latter is satisfied when h̃2 =
√

e, and the optimal h2 is thus of order

L2/
√

ε, implying N2 = O(
√

ε). However, for resonable ε (e.g. less than 1)

the integer N2 would be too small to allow a p2th order interpolation, thus

is constrained on the lower bound N2 = q = O(log(1/ε)). The total work in

this case is

W = O(N((log(
1

ε
))3 +

L2

h1

log(
1

ε
))). (17)

4 Concluding remarks

In the previous section we described a fast multilevel field evaluation al-

gorithm, for a quasi-planar strip scattering problem. The algorithm scales

linearly with the number of spatial gridpoints resolving the structure. The

algorithm can be extended in various directions such as the following.
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The multiple strip problem can be addressed by the same algorithm of §3,

where J is defined to be zero outside the strips. Since the coarse grids usually

extend beyond the edges of the physical strips, at some coarsening stage they

cover the gaps between the strips, thereby reducing the computational task to

a single-strip-type task. Complicated geometries can be efficiently addressed

by local refinements (see for example [5]).

The presented approach can be adapted to the fast multilevel solution of the

integral equation (3) for the current, basically at the cost of one evaluation of

its right-hand side (see [2]). Moreover, The softening [6, §2.2] can be used to

design discretization schemes whose resolution (to a given accuracy) does not

depend on k. The multilevel evaluation complexity presented in this paper

scales O(k
2
3 ) for large k, thus should be then also modified to get rid of that

computational factor.

The extension to d-dimensional scattering problems can be effected by fol-

lowing the approach of [1, §5] and is also discussed in [6, §3].
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