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Inverse Monte Carlo Renormalization Group Transformations for Critical Phenomena

Dorit Ron
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

Robert H. Swendsen
Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Achi Brandt
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

(Received 24 June 2002; published 18 December 2002)
275701-1
We introduce a computationally stable inverse Monte Carlo renormalization group transformation
method that provides a number of advantages for the calculation of critical properties. We are able to
simulate the fixed point of a renormalization group for arbitrarily large lattices without critical slowing
down. The log-log scaling plots obtained with this method show remarkable linearity, leading to
accurate estimates for critical exponents. We illustrate this method with calculations in two- and three-
dimensional Ising models for a variety of renormalization group transformations.
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A normal Monte Carlo renormalization group (MCRG)
calculation begins with a Monte Carlo (MC) simulation

CMC has a very small, size-independent correlation time,
even for systems at criticality. This gives a configuration
The renormalization group (RG), which has become
central to any discussion of critical phenomena, is gen-
erally regarded as not having an inverse, making it really
a semigroup. There are serious reasons for avoiding an
inverse transformation in many cases, as we discuss
below. However, as we demonstrate in this Letter, there
can be considerable advantages to turning the usual re-
normalization group analysis around to use an inverse re-
normalization group (IRG) transformation to generate
large systems that correspond to the fixed point (FP) of
a renormalization group. The striking advantage of this
approach is that it is completely free of critical slowing
down.

A kind of inverse RG transformation to generate
configurations of the Ising model on a large lattice was
carried out by Compagner, Hoogland, and Blöte in the
late 1970s [1], but the first attempt to use an inverse
renormalization group transformation for efficient simu-
lations was made by Brandt and Ron [2]. They performed
what they called ‘‘coarse-to-fine Monte Carlo accelera-
tion’’ under the assumption that they knew the structure
of the renormalized Hamiltonians at each stage. Al-
though their method is completely valid in principle,
it suffers from the fact that the Hamiltonians at each
stage are not known and would have to be computed
individually.

The basic algorithm used in this Letter is essentially
the same as that introduced by Brandt and Ron [2].
However, instead of attempting to simulate the properties
of a nearest-neighbor model, we develop approximations
for the simulation of the fixed point of an RG trans-
formation. The difference is crucial for the efficient cal-
culation of critical properties.
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performed on a relatively large system [3]. For each
generated configuration, a renormalized configuration
can also be generated by grouping the spins into blocks
and assigning a single, renormalized spin to each block
on the basis of some rule. For example, a ‘‘majority-rule’’
RG transformation for an Ising model would assign a
block spin according to the sign of the majority of spins,
with a random number being used in case of a tie.

By such transformations, the linear dimension of the
lattice would be reduced by a factor of b, and the number
of spins would be reduced by a factor of bd, where d is the
dimension of the system. If the original Hamiltonian was
at a critical point, the repeated transformations would
carry the renormalized Hamiltonians toward the fixed
point. If not, each iteration would move away from the
critical sheet. The trajectories flow toward the fixed point
in all directions except one. For a normal MCRG calcu-
lation, every critical system has an RG trajectory that
flows toward the FP.

The inverse RG transformation requires the knowledge
of both the RG transformation and the Hamiltonian of
the previous renormalization step [2]. Using the d � 2,
2� 2 majority-rule Ising RG as an example, each spin is
replaced by a 2� 2 block of spins of the same sign, and
an MC simulation is carried out with the constraint that
configurations are restricted to those that are compatible
with the smaller system. Proposed spin flips that would
violate the compatibility condition are rejected. If a spin
flip would result in a block with an equal number of
positive and negative spins, the acceptance probability
of the move is divided by two. Brandt and Ron called
this step ‘‘compatible Monte Carlo’’ (CMC) for obvious
reasons [2]. Because of the local nature of the relaxation,
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corresponding to a lower level of renormalization on a
larger lattice. By iteration of this transformation, arbi-
trarily large lattices can be generated.

Each sequence of inversely renormalized lattices be-
gins with a small lattice with a short relaxation time,
which makes it easy to produce independent configura-
tions. Since the larger lattices are all based on the smallest
lattices, every produced configuration for any lattice size
is independent.

Before discussing the approximations necessary for
this calculation, first assume that we could carry out
this procedure exactly. For the IRG, the deviation from
the FP in the relevant direction would decrease by a
factor of 1=�1 (where �1 > 1 is the relevant eigenvalue
of the RG transformation), moving the system onto the
critical sheet. On the other hand, the deviations from the
FP in all irrelevant directions would increase by factors
of 1=�j > 1, where f�jjj > 1g is the set of irrelevant
eigenvalues, since all irrelevant eigenvalues are less
than 1. In fact, most of the irrelevant eigenvalues are
very small, so that tiny deviations from the FP would
be greatly magnified by this procedure.

Curiously enough, while this feature of the exact in-
verse transformation makes it unsuitable for application
to general Hamiltonians, the approximate inverse trans-
formations we apply to the fixed point Hamiltonian are
stable and efficient.

The key feature to notice is that while the MC genera-
tion of a renormalized configuration requires only the
original configuration and a well-defined RG, the inverse
process requires not only the coarse configuration, but
also the inversely renormalized Hamiltonian. It is the
exact inversely renormalized Hamiltonian that develops
the pathological expansion of the irrelevant operators.

In this Letter, we apply IRG transformations to the
fixed point Hamiltonian of the transformation, which
eliminates the pathology of inversely renormalized
Hamiltonians. The approximations that we use also
eliminate numerical instabilities that could arise from
the divergence of irrelevant operators under the IRG. A
final advantage of this approach is that it uses the same
Hamiltonian at every level.

Although we cannot calculate the FP Hamiltonian
exactly for any known RG transformation, several meth-
ods have been developed for approximating such Hamil-
tonians. Swendsen developed a method for calculating
renormalized and fixed point Hamiltonians [4–6].
Brandt and Ron developed methods for calculating sys-
tematically better approximations for the FP Hamil-
tonian in terms of tables of conditional probabilities [2].
Blöte et al. developed an optimized RG transformation
and found a good approximation for its FP Hamiltonian
[7]. We have applied the results of all of these calculations
to the creation of approximate realizations of the IRG.
Gupta and Cordery also developed a method for calculat-
ing renormalized Hamiltonians [8], as did Ron and
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Swendsen [9]. However, since these methods have not
been used to determine fixed point Hamiltonians, we
have not included them.

As a first application of the IRG method to approxima-
tions for the fixed point Hamiltonian, we have used finite-
size scaling of the large lattices available through these
calculations to calculate the critical exponent ratio �=�
and the value of 	. The ratio �=� was obtained from a
log-log plot of the magnetic susceptibility as a function of
the linear system size, since the magnetic susceptibility 

is proportional to L�=�. The exponent 	 was obtained
from the spin-spin correlation function, which decays as
r��d�2�		, using the finite-size scaling of the function at
r � L=4. All simulations started on a 4� 4 lattice, em-
ploying 20 CMC sweeps on increasingly larger grids with
periodic boundary conditions throughout. The largest
lattices used were 1024� 1024, although the method is
not limited to this size.

There are two types of errors involved in calculating
�=�: One is due to the inaccurate fixed point Hamiltonian
that we used; the other is due to the statistical and finite-
size effects. It turned out that the finite-size errors in all
our tests were much smaller than the statistical errors. We
have calculated the latter by comparing runs with differ-
ent amount of statistics. The number of independent con-
figurations needed to obtain high accuracy is rather
small: 105 configurations are sufficient to obtain small
statistical errors of about 0.003%, provided the observ-
ables of all lattices are measured from the same simula-
tion to guarantee the compatibility of all of them to each
other. If, however, the observables are calculated sepa-
rately from different runs for different lattice sizes, the
statistical errors are at least 50 times larger.

The first approximate realization of the IRG that we
have tried uses the nearest-neighbor, two-dimensional
Ising model at its critical point as an approximation for
the fixed point Hamiltonian of the 2� 2 majority-rule
RG. This is clearly a very poor approximation, since the
FP Hamiltonian of this RG transformation is known to be
quite far from the nearest-neighbor model. However, the
results of this calculation, �=� � 1:761 95�2	, are surpris-
ingly good. The error in the estimate of �=� compared to
the known value of �=� � 1:75 is only 0.7%.

A similar simulation was tried by Brandt and Ron in
[2] for the purpose of accelerating calculations of observ-
ables for the nearest-neighbor Hamiltonian. The accuracy
there was enhanced by adding a small number of regular
(unconstrained) MC passes following the CMC sweeps.
This step was called ‘‘postrelaxation.’’ However, since
postrelaxation disturbs the compatibility of the results
of various levels, as we have confirmed by calculations,
we have not included it in the present work.

To improve the approximation, we have used an ap-
proximated FP Hamiltonian given by a seven-coupling
Hamiltonian as calculated by Swendsen [5], using
comparisons of different methods for calculating
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FIG. 1. A log-log plot of the linear size of the lattice L versus
the average of the squared magnetization for the d � 2 and
d � 3 Ising models. The line connecting the 5 is obtained for
the d � 2 fixed point using the seven-coupling Hamiltonian
calculated by Swendsen. The line connecting the  is obtained
for the 17-coupling Hamiltonian calculated by Swendsen to
approximate the d � 3 fixed point. For both cases the RG
transformation used is the majority rule for blocks of 2d spins.
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FIG. 2. A log-log plot of the spin-spin correlation function of
distance r versus r, for the d � 2 Ising model with the majority
rule, for lattice sizes L � 4; 8; . . . ; 512 where r � 1; 2; . . . ; L=2
using the seven-coupling Hamiltonian calculated by Swendsen.
The line connecting the � connects all points for which r �
L=2, and the � are for r � L=4. The dashed line has the exact
slope of �0:25.
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correlation functions. This approximation gives �=� �
1:749 91�3	, which represents a remarkably small error of
only 0.005%.

We have performed several other calculations for the
two-dimensional Ising model using the Brandt-Ron rep-
resentation of renormalized Hamiltonians and their pro-
cedures for determining fixed point Hamiltonians. These
calculations were also successful, but space does not
permit us to explain the involved computations and give
the results here. They will be presented in a separate
publication [10].

For the three-dimensional model, we have neither the
exact location of the critical point of the nearest-neighbor
model nor exact values of the critical exponents to com-
pare our results with. However, we do have numerical
estimates of the locations of fixed points for a variety of
RG transformations. This lets us consider a variety of
ways to implement the IRG approach. In these simula-
tions, we have started from a 4� 4� 4 lattice. Larger
lattices were obtained by employing 20 CMC sweeps up
to a linear size of 128 using again periodic boundary
conditions. Each computation generated only 5000 inde-
pendent configurations.

As was the case for the two-dimensional model, we
performed many more computations than we can report
here, using transformations and fixed point Hamiltonians
calculated by Blöte et al. [7] and Swendsen, as well as
several calculations based on the Brandt-Ron representa-
tion. The simple nearest-neighbor, three-dimensional
Ising model at its critical point gave an approximation
of �=� � 1:9158�5	 with a deviation of about 2.3%
from the generally accepted value, i.e., �=� � 1:962�2	
[7]. The deviation of this case is larger than for the two-
dimensional case; however, it is still rather good for such
an obviously bad approximation. To present a clear illus-
tration of the method, we have then used an estimate of
the FP Hamiltonian made by Swendsen [6], by comparing
correlation functions calculated in different methods.
His estimate, consisting of 17 coupling constants, com-
bined with the majority-rule transformation, gave
�=� � 1:9507�2	, which is only about 0.5% from that
accepted value.

Although the numbers given above give a good idea of
the value of the IRG, they do not tell the whole story. In
Fig. 1, we show a log-log plot of the susceptibility versus
lattice size for both our two- and three-dimensional
examples. In both cases, the linearity of the plots is
striking, indicating the absence of corrections to scaling,
even down to a 4d lattice.

In Fig. 2, we show a log-log plot of the spin-spin
correlation function, hS0Sri, as a function of separation,
r, for the two-dimensional Ising model. Data for lattice
sizes from 4� 4 through 512� 512 are shown by the
curved dotted lines, one curve for each lattice size. One
solid line goes through all the points corresponding to
L=2 and another through the points corresponding to
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L=4. The dashed line, having slope �0:25, indicates the
asymptotic behavior of the correlation function in the
limit of an infinite system. The power law behavior
in both cases is clearly seen, resulting in an estimate of
	 � 0:250 04�4	.
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In this Letter, we have presented a new approach to the
renormalization group analysis of critical phenomena us-
ing Monte Carlo simulations. This method eliminates the
problem of critical slowing down completely, for the same
reasons that the coarse-to-fine equilibration of Brandt and
Ron showed no critical slowing down. However, our
approach also eliminates the difficulty that the coarse-
to-fine equilibration method had in calculating appropri-
ate Hamiltonians at every step.

Our results in two dimensions confirmed the validity of
the basic method, giving excellent scaling and surpris-
ingly accurate values for �=� and for 	.

In three dimensions, an approximation to the FP
Hamiltonian of the majority-rule RG using 17 couplings
gives an error in �=� of only 0.5% in comparison with the
best known values.

In both two and three dimensions, additional calcula-
tions that we do not have space to present here have
confirmed the robustness of the method [10].

In future work, we will continue developing techniques
for calculating improved estimations for the fixed point
Hamiltonian to further improve the accuracy of the
method, as well as applying this new approach to other
models of critical phenomena.

In summary, we have developed a new way of using the
renormalization group and Monte Carlo simulations to
investigate critical behavior. Our approach does not suffer
275701-4
from critical slowing down and we hope that it will open
the way to improved calculations of critical properties
and insights into the structure of the renormalization
group.
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