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Multiscale computation: from fast solvers to systematic upscaling
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Abstract

Most fundamental problems in physics, chemistry and engineering involve computation too hard even for future
supercomputers, if conventional mathematical approaches are used. The reason is always a product of several complexity
factors associated with the wide range of space and time scales characteristic to such problems. Each of these complexity
factors can in principle be removed by various multiscale algorithms, i.e., employing separate processing at each scale
of the problem, combined with interscale iterative interactions. Starting from multigrid fast solvers for discretized
partial differential equations and from renormalization group methods in theoretical physics, the multiscale computational
methodology has recently been extended to many other areas and new types of problems: linear and highly nonlinear,
deterministic and stochastic, discrete and continuous, with particles and macromolecules, graphs and images.
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Despite their dizzying speed, modern supercomputers
are still incapable of handling many of the most vital
scientific problems. This is primarily due to the scale
gap, which exists between the microscopic scale at which
physical laws are given and the much larger scale of
phenomena we wish to understand.

This gap implies, first of all, a huge number of variables
(e.g., atoms or gridpoints or pixels), and possibly even a
much larger number of interactions (e.g., one force be-
tween every pair of atoms). Moreover, computers simulate
physical systems by moving one variable at a time; as
a result, each such move must be extremely small, since
a larger move would have to take into account all the
motions that should in parallel be performed by all other
variables. Such a computer simulation is particularly in-
capable of moving the system across large-scale energy
barriers, which can each be crossed only by a large, and
unknown, coherent motion of very many variables.

This type of computational obstacles makes it impos-
sible, for example, to calculate the properties of nature’s
building blocks (elementary particles, atomic nuclei, etc.)
from a certain known underlying theory — and thereby
to confirm the theory itself through comparison with mea-
surements. Likewise, such obstacles are the main bottle-
neck in the drive to computerize chemistry and materials
science: to replace expensive experiments with computer
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simulations, yielding much more detailed understanding of
molecular structures and interactions, creating the ability
to design materials and processes, with enormous po-
tential benefits for medicine, biotechnology, agriculture,
material sciences, industrial processing, etc. Similar scale-
born slowness factors and barriers, multiplying each other,
plague many other engineering and scientific endeavors. All
would be greatly facilitated if unlimited computing power
were available — or if much better algorithms could be
devised.

Just building ever faster machines will not do, in fact.
With current computational methods the needed amount of
computer processing often increases too steeply with the
rise in problem size, so that in many important cases no
conceivable computer will be adequate. Completely new
mathematical approaches are needed.

Past studies have demonstrated that scale-born complex-
ities can generally be effectively overcome, or drastically
reduced, by multiscale (“multilevel”, “multigrid”, “multi-
resolution”, etc.) algorithms.

Indeed, any many-variable problem defined in the phys-
ical space can have an approximate description at any
given length scale of that space: a continuum problem
can be discretized at any given resolution; average mo-
tions of a many-particle system can be represented at any
given characteristic length; etc. The multiscale algorithm
recursively constructs a sequence of such descriptions at
increasingly larger (coarser) scales, and combines local
processing (relaxation of equations, Monte Carlo simula-
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tion of statistical relations, etc.) at each scale with various
inter-scale interactions. Typically, the evolving solution (or
the simulated equilibrium) on each scale recursively dic-
tates the equations (or the Hamiltonian) on coarser scales
while supplying large-scale corrections to the solutions
(or configurations) on finer scales. In this way large-scale
changes are effectively calculated on coarse grids, based on
information previously gathered from finer grids.

As a result of such multilevel interactions, the fine
scales of the problem can be employed very sparingly (just
a couple of relaxation sweeps, for example), sometimes
only at special small regions (local refinements just near
singularities) or only in small representative “windows”
(where larger-scale equations can be derived and then em-
ployed everywhere). Moreover, the inter-scale interactions
can eliminate all kinds of scale-associated difficulties, such
as: slow convergence (in minimization processes, PDE
solvers, etc.); critical slowing down (in statistical physics);
ill-posedness (e.g., of inverse problems); large-scale at-
traction basin traps (in global optimization and statistical
simulations); conflicts between small-scale and large-scale
representations (e.g., in wave problems); numerousness of
long-range interactions (in many body problems or inte-
gral equations); numerousness of long-range (non-local)
eigenfunctions (e.g., in quantum chemistry); the need to
produce many fine-level solutions (e.g., in optimal control)
or very many fine-level independent samples (in statistical
physics); etc. Also, the evolving large-scale equations bring
out the large-scale dynamics, or the macroscopic equations,
of the physical system, which is often the very objective of
the entire calculation.

Since the local processing (relaxation, etc.) in each scale
can be done in parallel at all parts of the domain (e.g.,
at all cells of a given lattice), the multiscale algorithms,
based on such processing, are ideal for implementation
on massively parallel computers. Indeed, many problems
cannot be solved efficiently by such computers without
employing a multiscale procedure. For example, to fully
parallelize a time-dependent calculation (i.e., to compute
for earlier and later times simultaneously), a multiscale
(multigrid) algorithm must be used.

Often, a combination of several multiscale approaches
can benefit one particular problem in many different ways.
Also, certain problems can benefit from multiscaling be-
cause this is the best way to formulate the problem, or
some parts of it.

The main sources to the systematic multiscale approach
are two major developments that took place in two different
fields: multigrid (MG) methods in the field of applied
mathematics, and renormalization group (RG) methods in
the field of theoretical physics.

Multigrid methods were first developed as fast solvers
for discretized elliptic partial differential equations (PDEs),
based on two processes: (1) classical relaxation schemes,
which are generally slow to converge but fast to smooth

the error function; (2) approximating the smooth error on
a coarser grid, with a small coarsening ratio. The re-
cursive combination of these two processes yields linear
complexity, i.e., solution work proportional to the num-
ber of variables (unknowns) in the system. In a research
stretched over many years, the range of applicability of
these methods has steadily grown, to cover nearly all the
major types of linear and nonlinear large systems of equa-
tions appearing in sciences and engineering. This has been
accomplished by extending the concept of “smoothness”
in various ways, finally to stand generally for any poorly
locally determined solution component, and by correspond-
ingly diversifying the types of coarse representations, to
include for instance grid-free, multiple-coarsening and non-
deterministic cases.

To obtain even further generality, there have however
been two basic reasons to go beyond these multigrid
methods. First, in all of them, a correction to a fixed
current fine-grid configuration (a fine-level approximate so-
lution or a fine-level statistical sample, depending on the
type of problem) is represented as an interpolation from a
coarser-level configuration. This is too restrictive for highly
nonlinear cases (including cases of of discrete-state and
Lie-algebra variables), where configurations cannot be de-
composed into weakly-interacting local and non-local parts
(or non-smooth and smooth components).

Another basic reason to depart from correction-based
multigrid methods is that for many systems, a linear com-
plexity is not good enough, since the number of variables is
huge. Such systems on the other hand are typically highly
repetitive, in the sense that the same small set of equations
(or Hamiltonian terms) keep repeating itself throughout the
physical domain. This opens the way to the possibility of
having, at the coarse level too, a small set of equations
that are valid everywhere, and that can be derived from
fine-level processing conducted only in some small rep-
resentative “windows”, thus avoiding the need to operate
with the huge number of fine-level variables. This is of
course impossible to do with correction-based coarsening
methods, whose coarse-level equations are not universal but
depend on the local current fine-level approximation.

These two basic reasons point in fact in the same
direction. Instead of relaxing the given system of equations
S0 as to obtain a smooth error that can be approximated on
a coarse level, one can use coarse level variables that are
little sensitive to relaxation (representing chosen averages
rather than individual values) and that represent the full
solution rather than the correction to any given current
approximation. Such coarse variables can be chosen (using
a general criterion described in [1]) so that coarse-level
equations can be derived just by local processing. We will
use the term “upscaling” for this type of direct (full-
solution) transition from a fine level to a coarser one. Its
validity is very general, extending even to those highly
nonlinear cases where all scales interact with each other so
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strongly that correction-based multileveling is inapplicable.

In fact, upscaling, under the name ‘“renormalization”,
was first introduced into exactly those systems where all
scales interact most strongly. These are the highly nonlin-
ear systems of statistical mechanics at the critical temper-
ature of phase transition. The renormalization group (RG)
method was developed contemporaneously with, but inde-
pendently of the multigrid method, its chief purpose having
been to investigate the behavior of such critical systems at
the limit of very large scales. It has thus focused on an-
alyzing, theoretically and computationally, the fixed point
of the group of successive renormalization steps, and vari-
ous universal asymptotic power laws associated with it. Its
computational efficiency remained however limited, mainly
due to the lack of a systematic advance of the reverse
transition, from coarser levels back to finer ones, which
is needed either for accelerating the fine-level simulations
and/or for confining them to small representative windows.

Realizing the complementary advantages of RG and
MG, a new combined paradigm has emerged, first in the
framework of critical statistical-mechanics systems, where
it was named Renormalization Multigrid (RMG). We use
the term systematic upscaling for the extensions of the
RMG blueprint to other systems, statistical as well as
deterministic.

Multilevel computation has evolved into a discipline by
itself, having its own internal development, gradually in-
creasing our understanding of the many types of multiscale
interaction, their modes of operation and domains of appli-
cation. Various underlying relations and algorithmic ideas
are carried back and forth between widely varying types of
problems.

Many recent developments are surveyed in [1]. The re-
ported areas include: top-efficiency multigrid methods in
fluid dynamics; inverse PDE problems and data assimila-
tion; feedback optimal control; PDE solvers on unbounded
domains and on adaptable grids; wave/ray methods for
highly indefinite equations; rigorous quantitative analysis
of multigrid; many-eigenfunction problems and ab-initio
quantum chemistry; fast evaluation of integral transforms
on adaptive grids; multigrid Dirac solvers; fast inverse-
matrix and determinant calculations and updates; multi-
scale Monte-Carlo methods in statistical physics, including
the renormalization multigrid (RMG) methods; molecular
mechanics (including fast force summation, fast macro-
molecular energy minimization, and Monte-Carlo methods
at equilibrium, both for macromolecules and for large en-
sembles of small molecules); combination of small-scale
equilibrium with large-scale dynamics; image processing
(edge detection and picture segmentation); tomography
(medical imaging and radar reconstruction); efficient, gen-
eral and highly accurate algebraic multigrid (AMG) and
numerical homogenization schemes; fast practical graph
algorithms; data clustering; and multiscale approaches to
global optimization.
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