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Abstract

Helmholtz equations form a family of equations arising in acoustic, electromagnetic, and other applied fields. The
processes that they describe are often considered on large computational domains and accompanied by non-local boundary
conditions. In this paper we describe a “wave-ray” algorithm for solving Helmholtz equations with radiation boundary
conditions, and discuss the measures needed to be taken to make the solver efficient and accurate. In addition, we introduce
an algebraic multigrid (AMG) solver for Helmholtz eigenvalue problems with variable potentials.
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1. Introduction

Helmholtz equations are well known as being hard to
solve, both analytically and numerically. The source of the
inefficiency of traditional numerical techniques, including
standard multigrid methods, is an existence of some er-
roneous frequencies that have poor convergence. In this
paper we describe a multigrid approach that overcomes
the difficulties that complicate the process of finding ac-
curate numerical solutions. This approach is beneficial if
the Helmholtz equations are considered on large (infinite)
domain and accompanied by the radiation boundary condi-
tions. We also introduce an algorithm that solves Helmholtz
eigenvalue problems for arbitrary potentials. As the model
problems, we will use two-dimensional Helmholtz equa-
tions with a constant potential, V (x) = k2,

�u(x , y)+k2u(x , y) = f (x , y), (x , y) ∈ � ⊂ R
2, (1)

and the one-dimensional eigenvalue problem with a vari-
able positive potential

uxx (x)+ V (x)u(x) = λu(x), x ∈ � ⊂ R, (2)

where d , the size of �, is much bigger than 2π/
√

V .
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2. Wave-ray algorithm

Let us consider model problem (1). Fourier components
of the form

ei(w1 x+w2 y), w2
1 +w2

2 ≈ k2, (3)

that almost satisfy homogeneous Helmholtz equations
cause the main slowness in applying standard multigrid
techniques to Helmholtz equations. They are almost invisi-
ble on the fine grids and poorly approximated on the coarse
grids. Simple Fourier analysis of the erroneous components
left unreduced by the multigrid cycle can be represented as

e(x , y) =
L∑

l=1

al (x , y)ei(kl
1 x+kl

2 y), (4)

where ei(kl
1 x+kl

2 y), l = 1, . . . , L are lattice components with
frequencies uniformly distributed on the circle of radius k.
The wave-ray approach suggests approximating smooth ray
envelope functions al(x , y), l = 1, . . . , L rather than the error
(4). To enable such approximations, the solver employs ray
coordinate systems with one axis being aligned with the
component propagation direction (k1,k2), ray coarse grids
(due to the smoothness of ray functions), ray equations, de-
rived from Helmholtz equations and (4). As input from the
fine wave grids the algorithm uses the envelope functions
of the wave residual that can be represented in the same
form as (4). In the Full Approximation Scheme (FAS) for-
mulation, this approach also allows a natural introduction
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of the radiation boundary conditions, a frequent companion
of Helmholtz equations.

3. Solution accuracy

The quality of the numerical solution in most multigrid
solvers is controlled by the properties of the finest, tar-
get grid, e.g. its mesh-size and discretization order; while
coarse grids are used to provide a smooth correction to the
fine-grid solution. In the wave-ray algorithm, however, the
coarse ray grids have an extended role. They are used to
approximate all components (3). In addition, these are the
grids where the boundary conditions are introduced. As a
result, an accurate resolution of some solution components
on the coarse grids becomes important.

3.1. Truncation errors

Analysis of the truncation errors shows that in the case
of Helmholtz equations the most significant impact on the
solution accuracy is a so-called phase error, the error that
occurs because of the accumulated differences between
the wavelengths of differential and corresponded discrete
principal components. Both wave and ray representations
may introduce significant phase errors. The wave phase
error is given by [3]:

E = O
(
kd(k2h2)

)
. (5)

The ray phase errors are estimated by

E1 = O(kd/L2), E2 = O(kd/L3). (6)

in propagation and perpendicular directions, correspond-
ingly. A refinement of the finest wave grid leads to reduc-
tion of (5). To reduce (6), however, it is lattice discretiza-
tion that should be refined (by increasing L) along with
coarsening of ray grids.

3.2. Other errors

Two other types of errors may decrease solution accu-
racy: errors introduced by interpolation of boundary condi-
tions from coarse ray grids, and errors caused by reflection
from artificial boundaries that also occur on the coarsest
ray grids. To diminish their influence on the solution qual-
ity at the target domain, it is sufficient just to extend ray
computational domains.

4. Eigenvalue problem

The next step in extending applicability of the wave-ray
approach is to develop a technique that efficiently finds

an accurate approximation for an arbitrary potential. In the
more general formulation, this task can be considered as
an eigenvalue problem for Helmholtz operators. As initial
approximations to solution of (2) on the finest, wave grid

u0
1 = e−i

√
V (x)−λ and u0

2 = ei
√

V (x)−λ

are chosen. Exact solutions, u1 and u2 are represented as

u1(x) = v1(x)u0
1(x)+v2(x)u0

2(x)

and

u2(x) = v3(x)u0
1(x)+v4(x)u0

2(x),

where vi (x) are unknown ray functions. The AMG ap-
proach, based on Galerkin approximation, is used to define
coarse grid equations for vi . The interpolation operators, I1

and I2, are used to interpolate a constant unit function de-
fined on the finest ray grid into u0

1 and u0
2, correspondingly.

Simple linear interpolation is used on the coarser ray grids.
The solver is a regular V cycle; λ is updated on the coarsest
ray grid. Interpolation from coarse grids to the next fine
grids is performed operators I1 and I2, correspondingly,
creating eventually a new and better, approximation on the
finest grid. The procedure can then be repeated with the
current fine grid approximation used as u0

1 and u0
2.

5. Conclusions

The approach described in Section 4 is currently under
development; preliminary one-dimensional results for (2)
with periodic boundary conditions has been obtained so
far. The ultimate goal of this research is to develop a
solver that will calculate a multiscale eigenbasis (see, for
example, [1]) for (2), and, eventually, will be applicable to
two-dimensional eigenvalue problems.
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