Graph Minimum Linear Arrangement by
Multilevel Weighted Edge Contractions

Ilya Safro*

Faculty of Mathematics and Computer Science, The Weizmann Institute of
Science, POB 26, Rehovot 76100, Israel

Dorit Ron

Faculty of Mathematics and Computer Science, The Weizmann Institute of
Science, POB 26, Rehovot 76100, Israel

Achi Brandt

Faculty of Mathematics and Computer Science, The Weizmann Institute of
Science, POB 26, Rehovot 76100, Israel

Abstract

The Minimum Linear Arrangement problem is widely used and studied in many
practical and theoretical applications. In this paper we present a linear-time algo-
rithm for the problem inspired by the Algebraic Multigrid approach which is based
on weighted edge contraction rather than simple contraction. Our results turned out
to be better than every known result in almost all cases, while the short running
time of the algorithm enabled experiments with very large graphs.

Key words: Minimum Linear Arrangement, Combinatorial Optimization,
Multilevel Computations, Graphs, Weighted Edge Contractions, Weighted
Aggregation, Coarsening, Interpolation, Relaxation, Simmulated Annealing

* Corresponding author.
Email addresses: ilya.safro@weizmann.ac.il (Ilya Safro), dorit.ron@weizmann.ac.il

(Dorit Ron).

Preprint submitted to Elsevier Science 21 October 2004

1 Introduction

The Minimum Linear Arrangement (MinLA) problem belongs to a large family of graph
layout problems such as : Bandwidth, Cutwidth, Vertex Separation, Profile of Graph, Sum
Cut etc. Commonly for general graphs these problems are NP-hard and their decision versions
are NP-complete [14].

Originally the MinLA problem was formulated in 1964 by Harper in [15]. His aim was
to design error-correcting codes with minimal average absolute errors on certain classes
of graphs. The MinLA may also be motivated as a model used in VLSI design, where at
the placement phase it is required to minimize the total wire length [10]. Additionally, the
MinLLA appears in several biological applications, graph drawing, reordering of large sparse
matrices and other fields (see [11,20,16,28]).

Since the MinLA has a practical significance, many heuristic algorithms were developed in
order to achieve near optimal solution. Among the most successful are Spectral Sequencing
[17], Optimally Oriented Decomposition Tree [1], Multilevel based [19], Simulated Annealing
[22,23], Genetic Hillclimbing [24] and some of their combinations. All these heuristics were
tested on the test suite that was compounded by Petit [22], some have proven themselves
superior in solution quality while other in execution time.

In this paper we present a new multilevel algorithm for the MinLLA problem based on the
Algebraic MultiGrid scheme (AMG) [2-4,9,26,30,31]. The main objective of a multilevel
based algorithm is to create a hierarchy of problems (coarsening), each representing the
original problem, but with fewer degrees of freedom. General multilevel techniques have been
successfully applied to various areas of science (e.g. physics, chemistry, engineering, etc.) [8,6].
AMG methods were originally developed for solving linear systems of equations resulting
from the discretization of partial differential equations. Lately they have been applied to
various other fields, yielding for example a novel method for image segmentation [29]. In the
context of graphs it is the Laplacian matrix that represents the related set of equations. The
main difference between our approach to other multilevel approaches (not necessarily related
to the MinLA but also to other graph optimization problems) is the coarsening scheme. While
the previous approaches may be viewed as strict aggregation process, the AMG coarsening is
actually a weighted aggregation. In a strict aggregation process (also called edge contraction
or matching of nodes) the nodes of the graph are blocked into small disjoint subsets, called
aggregates. By contrast, in weighted aggregation each node can be divided into fractions,
and different fractions belong to different aggregates. In both cases, these aggregates will
form the nodes of the coarser level. As AMG solvers have shown, weighted, instead of strict
aggregation is important in order to express the likelthood of nodes to belong together; these
likelihoods will then accumulate at the coarser levels of the process, automatically reinforcing
each other where appropriate. This enables more freedom in solving the coarser levels and
avoids making hardened local decisions, such as edge contractions, before accumulating the
relevant global information, while a strict aggregation may lead to inconsistency between
local and global pictures.

To escape false local minima we have used the general method of Simulated Annealing (SA)
[18]. By introducing a temperature like parameter, moves which increase the cost function
one wants to minimize are accepted with some non-vanishing probability. These algorithms
are usually extremely inefficient, since they require exponential slow temperature decrease to
approach the true minimum. In the multilevel framework, however, SA is aimed at searching
for local changes with rapid cooling at each level that guarantees the preservation of large-
scale solution features inherited from coarser levels.

Our experimental results show that the Algebraic Multilevel framework can be used for
the MinLLA problem to obtain high quality results in linear time. Our algorithm actually
provides the best results (excluding one case) compared to [1,13,22,23,11,24,19], while its
speed (despite its unoptimized current state) is much better than the fastest algorithm [19].

The problem definition and its generalization are described in Sec. 2. The multilevel algorithm
along with additional optimization techniques are presented in Sec. 3. A comparison of our
results with various other works is finally summarized in Sec. 4.

2 Problem definition and generalization

Given a weighted graph G = (V, E), where V = {1,2,...,n}, denote by w;; the non-
negative weight of the edge ij between nodes i and j (if ij ¢ E then w;; = 0). The purpose
of the MinLA problem is to find a permutation 7 of the graph nodes such that the cost
Y ijer wij|m(i) —m(j)| is minimal. In the generalized form of the problem that emerges during
the multilevel solver, each vertex i is assigned with a length (or volume), denoted v;. The
task now is to minimize the cost 3°;;c g wij|z; — 7], where ; = 4 + 34 & (k)<r(s) Uk, 1-€., each
vertex is positioned at its center of mass capturing a segment on the real axis which equals
its length (see Figure 1). The original form of the problem is the special case where all the
lengths are equal.

4 2 1y 2 3 2
(L8 d _—
W

Fig. 1. An example for the generalized form of the problem. Each node captures a segment on the
real axis. Its length is written above it. If, for instance, the edge between the first node to the fifth
one has weight w, then its contribution to the cost of the linear arrangement is w - 8.5 .

We will not discuss here theoretical complexity issues, such as lower and upper bounds for
the solution cost. We are not interested in the worst possible cases, which are extremely
non-representative. Our focus is on practical high-performance algorithm, such that in most
practical cases would yield a good approximation to the optimum at low computational cost.
Typically, the multilevel algorithms exhibit linear complexity, i.e., the computational cost in
most practical cases is proportional to |V| + | E|.

3 The algorithm

In the multilevel framework a hierarchy of decreasing size graphs : Gy, Gy, ..., Gy is con-
structed, see Figure 2. Starting from the given graph, Gy = G, create by coarsening the
sequence (1, ..., G, then solve the coarsest level directly, and finally uncoarsen the solution
back to G. This entire process is called a V-cycle.

G,=G [
2
G, ° o
Gy s
G, X.’

Fig. 2. The Scheme of a V-cycle. Solid arrows stand for coarsening, dotted for uncoarsening.

As in the general AMG setting, the choice of the coarse variables (aggregates), the derivation
of the coarse problem which approximates the fine one and the design of the coarse-to-fine
disaggregation (uncoarsening) process are determined as described bellow.

3.1 Coarsening: Weighted Aggregation

Coarsening will be interpreted here as a process of weighted aggregation (or of weighted
edge contraction) of the graph nodes to define the nodes of the next coarser graph. In a
strict aggregation process (also called edge contraction or matching of nodes) the nodes are
blocked in small disjoint subsets, called aggregates. Two nodes ¢ and 7 would usually be
blocked together (put in the same aggregate) only if their coupling is strong, meaning that
w;; is comparable to min{max,w;,, mazrywy;}. In weighted aggregation, each node can be
divided into fractions, and different fractions belong to different aggregates. In both cases,
these aggregates will form the nodes of the coarser level, where they will be blocked into
larger aggregates, forming the nodes of a still coarser level, and so on. As AMG solvers have
shown, weighted, instead of strict, aggregation is important in order to express the ltkelthood
of nodes to belong together; these likelihoods will then accumulate at the coarser levels of
the process, automatically reinforcing each other where appropriate. Strict aggregation, by
contrast, may run into a conflict between the local blocking decision and the larger-scale
picture.

The construction of a coarse graph from a given one is divided into three stages: first a subset
of the fine nodes is chosen to serve as the seeds of the aggregates (the nodes of the coarse
graph), then the rules for interpolation are determined, thereby establishing the fraction of
each non-seed node belonging to each aggregate, and finally the strength of the connections

(or edges) between the coarse nodes is calculated.

Coarse Nodes. The algebraic representation of a graph is given by its Laplacian A (a
|V| x |V| matrix), whose terms are defined by

—Wij for Z] S E, 1 7&]
A = {0 forij¢ B, i #j (1)

ki Wik for i =j

The construction of the set of seeds C' and its complement, denoted by F', is guided by the
principle that each F-node should be “strongly coupled” to C. Also, we will include in C'
nodes with exceptionally large volume, or nodes expected (if used as seeds) to aggregate
around them exceptionally large volumes of F-nodes. We start with an empty set C', hence
F =V and then sequentially transfer nodes from F' to C, employing the following steps.

Let wg(ij) denote the normalized weight of an edge ij with respect to the set of nodes S
and to the vertex 7, defined by
.. Wi j
= —. 2
ws(if) T Wi (2)
k€ES

As a measure of how large an aggregate seeded by ¢ € F' might grow, define its future-volume
v; by

¥ = v; + Zvj-mm(l,@-wv(ji)) : (3)

jEF Pj

where d; is the degree of j and p; = min(r, [@Q - d;]) is a rough estimate of the number
of C' nodes to which node j will be connected, the threshold @) (see below) and the coarse
neighborhood size r (see Appendix B) being parameters. The basic idea is that each F-node
will eventually be associated with only a limited number (the coarse neighborhood size r)
of C-nodes, thus the relative connection wy (ji) of each j € F to i is usually amplified by
Z—j, as for the cases where 7 < d;, the volume v; is divided among less neighbors. Nodes with
future-volume larger than 71 times the average of 9 should automatically be included in C'
as most “representative”. (In our tests 7 = 2). The insertion of additional fine nodes to C
depends on a threshold @ (in our tests Q = 0.4) as specified by Algorithm 1. That is, a fine
node i is added to C' if its relative connection to C' is not strong enough, i.e., smaller than
Q. Also, vertices with larger values of ¥ are given higher priority to be chosen to C.

Algorithm 1: CoarseNodes(fine level F)
Parameters: (),
C+ 0, F«V

Calculate ¥; for each 7 € F'
C < nodes with ¥ > n - (average of)

F+V\C
Recalculate ¢; for each i € F
Sort F' in descending order of ¥
Go through all 7 € F' in decreasing order of 1
If (Z wii/ 2 wij> < () then move 7 from F' to C
jec jev
Return C

For convenience we are currently using a library O(n - log(n)) sorting algorithm. However,
since no exact ordering is really needed, this can be replaced by a rough sort which has O(n)
complexity. This remark will be valid for all cases where we have used exact sort.

The Coarse Problem. The chosen set C' of seeds becomes the set of coarse level nodes.
Define for each ¢ € F' a coarse neighborhood N; = {j € C, w;; > «;}, where «; is determined
by the demand that |NV;| does not exceed the allowed coarse neighborhood size r chosen
to control complexity. (For typical values of r consider Appendix B). The classical AMG
interpolation matrix P (of size |[V| x |C]) is defined by

wy;, (ij) for i € F, j € N;
Py = <1 forieC, j=1 (4)

0 otherwise

P;; thus represents the likelihood of 7 to belong to the j-th aggregate. The Laplacian of the
coarse graph A° can be calculated by the so called Galerkin coarsening A° = PTAP. Here,
however, we follow the approximated scheme used in [29], namely, the edge connecting two
coarse aggregates i and j, wy;, is assigned with the weight wf; = 37, Priwg P The volume
of the i-th coarse aggregate is 3, v; Pj;. Note that during the process of coarsening the total
volume of all vertices is conserved.

3.2 The coarsest level

Solving the coarsest level, which consists of no more than 8 nodes (otherwise a still coarser
level should be introduced for efficiency) is performed directly by simply trying all possible
arrangements and choosing the minimal one.

3.3 Disaggregation (uncoarsening)

Having solved a coarse problem, the solution to the next-finer-level problem is initialized
by first placing the seeds according to the coarse order and then adjusting all other F-

nodes while aiming at the minimization of the arrangement cost. This approximation is
subsequently improved by several relaxation sweeps, first compatible, then regular with or
without additional stochastic elements, as explained below and summarized in Algorithm 2.

3.3.1 Initialization

Given is the linear arrangement of the coarse level aggregates in its generalized form, where
the center of mass of each aggregate j € C'is positioned at x; along the real axis. We begin
the initialization of the fine level arrangement by letting each seed inherit the position of
its respective aggregate. Define V' C V to be the subset of nodes that have already been
placed, i.e., initially V' = C. Then proceed by positioning each fine node i € V' \ V' at the
coordinate y; in which the cost of the arrangement, at that moment when 7 is being placed,
is minimized. The sequence in which the nodes are placed is roughly in decreasing order
of their relative connection to V', that is, the nodes which have strong connections to V"’
compared with their connections to V' are placed first. To be precise, the coordinate y; is
located within the minimization segment (possibly containing a single point) defined by

vy« | > wj— > wy| isminimal}, (5)

y;<y, jEV' yi>y, jeV’

which can be easily obtained by calculating the partial sums of weights along the already
placed neighbors of vertex 7. Note that for the case where all the w’s are identical, as indeed
in the original graph, y; is just the median of the locations of the already placed neighbors of
i, as in [19]. In the general case, y; is placed within the minimization segment, where the sum
of all left oriented adjacent edges is roughly equal to the sum of all right oriented adjacent
edges, as close as possible to the end of the bigger sum and thus minimizes the cost of the
arrangement with respect to i. Then V' «— V' U {i} and the process continues until V' = V.
Finally each position y; is changed to

$¢:ﬂ+ ka) (6)

2 Y <Yi

thus retaining order while taking volume (length) into account.

3.3.2 Relazation

The arrangement obtained after the initialization is not likely to be accurate enough, only
about 25% of the vertices end up within their minimization segment (satisfying (5) for
V' = V). It should therefore be followed by several sweeps of relazation, first compatible then
Gauss-Seidel-like. These two types of relaxation are very similar to the above initialization.
In each sweep, the nodes are scanned in their natural order, replacing their position one at
a time by locally minimizing the cost of the arrangement associated with it. The compatible
relaxation, motivated in [7], only improves the positions of the F-nodes according to the
minimization criterion (5) (where V' = V') while keeping the positions of the seeds (C-
nodes) unchanged, the Gauss-Seidel-like relaxation is similarly performed everywhere. Each

such sweep is again followed by (6). Our tests show that by employing just a small number
of relaxation sweeps the number of vertices located within their minimization segment grows
to about 70%.

3.3.83 Strict minimizations

A simple strict minimization is a relaxation that accepts only changes which decrease the
arrangement cost. Since done in the multilevel framework, it can be restricted at each level
to just local changes, i.e., reordering small sets of neighboring nodes, which are adjacent
(or relatively close) to each other at the current linear arrangement. It is easy to see that
switching positions between several adjacent nodes is indeed a local operation, since the
resulting new arrangement cost can be calculated only at the vicinity of the adjustment and
not elsewhere.

Node-by-node minimization. We have chosen to minimize over a sequence of local
changes in which the candidate positions for each vertex 4, in its turn, are scanned over
a segment of (maximal) length of 2k + 1, starting & positions to the left of the current lo-
cation of 4, ending k positions to its right (with exceptions of course at the beginning and
end of the arrangement). Each of the candidate positions has its own cost and the arrange-
ment, with the minimal cost is finally chosen. Such minimization sweeps are repeated until
no significant improvement in the arrangement is observed or until a given maximal allowed
number of repetitions is reached. This parameter as well as k are addressed in Appendix B.

Segment minimization. We have also used another more sophisticated minimization strat-
egy that operates on segments of subsequent nodes. In each sweep, the nodes are scanned
according to their current linear arrangement, extracting weakly connected segments of sub-
sequent nodes. A weakly connected segment of nodes is a segment which is connected within
itself but is either completely disconnected or only slightly connected to its right and left
neighbors in the arrangement. Then the position of each such segment is replaced by mini-
mizing the cost of the arrangement associated with it. The minimization of the energy of such
a segment is similar to that of a single node. Let W = {iy =7 '(p+1),..,i, =7 '(p+4q)}
be a segment of ¢ sequential vertices in the current arrangement, i.e., the nodes positioned
at ¢ subsequent coordinates starting at the p-th position. W will be moved to the position
where the sum of all its edges to the right is as equal as possible to the sum to its left, that is,
we used a generalization of the criterion (5), where the sums run over all i € W. The sweeps
are again repeated up to some maximal allowed number of iterations. This minimization has
been in particular successful for meshes as is summarized in Table 3.

3.3.4 Simulated Annealing

A general method to escape false local minima and advance to lower costs is to replace the
strict minimization by a process that still accepts each candidate change which lowers the
cost, but also assigns a positive probability for accepting a candidate step which increases the

cost of the arrangement. The probability assigned to a candidate step is equal to exp(—4§/T),
where § > 0 measures the increase in the arrangement cost and 7" > 0 is a temperature-
like control parameter which is gradually decreased towards zero. This process, known as
Simulated Annealing (SA) [18], in large problems would usually need to apply very gradual
cooling (decrease of temperatures), making it extremely slow and inefficient for obtaining
global optimum.

In the multilevel framework, however, the role of SA is somewhat different. At each level it is
assumed that the global arrangement of aggregates has been inherited from the coarser levels,
and thus only local, small-scale changes are needed. For that purpose, we have started at
relatively high T', lowered it substantially at each subsequent sweep until strict minimization
is employed.

Similar to the above strict minimization, 2k + 1 candidate locations are examined for each
vertex, each corresponds to moving it some distance [, 0 < |I| < k. The initial temperature
T = T(|l]) > 0 is calculated apriori for each distance [by aiming at the acceptance of a
certain percent of changes (for instance 60%). In detail, the probability of moving a vertex [
positions (I = £1, ..., +k) is Pr(l) = z- min(1, exp(—4d(1)/T(]l])), where z is a normalization
factor calculated by the demand °F , Pr(l) = 1 and Pr(0) = z-mini—t1,_1x(1— Pr(l)/2).
In each additional sweep T'(]!|) is reduced by a factor, such as 0.6. Typically only three such
cooling steps are used.

Repeated heating and cooling is successively employed for better search over the local land-
scape. This search can be further enhanced by the introduction of a “memory” like tool
consisting of an additional permutation which stores the Best-So-Far (BSF) observed ar-
rangement. Henceafter, the BSF is being occasionally updated by the procedure called
Lowest Common Configuration (LCC) [5] which enables the systematic accumulation of
sub-permutations into it over a sequence of different arrangements, such that each BSF
sub-permutation exhibits the best minimal sub-order encountered so far. The cost of the
obtained BSF is at most the lowest cost of all the arrangements it has observed, and usually
it is lower. The use of LCC becomes more important for larger graphs, where it is expected
that the optimum of a subgraph is only weakly dependent on other subgraphs. Thus, it is not
necessary to wait until all minimal sub-permutations are simultaneously obtained, which
may take exponential time; instead it is sufficient to obtain each such minimal sub-order
just once, since henceforth it is guaranteed to appear in the BSF. In detail, the BSF (of a
certain level) is initialized by the arrangement obtained at the end of the strict minimization.
Then the BSF is improved by the LCC procedure which updates parts of it taken from the
new arrangements reached right after each heating-cooling procedure. All these accumulated
updates are thus stored at the BSF which actually provides the current calculated minimum.
The complete description of the LCC algorithm is given in Appendix A.

Algorithm 2: Disaggregation(coarse level C, fine level F)

Parameters: ki, ..., kg, (for details consider Appendix B)

Initialize F from C
Apply kq sweeps of compatible relaxation on F
Apply ky sweeps of Gauss-Seidel-like relaxation on F
Apply at most k3 sweeps of strict minimization within distance k4 on F
Apply at most k5 sweeps of segment minimization on F
Initialize BSF < current arrangement of F
Do kg times of heating and cooling
Calculate T'(|l]) forl=1,...,k;
Do kg steps
Apply SA within distance k7 on F
Decrease all T'(|l]) by a factor
Apply at most k3 sweeps strict minimization within distance k4 on F
Update BSF <« LCC(BSF,current arrangement of F)
Return BSF

3.4 Linearization and cycling

The graph Laplacian yields a good coarsening (the AMG coarsening) when the problem is
associated with, or approximated by, the problem of minimizing the quadratic functional
Yijer Wij(w; — z;)%. A better quadratic formulation to a non-quadratic minimization prob-
lem can usually be obtained in terms of a current approximation, in the spirit of Newton
linearization (see [8]). The main property of such an approximate quadratic formulation is
stationarity, i.e., the quadratic formulation will reproduce the current approximation if the
latter happens to be already the solution to the original (non-quadratic) problem. In the
context of the MinLA, given a current approximation {z;}, a stationary quadratic approxi-
mation to the generalized MinLLA problem is :

wij

minimize (z; — x;)? , with a = 1. (7)

ijeE |x~, - fj|a

At each level of the multiscale MinLA solver, several cycles to coarser levels can thus be
performed, using first the original (o« = 0) quadratization, then in following cycles gradually
increasing « to 1. Using a certain value of o means here to employ newly defined weights
Wi = wy;/|T; — 7| instead of the original Laplacian in forming the aggregation seeds and
interpolation weights. That is, a previously obtained approximate solution is used to create
weights for the next cycle. We have used this idea only partially, i.e., by performing only
complete V-cycles (returning to coarser levels just from the finest level), with o = 0,1/2,1
successively, while updating the BSF of the finest level by applying the LCC procedure at
the end of each additional V-cycle. Note, however, that (7) is stationary only for the real-
number approximation to MinLA; it is not stationary when the constraint that {z;} should
be a permutation of (1,...,n) is added.

10

4 Results and Related Works

We have implemented and tested the algorithm using standard C++ and LEDA libraries
[21] on Linux machine with 1700MHz processor. The implementation is non-parallel and not
fully optimized.

We have started to test our algorithm on the benchmark provided by Petit [22]. The test
suite graphs are given in Table 1. In Table 2 we present the results we have obtained for
these graphs compared with other related works. In the column “Petit” we have extracted
the best results reported in Petit’s et al. articles [11,13,22,23]. These results were usually
obtained by combining spectral sequencing method with simulated annealing. In the column
“KH” we show the results of Koren and Harel [19]. They developed a linear-time algorithm
for the MinL A, based on the combination of spectral methods with the multi-scale paradigm.
We present their best reported results, those obtained after 10 full V-cycles. In the column
“BEFN” the results of Bar-Yehuda et al. [1] are given. They have developed a polynomial
time algorithm (with complexity O(]V|*?)) for computing an optimal ordering induced by
a binary balanced decomposition tree as an initial solution followed by simulated annealing.
Although Bar-Yehuda et al.’s results are of high quality, their algorithm cannot be used for
very large inputs due to its high complexity. Finally the “Poranen” column includes the
results obtained by the stochastic algorithm called “genetic hillclimbing” [24].

The running time of our algorithm clearly depends on several parameters. We have basically
used three types of V-cycles : the “quick” V-cycle which is aimed at achieving fast perfor-
mance and thus somewhat compromising the quality of the arrangement cost, the “extended”
V-cycle which runs longer but succeeds in finding lower cost arrangements, and the “super”
V-cycle which provides even better results but runs on the average twice slower for this
test suite. The relevant parameters for all types are presented in Appendix B. The “quick”
V-cycle is mostly useful for large graphs (like those in Table 4) for which it is crucial to cut
down execution time. Here, for the relatively small sized graphs of Petit’s benchmark, we
have omitted its detailed results, since the “extended” V-cycle already runs fast enough and
naturally provides better results. The column (of Table 2) marked by “Ours : extended”
summarizes the best results observed out of 100 runs (using different sequences of random
numbers) of three “extended” V-cycles each. The column (of Table 2) marked by “Ours
: super” summarizes the best results observed out of 50 similar runs of three “super” V-
cycles each. Excluding the first four random graphs (discussed next), it is evident that our
algorithm almost always provides the best results, if not by using the “extended” V-cycle,
then when applying the “super” one. Also important is the fact that the calculated standard
deviation of the trials is no bigger than 1% (for both the “extended” and the “super” V-
cycles) of the minimal result shown in the table and usually it is much smaller. One “quick”
V-cycle gave on the average 107.3% of our best results, while three “quick” V-cycles improve
it to 105.4%. One “extended” V-cycle further improved the results to 103.3% and three
“extended” V-cycles to 101.5%. Extracting the best results out of only three runs (using
different sequences of random numbers) of three “extended” V-cycles already gave 100.9%
of the best seen costs. Since the running time of our algorithm is almost negligible for many

11

of the graphs of Petit’s test suite we present it (in Table 5) only for the much larger graphs
given in Table 4 and discussed below.

Table 1
Petit’s benchmark [22].
Graph Name |V| |E| Min/Avg/Max degree Diameter
randomA1l 1000 4974 1/9.95/21 6
randomA2 1000 24738 28/49.7/72 3
randomA3 1000 49820 72/99.64/129 4
randomA4 1000 8177 4/16.35/29 4
randomG4 1000 8173 5/16.34/31 23
hc10 1024 5120 10/10/10 10
mesh33x33 1089 2112 2/3.88/4 64
bintreel0 1023 1022 1/1.99/3 18
3elt 4720 13722 3/5.81/9 65
airfoil 4253 12289 3/5.78/10 65
crack 10240 30380 3/5.93/9 121
whitaker3 9800 28989 3/5.91/8 161
cly 828 1749 2/422/304 10
c2y 980 2102 1/4.29/327 11
c3y 1327 2844 1/4.29/364 13
cdy 1366 2915 1/4.26/309 14
cSy 1202 2557 1/4.25/323 13
gd95c 62 144 2/4.65/15 11
gd96a 1076 1676 1/3.06/111 20
gd96b 111 193 2/3.47 /47 18
gd96c 65 125 2/3.84/6 10
gd96d 180 228 1/2.53/27 8

Random graphs. Two kinds of random graphs were introduced in Petit’s test suite : (a)
Uniform random graphs G, ,, (randomA[1,2,3,4]), where n = 1000 is the number of vertices
and p is the probability of having an edge between any two nodes, and (b) Geometric random
graph Gy, 4 (randomG4) with n = 1000 uniformly distributed nodes in a unit square, such
that each pair of nodes which have smaller distance than d are connected by an edge. It
is clear that our algorithm succeeds when the graph has some geometric structure like in
“randomG4”, and unlike “randomA[1,2,3,4]”. While most algorithms perform rather well for

12

Table 2
Comparative table of results for the test suite of Table 1. The obtained minimum is bolded.

Graph Petit KH BEFN Poranen Ours : Ours :

“extended” “super”
randomA1l 867570 909126 884261 878637 890430 888381
randomA?2 6528780 6606174 6576912 6553553 6610933 6596081
randomA3 14202700 14457452 14289214 — 14349635 14303980
randomA4 1721670 1765217 1747143 1739317 1757119 1747822
randomG4 150940 149513 146996 142587 140240 140211
hcl0 523776 523776 523776 523776 523776 523776
mesh33x33 31929 31729 33531 32178 31895 31729
bintreel0 4069 3950 3762 3899 3707 3696
3elt 363204 373464 363204 383286 359977 357329
airfoil 285231 291794 289217 306005 275833 272931
crack 1491126 — — 1507325 1489266
whitaker3 1151064 1205919 1200374 1203349 1152441 1144476
cly 62936 64934 62333 62857 62545 62262
c2y 79429 80148 79571 80327 79200 78822
c3y 123548 127315 127065 125654 126111 123514
cdy 116140 118437 115222 119232 115935 115131
cSy 100264 104076 96956 99389 97840 96899
gd95c 506 509 506 506 506 506
gd96a 96342 106668 99944 101394 98042 96249
gd96b 1416 1434 1417 1416 1416 1416
gd96¢c 519 519 519 519 519 519
gd9ed 2393 2393 2409 2391 2391 2391

those uniform random graphs, producing results of comparable quality, the best shown results
are those observed by Petit et al. using simulated annealing, which is basically a stochastic
search. We have however checked that for fixed n and p, different random generated numbers
create different uniform graphs which nonetheless always exhibit similar linear arrangement
cost results. And the important point is that cost variations due to different heuristics are
within variations anyway produced by random changes in the graph. Therefore, as already
stated by Petit [13,22], uniform random graphs are actually unworthy for the purpose of
evaluating heuristic algorithms (see analytical explanation in [12]).

13

Table 3

Comparative table of results for graphs with known minimum.

Graph \4! |E| Our cost Optimal cost | Our/Optimal
mesh33x33 1089 2112 31720 31680 1.001
mesh100x100 10000 19800 880234 868820 1.013
mesh200x200 40000 79600 7028594 6923320 1.015
mesh500x500 250000 49900 109972299 107916916 1.019
mesh1000x1000 1000000 | 1998000 | 879287403 862634024 1.019
bintreel0 1023 1022 3696 3696 1
hcl0 1024 5120 523776 523776 1
Proper Interval Graph 1 200 3213 30766 30766 1
Proper Interval Graph II 500 14784 250241 250241 1
Proper Interval Graph II1 1000 45393 | 1.19709e+06 | 1.19709e+-06 1

Graphs with known minimum. To further measure the quality of our heuristic, we have
tested it on graphs for which the MinLLA value is known. Three such examples already ap-
pear in Table 1, namely, the hypercube graph (“hc10”), the lattice graph (“mesh33x33”)
and the binary tree (“bintreel0”) [11]. In addition, we have added four larger lattices
(“mesh100x100”, “mesh200x200”, “mesh500x500”, “mesh1000x1000”) and three proper in-
terval graphs which also have known minima [27]. The results are shown in Table 3. We have
employed three “extended” V-cycles enhanced by the segment minimization (see Section
3.3.3). Eventhough the very particular known optimum for meshes was not fully reached,
our solutions did show very similar structures and close results even for the large meshes, as
is indicated by the last column of Table 3: The quality of our solution has not deteriorated
with the growth of the mesh.

Larger graphs. Since the execution time of our algorithm is basically linear (even in its
current unoptimized state) we were looking for additional large sized test cases. We have
found only one paper with such results, the one by Koren and Harel [19], which is indeed the
only one exhibiting linear execution time. In this test suite we have used the same “quick”
and “extended” V-cycles as in Petit’s experiments. The results and running time (in minutes)
are summarized in Table 5. Column “KH” presents those obtained by Koren and Harel after
five full V-cycles. (We have chosen to present these results rather than those obtained after
10 V-cycles as the latter only improve the former by less than 1% but run twice as slow.)
The two columns marked by “Ours” show the extremely fast performance and very good
results of our algorithms: our single “quick” V-cycle runs (on the average) less than 20% of
the running time of Koren and Harel’s algorithm and improves their results by 8.3%, while
our three “extended” V-cycles run (~ 3.5 times) slower but exhibits results which are 12%
better. Each cost presents the average result obtained over 10 runs of different sequences
of random numbers, for which we have measured a standard deviation not larger than 2%.

14

Table 4
KH large graphs test suite.

Graph \4! |E| Degree

min/max

tooth 78136 452591 3/39
ocean 143437 | 409593 1/6
mrngA | 257000 | 505048 2/4
rotor 99617 | 662431 5/125
598 110971 | 741934 5/26
144 144649 | 1074393 4/26
ml14b 214765 | 1679018 4/40
mrngB | 1017253 | 2015714 2/4
auto 448695 | 3314611 4/37

(Note that stochastisity enters not only in the SA procedure but also in the given initial order
of nodes which affects the coarsening procedure given by Algorithm 1.) Additional tests show
that three “quick” V-cycles already improve over “KH” by 10%, and that dropping the LCC
procedure (within the SA process) from the runs of three “extended” V-cycles has worsen
those results by about 1%. This last result demonstrates the ability of the LCC to further
extract better minima. We found that the “super” V-cycle is unuseful here since it does not
show any significant improvement of results, while the increase in running time (because of
the growing degree of the coarse graphs and additional SA) makes it unusable for practical
purposes, especially for the largest graphs.

5 Conclusions

We have presented a new multilevel algorithm for the MinLA problem for general graphs.
The algorithm is based on the general principle that during coarsening each vertex may be
associated to more than just one aggregate according to some “likelihood” measure. The
uncoarsening initialization, which produces the first arrangement of the fine graph nodes,
strongly relies on energy considerations (unlike usual interpolation in classical AMG). This
initial order is further improved by local strict minimization relaxation and possibly by
employing stochasticity, i.e., simulated annealing. The running time of the algorithm is linear,
thus it can be applied to very large graphs.

We have basically used three types of V-cycles: the “quick”, “extended” and “super”. The

“extended” V-cycle includes SA, which is enhanced by the LCC procedure, and spends more
time on local minimization. The “super” V-cycle is aimed at achieving even better results for

15

Table 5

Comparative table of results for large graphs. The obtained minimum is bolded.

KH : Ours : “quick” | Improvement | OQurs : “extended” | Improvement

Graph 5 V-cycles single V-cycle (Ours+KH) 3 V-cycles (Ours+KH)
cost /time cost /time cost /time cost /time cost /time

tooth 255.465.042/10.5 | 237.353.161/1.2 0.929/0.114 227.639.682/27 0.891/2.571
ocean 141.732.687/13.5 131.968.513/3.2 0.931/0.237 118.882.522/72 0.839/5.333
mrngA 348.448.986/23.5 319.286.767/6 0.916/0.255 305.560.971/90 0.877/3.830
rotor 247.583.742/16.5 | 230.618.627/1.9 0.931/0.115 221.832.991/42 0.896/2.545
998 340.886.008/19 287.702.639/3 0.844/0.158 281.033.967/57 0.824/3.000
144 772.846.779/28.5 | 764.706.283/4.4 0.989/0.154 745.701.842/84 0.965/2.947
ml4b 1.004.606.217/40 | 877.930.925/6.8 0.877/0.170 857.743.008/130 0.854/3.250
mrngB 3.558.254.373/98 | 3.377.861.206/38 | 0.949/0.388 | 3.254.023.540/520 | 0.914/5.306
auto 4.501.150.138/100 | 3.986.693.232/18 | 0.886/0.180 | 3.871.472.605/340 | 0.860/3.400
Average 0.917/0.197 0.880/3.576

small and medium sized graphs. The “quick” one runs very fast and provides results which
are at most about 11% (on the average 4%) off the better results obtained by the “extended”
and “super” V-cycles. Due to stochastic elements, different results are observed for different

sequences of random numbers; however, all our tests show that this variability is not larger
than 2%.

Our main conclusion is that the average and the best results of our “extended” and “super” V-
cycles are almost always better than the results of completely stochastic heuristics (simulated
annealing, genetic hillclimbing, etc.), the Fiedler vector multilevel algorithm and the binary
balanced decomposition tree algorithm. For uniform random graphs it is clear that some
results obtained by stochastic heuristics outperform ours. This is because our algorithm
succeeds when the graph has non-stochastic structure, i.e., in more intuitive words it has
“some geometry”. We recommend our multilevel algorithm as a general practical method
for solving the Minimum Linear Arrangement problem. The implemented algorithm can be
obtained at http://www.wisdom.weizmann.ac.il /~safro/minla.

Acknowledgments

This research was supported by a Grant from the German-Israeli Foundation for Scientific
Research and Development (G.I.F.), Research Grant Agreement No. I-718-135.6/2001, and
by the Carl F. Gauss Minerva Center for Scientific Computation at the Weizmann Institute

16

of Science.

Appendix A: Lowest Common Configuration (LCC)

The algorithm presented below was originally designed for the Traveling Salesman Problem
[25]. Given two arrangements of the graph nodes ¢ = (77'(1),77'(2), ..., 77" (n)) and ¢ =
(751 (1), 75 1(2), ..., ™5 1 (n)), their LCC, denoted LCC(p, 1)), is a third linear arrangement
whose cost is lower than (or at most equals to) the costs of both ¢ and v, produced as
follows.

Define as a common sub-permutation (CSP) of ¢ and 1 any subset S for which, for certain
7 and j, the following two requirements hold :

(1) §={p@), (i +1), ... 000+ [S| =)} ={v (), ¥(G + 1), ..., ([G + [S| = 1)}
(2) {e(@), (i + 15| = 1)} = {¥(), (G + [S| = 1)} .

That is, the subset S appears as a consecutive sequence of nodes in both ¢ and), possibly
in different orders, but with common ends.

LCC(g,1) is constructed by first finding all the CSPs S of ¢ and 1, and then choosing for
each S the suborder from either ¢ or ¢, whichever yields the lower cost arrangement. It is
not straightforward to find all CSPs of given ¢ and v, especially if the complexity of that
subroutine is required not to dominate the entire complexity of the multilevel solver. We
have constructed an algorithm which finds all CSPs in nearly linear time. The algorithm is
based on the following observations.

Consider a pair of consecutive suborders (one is taken from ¢ and the other from 1)) whose
ends are common and lengths are equal. Such a pair of suborders is suspected of being a CSP
(SCSP). Our aim is to find all SCSPs which with very high probability are indeed CSPs.

Attach to each vertex j some marking M;, a real number Construct for ¢ the vector (S M)¢
of the partial sums of these markings (SM)¢f = i, M, . Similarly, construct (SM)¥ for
. Let (i), (i + 1), ..., 0(i + k) and ¥(j),¥(j + 1), .. ,1/)(] + k) be a SCSP. If the SCSP is
also a CSP then the following holds:

(SM)fyi = (SM)f = (SM)} — (SM)] . (8)

The opposite is, however, not always true : (8) may hold for such a SCSP even when the
suborders are not permutations of each other. Consequently the markings should be chosen
so that this ambiguity will practically never happen. It is enough for example to choose M,
to be a random number between 0 and 1 taken to some power p. Clearly, the probability
that (8) holds while the SCSP is not a CSP is extremely low.

17

Equation (8) can also be written as

(SM)f = (SM)Y = (SM)f,, — (SM)¥,, - (9)

If (i) =¢(j) =1 and p(i + k) = ¢¥(j + k) = m, say, and if we define for every vertex [the
“assignment”

A= (SM)2) — (SM)7,), (10)
Equation (9) implies that if A, = A,,, then with very high probability [and m are ends
of a CSP. Such pairs of vertices can easily be found by sorting the list of assignments. The
final construction of the LCC follows by choosing the lower cost suborder for each CSP, in
ascending order of the length of the CSPs, thus treating successfully even the rarely occurring
situation of nested CSPs. All cases where (i) = ¢(j + k) and ¢(i + k) = ¢(j) can also be
found by repeating the above procedure while reversing the order of either ¢ or ¢, however in
all our tests we have not found an indication of the importance of this additional procedure.

Appendix B: Parameters

In order to control the running time of the algorithm it is important to decrease the total
number of edges of the constructed coarse graphs. This is achieved by the following two
parameters: the maximum allowed coarse neighborhood size r, which restricts the allowed
size | N;| of the coarse neighborhood of a vertex ¢ € F' by deleting the weakest w;;, j € C; and
the edge filtering € threshold, which deletes every relatively weak edge ij (from the created
coarse graph) if both w;; < €-s; and w;; < € - s;, where s; = Y, wjy.

These two parameters and five others which control the uncoarsening procedure (see Algo-
rithm 2) are presented in Table 6 for the “quick”, “extended” and “super” V-cycles we have
used. The last two parameters (of Algorithm 2) were constantly chosen to be kg = 4 and
v = 0.6.

It is however important to mention that these parameters are the ones used only for the finest
levels. As the coarse graphs become much smaller they are accordingly increased. This hardly
affects the entire running time of the algorithm but systematically improves the obtained
results. In the last column of Table 6 we specifically describe the increase introduced for each
parameter as a function of level L, which usually depends on the ratio R = max(1, |Ey|/|EL|)
measuring the relative decrease of the number of edges at level L compared with the original
graph.

References

[1] R. Bar-Yehuda, G. Even, J. Feldman and J. Naor, Computing an optimal orientation of a
balanced decomposition tree for linear arrangement problems, Journal of Graph Algorithms and

18

Table 6

The parameters used for the “quick”, “extended” and “super” V-cycles. (* used only to obtain the

results of Table 3)

Parameter “quick” | “extended” | “super” | The increase
V-cycle V-cycle V-cycle | for level L

The coarse neighborhood size (r) 6 10 20 +log(R)

The edge filtering threshold (e) 0.01 0.005 0.001 .0.9'08(R)

The number of sweeps of Compatible relaxation (k) 3 10 10 +2-L

The number of sweeps of Gauss-Seidel relaxation (ko) 3 10 30 +2-L

The maximal number of sweeps

of node-by-node minimization (k3) 30 30 30 -

k4 used in the node-by-node minimization 1 10 20 +log(V/R)

The maximal number of sweeps

of segment minimization (ks) 0 0 (30%) 0 -

The number of heating and cooling in SA (k) 0 3 20 -log(R)

k7 used in the SA 0 5 10 +log(VR)

[4]

[5]

7]

8]

Applications, vol. 5, no. 4, pp. 1-27, 2001.

A. Brandt, S. McCormick, and J. Rudge, Algebraic multigrid (AMG) for automatic multigrid
solution with application to geodetic computations., Institute for Computational Studies, POB
1852, Fort Collins, Colorado, 1982.

A. Brandt, S. McCormick, and J. Rudge, Algebraic multigrid (AMG) for sparse matriz
equations., In Sparsity and its Applications (Evans, D.J., ed.), Cambridge University Press,
Cambridge, 1984, pp. 257-284.

A. Brandt, Algebraic Multigrid Theory : The symmetric case, Appl. Math. Comput., 19:23-56,
1986.

A. Brandt, D. Ron and D. Amit, Multi-level approaches to discrete-state and stochastic
problems, Multigrid Methods, IT (Hackbush, W. and Trottenberg, U., eds.), Springer-Verlag,
1986, pp. 66-99.

A. Brandt, Multiscale Scientific Computation: Review 2001. In, T. Barth, R. Haimes and T.
Chan, eds.: Multiscale and Multiresolution methods, Springer-Verlag, 2001. (Proceeding of the
Yosemite Educational Symposium, October 2000).

A. Brandt, General highly accurate algebraic coarsening, Gauss Center Report WI/GC-13, May
1999, Electronic Trans. Num. Anal. 10 (2000) 1-20.

A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies, in “Multilevel
Optimization and VLSICAD” edited by J. Cong and J. R. Shinnerl, Kluwer, 2002.

19

[9] W.L. Briggs, V.E. Henson and S.F. McCormick, A Multigrid Tutorial, 2nd Edition, STAM,
2000.

[10] C.K. Cheng, Linear Placement Algorithms and Applications to VLSI Design, Networks, vol.
17, pp. 439-464, Winter 1987.

[11] J. Diaz, J. Petit, and M. Serna. A survey on graph layout problems. ACM Computing Surveys,
Volume 34, Issue 3:313-356, 2002.

[12] J. Diaz, J. Petit, M. Serna, and L. Trevisan, Approzimating layout problems on random graphs,
Discrete Mathematics, 235(1-3):245-253, 2001.

[13] J. Diaz, M. D. Penrose, J. Petit, M. J. Serna, Approzimating Layout Problems on Random
Geometric Graphs, J. Algorithms 39(1): 78-116, 2001.

[14] M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some Simplified NP-complete graph problems,
Theoretical Computer SCience, 1:237-267, 1976.

[15] L.H. Harper, Optimal assignments of numbers to wvertices, Journal of SIAM, 12(1):131-135,
1964.

[16] S. Horton, The optimal linear arrangement problem: algorithms and approzimation, PhD
Thesis, Georgia Institute of Technology, 1997.

[17] M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs, Discrete Applied
Mathematics 36 (1992) 153-168, 1992.

[18] S. Kirkpatrick, Models of disordered systems, Lecture Notes in Physics149 (C. Castellani et al.,
eds.), Springer-Verlag, Berlin.

[19] Y. Koren and D. Harel, A Multi-Scale Algorithm for the Linear Arrangement Problem,
Proceedings of 28th Inter. Workshop on Graph-Theoretic Concepts in Computer Science
(WG’02), Lecture Notes in Computer Science, Vol. 2573, Springer Verlag, pp. 293-306, 2002.

[20] Y. Lai and K. Williams, A survey of solved problems and applications on bandwidth, edgesum,
and profile of graphs, J. Graph Theory 31 (1999), 75-94.

[21] K. Mehlhorn and S. Naher, LEDA - A platform for combinatorial and geometric computing,
Cambridge University Press, 1999.

[22] J. Petit, Ezperiments on the minimum linear arrangement problem, ACM Journal of
Experimental Algorithmics, 8, 2003.

[23] J. Petit, Combining Spectral Sequencing and Parallel Simulated Annealing for the MinLA
Problem, Parallel Processing Letters, 13(1):77-91, 2003.

[24] T. Poranen, A genetic hillclimbing algorithm for the optimal linear arrangement problem,
http://www.cs.uta.fi/tp/optgen/, 2002.

[25] D. Ron, Ph.D. Thesis. Development of fast numerical solvers for problems in optimization and
statistical mechanics, The Weizmann Institute of Science, 1989.

[26] J. Ruge, K. Stiiben, Algebraic Multigrid, In Multigrid Methods (McCormick, S. F., ed.), STAM,
Philadelfia, 1987, pp. 73-130.

20

[27] I. Safro, M.Sc. Thesis. The Minimum Linear Arrangement Problem, The Weizmann Institute
of Science, 2002. http://www.wisdom.weizmann.ac.il/ ~safro/thesis.ps

[28] Farhad Shahrokhi, Ondrej Sykora, Laszlo A. Szekly, Imrich Vrto, On Bipartite Drawings and
the Linear Arrangement Problem, Workshop on Algorithms and Data Structures, 1997.

[29] E. Sharon, A. Brandt, R. Basri, Fast Multiscale Image Segmentation, Proceedings IEEE
Conference on Computer Vision and Pattern Proceedings IEEE Conference on Computer Vision
and Pattern Recognition, 1:70-77, South Carolina, 2000.

[30] K. Stitben, An introduction to algebraic multigrid, Appendix in: Multigrid (Trottenberg, U.,
Oosterlee, C.W. and Schiiller, A., eds.), Academic Press, 2001, pp. 413-532.

[31] K. Stitben, A review of algebraic multigrid, J. Comput. Appl. Math. 128 (2001) 281-309.

21

