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Abstract. Multigrid methods are known to provide the most efficient solvers to
many well-posed boundary-value PDE problems. In the case of ill-determined prob-
lems they can supply several additional advantages. Unlike evolution problems with
well-posed initial conditions which can be solved by direct marching in time, when
only scattered data are known, each datum affects both earlier and later solution
values, so simple marching cannot be used, and fast solvers would again require
multigrid methods. Multigrid solver can provide natural regularization to the ill-
posed problem, since the main ill-posedness is the long term and long range influence
of fine-scale oscillations, while the multiscale large-scale interactions are mediated
by coarse grids that omit those oscillations. As a model problem we treat a hy-
perbolic PDE: the wave equation with only approximately known coefficients. The
results of a detailed Fourier analysis, comparing full-flow control with initial-value
control are presented.

1 Introduction

Current assimilation methods require much more computer time and space
than the direct solving of atmospheric flow equations. The main reason for
this is that any measurement at any place and time should in principle affect
the solution at any other place and time, which creates a huge dense matrix
of influence.

Current methods are not only very slow but they are also based on highly
questionable compromises such as assimilating only the data from one time
interval at a time without fully correlating with other intervals and limiting
control to only the initial value of the flow at some arbitrary chosen initial
time instead of controlling the numerical equations at all times.

The fast multiscale algorithm could avoid such compromises and assim-
ilate the data at a cost comparable to that of solving the direct problem
because of three main reasons: (1) large-scale averages may be assimilated
well enough on the coarser levels of the multiscale solver, which is not ex-
pensive; (2) deviations from any large scale average must be assimilated on
some finer scale, but their correlation on that scale is local; (3) the measure-
ments are usually less accurate than the numerical flow itself, hence their
assimilation need not be done at the finest level.
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In most current data assimilation approaches, the control parameters, i.e.
those changed to obtain fitness of the solution to the data, are only the initial
values of the solution. This makes it impossible to benefit from the details
(the oscillating components) of the measurements far in time from the initial
time because those details at those times are ill-determined by the initial
solution, due to the fact that their phase error becomes practically random,
in which case the amplitude of the entire solution which would best fit the
data can be shown to tend to zero. Therefore, instead of controlling just initial
values, i.e. solving initial control problem (ICP), we suggest to control the
entire numerical solution. We call this approach the residual control problem
(RCP). Tt can be effectively handled only by a multiscale treatment.

We present here the results of a detailed Fourier analysis, comparing full-
flow control with initial-value control in a model case of 1D + time wave
equation. Those results demonstrate the advantages of the RCP approach.

2 Model Problem

As a simple demonstration model we have studied a case of 1D + time wave
equation:

uy =cAu in 2x[0,T], TER", NCR (la)
ulag = p(t), (10)
ult=0 = uo(x), (1c)
utli=o = g(z), (1d)

except that part of the model, e.g. some of the functions c¢(z,t), uo(z), g(x),
p(t), are not known or known only partially, and instead various observations
on the solution are given.

For example, let be given finitely many data d; € R, such that

Pu = d,. (2)

The projection P, represents a local averaging over some neigborhood,
le.

Pu = /pl(w,t)u(ac,t)d:vdt, /pl(:v,t)dacdt =1,
when each p; has some (small) compact support.
ICP here is to find an initial function ug(x) so that the resulting solution

u(zx,t) of the wave equation (1la,b,d) would satisfy (2) as well as possible, in
the sense of minimizing the functional

F(ug) =Y AP - i ’ (3)
l

where (3;)~! is an estimate of the expected square error in the measurements.
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The ICP is ill-posed in the sense that there is no unique solution depending
continuously on the data. The classical way to overcome this ill-posedness is
to apply a regularization technique. The detailed description of an algorithm
for solving the ICP stated above using Tikhonov regularization can be found
in [?]. For the analysis of this formulation in terms of Fourier components
see Sect. 77 below.

The RCP, on the other hand, involves minimizing the functional

T
F(u) :/ fyRQdacdt—%—/ ’hRfdw-{—/ Yo Rdt+
2x[0,T] 292 0

T 2
+ / ’}/3R§dt + Zﬂl [BU — dl] ,
0 1

where 7, v1, Y2, 73 are weight functions of z, ¢, u; R = uy — Au are the
residuals of the interior equations; R; are residuals of the boundary condi-
tions; Rs and Rj3 are residuals of the initial conditions. Fourier analysis for
this method is reported in Sect. 7?7 below.

Before solving the problem numerically one should choose a suitable dis-
cretization scheme. Let h be a meshsize in z-direction and 6t be a time step
with K + 1 gridpoints in the time direction, Két = T. The discretization of
the Laplacian at time kdt is as follows:

Ahyk — i — 2uf + “?—1_
J h2

Consider the following second order discretizaion scheme for (1a):

k+1 k k—1
B w; = 2ut 4w
gD 4 (1 - 29) A + AP = &g 1

)

where 0 < ¢ < 1 is a parameter, which has to be determined. By applying
the Fourier analysis, we found that this discretization scheme is uncondition-
ally stable if and only if g > %. Let us take the smallest ¢ = % which still
guarantees unconditional stability, since the smaller ¢, the more accurate the
discretization.

3 Fourier analysis
3.1 General
Assume for simplicity that
a). {2 is an infinite domain. Hence p(t) in (1b) is replaced just by

the condition that at each time ¢ u(z,t) is a bounded function of x;
b). g(x) in (1d) is known to vanish.
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Let u(x,t) be a Fourier component of frequency w in z-direction and ampli-
tude A(t): '
u(z, t) = A(t)e™”.

This function is discretized as follows:
ub = A, O=wh, je€Z A=A, k=0,...,K, Két=T.

Let us apply the discretization scheme (4) with a choosen g:

Agy1 (é—k% sin? %) —2Ay, (%—% sin® §)+Ak,1 ($+% sin2 Q) —0.

3.2 ICP

1—imsin € g 1+ imsin € g
A, =Ch .7% +Cs .7% ;
1+imsin 3 1 —imsin 3
where m = %.

From (1b) follows that u|;—g = Age™?®. From (1d) with g(z) = 0 follows
that ut|t:0 =0= % =0= A = AO- Thus

2 2

Assume that the data {d;} are also given in terms of Fourier components,
i.e. given a measurement Ay of the amplitude Ay, for all k € I', I' is an index
set. The functional (3) which we want to minimize now as a function of Ag
can be rewritten in the form:

F(Ag) = > an(Ay — Ap),
kel

where ay’s are weight functions. ¢y, is proportional to an inverse of the esti-
mated (upper bound) value of (4 —Ay)?, which can result from discretization
and algebraic errors, measurements errors or modelization errors.

After solving the equation F'(4q) =0,

(14im sin %)k
(1—imsin §)k-1

Zkel’ akA_k +

(1—4msin %)k
(14im sin %)k*1

Ag =2
(1—imsin

2
(14+imsin §)* )k
(1+4imsin €)*~1

%)k—l +

Yker Ok

(1—4msin

1

k k
(1—im sing) % +(1+z'm sin Q) %
2/\1-imsin g 2/\1+imsin & '
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3.3 RCP

Instead of finding initial function by solving exactly (1la — d) and minimizing
(3), consider all Ag, Ay, ..., Ak as unknowns which have to be found by
minimizing a new functional:

= A —A\? & _
F(Ao, Ar, e Ax) = Yo B +7(F50) + Y A — 42,

k=1 k=1

where (s, 7 and 7;’s are weight functions. 74 and 7 are of the order of the
discretization error in the corresponding equations. For k ¢ I', 8 = 0. For
k € I', By is proportional to an inverse of the estimated (upper bound) value
of (Ax — Ag)?, which results from the measurements errors. Ry, is the residual
of the k-th equation. Shortly speaking we want to reduce the residuals of (1)
as much as possible while the solution fits the data best.

In order to minimize this functional the linear system of K + 1 equations

fTFk =0,k=0,...,K with K + 1 unknowns has to be solved: LA = D,

where A = (Ag, A1,...,Ak), D is a vector of data with components 3y Ay, if
k e I', 0 otherwise, and £ is a (K + 1) x (K + 1) matrix.
Solve this linear system and find all Ag, Ay, ..., Ag at once.

4 Numerical results: RCP vs. ICP

The exact solution of (1la—d) is u(x,t) = €™“® coswt. The goal is to recover the
solution coswt from the given data Ay for k € I’ by two methods described
above, the icp and rcp.

There are three main sources of errors: a). discretization and algebraic
errors; b).data noise; c). modelization errors (the model doesn’t describe
exactly the real nature on which measurements are made). Let us consider
the influence of each one on the result. The parameters on which the results
depend, are:

a). frequency w = {0.1,1,10};

b). meshsize h = {0.1,0.01};

c). time step ot = {0.1,0.01};

). number of measurements L = {4,12,50,200};
). measurements placement;
). weight functions ag, Bk, v, and 7;
. mnoise level in data;
j). modeling assumption.
First consider the data without the noise, i.e. Ay = coskwdt. If this is a
high frequency component (w = 10) and data are gathered only far from
the initial time, then the result Aq of the icp algorithm tends to 0 as the
number of measurements L increases. This happens due to the discretization
and algebraic errors (phase errors). The solution of the rcp algorithm behaves

- 0 A

T

~— —
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W=10, h=0.1, dh=0.01, L=12, random measurements placement in (3.4) W=10, h=0.1, dt=0.1, L=50, random measurements placement in (0,10), 30% noise

Fig. 1.

(a) Data without noise. Measurements at random locations
in interval (3,4). w =10, h = 0.1, 6t = 0.01, L = 12.
(b) Noised data. Noise is random number r in (—0.5,0.5) x 0.3.
w=10, h = 0.1, 6 = 0.1, L = 50.

solid line: exact solution, dash dot: icp, dashed: rcp, * - measurement placement.

just in the opposite way: the result is increasingly accurate as L increases (see
Fig. 1a).

Let us calculate the phase error. Consider the equation uy = ug,. The
velocity of the analytic wave propagation in this case is ¢ = 1. The dis-
cretization scheme is (4) with ¢ = §. For the discrete wave exp?ko¢ expiih:
tazn ;’T‘St = % sin “’2—” As a result, the discrete velocity is ¢ = 2 ~ 1 — “’;’1’2 —
“’lgt . The error in the distance traveled by a given phase over time t is
t(c—¢) = %(h2 + 24t2). Then the phase error is ~ %(h2 + 20t2).

Assume that the noise level in measurements is very small, noise = 0.001,
we took (B = m = 1000000. The local discretization error of the interior

. 2 2 2
equation has the upper bound erry = ’1’—2 + zh‘s—é %. Therefore, v, = —gerlr .
d

The local discretization error of the initial condition has the upper bound ‘;—t.
Therefore, 7 = %.

Now consider another case. The measurements are placed at randomly
chosen points and the data are noised: Aj, = cos kwdt + noise, where noise
is 10% or 30% of a random number r between —0.5 and 0.5. Here also there
are cases where the solution Ag of icp tends to 0, while the solution of rcp
gives a good approximation (see Fig. 1b).

The expected variance of a square of the random number r between —0.5
and 0.5 is fi)iﬁ ridr = % Therefore, B = Fg*l%— = 1200. Other weight
functions were chosen as above.

Assume there is an error in modeling and the real equation we want to
solve is uy; = ¢Au with ¢ = 1.1 or 1.2, while we use ¢ = 1 in our numerical
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W=10, h=0.1, dt=0.01, L=12, random placements in (1,2) and (3.4), c=12

o 50 100 150 200 250 300 30 400 w0 o 2 W0 0 0 100 120

Fig. 2.
(a) Modeling error. Data are solutions of u;s = cAwu at random locations.
c=12 w=10, h=0.1, 6t = 0.01, L = 50.
(b) Three kinds of errors. Data at random locations, random r in (—0.5,0.5).
w =10, h =0.1, §t = 0.1, L = 100, noise = 0.3r, c = 1.2.

solid line: exact solution, dash dot line: icp, dashed: rcp, * - measurement placement.

solver. Then again there are cases where the solution Ag of icp tends to 0,
while the solution of rcp gives a good approximation (see Fig. 2a).

When all three kinds of errors exist, the result of the icp algorithm is
practically zero-function, while rcp algorithm is still successful in approxima-
tion the real solution at least in the neighborhood of the measurements (see
Fig. 2b).

5 Summary

In this paper we presented just one aspect of how multiscale computational
methods can contribute to data assimilation problems (and similarly to other
inverse problems).

Also multiscale formulations provide ill-posed problems with additional
tools, including: one-shot solution of non-linearities; local refinement tech-
niques; space+time parallel processing; unlimited correlation ranges and ef-
ficient representation of direct and inverse covariance matrices; multiscale
organization of the observational data and in particular coarse-scale repre-
sentation of oscillatory data; etc. (see Sect. 4.3 of [?]).

Multigrid solvers can provide natural regularization to many ill-posed
problems, since the main ill-posedness in those problems is the long term
and long range influence of fine-scale oscillations, while the multiscale large-
scale interactions are mediated by coarse grids that omit those oscillations.

The general data assimilation RCP is an optimization problem which leads
to a system of hyperbolic equations with corresponding boundary, initial and
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terminal conditions. Usually time-dependent hyperbolic problems are solved
by forward marching in time, but the measurements introduce backward time
couplings as well. Hence, a simple marching in time could not be applied here.

Traditional multigrid solvers are not effective for this problem either, be-
cause some ”characteristic” high-frequency components are non-local (their
size is determined by conditions many meshsizes away) exactly on all those
grids which are fine enough to approximate such components. On the other
hand, on coarser grids such components cannot be approximated, because
the grid does not resolve their oscillations or resolves them with large phase
€rTors.

Our next goal is to develop a more sophisticated efficient multigrid method
for solving this kind of problems which embeds forward and backward time
marching in a partly distributive relaxation process.
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