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Two multigrid algorithms for an inverse problem
in Electrical Impedance Tomopraphy

R. Gandlin∗, A. Brandt∗

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, 76100, ISRAEL

SUMMARY

The subject of this paper is an application of the multigrid method to the inverse problem in the
Electrical Impedance Tomography. The multigrid algorithm of a new type has been developed for
solving this problem, involving near-boundary semi-coarsening cycles within full-coarsening cycles.
The results of the developed algorithm were compared with another previously developed multigrid
algorithm which uses the classical regularization technique. Both algorithm give nearly the same
accuracy, but the new algorithm is much cheaper since it does not have all the artificial parameters
as the algorithm with classical regularization does.
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INTRODUCTION

Many partial-differential problems in the real world do not arise as fully well-posed
mathematical equations. The partial-differential equations (PDE’s) and their boundary and
initial conditions are often only partly or approximately known, and instead of full knowledge,
a set of observational data is supplied. The data are usually noisy and do not stably determine
a unique solution. Examples include ground-water flows where permeability is only partly
known; global atmospheric and oceanic circulation and weather prediction; non-destructive
analysis of materials; optimal control problems; various devices of medical imaging; surface
reconstruction in computer graphics and computer-aided design; and so on.

Multigrid methods are known to provide the most efficient solvers to many well-posed
boundary-value PDE problems. In the case of ill-determined problems they can provide several
additional advantages. Unlike evolution problems with well-posed initial conditions which can
be solved by direct marching in time, when only scattered data are known, each datum affects
both earlier and later solution values, so simple marching cannot be used, and fast solvers would
again require multigrid methods. Also, multiscale formulations provide ill-posed problems with
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additional tools, including: one-shot solution of non-linearities; local refinement techniques;
space+time parallel processing; unlimited correlation ranges and efficient representation of
direct and inverse covariance matrices; multiscale organization of the observational data
and in particular coarse-scale representation of oscillatory data; etc. Multigrid solvers can
provide natural regularization to many ill-posed problems, since the main ill-posedness in
those problems is the long term and long range influence of fine-scale oscillations, while the
multiscale large-scale interactions are mediated by coarse grids that omit those oscillations.

The main goal of this research has therefore been to develop multigrid techniques suitable
for typical inverse problems. A basic difficulty is that the required multigrid solvers for such
problems cannot follow familiar standard multigrid algorithms. We chose the inverse problem
for electrical impedance tomography since it is a representative and important example.
Motivated by medical-imaging and non-destructive-material and ground-permeability analysis
devices, this is a stationary diffusion problem, where the diffusion coefficient at each point is
unknown while solution and solution-derivative values are given, mostly on the boundary.

For this problem two multigrid algorithms were developed, one uses the classical
regularizaton technique, the other uses natural multi-scale regularization. Second algorithm
is a new type of a multigrid algorithm which has been developed for solving the problem,
involving near-boundary semi-coarsening cycles within full-coarsening cycles. Both algorithms
give nearly the same accuracy, but the second algorithm is much cheaper since it does not have
all those artificial parameters as the first algorithm does. Here we report the second algorithm
in details while first algorithm with classical regularization just briefly mentioned. For more
details see [11].

The work for solving the inverse problem is proportional to the number of points near the

boundary of measurements only, while the work for solving the corresponding direct problem
is proportional to the number of points in the entire domain. It demonstrates the following
methodological point: ill-posedness of an inverse problem does not necessarily imply a more
expensive solution process. On the contrary: once the nature of the ill-posedness has been
generally understood, to solve an inverse problem may even be much less expensive than to
solve the corresponding direct problem, since less information is in principle recoverable.

One of the most attractive features of EIT is the feasibility of continuously monitoring a
process, provided that fast computational algorithms for delivering real-time images of the
conductivity distributions are incorporated into an EIT device. Here we do not deal with the
real EIT problem for medical use but with a mathematical model with many assumptions on
one hand and neglecting other knowledge on the other. For instance, in the real EIT the range
of conductivity values is known but we do not use this in our model. Another simplification is
that the general EIT problem is to find an admittivity function γ(x, ω) = σ + iωε where σ is
an electrical conductivity and ε is an electrical permittivity, while here we refer to the static
case ω = 0. The main goal was to investigate the difficulties from the mathematical point of
view and then to develop tools to deal with those difficulties. The ideas developed here for
efficient solving of this pure mathematical model can be now used as an integrated part of a
real EIT solver.

The first description of the inverse EIT problem was given by Calderon [8]. Kohn and
Vogelius [13] showed that under certain assumptions the conductivity of a medium is uniquely
determined by the Neumann-to-Dirichlet mapping. Then Sylvester and Uhlmann [16] provided
a general framework for proving uniqueness of the solution of the inverse problem. Alessandrini
[2] gave a mathematical explanation for the blurriness of conductivity images and proved that
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the conductivity depends on the EIT data in a very weak way. Therefore the inverse problem
of EIT is ill-posed, and some regularization is necessary if conductivity is to be obtained stably
from data.

Electrical impedance tomography has been studied extensively in the last two decades.
Isaacson and Cheney [19] and Allers and Santosa [20] showed that the resolution of the
images improves as the number of electrodes increases. Gisser, Isaacson and Newell [21] and
Cherkaev, Tripp [22] discuss the question of optimal currents. Allers, Santosa [20], Barber,
Brown [23], Cheney, Isaacson, Newell [24] investigated linearization algorithms for EIT. Engl,
Hanke, Neubauer [25] concentrated on the question how to choose regularization parameter.
There are some recent publication on multigrid reconstructions for EIT. McCormick, Wade
[26] discussed multigrid method for linearized problem. Ascher, Haber [3] showed that the
regularization parameter can be determined on the coarse grid and conductivity σ can then
be imaged on a finer grid. Nonlinear multigrid is discussed in [27] and [17] by Borcea.

Fast multigrid algorithms for solving the inverse problem for two special cases of a constant
conductivity and of a certain form of variable conductivity, were designed by F. Shmulyian [25].
In her work the ill-posed inverse problem of EIT is formulated, regularized by the Tikhonov
regularization method and discretized. The practical aspects of designing the FMG solver and
the results of the numerical experiments for the cases mentioned above are also reported in
[25].

The outline of this paper is as follows:

In §1 the original inverse problem for EIT is described and some simplifications are
introduced. In §2 the original ill-posed inverse problem for EIT is solved by multigrid algorithm
that does not use any explicit regularization but regularizes itself by careful choice of grids.
This reduces significantly the total work of this algorithm comparing with the algorithm
with classical regularization [28]. Finally, some numerical results comparing two multigrid
algorithms are reported in §3.

1. Problem statment

An EIT device for medical use consists of a set of electrodes attached to the chest of a patient.
A small known current is passed between two driver electrodes. In each measurement a current
is passed through a different electrode pair, while the voltage drops at all the electrodes are
recorded. The collected data are used in order to compute the conductivity distribution in a
part of the patient’s chest and then to display it on a screen in order to detect anomalies, such
as tumors.

The general EIT problem is to find an admittivity function γ(x, ω) = σ + iωε where σ is
an electrical conductivity and ε is an electrical permittivity. Here we consider the static case
ω = 0.

If the domain being imaged is denoted by Ω, the voltage potential in Ω — by u and
the electrical conductivity — by σ (positive function), then the Maxwell’s equation of
electromagnetics at zero-frequency (ω = 0) is ∇ · [σ(x)∇u(x)] = 0, x = (x, y) ∈ Ω . The
electrodes are assumed to generate a current flux density distribution on the boundary ∂Ω of

Ω, which translates into a Neumann boundary condition: (σ ∂u
∂n

)
∣

∣

∣

∂Ω
= g, where the vector n

is the outward unit normal to the domain Ω. The voltage potentials on the boundary ∂Ω are
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measured and translated into a Dirichlet boundary condition: u
∣

∣

∂Ω
= f .

If N electrodes are attached to the boundary points ∂x1, . . . , ∂xN∈∂Ω, the data gathered
in a single measurement comprise a set of N real numbers fj = u(∂xj), j = 1, . . . , N . In
a real EIT process, K different current flux densities gk, k = 1, . . . , K, corresponding to K

assignments of the driver electrode pair are generated, and for each k, the measurement set
{fk

j , j = 1, . . . , N} is obtained by measuring the voltages at the electrodes. Thus, KN pieces

of data {(gk
j = gk(∂xj), f

k
j ), j = 1, . . . , N , k = 1, . . . , K} are collected.

The set of measurements gives ideally (in the limit of many small electrodes and as many
measurements) the Neumann to Dirichlet mapping: the Dirichlet (u) boundary condition
resulting from any Neumann (∂u/∂n) condition. The problem we study is to evaluate σ from
this mapping. The conductivity depends on the EIT data in a rather weak way. Therefore the
inverse problem of EIT is ill-posed.

For simplicity, assume the domain is rectangular [0, X ] × [0, Y ], the electrodes are located
at the points (0, y), y = 0, . . . , Y , the voltage is predefined on the whole boundary (X, y),
and along the other two boundaries assume periodic boundary conditions. Then the following
equations are associated with the k-th EIT experiment:

(1.1) Lσuk ≡ ∇ · [σ(x, y)∇uk(x, y)] = 0, (x, y) ∈ Ω,

(1.2) `σuk ≡ σ
∂uk

∂n

(0, y) = gk,

(1.3) uk(0, y) = fk.

This is given for k = 1, . . . , K, the task is to calculate σ(x, y) for all (x, y) ∈ Ω. The data
(f, g) usually include errors. The accuracy of measurements is some predefined ε.

We assume that the current flux distribution gk(y) in the domain Ω has a special form

(1.2a) gk(y) = δJk (y),

where Jk is the ordinal number of the electrode sending the impulse in the k-th EIT experiment
and δJk is a δ-function with the impulse at yJk . Any EIT current flux distribution can be
represented as a linear combination of such gk(y)’s. Far from the measurements surface, along
(X, y) say, we assume for convenience uk(X, y) = 0 for all y, although in practice a variety of
other conditions may be relevant.

Employing local Fourier decompositions, it can be shown [28] that all conductivity-
function components of wavelength λ are ill-posed at distances r � λ from the boundary
of measurements. Therefore there is no need to use at such distances fine solution grids. All we
can know about the solution can be found with grids whose meshsizes increase proportionality
to r. In order to avoid introducing ill-posed components into the current approximation, the
changes to the solution far from the measurements should be calculated only on coarse enough
grids (with meshsizes at least comparable to the distance from the measurements).

In view of this observation, in the proposed multigrid algorithm a regularization in the
classical sense is replaced by a careful choice of grids.
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2. Algorithm without explicit regularizaiton

The inverse problem we want to solve is as follows: find an electrical conductivity σ such that
equations (1.1)-(1.2) are satisfied and (1.3) is approached as much as possible in the sense of
minimizing the ”energy” functional

(1.6) E(u1, . . . , uK)
def
=

Y
∫

0

K
∑

k=1

[

uk(0, y) − fk(y)
]2

dy.

2.1. Discretization

Before solving the problem numerically, one should choose a suitable discretization scheme.
Consider a finite difference square uniform grid. Let σ be discretized at the grid cell centers,
while all other functions are discretized at the grid vertices.

The operator Lσ , defined in (1.1), is discretized at grid vertices by second-order
discretization. Let us add an exterior ”ghost line” of points (−h, y) to the original grid and
define the ”ghost variables” u and σ as the values of the corresponding functions at the ghost
points and ghost cell centers respectively. This allows a central second-order approximation for
the operator `σ, defined in (1.2). In addition, the introduced ghost points enable the extension
of the discretization of Lσu onto the points of (0, y).

For current density distribution (1.2a) the discretization is as follows:

gk,h
j =

{

1/h, if j = Jk,

0, otherwise

j = 1, . . . , N, k = 1, . . . , K.

2.2. Name?

Denote the original (finest) grid of meshsize hL by GL. Then introduce the sequence of
increasingly coarser grids GL−1, GL−2, . . . , G1 of meshsizes hL−1 = 2hL, hL−2 = 4hL, . . . , h1 =
2L−1hL respectively, such that each coarse grid constitutes the even-numbered rows and
columns of the next finer grid.

For each Gl define another set of semi-coarsened grids (or briefly, semi-grids) Gl = Gl
l,

Gl
l−1

, Gl
l−2

, . . . , Gl
1. The grid Gl

s coincides with four first columns of the grid Gl (parallel to
the boundary of measurements), meshsize hl in x, while in y direction it coincides with the
rows of the grid Gs, meshsize hs, s = l, · · · , 1.

FAS
Multigrid
Intergrid communications. The interpolation of an approximation to the coarse grid

correction for either u, λ or σ should be of the second order, since this is the highest order of
derivatives in the PDE’s. We use a bilinear interpolation.

The residuals of all equations are transferred to the coarser levels by full weighting procedure.
The coarsening of σ is done also by full weighting. Generally, better restriction of σ is by
arithmetic/harmonic averaging as in [15]. However, in the human body σ does not change
by orders of magnitude. Therefore the simpler averaging which does not require different
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conductivity in the vertical and horizontal directions, is used here. The FAS coarsening of the
unknowns u and λ is done by injection.

The FMG interpolation for either u or λ should be at least p+ q, where p is the order of the
discretization and q is the largest order of the difference quotients in the error norms. In our
case p = 2 and q = 2 (if we want the residuals to converge). Therefore we use a cubic FMG
interpolation.

The coarsest grid processing. Assume we have a good approximation to σ at all cell centers
of the grid. For each such fixed σ the equations for u and λ can easily be solved by Gaussian
elimination or any suitable numerical method for solving a linear system, thus yielding (u, λ)
as a function of σ. Then we employ the Newton method to solve the equations for σ and to
improve the approximation.

Relaxation. It is a most important issue to design a proper relaxation scheme on each grid.
First, it is necessarily to identify the principal terms of the differential operator on the scale
of this grid, then they are relaxed while non-principal terms on that scale are kept unchanged
during the relaxation.

2.3. General outline

The algorithm described below is based on three main principles:

1. As a result of a Fourier analysis, we found that the change in the function u at the
boundary of measurements, caused by a change in σ that has a form of a local Fourier
component, decreases exponentially as a function of the distance r (in meshsizes) from
this boundary: δu(0, y) ≈ O(introduced change× exp−Cr/`), where ` is the wavelength
of the introduced Fourier component and C is some constant. Hence the computational
work on the grid of meshsize h should only be done near the boundary, at distances O(h)
from it.

2. Similar changes introduced into σ at the different O(h) distances from the boundary of
measurements cause very different changes in u on this boundary (see figure 1). Thus,
for smooth Fourier components in y a full coarsening (both in x and y) does not resolve
these differences, hence we must use a semi coarsening in the y direction (i.e. without
coarsening the meshsize in the x direction).

3. It is necessary to start always from the better-posed changes. Therefore, in each cycle
(FMG, V-cycle, W-cycle, semi-cycle) we introduce changes to the current approximation
first on the coarsest (or semi-coarsest) grid, where those changes are well-posed, and only
after that changes from the finer grids.

These considerations gave us the motivation for the following FMG algorithm:

Define a set of the uniform grids GL, GL−1, . . . , G1 (as §1.2) of meshsizes hL, hL−1, . . . , h1

respectively. For each Gl define another set of semi-coarsened grids (or briefly, semi-grids)
Gl = Gl

l, Gl
l−1

, Gl
l−2

, . . . , Gl
1. The grid Gl

s coincides with four first columns of the grid Gl

(parallel to the boundary of measurements), meshsize hl in x, while in y direction it coincides
with the rows of the grid Gs, meshsize hs, s = l, · · · , 1.

We want to lower the energy functional (1.6). On the grid GL this functional is discretized
as a quadratic function of uk

0,j , j = 1, . . . , NL. Nl = Y/hl, l = L, . . . , 1. The variables

of coarser grid Gl interpolated to the finest grid GL should also minimize this functional.
But actually there is no need to interpolate the variables from Gl to GL. Instead define the
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Figure 1. The change in u(0, y) caused by the change in σ at 1st (blue),
2nd (red) and 3rd (green) columns from the boundary of measurements

discrete functional El
L as a function of variables uk

0,j on Gl, j = 1, . . . , Nl, as if they would be

interpolated to the finest grid GL. Since the interpolation is a linear function of Gl variables,
El

L is also a quadratic function, which is recursively defined on Gl as follows (using second
order interpolation):

(1.7) El
L = al

K
∑

k=1

Nl
∑

j=1

uk
0,j

2
+ bl

K
∑

k=1

Nl
∑

j=1

uk
0,ju

k
0,j+1 + cl

K
∑

k=1

Nl
∑

j=1

uk
0,jf

k
j + Sf ,

where Sf =
∑K

k=1

∑NL

j=1
fk

j
2
, (fk

j )l = 1

4
(fk

2j+1)l+1 + 1

2
(fk

2j)l+1 + 1

4
(fk

2j−1)l+1 and al =
3

2
al+1 + bl+1, bl = 1

2
al+1 + bl+1, cl = 2cl+1 for l = L− 1, . . . , 1, aL = 1, bL = 0, cL = −2. Note

that inside the semi-cycle (see below for details) the functional E l0
L translated to the semi-grid

Gl0
l yields the same functional El

L as in full coarsening (l = l0, . . . , 1).

Full MultiGrid Cycle:

• Start from the coarsest grid G1, where all the equations are solved exactly (or
nearly exactly), such that σ minimizes the functional E1

L.
• For l0 = 2, . . . , L:

– Interpolate the solution from the grid Gl0−1 to the grid Gl0 by FMG
interpolation.

– Full-cycle: Gl0 is the currently finest grid (see below).

End of Full MultiGrid Cycle.

Full-cycle: Gl0 is currently finest grid.

1. For l = l0, . . . , 2:

• Semi-cycle: Gl is currently finest grid (see below).
• Transfer functions uk and σ from Gl to Gl−1 by using a full-coarsening.
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2. On the coarsest grid G1 solve directly the equations such that σ minimizes E1
L (see

§3.2 below for details).
3. For l = 2, . . . , l0:

• Interpolate the corrections to the functions uk and σ from Gl−1 to Gl.
• Semi-cycle: Gl is currently finest grid (see below).

End of Full-cycle.

Semi-cycle: Gl0
l0

= Gl0 is currently finest semi-grid.

1. For l = l0, . . . , 2:

• Transfer the functions uk and σ from Gl0
l to Gl0

l−1
by using a semi-coarsening.

2. On the semi-coarsest grid Gl0
1 solve the equations exactly, such that σ minimizes

E1
L (see §3.2 below for details).

3. For l = 1, . . . , l0 − 1:

• Interpolate the corrections to the functions uk and σ from Gl0
l−1

to Gl0
l by a

semi-interpolation procedure.
• Make a couple of relaxation sweeps: change σ near the boundary of

measurements in order to lower El
L (see §3.2 below for details).

End of Semi-cycle.

2.4. Changing values of σ

The basic approach is that any change in σ on any grid Gl, l = 1, . . . , l, is designed to minimize
the energy functional El

L on the currently finest grid Gl, as defined in (1.7)
Assume there exists some approximation to σ on Gl. First, solve the direct problem (1.1)-

(1.2) in order to find a function ~u0. Then change the values of σ on a grid Gl by some sufficiently
small known δ0 at m neighboring points according to an appropriate distributive scheme (see
below for details). Next, find an effect of this change on the grid Gl by local relaxation and
find ~u(δ0).

The goal is to calculate the change δ that should have been introduced to σ on the grid
Gl (instead of δ0), such that the energy functional El

L would lower as far as possible. ~u is a
function of δ, therefore El

L is also a function of δ.
Assume the change in ~u is linearly dependent on δ, i.e.

~u(δ) = ~u0 + ~αδ,

where ~α is independent of δ and is defined from the calculation with δ0 by

~α =
~u(δ0) − ~u0

δ0

.

Actually, we do not want the function El
L(δ) to be closer to its minimum than some

known ε, which is defined according to the accuracy of the measurements and the numerical
discretization. Under the above assumption E l

L is a quadratic function of δ. Its graph is a

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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parabola in the plane (δ, E). Hence, we have two values for δ correspondingly to the two
points of intersection of this parabola and the line E = ε. We should choose the smallest δ
from those two values, since we are interesting to change an approxiamtion as less as possible
with the same change of energy functional. In this way the desired δ is chosen and afterwards
is introduced to σ instead of δ0.

Now let us discuss the distributive change in σ, which is a simultaneous change at m
neighboring points. For example, change at vertically neighboring points for:

m = 2 (1st order distribution):

+δ
−δ;

m = 3 (2nd order distribution):

+δ
−2δ
+δ.

Such a change in σ causes only nearly-local change in u on the same grid. Therefore, it is
enough to make just a couple relaxation sweeps for u on fine grids with good enough initial
approximation. This drastically decreases the amount of work for re-solving the direct problem
there. However, there is no point to apply the distributive change in σ on the coarser grids, since
the amount of work for re-solving the direct problem by multigrid cycles there is negligible.

Moreover, since the current density distribution g is as in (1.2a), there is no need to relax
uk for all k = 1, . . . , K. It is enough to relax only those uk’s, for which the impulse of gk is in
the neighborhood, where the change in σ influences.

The important step of the algorithm is an adjustment of the values of the function σ on the
coarsest grid G1 to the currently finest grid Gl, so that the changes in σ on G1 would lower E1

L

as far as possible. This process is similar to the one described above, except that the values of
σ are changed simultaneously at all the G1 grid points.

3. Numerical results. Work. Conclusions

To perform actual computations for the inverse problem one should first simulate the EIT
experiment and to ”collect” the appropriate measurement sets. For predefined σ the problem
(1.1) − (1.2) is solved and the values of uk at the boundary of measurements are collected.
Some noise is introduced to the data, which are then used by the solver for determining an
approximation to σ.

The numerical experiments have been performed for the square domain [0, 1] × [0, 1]. The
number of experiments K is equal to the number N of grid points in the y-direction on
the finest grid. Then in each experiment k, gk(y) is a δ-function with an impulse at k. The
problem (1.1)− (1.2) has been solved by ten V(1,2)-cycles on the fine grid and the solution at
the boundary (0,y) has been transferred by using full weighting to the coarser grids. On the
coarsest grid M = N = 2.

One problem under consideration was the case when σ(x, y) is equal to 2 inside the
square [0, 1

2
] × [ 1

2
, 1] and 1 elsewhere. The inverse problem with this data may be viewed as

representative, since due to ill-posedness, a good approximation to the real σ may be achieved
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Figure 2. EIT: (a) exact σ; (b) result of 1st algorithm; (c) result of 2nd
algorithm.

only near the boundary of the measurements. σ is discontinuous along this boundary and the
accuracy of approximations to such σ there can tell a lot about the correctness of algorithms.

Then this square was moved inside of Ω to a distance of a couple of meshsizes from the
boundary of measurements. This inverse problem is in some sense more practical, since EIT
is mostly used in order to discover sources inside the domain, while the data are recorded on
its boundary. For example, the purpose of EIT for biomedical imaging is to discover tumors
in the patient’s chest. The conductivity of tumors differs from the conductivity of the healthy
tissue. Such tumors are usually located deep inside the body, while electrodes are attached to
the chest. The same situation is true also for EIT in other areas (geophysical, for instance).

In the algorithm with grid regularization the distributive change of first order in the vertical
direction (with overlaps) at two columns near the boundary of measurements was introduced
to σ on the finest and on the next to the finest levels.

Both algorithms approximate very well the behaviour of σ near the boundary of
measurements and less well when moving deeper into domain (as would be expected from
the ill-posed type of this problem).

The accuracy of both algorithm, in particular near the boundary of measurements, is nearly
the same. But the algorithm described in §3 does not use any regularization in a classical
sense, and as a result significant space and time saving is achieved. In this algorithm there is
no need to solve a large system of discretized differential equations and boundary conditions;
also, no Lagrange-multiplier equations need to be treated.

At this point we still spend quite a lot work to calculate repeatedly changes of the functional
(1.7) due to changes in uk(0, y) at a small neighborhood of each relaxation step. The sum
in (1.7) includes all K terms, while actually most of those terms have really a negligable
contribution to the change of this functional at each step of relaxation. Therefore, we suggest
to reduce the amount of work by taking into account at each step only terms k for which the
electrode Jk (see (1.2a)) is close to the relaxation neighborhood.

The amount of work for solving the inverse problem for EIT is expected to be proportional to
the number of points on the boundary of measurements only (in our formulation Work ∼ CN if
N = M = K, C is some large constant). It illustrates that solving an inverse problem can even
be cheaper than solving the corresponding direct problem, when the nature of ill-posedness is
well-understood.
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Figure 2.6. EIT: white region represents the “tumor“ placement.

Two domains used in the experiments.
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Figure 2.7. Result of (a) 1st algorithm with small regularization;

(b) 2nd algorithm for domain shown on fig. 2.6a.
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Figure 2.8. Results of the algorithms for cases shown on fig. 2.6a:

(a) 1st column, (b) 2nd column near the boundary x = 0

− exact σ, − · − 1st algorithm with large regularization

−− 1st algorithm with small regularization, · · · 2nd algorithm.

Note: periodic boundary conditions.

0 2 4 6 8 10 12 14 16
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03
1st column near the boundary

0 2 4 6 8 10 12 14 16
1

1.05

1.1

1.15

1.2

1.25
5th column near the boundary

(c) (d)

Figure 2.9. Results of the algorithms for cases shown on fig. 2.6b:

(c) 1st column near the boundary, (d) column at x = 1/4.

− 1st algorithm with small regularization, − · − 2nd algorithm .
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