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ABSTRACT

The multiscale computational methodology 1s a systematic approach to achieve
efficient calculations of systems that inclue very many degrees of freedom (par-
ticle locations, discrete-function values, etc.). It includes fast multigrid solvers
for discretized partial-differential equations (PDEs) and for other large systems
of local equations; fast summation of long-range (e.g. electrostatic) interactions
and fast solvers of integral and inverse PDE problems; collective computation of
many eigenfunctions; slowdown-free Monte Carlo simulators; multilevel methods
of global optimization; and general systematic upscaling procedures, which start at
a microscopic scale where first-principle laws are known and lead scale-by-scale to
processing rules of collective variables at increasingly larger scales.

1. The Scale Gap

Most difficulties in computing materials are primarily due to the scale gap, which
exists between the microscopic scale at which physical laws are given and the much
larger scale of phenomena we wish to understand.

This gap implies, first of all, a huge number of variables (e.g., atoms or grid-
points), and possibly even a much larger number of interactions (e.g., one force
between every pair of atoms). Moreover, computers simulate physical systems by
moving one variable at a time; as a result, each such move must be extremely
small, since a larger move would have to take into account all the motions that
should in parallel be performed by all other variables. Such a computer simulation
is particularly incapable of moving the system across large-scale energy barriers,
which can each be crossed only by a large, and unknown, coherent motion of very
many variables.

A general current approach to overcome the scale gap is by multiscale model-
ing (MSM; also called “multiscale simulation”). It studies a physical system by
employing several different ad-hoc models, each describing a very different scale of
the system. They are usually linked by fine-to-coarse parameter passing, in which
data obtained from simulating a finer scale model, often coupled with experimen-
tal observations, are used to determine certain parameters of a larger scale model,
regarding the latter as a coarse graining of the former.



Successful as MSM is in various special cases, its applicability and accuracy
are generally severely limited, especially when the different simulated scales are
not well separated, or when they interact with (possibly many) intermediate scales
that introduce their own characteristics. Also, the calculation of the large-scale
parameters usually still requires the full simulation of very large systems with
painfully small steps.

2. Multiscale Algorithms

Past studies have demonstrated that the slowness associated with the necessar-
ily small steps of moving one variable at a time can be overcome by multiscale
algorithms. Such algorithms have first been developed in the form of fast multi-
grid solvers for discretized PDEs [1]. These solvers are based on two processes:
(1) classical relazation schemes, which are generally slow to converge but fast to
smooth the error function; (2) approximating the smooth error on a coarser grid
(typically having twice the meshsize), by solving there equations which are derived
from the PDE and from the fine-grid residuals; the solution of these coarse-grid
equations is obtained by using recursively the same two processes. As a result, large
scale changes are effectively calculated on correspondingly coarse grids, based on
residual information gathered from finer grids. In many years of research, the
range of applicability of these methods has steadily grown, to cover most major
types of linear and nonlinear large systems of equations appearing in sciences and
engineering. This has been accomplished by diversifying the types of coarse rep-
resentations, to include for instance grid-free solvers, called algebraic multigrid [2],
non-deterministic problems ([3], [4]) and multiple coarse-level representations for
wave equations [5].

Structural mechanics PDEs, discretized on well-structured grids, can be
solved by multigrid in just several dozen operations per discrete unknown. For
unstructured discretizations (e.g., by finite-element or finite-volume or mesh-free
methods) algebraic multigrid solvers come close to achieving similar efficiency.

Nonlinear problems are solved as fast, with no need for global linearization,
by a multigrid version called FAS. In this version, the relaxed solution at each fine
level supplies corrections to the equations of the next coarser level. These fine-to-
coarse defect corrections (DCs) can be calculated locally, just on a small patch of
the fine level at a time, and they rarely need updating upon re-solving the problem.
Thus, solving a problem many times (as part of some evolution in time, or in
optimizing design or control) can usually be made mostly on very coarse grids
with fixed DCs, rarely updating the DCs by visits to finer levels. Moreover, the finer
the level the smaller the subdomain on which its DCs will usually need updating
(e.g., a smaller neighborhood of the changes being introduced for optimizing the
design).



In case of a singularity (e.g., a material defect), increasingly finer patches
introduced over progressively smaller neighborhoods of the singularity restore the
reqular efficiency (i.e., the same order of accuracy per unit work obtained in the ab-
sence of singularities). Such local-refinement patches can use their own coordinates
(providing grids fitted to local boundaries, local solution characteristics, etc.) and
their own PDFEs (e.g., adding singular-perturbation terms at boundary layers). In
particular, while the global description is in terms of continuum-mechanics PDEs,
the local patches description can be atomistic. (This quasi-continuum method,
as it is called today, was already described in §1.1 of [4].)

3. Upscaling

Such methods, that employ finer resolutions very sparingly, depend of course on
having coarser-level (larger-scale) models. In some cases such models are readily
available (e.g., a coarser discretization of the same PDE, or a continuum-mechanics
description corresponding to the given fine-level atomistic model), but generally
they need to be derived, one coarsening level at a time, starting from the known
fine-level model. Since there is no reason to assume that accurate coarse-level
descriptions will have nice analytic form (like simple PDEs), a general approach
should derive them in the form of numerical tables.

Systematic Upscaling (SU) is a recent methodology for doing just that. It
offers systematic procedures to iterate back and forth between all the scales of the
physical problem, with a general criterion for choosing appropriate variables that
operate at increasingly coarser levels (larger scales), and general techniques to de-
rive their operational rules. Indefinitely large systems can in this way be simulated,
with computation at each level being needed only within certain windows contain-
ing only a limited number (typically several thousands) of variables. Each level
derives its operational rules (e.g., a Hamiltonian-like functional implying transi-
tion probabilities) from the next finer level, while the windows where it operates,
and their boundary conditions, are provided by the next coarser level.

Unlike conventional ad-hoc multiscale modelling, SU is in principle generally
applicable, free of slowdowns and bears fully-controlled accuracy.

First examples of SU, for simple polymers and fluids in equilibrium are de-
scribed in the general review paper [6] and references therein. Other examples
are currently under development, including solids and non-equilibrium examples.
Variables at increasingly coarser levels have been identified, suitable for a variety
of situations, indirectly describing features such as local crystal dimensions and
directions, defects, dislocation, grains, etc.
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