A Multilevel Algorithm for the Minimum 2-sum
Problem

October 5, 2004

Ilya Safro! Dorit Ron Achi Brandt

Faculty of Mathematics and Computer Science
The Weizmann Institute of Science
POB 26, Rehovot 76100, ISRAEL
http://www.wisdom.weizmann.ac.il
ilya.safro@weizmann.ac.il dorit.ron@weizmann.ac.il achi.brandt@weizmann.ac.il

Abstract

The Minimum 2-sum problem is widely used and studied in many practical and
theoretical applications. In this paper we present a linear-time algorithm for the prob-
lem inspired by the Algebraic Multigrid approach which is based on weighted edge
contraction. Our results turned out to be better than every known result in all cases,
while the short running time of the algorithm enabled experiments with very large
graphs.

! Correspondence author. Tel: 972-8-934-4312, Fax: 972-8-934-2945

1 Introduction

The Minimum 2-sum problem (M2sP) belongs to a large family of graph layout problems such
as : Bandwidth, Cutwidth, Vertex Separation, Profile of Graph, Sum Cut, etc. The M2sP
appears in several applications for solving problems in the large sparse matrix computation,
such as finding the minimum linear arrangement [26, 18] or the bandwidth [27]. The M2sP is
also closely related to the problem of calculating the envelope size of a symmetric matrix or
more precisely, to the amount of work needed in the Cholesky factorization of such a matrix
[14]. In addition, the M2sP may be motivated as a model used in VLSI design, where at
the placement phase it is chosen to minimize the total squared wire length [10]. Commonly
for general graphs (or matrices) these problems are NP-hard and their decision versions are
NP-complete [13].

The M2sP becomes a simple quadratic optimization problem with a known solution, due
to Hall [15], if the restriction on the solution coordinates is relaxed, e.g., the coordinates
need not be all integers, as in the case where all vertices are considered to have equal unity
volume (see Section 2). Hall has shown in [15] that the eigenvector v, which corresponds
to the second smallest eigenvalue of the Laplacian of the graph (provided the graph is
connected), is the best nontrivial solution to this unrestricted form of the M2sP (subject to
some normalization of the solution). Arrangement of the graph vertices according to v, is a
well known heuristic, usually called the spectral approach, used for many ordering problems
like the minimum linear arrangement [18], partitioning [16, 22, 23, 29], envelope reduction
of sparse matrices [1, 19], etc.

The spectral approach is also the most studied method for the M2sP problem. George
and Pothen [14] have studied the M2sP as they used it for establishing results for the envelope
reduction of matrices. They were trying to demonstrate how close are their lower bounds
calculation compared with those of the spectral approach. While for some finite element
graphs they indeed get close results, for general graphs the gap was profound. They suggested
that this gap can be reduced by applying some local reordering (postprocessing) to the
obtained results of the spectral approach.

In this paper we present a new multilevel algorithm for the Minimum 2-sum problem
based on the Algebraic MultiGrid scheme (AMG) |2, 3, 4, 9, 25, 30, 31]. The main objective
of a multilevel based algorithm is to create a hierarchy of problems, each representing the
original problem, but with fewer degrees of freedom. General multilevel techniques have
been successfully applied to various areas of science (e.g. physics, chemistry, engineering,
etc.) [6, 8]. AMG methods were originally developed for solving linear systems of equations
resulting from the discretization of partial differential equations. Lately they have been
applied to various other fields, yielding for example novel methods for image segmentation
[28] and for the linear arrangement problem [26]. In the context of graphs it is the Lapla-
cian matrix that represents the related set of equations. The main difference between our
approach to other multilevel approaches (related to various graph optimization problems)
is the coarsening scheme. While the previous approaches may be viewed as strict aggrega-
tion process, the AMG coarsening is actually a weighted aggregation : each node may be
divided into fractions, and different fractions belong to different aggregates. This enables
more freedom in solving the coarser levels and avoids making hardened local decisions, such

as edge contractions, before accumulating the relevant global information. The aggregation
process we use here is similar to the one used for solving the minimum linear arrangement
problem [26].

The disaggregation follows by projecting to a finer level the final arrangement obtained
on a coarser level. This initial fine level arrangement is being further improved by applying
various local reordering methods. In this article we would like to introduce an algorithm for
the strict minimization, called Windows Minimization, which is based on the simultaneous
reordering of several vertices. Then our postprocessing is intensified by Simulated Annealing
(SA) [17] which is a general method to escape local minima. In the multilevel framework SA
is aimed at searching only for local changes that guarantees the preservation of large-scale
solution features inherited from coarser levels.

We compared the results obtained by our multilevel algorithm with those of the spectral
approach before and after postprocessing. Before the postprocessing the multilevel results
are much better than the spectral ones, while after the postprocessing the multilevel is only
about 3% better on the average. However, while the complexity of the multilevel algorithm
is linear in the size of the graph, the direct eigenvalue calculation is O(|V'|?) and since high
accuracy of the results is crucial for obtaining the correct arrangement, it is not likely that
an approximation would be sufficient. Our experimental results show that the Algebraic
Multilevel framework can be used for the M2sP to obtain high quality results in linear time.

The problem definition and its generalization are described in Sec. 2. The multilevel al-
gorithm along with additional optimization techniques are presented in Sec. 3. A comparison
of our results with the spectral approach is finally summarized in Sec. 4.

2 Problem definition and generalization

Given a weighted graph G' = (V, E), where V = {1, 2,...,n}, denote by w;; the non-negative
weight of the edge ij between nodes ¢ and j (if ij ¢ E then w;; = 0). The purpose of the
Minimum 2-sum problem is to find a permutation 7 of the graph nodes such that the cost
02(G,m) = D2, wij(m (i) — 7(5))? is minimal. In the generalized form of the problem that
emerges during the multilevel solver, each vertex i is assigned with a volume (or length),
denoted v;. The task now is to minimize the cost oo(G,z) = >, wij(z; — x;)?, where
T =3+ ka(k)q(i) vg, i.e., each vertex is positioned at its center of mass capturing a
segment on the real axis which equals its length. The original form of the problem is the
special case where all the volumes are equal.

We will not discuss here theoretical complexity issues, such as lower and upper bounds
for the solution cost. We are not interested in the worst possible cases, which are extremely
non-representative. Our focus is on practical high-performance algorithm, such that in most
practical cases would yield a good approximation to the optimum at low computational cost.
Typically, the multilevel algorithms exhibit linear complexity, i.e., the computational cost in
most practical cases is proportional to |V| + |E|.

3 The algorithm

In the multilevel framework a hierarchy of decreasing size graphs : Gy, Gy, ..., Gk is con-
structed, see Figure 1. Starting from the given graph, Go = G, create by coarsening the
sequence (31, ..., G, then solve the coarsest level directly, and finally uncoarsen the solution
back to GG. This entire process is called a V-cycle.

G,=G [
G)i Xx ,‘
G, Q\ o
G s

G L .\o"

Figure 1: The Scheme of a V-cycle. Solid arrows stand for coarsening, dotted for uncoars-
ening.

As in the general AMG setting, the choice of the coarse variables (aggregates), the deriva-
tion of the coarse problem which approximates the fine one and the design of the coarse-
to-fine disaggregation (uncoarsening) process are all determined automatically as described
below.

3.1 Coarsening: Weighted Aggregation

The coarsening used here is similar to the process we have used in solving the minimum
linear arrangement problem [26], where coarsening was interpreted as a process of weighted
aggregation of the graph nodes to define the nodes of the next coarser graph. In a strict
aggregation process (also called edge contraction or matching of vertices) the nodes are
blocked in small disjoint subsets, called aggregates. Two nodes 7 and j would usually be
blocked together (put in the same aggregate) only if their coupling is strong, meaning that
w;; is comparable to min{maz,w;, mazywy;}. In weighted aggregation, each node can be
divided into fractions, and different fractions belong to different aggregates. In both cases,
these aggregates will form the nodes of the coarser level, where they will be blocked into
larger aggregates, forming the nodes of a still coarser level, and so on. As AMG solvers have
shown, weighted, instead of strict, aggregation is important in order to express the likelihood
of nodes to belong together; these likelihoods will then accumulate at the coarser levels of
the process, automatically reinforcing each other where appropriate. Strict aggregation, by
contrast, may run into a conflict between the local blocking decision and the larger-scale
picture.

The construction of a coarse graph from a given one is divided into three stages: first
a subset of the fine nodes is chosen to serve as the seeds of the aggregates (the nodes of
the coarse graph), then the rules for interpolation are determined, thereby establishing the
fraction of each non-seed node belonging to each aggregate, and finally the strength of the
connections (or edges) between the coarse nodes is calculated.

4

Coarse Nodes. The construction of the set of seeds C' and its complement, denoted by
F, is guided by the principle that each F-node should be “strongly coupled” to C. Also,
we will include in C' nodes with exceptionally large volume, or nodes expected (if used as
seeds) to aggregate around them exceptionally large volumes of F-nodes. To achieve these
objectives, we start with an empty set C, hence ' = V', and then sequentially transfer nodes
from F' to C, employing the following steps.

Let wg(ij) denote the normalized weight of an edge ij with respect to the set of nodes
S and to the vertex i, defined by

ws(ij) = . (1)

As a measure of how large an aggregate seeded by ¢ € F' might grow, define its future-volume
U; by

0 =vi+ Y vy -wy(ji) (2)

jev

Nodes with future-volume larger than n times the average of ¥ are first transfered to C' as
most “representative”. (In our tests n = 2). The insertion of additional fine nodes to C
depends on a threshold @ (in our tests () = 0.4) as specified by Algorithm 1. That is, a fine
node 7 is added to C' if its relative connection to C is not strong enough, i.e., smaller than
Q. Also, vertices with larger values of 9 are given higher priority to be chosen to C.

Algorithm 1: CoarseNodes(Parameters : @, n)

C+0, F«V

Calculate ¥; for each i € F, and their average
C « nodes i with 9; > p -9

F+«V\C

Sort F' in descending order of 1;

Go through all 7 € F' in descending order of ¥J;

If | > wi/ > wij | <Q then move i from F to C
jeC jev
Return C

For convenience we are currently using a library O(n - log(n)) sorting algorithm. However,
since no exact ordering is really needed, this can be replaced by a rough bucketing sort which
has O(n) complexity. This remark will be valid below for all cases where we have used exact
sort.

The Coarse Problem. Each node in the chosen set C' becomes the seed of an aggregate
that will constitute one coarse level node. Define for each i € F a coarse neighborhood
N; ={j € C, w;; > «o;}, where o; is determined by the demand that |NV;| does not exceed
the allowed coarse neighborhood size r chosen to control complexity. (For typical values of
r consider the Appendix). The classical AMG interpolation matrix P (of size |V| x |C|) is

defined by
wy, (ij) forie F, j € N;
P, = 1 forieC, j=1 (3)
0 otherwise

P,; thus represents the likelihood of ¢ to belong to the j-th aggregate. Let I(k) be the ordinal
number in the coarse graph of the node that represents the aggregate around a seed whose
ordinal number at the fine level is k. Following the weighted aggregation scheme used in
[28], the edge connecting two coarse aggregates, p = I(i) and ¢ = I(j), is assigned with the
weight wpy = >, 41 Priwr Pyj. The volume of the i-th coarse aggregate is Zj v;Pj;. Note
that during the process of coarsening the total volume of all vertices is conserved.

Solving the coarsest level, which consists of no more than 8 nodes (otherwise a still
coarser level would be introduced for efficiency) is performed directly by simply trying all
possible arrangements.

3.2 Disaggregation (uncoarsening)

Having solved a coarse problem, the solution to the next-finer-level problem is initialized by
first placing the seeds according to the coarse order and then adjusting all other F-nodes
while aiming at the minimization of the quadratic arrangement cost. This approximation is
subsequently improved by several relaxation sweeps, first compatible, then regular with or
without additional stochastic elements, as explained below and summarized in Algorithm 3.

3.2.1 Initialization

Given is the arrangement of the coarse level aggregates in its generalized form, where the
center of mass of each aggregate j € C is positioned at x(;) along the real axis. We begin
the initialization of the fine level arrangement by letting each seed 7 € C' inherit the position
of its respective aggregate: y; = x;). At each stage of the initialization procedure, define
V! C V to be the subset of nodes that have already been placed, so we start with V' = C.
Then proceed by positioning each fine node i € V'\ V' at the coordinate y; in which the cost
of the arrangement, at that moment when % is being placed, is minimized. The sequence in
which the nodes are placed is roughly in decreasing order of their relative connection to V",
that is, the nodes which have strong connections to V' compared with their connections to
V' are placed first. To be precise, the coordinate y; is located at its minimum (volumes are
not taken into account)
D jevt Yilij

Yy = = (4)
ZjeV’ Wij

Then V' < V' U {i} and the process continues until V/ = V. Finally each position y; is
changed to
T = 5 + z U 5 (5)

thus retaining order while taking volume (length) into account.

3.2.2 Relaxation

The arrangement obtained after the initialization is a first feasible solution for M2sP which
is then improved by employing several sweeps of relaxation, first compatible then Gauss-
Seidel-like. These two types of relaxation are very similar to the above initialization: The
compatible relaxation, motivated in [7], improves the positions of the F-nodes according
to the minimization criterion (4) (where V' = V) while keeping the positions of the seeds
(C-nodes) unchanged. The Gauss-Seidel-like relaxation is similarly performed, but for all
nodes (including C'). Each such sweep is again followed by (5).

3.2.3 Windows Minimization

The cost of the arrangement can be further reduced by strict minimization, a sequence of
rearrangement that accepts only changes which decrease the arrangement cost. Since done
in the multilevel framework, it can be restricted at each level to just local changes, i.e.,
reordering small sets of neighboring nodes, which are adjacent (or relatively close) to each
other at the current arrangement. It is easy to see that switching positions between several
adjacent nodes is indeed a local operation, since the resulting new arrangement cost can be
calculated only at the vicinity of the adjustment and not elsewhere. Such a node by node
minimization was applied in our algorithm for the Minimum Linear Arrangement problem
(see [26]). This method may also be used for M2sP. However, we would like to propose a
more advanced method of local minimization, called Windows Minimization (WM), which
is suitable for both the multilevel and the spectral approach frameworks. The difference
between WM and simple node by node minimization is that WM simultaneously minimizes
the arrangement cost of several nodes. Given a current approximation T to the arrangement
of the graph, denote by d; a correction to ;. Let 2 = {i; =7 '(p+1),..,50 =7 '(p+¢)}
be a window of q sequential vertices in the current arrangement, i.e., the nodes positioned
at ¢ subsequent coordinates I, ..., Z;,. The local energy minimization problem associated
with a given window 20 can be formulated as follows :

minimize JQ(QB, .’f, 5) = Z ’wi]‘(.fi + 52 - .fj - 5]')2 + Z wij(:fi + 52 — fj)Z. (6)
1,j€W 1€
I
To prevent the possible convergence of many coordinates to one point, and, more precisely,
to express the aim of having {z; + d; };cop an approximate permutation of {z;};cqy one should
add constraints of the form

Z(.’fz + (51)’"1)1 = Zfim’l)i .

1€W 1€W

For simplicity, we have used only the first two moments, where for m = 2 we have neglected
the quadratic term in ;. Using Lagrange multipliers, the final formulation of the window
minimization problem is :

minimize 02(213, .f, (5,)\1,)\2) = 02(?211, j, (5) +)\1 Z 51'?)1' +)\2 Z 511)1.’51 , (7)
1€ 1€

under the second and third constraints of (8) below, yielding the following system of equa-
tions:

Zjewwij(éi — 5]) + 5, ngmwij +)\1’1)1' +)\Qvi.fi = Zj wij(éi — 53) for ¢ = 1, .y q
> 0ivi =0 (8)

Usually in a correct multilevel framework, the changes §; are supposed to be relatively
small since the global approximation for the arrangement is inherited from the coarser levels.
Their smallness is effected by the very restriction of the minimization to one window at a
time. After solving the system (8), every vertex i € 20 is thus positioned at y; = z; + 6;.
Feasibility with respect to the volumes of the nodes is retained by applying (5). Since the
size and location of 2 are quiet arbitrary, the energy cost of the new sub-arrangement is
further improved by Gauss-Seidel-like relaxation sweeps applied to an enlarged 20, where,
say 5% of the window’s size at each end (if possible) are added to 20. As usual, each sweep
is followed by (5). The final obtained energy cost is then compared with the one prior to all
the window changes, the minimum of the two is accepted, updating z.

A sweep of WM with a given window size ¢ consists of a sequence of overlapping win-
dows, starting from the first node in the current arrangement and stepping by || for each
additional window. One such sweep is employed for every given g, while a small number of
different ¢’s is used (in our tests there never was a need for more than 6). Our experiments
show that the algorithm is robust to changes in the chosen ¢’s; for complete details consider
WinSizes in the Appendix. Note, however, that ¢ should be small enough to still guarantee
linear execution time of the entire algorithm. The WM is summarized in Algorithm 2.

Algorithm 2: WindowsMinimization(graph G, current order %)
Parameters: WinSizes, ky (for chosen values, consider the Appendix)

For each q € WinSizes
For i =1 To |V| Step i =i+ |]
W= {n"10),...,m (i+q—1)}
Solve the system of equations (8)
Apply ko sweeps of Gauss-Seidel-like relaxation on the enlarged 20 with + ¢
T < I + 6 if the cost of the arrangement was decreased
Return z

3.2.4 Simulated Annealing

A general method to escape false local minima and advance to lower costs is to replace the
strict minimization by a process that still accepts each candidate change which lowers the
cost, but also assigns a positive probability for accepting a candidate step which increases the
cost of the arrangement. The probability assigned to a candidate step is equal to exp(—A/T),
where A > 0 measures the increase in the arrangement cost and 7" > 0 is a temperature-
like control parameter which is gradually decreased toward zero. This process, known as

Simulated Annealing (SA) [17], in large problems would usually need to apply very gradual
cooling (decrease of temperatures), making it extremely slow and inefficient for approaching
the global optimum.

In the multilevel framework, however, the role of SA is somewhat different. At each
level it is assumed that the global arrangement of aggregates has been inherited from the
coarser levels, and thus only local, small-scale changes are needed. For that purpose, we
have started at relatively high T', lowered it substantially at each subsequent sweep, until
windows minimization is employed.

In particular, 2k+1 candidate locations are examined for each vertex, each corresponds to
moving it some distance [, 0 < |{| < k. The initial temperature 7= T'(|/|) > 0 is calculated
apriori for each distance [by aiming at the acceptance of a certain percent of changes (for
instance 60%). In detail, the probability of moving a vertex [positions (I = £1,..., k) is
Pr(l) = z - min(1,exp(—A(l)/T(]l])), where z is a normalization factor calculated by the
demands Zf:_k Pr(l) =1 and Pr(0) = z - ming_y1,.. +x(1 — Pr(l)/z). In each additional
sweep T'(|l]) is reduced by a factor, such as 0.6. Typically only three such cooling steps are
used.

Repeated heating and cooling is successively employed for better search over the local
landscape. This search is further enhanced by the introduction of a “memory”-like tool con-
sisting of an additional permutation which stores the Best-So-Far (BSF) observed arrange-
ment, which is being occasionally updated by a procedure called Lowest Common Con figuration
(LCC) [5]. LCC enables the systematic accumulation of sub-permutations over a sequence
of different arrangements, such that each BSF sub-permutation exhibits the best (minimal)
sub-order encountered so far. The cost of the obtained BSF is at most the lowest cost of all
the arrangements it has observed, and usually it is lower. The use of LCC becomes more
important for larger graphs, where it is expected that the optimum of a subgraph is only
weakly dependent on other subgraphs. Due to the LCC procedure, it is not necessary to wait
in the stochastic annealing process until all minimal sub-permutations are simultaneously
obtained, which may take exponential time; instead it is sufficient to obtain each such min-
imal sub-order just once, since henceforth it is guaranteed to appear in the BSF. In detail,
the BSF (of a certain level) is initialized by the arrangement obtained at the end of the
strict minimization. Then the BSF is improved by the LCC procedure which updates parts
of it taken from the new arrangements reached right after each heating-cooling cycle. All
these accumulated updates are thus stored at the BSF, which thus represents the current
calculated minimum. The complete description of the LCC algorithm is given in [26].

The entire disaggregation procedure is summarized below in Algorithm 3. The Algorithm
is divided into two parts: the first approximation and the postprocessing corresponding to
the results supported later.

Algorithm 3: Disaggregation(coarse level C, fine level F)
Parameters: ki, ..., k5,7 (for chosen values consider the Appendix.)

FIRST APPROXIMATION :
Initialize F from C
Apply k; sweeps of compatible relaxation on F

9

POSTPROCESSING :
Apply ks sweeps of Gauss-Seidel-like relaxation on F
Apply Windows Minimization on F
Initialize BSF < current arrangement of F
Do k3 cycles of heating and cooling
Calculate T'(JI|) forl=1,...,k4
Do k5 steps
Apply SA within distance k4 on F
Decrease all T'(|I|) by a factor 7
Apply Windows Minimization on F
Update BSF «+ LCC(BSF,current arrangement of F)
Return BSF

4 Results and Related Works

We have implemented and tested the algorithm using standard C++, LAPACK++ [12] and
LEDA libraries [20] on Linux machine. The implementation is non-parallel and not fully
optimized.

We have found only one article [14] with an implemented algorithm and numerical results
for M2sP. The algorithm is based on the spectral approach. Since this test suite is relatively
small to provide enough information regarding M2sP, we have launched a new, much larger
test suite which consists of graphs from different areas [11, 21]. These graphs are divided
into two groups according to their size : the smaller ones are introduced in Table 1, while the
larger ones in Table 2. For all the graphs in Table 1 we compare our results with those of the
spectral approach. The numbers in columns 4-5 and 7-11 are in percentage above the cost
energy presented at the column “Quick” (e.g., the 0.8 appearing for the first graph gd96¢c
in column “ML” means that the initial cost energy is 3455-1.008). The first approximation
obtained by the multilevel V-cycle, i.e., the arrangement obtained right after applying the
compatible relaxation at the finest level is introduced in the column “ML” of Table 1. We
run the algorithm 100 times (using the parameters specified in the Appendix for the “Quick”
V-cycle), each starts from a different permutation of the nodes. The best obtained results are
presented here. The means of the 100 runs are worse than the corresponding “Quick”-values
by an average of 0.51%, while the standard deviation (around the means) is 0.69% on the
average. The “ML” results should be compared to the spectral approach results at column
“SP” obtained by calculating the second eigenvector of the Laplacian? of the graph using
MATLAB routine. It is clear that the “ML” algorithm provides much better results, better
by an average of +31.4% (excluding from the statistics bintreel0, in which the improvement

2The algebraic representation of a graph is given by its Laplacian A (a |V| x |V| matrix), whose terms
are defined by

—W;j forije E, i#j
Elﬁéi Wik for i :j .

10

is much larger). Only in one case, the 10-dimensional hypercube, the spectral approach
provided a lower cost of -2.7%. However, not only the obtained results are much worse,
but also the complexity is much higher: in order to arrange the vertices of the graph, the
precision of the second eigenvector coordinates must be at least O(log|V|) and usually much
better. This is almost impossible while one uses some approximation algorithm. Our results
of the spectral approach were thus obtained with 16-digits precision of an exact algorithm.
The experiments with lower precision or with approximation algorithms gave much poorer
results. The complexity of an exact calculation of the second smallest eigenvector is O(|V|?)
while the multilevel algorithm is linear in the number of edges.

We have next tested the outcome of our postprocessing on both initial sets of results.
Most significant improvement was introduced by applying the Gauss-Seidel-like relaxation,
as can be seen in Table 1 column ‘“ML+GS” for the multilevel algorithm and “+4+GS”
for the spectral approach. The gap between the two has been reduced, but the spectral
approach still provides worse results on the average by 6.1%. Next we have applied the
windows minimization which concludes our, so called “Quick” V-cycle. Comparing columns
“Quick=ML+GS+WM” with the corresponding “4+WM” shows that the multilevel
results remain better, the spectral ones are worse by an average of 4.5%.

Finally, we introduced stochastisity by applying Simulated Annealing. In the multilevel
framework, the SA enters at all levels of the V-cycle. We refer to this version as the “Ex-
tended” V-cycle (its complete parameters are given in the Appendix). While the “Quick”
V-cycle is aimed at achieving fast performance, the “Extended” V-cycle runs longer but
succeeds in finding lower cost arrangements on the average by 1%. The means of the 100
runs of the “Extended” V-cycles are worse than the corresponding “Quick”-values by an
average of 0.49% and the average of the calculated standard deviations (around the means
for 100 runs) of the “Extended” V-cycle is 0.66%. In column “+4SA” of Table 1 we present
the results obtained after adding SA to the spectral approach followed by the above postpro-
cessing. The improvement is again of only 1%. Our last test was to run a very long SA after
the postprocessing with the spectral approach, aiming at achieving comparable amount of
work to 100 “Extended” V-cycles. These results are given in column “Heavy SA”. While
improvement is naturally observed, the results on the average remain worse by about 3%,
while for 6 graphs out of 38 it is worse by more than 5%.

To enrich our test suite, we present in Table 2 our “Quick” V-cycle results for additional
28 relatively large graphs. No spectral approach results are provided since we were not able
to run (on the computers avaliable to us) the MATLAB routine and calculate the needed
eigenvector. Each result is again the best observed out of 100 runs, for which the means for
100 runs are worse than the corresponding “Quick”-values by an average of 0.55% and the
average standard deviation is 0.47%.

11

¢l

Table 1: Results.

Graph V] [E] | ML ML+GS Quick=ML+GS+WM | SP +GS +WM +SA Heavy SA
gd96¢ 65 125 0,8 0,3 3,45500E+03 46,0 5.8 0,0 0,0 0,0
gd95c 62 144 0,8 0,0 3,75500E+03 26,2 0,3 0,0 0,0 0,0
gd96b 111 193 8,7 0,0 1,90860E+04 53,7 1,3 1,1 1,0 1,0
gd96d 180 228 8,2 1,0 5,47390E+04 87,0 1,0 0,2 0,1 0,0
dwt245 245 608 2,9 0,4 6,32810E+04 80,4 2,6 0,8 0,8 0,0
bintreel0 | 1023 1022 | 11,2 0,0 1,35656E-+05 16394,2 388 11,3 10,3 6,4
bus685 685 1282 | 9.6 0,2 2,15744E+05 44,9 9,8 7,0 7,0 6,6
bus1138 1138 1458 | 6,7 0,4 5,52111E+05 76,5 74 1,8 0,9 0,4
gd96a 1096 1676 | 13,6 0,1 1,49741E+07 1244 313 252 21,9 15,9
can445 445 1682 | 1,2 0,0 1,65431E+06 6,0 0,8 0,6 0,6 0,6
cly 828 1749 | 82 0,0 7,86685E+06 121,156 4,6 4,3 4,2
c2y 980 2102 | 7,3 0,0 1,07286E+07 61,2 0,9 0,6 0,3 0,3
bespwr08 | 1624 2213 | 5.6 0,4 9,30437E+05 48,6 130 11,2 9,1 1,9
bespwr09 | 1723 2394 | 5.8 0,5 1,01801E+06 71,8 255 225 220 11,3
c5y 1202 2557 | 7.2 0,0 1,39958E+07 1305 108 9,6 8,4 6,4
jagmeshl | 936 2664 | 2,5 0,1 8,68459E+05 142 126 12,2 11,8 1,1
c3y 1327 2844 | 7,0 0,0 1,97321E+07 1427 75 2,5 0,8 0,7
cdy 1366 2915 | 82 0,0 1,66028E+07 51,8 2,1 1,4 0,2 0,0
dwt918 918 3233 | 5,1 0,1 8,25233E+05 11,5 1,4 0,9 0,3 0,0
dwt1007 1007 3784 | 14 0,0 1,02750E+06 4,3 2,2 1,9 1,7 0,0
jagmesh9 | 1349 3876 | 5,2 0,2 1,39541E+06 10,3 6,3 4,5 1,6 0,9
can838 838 4586 | 04 0,0 7,43012E+06 1,8 0,1 0,1 0,0 0,0
randomAl | 1000 4974 | 34,9 1,8 2,96618E+08 497 182 9,7 4,9 1,1
hcl0 1024 5120 | 3.6 0,0 1,78957E+08 0,8 0,1 0,1 0,0 0,0
can1054 1054 5571 | 02 0,1 6,36257E+06 2,0 0,1 0,1 0,0 0,0
can1072 1072 5686 | 3.6 0,0 8,70400E+06 3,6 0,1 0,0 0,0 0,0
randomG4 | 1000 8173 | 6,9 0,0 7,70221E+06 7.8 1,1 0,8 0,6 0,1
randomA4 | 1000 8177 | 18,3 4,3 6,78008E+08 31,2 153 5,7 0,9 0,4
bespwrl0 | 5300 8271 | 10,5 0,2 1,37238E+07 19,0 4,9 4,1 3,0 2,3
besstm13 | 649 9949 | 05 0,0 3,94573E+07 31,7 0,8 0,6 0,3 0,0
dwt2680 2680 11173 | 42 0,0 9,18901E+06 5,2 0,3 0,1 0,0 0,0
airfoill 4253 12289 | 89 0,1 1,63343E+07 18,4 7.2 5,9 2,7 1,1
besstk12 1423 16342 | 7.7 0,1 2,06281E+07 192 11,9 10,2 6,8 5,9
nasal824 | 1824 18692 | 5,8 0,0 1,41216E+08 24,0 7.9 4,2 1,1 0,3
randomA2 | 1000 24738 | 12,8 4,1 2,95112E+09 12,9 5,1 0,3 0,1 0,0
nasa2146 | 2146 35052 | 5,3 0,1 1,23584E+08 6,6 4,3 4,2 4,0 2,1
besstk30 | 28924 1007284 | 3,1 0,0 5,10042E+10 3,9 1,3 1,2 1,1 0,5
besstk13 2003 40940 | 3.4 0,0 6,71461E+08 40,2 14,8 9,3 3,0 2,7

Table 2: Results (cont.)

Graph \4 |E| Quick Graph V] |E]| Quick

whitaker3 9800 28989 6,53876E+07 | msc23052 | 23052 559817 6,58277E+10
zcrack 10240 30380 1,36392E408 | besstk36 23052 560044 6,58053E+10
shuttleeddy | 10429 46585 1,36209E+08 | besstk31 35586 572913 7,45410E+10
randomA3 1000 49820 6,63583E+409 | msc10848 | 10848 609464 5,92180E+10
nasa4704 4704 50026 7,54457E+08 | ferotor 99617 662431 2,67776E+11
bcsstk24 3562 78174 9,06950E+08 | besstk35s 30237 709963 7,51880E+10
bcsstk38 8032 173714 3,87606E+09 | 598a 110971 741934 3,85388E+11
finan512 74752 261120 1,00967E+10 | besstk32 44609 985046 1,46284E+11
bcsstk33 8738 291583 2,97010E~+10 | 144 144649 1074393 1,55347E+12
bcsstk29 13830 302424 1,06444E+10 | ct20stif 52329 1273983 6,77425E+11
ocean 143437 409593 1,16890E+11 | m14b 214765 1679018 1,67209E+12
tooth 78136 452591 3,18756E+11 | mrng2 1017253 2015714 1.93775e+13
mrngl 257000 505048 6,69398E+11 | auto 448695 3314611 1,33598E+13
bcsstk37 25503 557737 6,77934E+10 | pwtk 217918 5653257 2,25527TE+12

5 Conclusions

We have presented a multilevel algorithm for the Minimum 2-sum problem for general graphs.
The algorithm is based on the general principle that during coarsening each vertex may be
associated to more than just one aggregate according to some “likelihood” measure. The
uncoarsening initialization, which produces the first arrangement of the fine graph nodes,
strongly relies on energy considerations (unlike usual interpolation in classical AMG). This
initial order is further improved by Gauss-Seidel-like relaxation, windows minimization and
possibly by employing stochasticity, i.e., simulated annealing. The running time of the
algorithm is linear, thus it can be applied to very large graphs.

We have compared our results to those obtained by the spectral approach. The calculation
of the second eigenvector of the Laplacian of the graph has to be of high accuracy to provide
reasonable results. Such a direct computation is of complexity O(|V[?). Still, the obtained
results are much worse than the initial results obtained by our multilevel V-cycle by 31.4%
on the average for the smaller sized test suite. In addition, we have applied postprocessing
to both initial arrangements. The Gauss-Seidel-like relaxation improves both results most
significantly. The windows minimization further reduces the arrangement cost for some
graphs. The final results show that the multilevel framework achieves better results of 4.5%
on the average. Finally, we have added stochastisity to both algorithms. Both results were
improved by about 1%. We have also tried to apply a very long SA to the final results of the
postprocessing of the spectral approach. Many results have been further improved, however,
some graphs (6 out of 38) still present results higher by more than 5%.

Our main conclusion is that the average and the best results of our V-cycles are better
than the results of the spectral approach. We recommend our multilevel algorithm as a
general practical method for solving the Minimum 2-sum problem and as a fast and high-
quality method for obtaining first approximation for it. The implemented algorithm can be

13

Table 3: The parameters used for the “quick” and “extended” V-cycles.

Parameter “quick” | “extended” | The increase
V-cycle V-cycle for level L
The coarse neighborhood size (r) 10 10 +log(R)
The edge filtering threshold () 0.001 0.001 -0.9%09(R)
The number of sweeps of Compatible relaxation (k) 5 10 +2-L
The number of sweeps of Gauss-Seidel relaxation (k) 5 10 +2-L
The number of heating and cooling in SA (k3) 0 3 log(R)
k4 used in the SA 0 5 +1og(V/R)

obtained at http://www.wisdom.weizmann.ac.il /~safro/min2sum.

Appendix: Parameters

In order to control the running time of the algorithm it is important to decrease the total
number of edges of the constructed coarse graphs. This is achieved by the following two
parameters: the maximum allowed coarse neighborhood size r, which restricts the allowed
size |N;| of the coarse neighborhood of a vertex i € F' by deleting the weakest w;;, j € C;
and the edge filtering e threshold, which deletes every relatively weak edge ij (from the
created coarse graph) if both w;; < € - s; and w;; < €- s, where s; = >, wjy.

These two parameters and five others which control the uncoarsening procedure (see
Algorithm 3) are presented in Table 3 for the “quick” and “extended” V-cycles we have
used. The last two parameters (of Algorithm 3) were constantly chosen to be ks = 4 and
v = 0.6.

It is however important to mention that these parameters are the ones used only for
the finest levels. As the coarse graphs become much smaller they are accordingly increased.
This hardly affects the entire running time of the algorithm but systematically improves
the obtained results. In the last column of Table 3 we specifically describe the increase
introduced for each parameter as a function of level L, which usually depends on the ratio
R = max(1, |Ey|/|FELr|) measuring the relative decrease of the number of edges at level L
compared with the original graph.

We tested many options for the window sizes in Algorithm 2. Usually these sizes were
relatively small and very robust to changes. In our implementation we used WinSizes =
{5,10, 15,20, 25,30}, however similar results were obtained with other sets of windows, for
example, WinSizes = {5,9,17, 23, 29}.

Acknowledgements

This research was supported by a Grant from the German-Israeli Foundation for Scientific
Research and Development (G.LF.), Research Grant Agreement No. 1-718-135.6/2001, and
by the Carl F. Gauss Minerva Center for Scientific Computation at the Weizmann Institute
of Science.

14

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

S.T. Barnard, A. Pothen and H.D. Simon, A spectral algorithm for envelope reduction
of sparse matrices, Numerical Linear Algebra with Applications, 2(4):317-334, 1995.

A. Brandt, S. McCormick, and J. Rudge, Algebraic multigrid (AMG) for automatic
multigrid solution with application to geodetic computations., Institute for Computa-
tional Studies, POB 1852, Fort Collins, Colorado, 1982.

A. Brandt, S. McCormick, and J. Rudge, Algebraic multigrid (AMG) for sparse matriz
equations., In Sparsity and its Applications (Evans, D.J., ed.), Cambridge University
Press, Cambridge, 1984, pp. 257-284.

A. Brandt, Algebraic Multigrid Theory : The symmetric case, Appl. Math. Comput.,
19:23-56, 1986.

A. Brandt, D. Ron and D. Amit, Multi-level approaches to discrete-state and stochastic
problems, Multigrid Methods, IT (Hackbush, W. and Trottenberg, U., eds.), Springer-
Verlag, 1986, pp. 66-99.

A. Brandt, Multiscale Scientific Computation: Review 2001. In, T. Barth, R. Haimes
and T. Chan, eds.: Multiscale and Multiresolution methods, Springer-Verlag, 2001. (Pro-
ceeding of the Yosemite Educational Symposium, October 2000).

A. Brandt, General highly accurate algebraic coarsening, Gauss Center Report WI/GC-
13, May 1999, Electronic Trans. Num. Anal. 10 (2000) 1-20.

A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies, in “Mul-
tilevel Optimization and VLSICAD?” edited by J. Cong and J. R. Shinnerl, Kluwer, 2002.

W.L. Briggs, V.E. Henson and S.F. McCormick, A Multigrid Tutorial, 2nd Edition,
SIAM.

C.K. Cheng, Linear Placement Algorithms and Applications to VLSI Design, Networks,
vol. 17, pp. 439-464, Winter 1987.

T. Davis, Sparse matriz collection, http://www.cise.ufl.edu/research /sparse/sparse.

J. Dongarra, R. Pozo, and D. Walker, LAPACK++: A design overview of object-
oriented extensions for high performance linear algebra., In Proc. Supercomputing ’93,
pages 162-171. IEEE Computer Soc. Press, 1993.

M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some Simplified NP-complete graph
problems, Theoretical Computer Science, 1:237-267, 1976.

A. George and A. Pothen, An analysis of spectral envelope-reduction via quadratic as-
signment problems, STAM Journal of Matrix Analysis and its Applications, 18(3), pp.
706-732, 1997.

15

[15] K. M. Hall, An r-dimensional Quadratic Placement Algorithm, Management Science 17
(1970), 219-229.

[16] B. Hendrickson and R. Leland, An improved spectral graph partitioning algorithm for
mapping parallel computations, SIAM J. Sci. Comput., 16 (1995), pp. 452-469.

[17] S. Kirkpatrick, Models of disordered systems, Lecture Notes in Physics149 (C. Castellani
et al., eds.), Springer-Verlag, Berlin.

. Koren an . Harel, ulti-Scale Algorithm for the Linear Arrangement Problem,

18] Y. K d D. Harel, A Multi-Scale Algorith he L1 A Probl
Proceedings of 28th Inter. Workshop on Graph-Theoretic Concepts in Computer Science
(WG’02), Lecture Notes in Computer Science, Vol. 2573, Springer Verlag, pp. 293-306,
2002.

[19] G. Kumfert and A. Pothen, A refined spectral algorithm to reduce the envelope and
wavefront of sparse matrices., accepted by BIT, 1996.

[20] K. Mehlhorn and S. Naher, LEDA - A platform for combinatorial and geometric com-
puting, Cambridge University Press, 1999.

[21] J. Petit, Approzimation heuristics and benchmarkings for the MinLA problem, In R.
Battiti and A. Bertossi, editors, Alex 98, Building bridges between theory and appli-
cations, pages 112-128. Universit di Trento, 1998.

[22] A. Pothen, H.D. Simon and K.P. Liou, Partitioning sparse matrices with eigenvectors
of graphs, STAM J. Matrix Anal. Appl., 11 (1990), pp. 430-452.

(23] A. Pothen, H.D. Simon and L. Wang, Spectral nested dissection, Tech. Rep. CS-92-01,
Computer Science, Pennsylvania State Univ., University Park, PA, 1992.

[24] D. Ron, Ph.D. Thesis. Development of fast numerical solvers for problems in optimiza-
tion and statistical mechanics, The Weizmann Institute of Science, 1989.

[25] J. Ruge, K. Stiiben, Algebraic Multigrid, In Multigrid Methods (McCormick, S. F., ed.),
SIAM, Philadelfia, 1987, pp. 73-130.

[26] 1. Safro , D. Ron and A. Brandt, Graph Minimum Linear Arrangement by Multilevel
Weighted Edge Contractions, submitted, 2003.

[27] L. Safro , D. Ron and A. Brandt, Multilevel Algorithm for the Minimum Bandwidth
Problem, to appear.

[28] E. Sharon, A. Brandt, R. Basri, Fast Multiscale Image Segmentation, Proceedings IEEE
Conference on Computer Vision and Pattern Proceedings IEEE Conference on Com-
puter Vision and Pattern Recognition, 1:70-77, South Carolina, 2000.

[29] D.A. Spielman and S-H. Teng, Spectral partitioning works: Planar graphs
and finite element meshes, Manuscript, 1996. Avaliable on Web at the URL
http://cs.berkley.edu/ spielman/spect.html.

16

[30] K. Stiiben, An introduction to algebraic multigrid, Appendix in: Multigrid (Trottenberg,
U., Oosterlee, C.W. and Schiiller, A., eds.), Academic Press, 2001, pp. 413-532.

[31] K. Stiiben, A review of algebraic multigrid, J. Comput. Appl. Math. 128 (2001) 281-309.

17

