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Multiscale solvers and systematic upscaling in computation
physics
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Abstract

Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These a
employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in w
use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential eq
highly efficient multiscale techniques have more recently been developed for many other types of computational task
ing: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fi
computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; ast
molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state opti
practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sam
statistical physics; and general, systematic methods of upscaling (accurate numerical derivation of large-scale equa
microscopic laws).
 2005 Published by Elsevier B.V.
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1. The scale gap

Despite their dizzying speed, modern supercomp
ers are still incapable of handling many most vital s
entific problems. This is primarily due tothe scale gap,
which exists between the microscopic scale at wh
physical laws are given and the much larger scale
phenomena we wish to understand.

This gap implies, first of all, a huge number of va
ables (e.g., atoms or gridpoints or picture elemen
and possibly even a much larger number of int
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actions. Moreover, computers simulate physical s
tems by moving few variables at a time; each su
move must be extremely small, since a larger m
would have to take into account all the motions t
should in parallel be performed by all other variabl
Such a computer simulation is particularly incapa
of moving the system across large-scale energy b
ers, which can each be crossed only by a large cohe
motion of very many variables.

This type of computational obstacles makes it i
possible, for example, to calculate properties of e
mentary particles, atomic nuclei, etc., or tocomputer-
ize chemistry and materials science, so as to enable th
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design of materials, drugs and processes, with e
mous potential benefits for medicine, biotechnolo
nanotechnology, agriculture, materials science, ind
trial processing, etc. With current common metho
the amount of processing often increases so ste
with problem size, that even much faster comput
will not do.

2. Multigrid and renormalization

Past studies have demonstrated that scale-
slowness can be overcome by multiscale algorith
Such algorithms have first been developed in the fo
of fast multigrid solvers for discretized PDEs[1,2,
10–12]. These solvers are based on two proces
(1) classicalrelaxation schemes, which are genera
slow to converge but fast to smooth the error functi
(2) approximating the smooth error on acoarser grid
(typically having twice the meshsize), by solving the
equations which are derived from the PDE and fr
the fine-grid residuals; the solution of these coar
grid equations is obtained by using recursively
same two processes. As a result, large scale cha
are effectively calculated on correspondingly coa
grids, based on information gathered from finer gri
Such multigrid solvers yieldlinear complexity (solu-
tion work proportional to the number of unknowns)

In many years of research, the range of appli
bility of these methods has steadily grown, to co
most major types of linear and nonlinear large syste
of equations appearing in sciences and enginee
This has been accomplished by extending the c
cept of “smoothness” in various ways, finally to sta
generally for any poorly locally determined solutio
component, and by correspondingly diversifying t
types of coarse representations, to include for insta
grid-free solvers, calledalgebraic multigrid (AMG;
see[5,6,13]), non-deterministic statistical mechani
problems[7–9,16]and multiple coarse-level represe
tations[3].

It has been shown that the inter-scale interacti
can indeed eliminate all kinds of scale-associated
ficulties, such as: slow convergence (in minimizat
processes, PDE solvers, etc.); critical slowing do
(in statistical physics); ill-posedness (e.g., of inve
problems); conflicts between small-scale and lar
scale representations (e.g., in wave problems, br
U
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s

ing the gap between wave equations and geom
cal optics); numerousness of long-range interacti
(in many body problems or integral equations);
need to produce many fine-level solutions (e.g.,
optimal control) or very many fine-level independe
samples (in statistical physics); etc. New AMG me
ods (BAMG—see[18]) can fast solve highly disor
dered systems, such as Dirac equations on cri
gauge fields or PDE systems discretized on unst
tured grids. Since the local processing (relaxati
etc.) in each scale can be done in parallel at all po
of the domain, the multiscale algorithms, based
such processing, proved ideal for implementation
massively parallel computers.

To obtain even further generality, there emerg
however two basic reasons to go much beyond th
multigrid methods. First, they do not perform we
for highly nonlinear cases, where configurations can
not be decomposed into weakly-interacting local a
non-local parts. Second, for many systems, even
ear complexity is not good enough, since the num
of variables is huge. Such systems on the other h
are typically highly repetitive, in the sense that th
same small set of governing equations (or Hamilton
terms) keep repeating itself throughout the phys
domain. This opens the way to the possibility of ha
ing, at the coarse level too, a small set of govern
equations that are valid everywhere, and that can
derived from fine-level processing conducted only
some small representative “windows” (see below).

These two basic reasons point in fact in the sa
direction. Instead of relaxing the given system of eq
tions so as to obtain a smooth error that can be app
imated on a coarse level, one should use coarse
variables that are little sensitive to relaxation (e.g., r
resenting chosenaverages, rather than a subset of in
dividual fine-level values) and that represent thefull
solution rather than the correction to any given curr
approximation. Such coarse variables can be cho
(as described below) so that the coarse-level equa
can be derived just by local processing. We use
term “upscaling” for this type of direct (full-solution)
transition from a fine level to a coarser one. Suc
transition is valid even in those highly nonlinear ca
where all scales interact with each other so stron
that correction-based multileveling is inapplicable.

In fact, upscaling, under the name “renormaliz
tion”, was first introduced into exactly those syste
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where all scales interact most strongly: the highly n
linear systems of statistical mechanics at the crit
temperature of phase transition. Therenormalization
group (RG) method (see, e.g.,[14,15]) was devel-
oped contemporaneously with, but independently
the multigrid method, its chief purpose having been
investigate the behavior of such critical systems at
limit of very large scales. The RG method has thus
cused on analyzing, theoretically and computationa
the fixed point of the group of successive renorm
ization steps, and various universal asymptotic po
laws associated with it. Little has been done to upsc
systems without a fixed point, which is the more pre
lent situation in most practical problems. Also, the R
computational efficiency remained limited, due to t
lack of a systematic coarse-to-fine transition, wh
is needed either for accelerating the fine-level sim
lations (as in multigrid solvers) and/or for confinin
them to small representative windows (as descri
below).

Realizing the complementary advantages and dr
backs of RG and multigrid, the following new com
bined paradigm has emerged.

3. Systematic upscaling (SU): An outline

Local equations and interactions. Computation-
ally we deal only with discrete systems; theirn vari-
ablesu1, u2, . . . , un will typically be either values o
discretized functions (grid values, or finite elemen
etc.), or locations of particles. An equation or intera
tion is calledlocal if it involves only O(1) neighbor-
ing variables. For simplicity of discussion we descr
SU first for systems of local equations (including e
ergy minimization with local interactions) or local in
teractions at equilibrium. Long range interactions
discussed later.Extensions exist to dynamic and non-
equilibrium systems.

Coarsening. Similar to multigrid, SU is based o
two processes: The usual local processing (relaxa
in deterministic problems, Monte Carlo (MC) in st
chastic ones) and repeated coarsening, creating
creasingly coarser descriptions of the same phys
system. At each coarsening stage, to each fine-l
configurationu = (u1, . . . , un) one defines (using th
criterion below) a unique coarse-level configuratio
U

T
E

D
 P

R
O

O
F

denoteduc = (uc
1, . . . , u

c
m), which is a vector with a

reduced number of variables; typically.1n < m < .6n.
Interpolation. To any given coarse configuratio

U = (U1, . . . ,Um), there are of course many fine-lev
configurationsu compatible with U (i.e., such that
uc = U ). The interpolation (transition fromU to a
specific fine configurationu) is created bycompati-
ble Monte Carlo (CMC) (or compatible relaxation, in
the deterministic case), i.e., by the local process
restricted to configurations compatible withU . The in-
terpolation is completed once the CMC has reac
its equilibrium (or the compatible relaxation has co
verged).

The general coarsening criterion. The fine-to-
coarse transformation is said to beadequate if (and to
the extent that) the CMC equilibrates fast (or the co
patible relaxation converges fast) independently of
system sizen. For example, in the 2D Ising model
critical temperature, for the 2× 2 majority blocking,
the CMC autocorrelation time is very close to 1[4].

A major problem in coarsening any system is
find a suitable set of coarse variables. The above
terion gives a general and very effective tool for d
veloping such a set. The adequacy of that set imp
essentially local dependence of the coarse variab
and hence the feasibility to construct, just by lo
processing, a set ofoperational rules (e.g., equations
or a Hamiltonian-like functional) that will govern sim
ulations at the coarse level.

In highly repetitive systems (defined above), t
local processing need not be done everywhere:
coarse-level equations can iteratively be derived
comparing coarse-level with fine level simulation
where the latter are performed only in some re
tively smallwindows (subdomains, on the boundari
of which the fine level is kept compatible with th
coarse level).

Thus, the fine level simulations supply the ope
tional rules for the next coarser level, while the l
ter supplies the windows for those simulations. It
ating back and forth between all the levels quic
settles into a self-consistent multilevel compatibili
If the coarsening rationn/m is not large, no slowdown
should occur, and at each level the computations n
extend only over a collection of small windows, who
number depends on the diversity of local situatio
not on the size of the problem.
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Long range interactions (e.g., between electrosta
tic charges) can each be decomposed into a sm
interaction and a local one (“smooth” and “local” b
ing meant on the scale of the next coarse level;
familiar physical interactions can be decomposed
way [17]). The smooth part can directly be transferr
to the coarse level (e.g., represented by aggreg
charges), while the local part is transferred, toget
with all other local interactions, using the fine/coa
iterations described above.

Determinism and stochasticity. A stochastic system
at the fine level often yields a deterministic system
large enough scales, and vice versa. The coarse
approaches described above can accommodate
transitions.

Reported examples of SU-type systems include an
Ising spin model[4], a simple polymer and simple flu
ids (see §14 in[18] and references therein and al
[19]). Several other systems are under developmen
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