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Abstract 67

Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These algé#ithms
employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in waysewhich
use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential equations,
highly efficient multiscale techniques have more recently been developed for many other types of computational tasks, includ-
ing: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fields; fast
computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; astrophysics;
molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state optimi;gtion;
practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sampl7i5ng in
statistical physics; and general, systematic methods of upscaling (accurate humerical derivation of large-scale equatlons from

microscopic laws).
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1. Thescalegap actions. Moreover, computers simulate physical sys:
tems by moving few variables at a time; each sucke

Despite their dizzying speed, modern supercomput- move must be extremely small, since a larger moves
ers are still incapable of handling many most vital sci- would have to take into account all the motions thag
entific problems. This is primarily due the scale gap, should in parallel be performed by all other variables?®
which exists between the microscopic scale at which sych a computer simulation is particularly incapablé®
physical laws are given and the much larger scale of of moving the system across large-scale energy barfi’

phenomena we wish to understand. ~ers, which can each be crossed only by a large coheresﬁt
This gap implies, first of all, a huge number of vari-  16ti0n of very many variables.

ables (e.g., atoms or gridpoints or picture elements),

) ; This type of computational obstacles makes it im-
and possibly even a much larger number of inter-

91
possible, for example, to calculate properties of ele—
mentary particles, atomic nuclei, etc., ordmmputer-

E-mail address: achi@weizmann.ac.{A. Brandt). ize chemistry and materials science, so as to enable the ,
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design of materials, drugs and processes, with enor-ing the gap between wave equations and geometrs
mous potential benefits for medicine, biotechnology, cal optics); numerousness of long-range interactiors
nanotechnology, agriculture, materials science, indus- (in many body problems or integral equations); the:
trial processing, etc. With current common methods need to produce many fine-level solutions (e.g., im2
the amount of processing often increases so steeplyoptimal control) or very many fine-level independents
with problem size, that even much faster computers samples (in statistical physics); etc. New AMG meths4
will not do. ods (BAMG—se€[18]) can fast solve highly disor- ss
dered systems, such as Dirac equations on criticad
gauge fields or PDE systems discretized on unstrue?
tured grids. Since the local processing (relaxatiorss
etc.) in each scale can be done in parallel at all points

Past studies have demonstrated that scale-bornof the domain, the multiscale algorithms, based oep
slowness can be overcome by multiscale algorithms. such processing, proved ideal for implementation ost
Such algorithms have first been developed in the form massively parallel computers. 62
of fast multigrid solvers for discretized PDEg1,2, To obtain even further generality, there emergees
10-12] These solvers are based on two processes:however two basic reasons to go much beyond these
(1) classicakelaxation schemes, which are generally multigrid methods. First, they do not perform welles
slow to converge but fast to smooth the error function; for highly nonlinear cases, where configurations can- 66
(2) approximating the smooth error orcearser grid not be decomposed into weakly-interacting local aner

2. Multigrid and renormalization

(typically having twice the meshsize), by solving there
equations which are derived from the PDE and from
the fine-grid residuals; the solution of these coarse-
grid equations is obtained by using recursively the

non-local parts. Second, for many systems, even lirss
ear complexity is not good enough, since the numbee
of variables is huge. Such systems on the other harid
are typically highly repetitive, in the sense that the 71

same two processes. As a result, large scale changesame small set of governing equations (or Hamiltoniare
are effectively calculated on correspondingly coarse terms) keep repeating itself throughout the physicab
grids, based on information gathered from finer grids. domain. This opens the way to the possibility of hav4
Such multigrid solvers yieldinear complexity (solu- ing, at the coarse level too, a small set of governingg
tion work proportional to the number of unknowns).  equations that are valid everywhere, and that can lse

In many years of research, the range of applica- derived from fine-level processing conducted only irv?
bility of these methods has steadily grown, to cover some small representative “windows” (see below). 78
most major types of linear and nonlinear large systems  These two basic reasons point in fact in the same
of equations appearing in sciences and engineering.direction. Instead of relaxing the given system of equaso
This has been accomplished by extending the con- tions so as to obtain a smooth error that can be approx-
cept of “smoothness” in various ways, finally to stand imated on a coarse level, one should use coarse lewel
generally for any poorly locally determined solution variables that are little sensitive to relaxation (e.g., rep?
component, and by correspondingly diversifying the resenting choseaverages, rather than a subset of in- 84
types of coarse representations, to include for instancedividual fine-level values) and that represent b 85
grid-free solvers, calle@lgebraic multigrid (AMG; solution rather than the correction to any given currers
see[5,6,13), non-deterministic statistical mechanics approximation. Such coarse variables can be chosen
problemg7-9,16]and multiple coarse-level represen- (as described below) so that the coarse-level equatiosts
tations[3]. can be derived just by local processing. We use the

It has been shown that the inter-scale interactions term “upscaling” for this type of direct (full-solution) o
can indeed eliminate all kinds of scale-associated dif- transition from a fine level to a coarser one. Such &
ficulties, such as: slow convergence (in minimization transition is valid even in those highly nonlinear cases?
processes, PDE solvers, etc.); critical slowing down where all scales interact with each other so stronglss
(in statistical physics); ill-posedness (e.g., of inverse that correction-based multileveling is inapplicable. 94
problems); conflicts between small-scale and large- In fact, upscaling, under the name “renormalizass
scale representations (e.g., in wave problems, bridg- tion”, was first introduced into exactly those systemss
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where all scales interact most strongly: the highly non- denotedu® = (u{, ..., uy,), which is a vector with a 4¢
linear systems of statistical mechanics at the critical reduced number of variables; typically: <m < .6n. 50
temperature of phase transition. Themormalization Interpolation. To any given coarse configuration5?
group (RG) method (see, e.g[14,15) was devel- U= (U,...,Uy,),there are of course many fine-level52
oped contemporaneously with, but independently of configurationsu compatible with U (i.e., such that 53
the multigrid method, its chief purpose having beento u¢ = U). The interpolation (transition front/ to a 54
investigate the behavior of such critical systems at the specific fine configuratiom) is created bycompati- 55
limit of very large scales. The RG method has thus fo- ble Monte Carlo (CMC) (or compatible relaxation, in 56
cused on analyzing, theoretically and computationally, the deterministic case), i.e., by the local processing’
the fixed point of the group of successive renormal- restricted to configurations compatible with The in- 58
ization steps, and various universal asymptotic power terpolation is completed once the CMC has reachet
laws associated with it. Little has been done to upscale its equilibrium (or the compatible relaxation has con®°
systems without a fixed point, which is the more preva- verged). 61
lent situation in most practical problems. Also, the RG The general coarsening criterion. The fine-to- °
computational efficiency remained limited, due to the coarse transformation is said to agequate if (and to 63
lack of a systematic coarse-to-fine transition, which the extent that) the CMC equilibrates fast (or the com®
is needed either for accelerating the fine-level simu- patible relaxation converges fast) independently of th&
lations (as in multigrid solvers) and/or for confining system sizer. For example, in the 2D Ising model at 66
them to small representative windows (as described critical temperature, for the 2 2 majority blocking,
below). the CMC autocorrelation time is very close t¢4].
Realizing the complementary advantages and draw- A major problem in coarsening any system is ta®
backs of RG and multigrid, the following new com-  find a suitable set of coarse variables. The above cri-
bined paradigm has emerged. terion gives a general and very effective tool for de-
veloping such a set. The adequacy of that set implie7§
essentially local dependence of the coarse variabl

3. Systematic upscaling (SU): An outline and hence the feasibility to construct, just by local,
processing, a set aperational rules (e.g., equations, .
Local equations and interactions. Computation- or a Hamiltonian-like functional) that will govern sim-
ally we deal only with discrete systems; theinari- ulations at the coarse level.
ablesu, uo, ..., u, will typically be either values of In highly repetitive systems (defined above), thf‘%g

discretized functions (grid values, or finite elements, local processing need not be done everywhere: thg
etc.), or locations of particles. An equation or interac- coarse-level equations can iteratively be derived by,
tion is calledlocal if it involves only O(1) neighbor- comparing coarse-level with fine level simulationsg,
ing variables. For simplicity of discussion we describe where the latter are performed only in some relag,
SU first for systems of local equations (including en- tively smallwindows (subdomains, on the boundariesg,
ergy minimization with local interactions) or local in- ~ of which the fine level is kept compatible with thegs

teractions at equilibrium. Long range interactions are coarse level). 86
discussed lateExtensions exist to dynamic and non- Thus, the fine level simulations supply the operasr
equilibrium systems. tional rules for the next coarser level, while the latss

Coarsening. Similar to multigrid, SU is based on ter supplies the windows for those simulations. Iterso
two processes: The usual local processing (relaxation ating back and forth between all the levels quicklyso
in deterministic problems, Monte Carlo (MC) in sto- settles into a self-consistent multilevel compatibility.o1
chastic ones) and repeated coarsening, creating in-If the coarsening ration/m is not large, no slowdown 92
creasingly coarser descriptions of the same physical should occur, and at each level the computations neeg
system. At each coarsening stage, to each fine-levelextend only over a collection of small windows, whoses4
configurationu = (u, ..., u,) one defines (using the number depends on the diversity of local situationss
criterion below) a unique coarse-level configuration, not on the size of the problem. 96
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Long range interactions (e.g., between electrosta-

tic charges) can each be decomposed into a smooth

interaction and a local one (“smooth” and “local” be-

ing meant on the scale of the next coarse level; all
familiar physical interactions can be decomposed this

way [17]). The smooth part can directly be transferred

to the coarse level (e.g., represented by aggregated
charges), while the local part is transferred, together

with all other local interactions, using the fine/coarse
iterations described above.
Determinismand stochasticity. A stochastic system

at the fine level often yields a deterministic system at
large enough scales, and vice versa. The coarsening

Monte Carlo acceleration, Gauss Center Report WI/GC-1149
June 1999, J. Stat. Phys. 102 (2001) 231-257. 50
[5] A. Brandt, S. McCormick, J. Ruge, Algebraic multigrid 5,
(AMG) for automatic multigrid solution with application to
geodetic computations, Institute for Computational Studies,
POB 1852, Fort Collins, Colorado, 1982. 53
[6] A. Brandt, Algebraic multigrid theory: The symmetric case, 54
Preliminary Proc. Int. Multigrid Conf., Copper Mountain, Col- 55
orado, April 6-8, 1983; Appl. Math. Comp. 19 (1986) 23-56. 5¢
[7] A. Brandt, D. Ron, D.J. Amit, Multi-level approaches to 57
discrete-state and stochastic problems, in: W. Hackbusch,
U. Trottenberg (Eds.), Multigrid Methods, I, Springer-Verlag, %8
1986, pp. 66—99. 59
[8] A. Brandt, Multigrid methods in lattice field computations, 60
Nucl. Phys. B (Proc. Suppl.) 26 (1992) 137-180. 61

approaches described above can accommodate suchl®] A. Brandt, M. Galun, D. Ron, Optimal multigrid algorithms 4,

transitions.

Reported examples of U-type systems include an
Ising spin modej4], a simple polymer and simple flu-
ids (see 814 ir[18] and references therein and also
[19]). Several other systems are under development.
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