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The energy U of a system of N point particles is given by

e .
Uy =5 4 G(rirl) (1)

i#j

where ¢; is the “charge” (electrostatic charge, mass, etc.) and 7; is
the location of the i-th particle. The interparticle interactions are
defined by the kernel G( FiFj ) The kernel usually is singular
at the origin and becomes smoother as the distance between
the two particles grows; such kernels are called asymptotically
smooth [1]. A “softening” of such kernel can be obtained by its
splitting into two parts

G(r) = Gioc (r) + Gsmooth (7"), (2)

where the local part of the kernel is defined to be zero beyond
some cutoff radius 7y,

Gloc (}") = { (;(r)_(;smooth(l”)7 F<Feut

3)

0, >reat

A suitable choice for the smooth part.of the kernel is given by

Gsmooth(r) - {PGm((:)),’

F<recut
>, cut ’

(4)

where the function P, (#).= "7, ;- (r)* is a polynomial of
order 2m. Sufficient smoothness of G,,00m(7) can be guaranteed
by the condition that this function and its first m derivatives are
continuous at the point r=r,. From this condition we get a
system of equations for the unknown coefficients a; (for the
kernel G(r)=1/r the values of these coefficients are given in
Gloskovskaya and Ilyin [2]).
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Taking into account that the kernel is separated into local and
smooth. parts, the interaction energy (1) can also be split into
two parts

Uy = Ujpe + Usmooth> (5)

where the contribution to the potential energy of the local, short
range interactions is defined by

1 N
Uioe = EZ Qi'Gloc(‘ri)_r.ﬂ) q;- (6)

i#f

If ., is chosen comparable to the average inter-particle
distance, a direct summation in (6) is not computationally
expensive.

Unlike the local kernel, the smooth part (4) is nonsingular at
r=0. Therefore, the last term in (5) can be written as

N N
Usmooth = %Z qi'Gsmooth(‘ri)*rj)D 'qué a(O) Z q? (7)
ij i=1
= Ussmooth + Uselfa
where Ugr is independent of particle locations and can be
calculated once for all as the self-interaction energy.

The main idea of the Multilevel Summation [1] consists in
the interpolation of Ggpeom(7) from some grid. The space is
covered by a uniform grid which is defined by a set of
gridpoints {Ry}, the mesh size being 4. The value of the smooth
part of the kernel for given locations of particles 7 and j can be
interpolated from that grid

Gsmooth ("”1)_”/) |)
= Z Z WI(V{)) ' Gsmooth(‘Rl_RJD 'mJ(K/?) + O(F) (8)

Ieo; Jeo;
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where @ (7;) are the interpolation coefficients, ¢ is the error of
the interpolation and o, is a neighborhood of the point 7;.

Substitution of (8) in (7) yields after change of the summation
order

US

smooth —

N
ZZ O1* Ggmmoons (|R1—Ry) - 01, 9)
1J

where the set of “super charges” {Qy} is defined at the coarse
level gridpoints by

O = @ (ri) - qi

i such that Ieo;

(10)

The fine-to-coarse transfer (10), which is the adjoint of
interpolation, is called anterpolation.

Since (9) is a coarse-level version of (1), its summation can
be carried out similarly, using a coarser grid, continuing
recursively to increasingly coarser grids with level-/ mesh size
being /,=2""'h. Due to the asymptotic smoothness of the kernel
G(r), it can be split into local and smooth parts on each level, in
the form

PL(r p<2l7 g
Gémooth( ) { (l;n((r)) r>2l*1 r:i: (1 = 172,... ) (1 1)
Denoting G°=G, we recursively define
! Gémlooth( )_Gémooth (I"), rszl—l “Feut
Gloc( ) { O7 r>2l—l Feut . (12)

As aresult of the recursion, the potential energy (1), which is
estimated at the M coarser levels, can be written as

M—1
UN = self + Z ljlloc

2 Z Q% smooth |RIM_RJM|)'Q§/[M’ (13)
InIm
where M is the number of levels and
loc = ZQI/ Gloc |R11_RJ1D Qf], (14)

Il Ji

Since the Glloc(r) are defined on the uniform grids, their
values can be prepared in small precalculated tables. The “super
charges” at the grid points of level / are anterpolated from the
finer-level grid

0 = >

Kt such that 17€0K,_

@y, (Rx, ) Ok, 122 (15)

The recursion proceeds until the last term in (13) becomes
negligible or its direct calculation does not cost very much.

The Multilevel Summation can easily be extended to systems
with dipole interactions. In this case, the energy of N dipoles is
defined by

Z :ul Vl lu] V1 (|r;_r;|)7

H&/

(16)

where i; is the dipole moment. For the kernel G(r)=1/r,
substituting (2) into (16) yields the energy in the form (5) with

N
Uloc :E Z

1 N NN NN
3 (&1 (rip) 1 =ga (ry) - (i) (w-e)] |

P71 ST eut ri
(17)
where r; = ri—r;, ry=|rj|, e;=duy/rjand
Py, Ph(r)  Pn(r
g =140 gy =3B B g

Calculation of the anisotropic interaction (17) is more
involved than (6), but only by a small fixed factor, since the
functions g(r) and g,(7) can be interpolated from precalculated
tables.

The interpolation (8) of the smooth part of the kernel in (16)
gives us the expression (9), except that the set of “super
charges” interpolated to the first coarse level is defined by

o= >

i such that Ico;

Y o (7). (19)

It follows from (19) that the interpolation maps each dipoles
to charges at coarse-level gridpoints in the neighborhood of this
dipole. The problem of the summation of anisotropic dipole—
dipole interactions is reduced to the estimation of Coulomb
interactions that can be performed recursively similar to (9).

The Multilevel Summation method was applied for the
calculation of the Madelung constant of ionic crystals and the
ground state of the rhombic planar rotator model. It was shown
that for 7, = 3% the error is less than 0.1%.

A Monte Carlo method based on separating the potential
energy into two parts, one that is less expensive to evaluate and is
rapidly varying and another that is slowly varying and evaluated
less frequently, was proposed in Hetenyi et al. [3] and Gelb [4]. A
very efficient algorithm was developed by evaluating the inter-
action energy using the Multilevel Summation during this Monte
Carlo process. Numerical results for Coulomb and dipole many
body systems appear in the Ph.D. theses of I. Suwan and M.Sc.
theses of N. Makedonska, which will be published elsewhere.
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