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Abstract

Maxima of the scalar dissipation rate in turbulence appear in form of sheets and correspond with

potentially most intensive scalar mixing events. Their cross-section thickness determines a local

diffusion scale. The distribution of this scale is analysed with a fast multiscale clustering algorithm

which is applied to very high-resolution simulation data. The thickness is found to be distributed

across the whole viscous-convective Batchelor range and beyond. The dissipation maxima vary

as the Kolmogorov (Batchelor) scale with respect to the Reynolds (Schmidt) number keeping the

other parameter fixed in each case. The distribution of the thickness scales is traced back to the

quasi-Gaussian distribution of the contractive short-time Lyapunov exponent of the flow.

PACS numbers: 47.54.-r, 02.70.-c, 07.05.Pj
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Introduction. The mixing of a scalar field θ(x, t) in a fluid depends strongly on the ratio

of the kinematic fluid viscosity ν to the scalar diffusivity κ which is captured by the Schmidt

number Sc = ν/κ. The case of Sc > 1 appears in numerous systems, e.g. for the mixing

of phytoplankton or salinity by large scale ocean flows, the turbulent combustion of fuel

and oxygen, the low-speed mixing in small devices [1], or the transport of reactive tracers

in the stratosphere [2]. In turbulence, this case is known as the Batchelor regime [3] and

established between the Kolmogorov scale of the flow, η = (ν3/〈ε〉)1/4, and the Batchelor

scale, ηB = η/
√

Sc, with 〈ε〉 being the statistical mean of the energy dissipation rate of the

flow. Then the scales across which the most intensive mixing events take place, and therefore

the strongest scalar gradients exist, are mainly smaller than the Kolmogorov scale. They are

important since they determine global mixing efficiency measures [4] or enter directly small-

scale parametrizations of mixing, as for the flamelet approach to non-premixed combustion

[5]. Our Letter focusses therefore on the size distribution and generation mechanisms of

exactly these fine scales for the scalar dissipation rate which probes the magnitude of scalar

gradients,

εθ(x, t) = κ|∇θ(x, t)|2 . (1)

Tiny gradient scales in the Batchelor regime arise from the competition of two permanently

varying processes. On one hand, the scales will be determined by the statistics of the local

expansion and contraction rates in the turbulent fluid which can be calculated as the real

parts of the eigenvalues of the local velocity gradient tensor ∂iuj. They are usually denoted

by α(t) ≥ β(t) ≥ γ(t) and describe a continued stretch-twist-fold motion of the local smooth

flow [6]. On the other hand, the scale distribution will be affected by molecular diffusion that

causes a diminishing of existing steep gradients as well as the completion of their formation

by reconnection [7].

Experimental studies on the geometry of scalar dissipation fields are challenging and

only a few exist [8, 9]. Only recently, all gradient components of turbulent fields could be

measured directly in moderate Reynolds number flows [10]. The growing computing power

made it possible to study high-Sc mixing dynamics in its full complexity within direct

numerical simulations (DNS) which discretize the equations of motion on huge grids of up

to 109 mesh points [11]. Figure 1 shows a two-dimensional (2D) slice cut through such a

high-resolution DNS snapshot of εθ(x, t) in a logarithmic gray color coding. The points that
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FIG. 1: (color online) Contour plot of a two-dimensional slice cut through the instantaneous three-

dimensional scalar dissipation rate field, εθ(x, t), in units of the mean scalar dissipation rate 〈εθ〉.

The level set LC for C = 4 (see Eq. (2)) is replotted in red. Data are from a pseudospectral simu-

lation of the advection-diffusion equation for the passive scalar in combination with Navier-Stokes

equations for a statistically stationary, homogeneous isotropic flow at a resolution of N3 = 10243

grid points in a periodic box of volume V = (2π)3 [11]. The passive scalar fluctuations are sus-

tained by a linear mean scalar gradient. The Schmidt number is Sc = 32 and the Taylor microscale

Reynolds number is Rλ =
√

15/(ν〈ε〉) 〈u2
x〉 = 24 with 〈ε〉 being the mean energy dissipation rate.

The smallest scale in the mixing problem is the Batchelor scale ηB which is resolved with 2 grid

cells resulting in a spectral resolution criterion of kmaxηB ≈ 6 with kmax =
√

2N/3. This resolution

is larger by a factor of 4 then the resolution usually adopted.

form the level set of largest amplitudes

LC = {x : εθ(x, t) ≥ C〈εθ〉} , (2)

are redrawn in red. The resulting filaments are cross-sections of thin sheets in which

the maxima of scalar dissipation are found in the three-dimensional volume [11]. A closer

inspection of Fig. 1 unravels various length and thickness scales of the filaments. The

filaments are curved and tightly clustered in certain locations thus posing a challenge of

separating each curved filament and computing its accurate local width.
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FIG. 2: (color online) Reconstruction of the red colored filaments as shown in Fig. 1 by means of

the fast multiscale clustering algorithm. Long filaments are composed of several subfilaments that

are colored differently for a better visibilty.

In the following, we want to study the geometry of exactly such intensive dissipation

filaments as shown in Fig. 1. We want to answer the following questions: i) How is the

filament thickness distributed in relation to the Kolmogorov scale η and to the Batchelor

scale ηB? ii) How is the thickness distribution depending on the Reynolds and Schmidt

numbers? iii) In which way is their formation determined by the statistics of the expansion

and contraction rates of the flow? We will base the analysis on data from high-resolution

direct numerical simulations in a periodic cube. Since our focus is on a structural analysis of

extreme mixing events, in the present simulations more rigorous resolution requirements have

to be applied than is usual case. Three data sets with two different Reynolds and Schmidt

numbers, respectively, are taken. For each data set, we analyze at least 12 different plane

cuts through the three-dimensional snapshots and consider two statistically independent

snapshots which are separated by at least one large scale eddy turnover time.

Multiscale algorithm. Figure 1 demonstrates that the local geometric analysis requires a

disentanglement of the filaments that all together form the set LC . This is done here by a

recently developed fast multiscale clustering algorithm [12], which is based on the Segmen-

tation by Weighted Aggregation (SWA) algorithm [13], motivated by Algebraic Multigrid

(AMG) [14]. The algorithm assigns data points into clusters in a time linear to the number
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of points. It starts at the finest resolution level (s = 0), the grid spacing. All points xi ∈ LC

are gathered in a so-called proximity graph that contains their location and their connec-

tivity to other points of LC as quantified by the inter-point weights wij = exp(−b|xi − xj|)

where parameter b ≈ 3. The exponential weight probes the nearest neighbors of each point

only. The algorithm gathers points into aggregates of points and aggregates into coarser

aggregates successively. It detects a filament as a salient cluster. Saliency is measured by

dividing the sum of inter-point weights between points that belong to the cluster and those

that do not, with the sum of weights between the points that belong to the cluster.

The algorithm is also used as a tool to accurately measure the filaments widths in the

following way. Since the information about proximity is kept as one moves from finer

to coarser resolution level, one can perform a fast recursive computation of the covari-

ance matrix Cij(k, s) of the grid points belonging to an aggregate k at a resolution level

s > 0. The principal component analysis (PCA) of Cij(k, s) results in the set of eigenvec-

tors {v1(k, s),v2(k, s)} and the corresponding eigenvalues δ1(k, s) ≥ δ2(k, s) for the two-

dimensional case. The eigenvalues characterize the length and width of the point clusters.

Strongly curved filaments remain problematic. Applying a PCA to a whole curved filament

will clearly yield a wrong thickness value. Hence, we use the multiscale decomposition of the

filaments (aggregates) into convex sub-filaments (finer scale sub-aggregates), which is done

by applying a local convexity criterion along the filament. A sub-filament is called convex if

all points can be connected with links inside the set. Figure 2 shows the reconstruction of

the filaments from Fig. 1 and their division into sub-filaments. The local dissipation filament

thickness, ld, is then given by nothing else but the smaller eigenvalue δ2 following from a

PCA of each sub-filament.

Distribution of local dissipation filament thickness. Figure 3 shows the probability density

functions (PDF) of the local filament thickness ld for different (Sc,Rλ). The distribution

will depend on the cut-off level C, but the physical picture will not change since C is

fixed with respect to the (physically relevant) mean scalar dissipation rate throughout the

analysis. Local thickness values within the whole Batchelor range between ηB and η and

beyond are found, indicating that dissipation maxima are also related to scalar gradients

across inertial range scales. The 2D analysis does not account for the spatial orientation

of the sheets with respect to the cutting plane. As demonstrated in [8], this will affect

only the tail for large ld. The left panel of Fig. 3 compares the PDFs for two different
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FIG. 3: (color online) Distribution of the local cross-section thickness ld of the scalar dissipation

rate filaments for εθ ≥ 4〈εθ〉. Left panel: Probability density function (PDF) p(ld/ηB) for two

different Schmidt numbers at Rλ = 24. Right panel: PDF p(ld/η) for two different Reynolds

numbers at Sc = 32.

Schmidt numbers at a fixed Reynolds number. With increasing Schmidt number stronger

jumps of the scalar concentration across finer thickness scales become more probable since

diffusion is less dominant. Consequently, the most probable thickness, l∗d, is shifted to smaller

values, but remains always larger than the corresponding Batchelor scale. This suggests

that the formation of so-called mature scalar gradient fronts with a thickness ∼ ηB is a

subdominant process. We see that both PDFs overlap when rescaled with ηB which implies

that l∗d ∼ Sc−1/2. In the right panel of Fig. 3, we compare distributions for two different

Reynolds numbers at fixed Schmidt number. Both PDFs rescaled with the corresponding η

overlap again to a large fraction, except for the very fine scales. Their higher probability with

increasing Rλ indicates a more efficient stirring at the smallest scales. The scale l∗d follows

now the same dependence with Reynolds number as the Kolmogorov scale, i.e. l∗d ∼ R
−3/2
λ ,

similar to [8, 9] for Sc ∼ 1. Consequently, the result does not change for Sc � 1.

Connection to advecting turbulent flow. The filament thickness distributions have to be

related now to stretching and contraction processes of the underlying advecting flow. Mostly,

the formation of scalar dissipation sheets for Sc > 1 has been studied as a reduction of the
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FIG. 4: (color online) Probability density function of the contractive FTLE λ3(t) for different

times which are indicated in the legend. The data are for Rλ = 10. The variable z = (λ3(t) −

〈λ3(t)〉)/σ3(t) with σ3(t) =
√
〈(λ3(t)− 〈λ3(t)〉)2〉 is chosen in order to compare it directly with

a Gaussian distribution. The inset shows the temporal convergence of 〈λ3(t)〉 to the asymptotic

value Λ3 (dashed line) and σ3(t). The distribution is evaluated by 2.5 × 105 Lagrangian tracers

that are initially seeded uniformly in the simulation box. τη =
√

ν/〈ε〉 is the Kolmogorov time.

The distribution for Rλ = 24 behaves qualitatively the same.

Eulerian dynamics to the direction of contractive strain with a time-dependent rate γ(t) < 0

[8, 15, 16]. Since the present geometric analysis is statistical, it seems natural to relate it to

the statistics of local contraction rates in the flow. The latter are fully determined by the

distribution of the three finite-time Lyapunov exponents (FTLE) along separate Lagrangian

tracer tracks, λi(t). They measure the separation between two initially infinitesimally close

fluid elements in the Lagrangian framework, given by |δr|. This separation vector evolves

as dδrj(t)/dt = σjk(t) δrk(t) for j, k = x, y, z, where σjk(t) is the rate of strain tensor along

the Lagrangian trajectories. The FTLEs follow from an algorithm by Benettin et al. [17]

to λi(t)
=1/t log(|δr(i)(t)|/|δr(i)(0)|). Their mean over an ensemble of Lagrangian tracers

are the global FTLE 〈λi(t)〉. They converge for long times to the (asymptotic) Lyapunov

exponents Λi = limt→∞〈λi(t)〉. Due to incompressibility,
∑3

i=1 λi(t) = 0. Our interest is

in the formation of thin dissipation (or gradient) sheets where expansion in two directions
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is present, i.e. λ1(t) > 0 and λ2(t) > 0, and contraction in the third one, λ3(t) < 0. The

distribution of contractive local flows that pile up such maxima follows consequently from

the PDF p(λ3(t)) which is shown in Fig. 4. We see that the distributions for different

times collapse almost perfectly with a Gaussian profile within ±3σ3(t). Since the standard

deviation σ3(t) is monotonically decreasing with time (see inset of Fig. 4) the contraction

rate λ3(t) will get more and more concentrated about Λ3 as the time progresses.

Based on the Lyapunov exponent Λ3 the most probable thickness can be calculated as

l∗d =
√

κ/|Λ3| [18] which arises by equilibrating contractive strain and diffusion. For all data

analysed this scale is at about the maximum of the thickness distribution. Hu and Pierre-

humbert [2] pointed out that Λ3 is not adequate to explain the formation of largest dissipation

amplitudes observed in mixing and that short-time contraction events are necessary to pile

up filaments with thickness below l∗d. In addition, Ref. [11] showed in Eulerian framework

that large scalar gradients are found to a significant fraction in the vicinity of local vortical

flow topologies, especially for larger Sc. The latter contributions are assigned with more

rapid rotations of the δri along the Lagragian tracer tracks and are filtered out in a long-time

limit. We will therefore take the short-time dependence of the contractive flow motion into

account. The decrease of the local thickness scales will follow ld(t) = l0 exp(λ3(t)t). The

scale distribution results then to p(ld) =
∫ L+

L− dl0 p(l0)
∫ +∞
−∞ dλ3 g(λ3) δ

(
ld − l0e

λ3t
)
, where the

Gaussian distribution g(λ3) = (1/
√

2πσ2
3) exp[−(λ3 − 〈λ3〉)2/(2σ2

3)] with the (yet unknown)

distribution of the initial thickness scales is combined. The physical picture that we have

in mind is that at the beginning of the formation a continuum of scales is already present

and that we can take the simplest case, an equipartition between L− = ηB and L+ = η. It

follows

p(ld) = C
ldt exp

(
σ2
3t2

2
− 〈λ3〉t

)
2(η − ηB)

[erf(X+)− erf(X−)], (3)

with X± = (1/
√

2σ3)[(1/t) log(ld/L±) − 〈λ3〉 + σ2
3t] and C being a normalization constant.

The error function is erf(x) = (2/
√

π)
∫ x
0 exp(−y2)dy. Figure 5 shows the resulting thickness

PDFs that follows from (3) at shorter times t for Rλ = 10 and Sc = 32. We see that

they overlap well with the thickness distribution following from the data analysis. With

progressing time the distribution seems to fit less well, especially with the smallest scales

(see the data at t/τη = 10 in Fig. 5). The time-dependence confirms that mostly formation

processes at a short time scale (here ∼ 2τη) are responsible for the steepening of intensive
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FIG. 5: (color online) Distribution of the local cross-section thickness ld as reconstructed from

p(λ3(t)) via Eq. (3) for different times. The black data points are directly evaluated (see the red

curve in the right panel of Fig. 3). Data are for Rλ = 10 and Sc = 32. The most probable thickness

l∗d =
√

κ/|Λ3| is indcated as a dashed line, grid spacing ∆ and Kolmogorov scale as vertical arrows.

gradient structures. We verified this for all our data sets. To conclude, the distribution of

short-time contraction events is able to explain the numerically found distribution of the

thickness scales. A potential extension of the present work would be the inclusion of λ1(t)

and λ2(t) and to study the lateral extension of the dissipation maxima. This requires a

three-dimensional analysis and will be part of future work.
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