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Abstract

We present a novel multiscale approach that combines
segmentation with classification to detect abnormal brain
structures in medical imagery, and demonstrate its utility in
detecting multiple sclerosis lesions in 3D MRI data. Our
method uses segmentation to obtain a hierarchical decom-
position of a multi-channel, anisotropic MRI scan. It then
produces a rich set of features describing the segments in
terms of intensity, shape, location, and neighborhood rela-
tions. These features are then fed into a decision tree-based
classifier, trained with data labeled by experts, enabling
the detection of lesions in all scales. Unlike common ap-
proaches that use voxel-by-voxel analysis, our system can
utilize regional properties that are often important for char-
acterizing abnormal brain structures. We provide experi-
ments showing successful detections of lesions in both sim-
ulated and real MR images.

1. Introduction

Identifying 3D brain structures in medical imagery, par-
ticularly in MRI (Magnetic Resonance Imaging) scans, is
important for early detection of tumors, lesions, and ab-
normalities, with applications in diagnosis, follow-up, and
image-guided surgery. Computer aided analysis can assist
in identifying brain structures, extract quantitative and qual-
itative properties of structures, and evaluate their progress
over time. In this paper we present a novel method for de-
tecting abnormal brain structures focusing on 3D MRI brain
data containing scans of multiple sclerosis (MS) patients.
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Automatic detection of abnormal brain structures, and
particularly MS lesions, is difficult. Abnormal structures
exhibit extreme variability. Their shapes are deformable,
their location across patients may differ significantly, and
their intensity and texture characteristics may vary. Detec-
tion techniques based on template matching [4] or more re-
cent techniques based on constellations of appearance fea-
tures (e.g., [5]), which are common in computer vision, are
not well suited to handle such amorphous structures. Con-
sequently, with few exceptions (e.g., [11]) medical appli-
cations commonly approach this problem by applying clas-
sification algorithms that rely on a voxel-by-voxel analysis
(e.g., [14, 15, 16, 17]). These approaches, however, are lim-
ited in their ability to utilize regional properties, particularly
properties related to the shape, boundaries, and texture.

This paper introduces a novel multiscale approach that
combines segmentation with classification to detecting ab-
normal 3D brain structures. Our method is based on a com-
bination of a powerful multiscale segmentation algorithm,
Segmentation by Weighted Aggregation (SWA) [12, 7], a
rich feature vocabulary describing the segments, and a de-
cision tree-based classification of the segments. By combin-
ing segmentation and classification we are able to utilize in-
tegrative, regional properties that provide regional statistics
of segments, characterize their overall shapes, and localize
their boundaries. At the same time, the rich hierarchical de-
composition produced by the SWA algorithm allows us to a
great extent to circumvent inaccuracies due to the segmen-
tation process. Even when a lesion is not segmented prop-
erly we can generally expect to find some aggregate in the
hierarchy that sufficiently overlaps it to allow classification.

We adapt the SWA algorithm to handle 3D multi-channel
MRI scans and anisotropic voxel resolutions. These allow
the algorithm to handle realistic MRI scans. The bank of
features we use characterize each aggregate in terms of in-
tensity, texture, shape, and location. These features were se-
lected in consultation with expert radiologists. All the fea-



tures are computed as part of the segmentation process, and
they are used in turn to further affect the segmentation pro-
cess. The classification step examines each aggregate and
labels it as either lesion or non-lesion. This classification is
integrated across scale to determine the voxel classification
of the lesions. We demonstrate the utility of our method
through experiments on simulated and real MRI data show-
ing detection of MS lesions.

The paper is organized as follows. Section 2 presents the
segmentation procedure, the feature extraction method and
the classification model in our system. In section 3 results
on simulated and real MRI data are presented. Section 4
follows with a discussion and conclusions.

2. Integrated system

This section describes our system for detecting abnor-
mal brain structures. In a training phase our system ob-
tains as input several MR scans along with a delineation of
the lesions in these scans. The system uses segmentation
to provide a complete hierarchical decomposition of the 3D
data into regions corresponding to both meaningful anatom-
ical structures and lesions. Each aggregate is equipped with
a collection of multiscale features. Finally, a classifier is
trained to distinguish between aggregates that correspond
to lesions from those that correspond to non-lesions.

Once the classifier is trained we proceed to apply our
approach to unlabeled test data. At this stage the system
obtains as input an MRI scan of a single brain. It then seg-
ments the scan and extracts features to describe the aggre-
gates. Finally, each aggregate is classified as either a lesion
or a non-lesion, and the voxel occupancy of the lesions is
determined.

One of the features we use to describe an aggregate is
its location in the brain. To utilize this property we first
bring each scan to a common coordinate system. In our
implementation this was achieved using the SPM software
package [6], which registers a scan to an atlas composed of
subject average of 152 T1-weighted scans.

2.1. Segmentation

We use the Segmentation by Weighted Aggregation
(SWA) algorithm [12, 7], which we extend to handle 3D
multi-channel and anisotropic data. In this section we re-
view the SWA algorithm along with our extensions.

2.1.1 Segmentation framework

Given a 3D MRI scan, a 6-connected graph G = (V,W )
is constructed as follows. Each voxel i is represented by a
graph node i, so V = {1, 2, . . . , N} where N is the number

of voxels. A weight is associated with each pair of neigh-
boring voxels i and j. The weight wij reflects the contrast
between the two neighboring voxels i and j

ωij = e−α|Ii−Ij |, (1)

where Ii and Ij denote the intensities of the two neighbor-
ing voxels, and α is a positive constant (α = 15 in our
experiments). We define the saliency of a segment by ap-
plying a normalized-cut-like measure as follows. Every
segment S ⊆ V is associated with a state vector u =
(u1, u2, . . . , uN ) , representing the assignments of voxels
to a segment S, i.e ui = 1 if i ∈ S, otherwise ui = 0. The
saliency Γ associated with S is defined by

Γ(S) =
uT Lu

1
2uT Wu

, (2)

which sums the weights along the boundaries of S divided
by the internal weights. Segments which yield small val-
ues of Γ(S) are considered salient. The matrix W includes
the weights wij , and L is the Laplacian matrix of G. Our
objective is to find those partitions characterized by small
values of Γ. To find the minimal cuts in the graph we con-
struct a coarse version of this graph. This coarse version
is constructed so that we can use salient segments in the
coarse graph to predict salient segments in the fine graph
using only local calculations. This coarsening process is re-
peated recursively, constructing a full pyramid of segments
(Fig. 1). Each node at a certain scale represents an ag-
gregate of voxels. Each segment S, which is a salient ag-
gregate (i.e., Γ(S) is low), emerges as a single node at a
certain scale. The coarsening procedure proceeds recur-

Figure 1. Illustration of the irregular pyramid no-
tion. The image presents 3 graph levels above one
slice from the entire 3D MRI.

sively as follows. Starting from the given graph G[0] def
= G,

we create a sequence of graphs G[1], . . . , G[k] of decreas-
ing size (Fig. 1). As in the general AMG setting [1], the
construction of a coarse graph from a fine one is divided
into three stages: first a subset of the fine nodes is chosen
to serve as the seeds of the aggregates (the latter being the



nodes of the coarse graph). Then, the rules for interpolation
are determined, establishing the fraction of each non-seed
node belonging to each aggregate. Finally, the weights of
the edges between the coarse nodes are calculated.
Coarse seeds: The construction of the set of seeds C, and
its complement denoted by F , is guided by the principle that
each F -node should be ”strongly coupled” to C. To achieve
this objective we start with an empty set C, hence F =
V , and sequentially (according to decreasing aggregate size
defined in Sec. 2.2) transfer nodes from F to C until all the
remaining i ∈ F satisfy

∑
j∈C wij ≥ β

∑
j∈V wij , where

β is a parameter (in our experiments β = 0.2).
The coarse problem: We define for each node i ∈ F a
coarse neighborhood Ni = {j ∈ C,wij > 0}. Let I(j) be
the index in the coarse graph of the node that represents the
aggregate around a seed whose index at the fine scale is j.
An interpolation matrix P (of size N ×n, where n = |C|)
is defined by

PiI(j) =




wij∑
k∈Ni

wik
for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise.

(3)

This matrix satisfies u ≈ PU , where U = (U1, U2, ..., Un)
is the coarse level state vector. PiI represents the likelihood
that an aggregate i at a fine level belongs to an aggregate I
at a coarser level. Finally, an edge connecting two coarse
aggregates p and q is assigned with the weight:

wcoarse
pq =

∑
k �=l

PkpwklPlq. (4)

Denoting the scale by a superscript G[s] = (V [s],W [s]).
Note that since u[s−1] ≈ Pu[s], the relation Eq. (2) induc-
tively implies that a similar expression approximates Γ at all
levels. However, W [s] is modified to account for aggrega-
tive properties (Sec. 2.2). We modify w

[s]
pq between a pair

of aggregates p and q at scale s by multiplying it with an
exponentially decreasing function of the their aggregative
properties distance. Table 1 summarizes the segmentation
algorithm.

2.1.2 Handling anisotropic data

Common MRI data is anisotropic, less vertically resolved.
The SWA algorithm, however, assumes that the voxels
in the fine level are equally spaced. Ignoring this effect
may lead to distorted segmentations. To solve this prob-
lem we modify the algorithms as follows. During the
first few coarsening steps we consider each 2D slice sep-
arately in performing seed selection and inter-scale interpo-
lation (steps 1-2 in Table 1), allowing non-zero interpolation
weights only between nodes of the same slice. The rest of
the steps (steps 3-5 in Table 1) are performed on the full

• Given a 3D MRI construct a 6-connected graph G[0]

• For s = 1, 2, . . . construct G[s] from G[s−1], as follows:

1. Seed Selection: Select a representative set of nodes V [s],
such that V [s−1] \ V [s] is strongly connected to V [s].

2. Define P = P [s−1] the interscale interpolation matrix (3).

3. Calculate W [s] by Eq. 4.

4. For each v ∈ V [s] calculate aggregative properties (Sec. 2.2).

5. Modify W [s] according to aggregative properties.

Table 1. Outline of the 3D segmentation algorithm

3D graph, i.e., taking into account inter-slice connections.
This procedure is repeated until the inner- and inter-slice
distances are approximately equal. Subsequent coarsening
steps consider the full 3D graph

For example, consider data with 5mm slice thickness
versus 1mm × 1mm in-slice resolution. Every coarsening
step of the SWA algorithm typically reduces the number of
nodes by a factor of 2.5-3. Consequently, if we apply the
algorithm to a 2D slice, the distance between neighboring
nodes in a slice grows at every level by a

√
2.5-

√
3 factor

on average, so three coarsening steps are needed to bring
the inner- and inter-slice distances to be roughly equal.

2.1.3 Multi-channel segmentation

A major aspect of MR imaging is the large variety of pulse
sequences that can be applied. These sequences produce
different images for the same tissue, highlighting different
properties of the tissue. We incorporate multi-channel data
in the algorithm in a fairly straightforward manner. Given a
multi-channel scan, each voxel now includes a vector of in-
tensities. The initialization step (Eq. 1) is modified to deter-
mine the initial weights utilizing intensity information from
all m channels as follows:

wij = exp − (

∑m
c=1 (αc)

2(Ic
i − Ic

j )2∑m
c=1 (αc)

2 )
1
2 (5)

where αc are pre-determined constants (αT2 = 15, αPD =
αT1 = 10) and Ic

i is the intensity of voxel i in channel c.
In addition, we maintain different sets of aggregative fea-
tures for every channel (see Sec. 2.2 below) and use these
properties to modify the edge weights at coarser levels.

2.2 Feature extraction

Lesions can often be characterized by properties of ag-
gregates that emerge at intermediate scales, and are difficult
to extract by any uni-scale procedure. Such properties may
include, for instance, intensity homogeneity, principal di-
rection of the lesion, and intensity contrast with respect to



• Saliency: Γ (Eq. 2)

Intensity statistics:

• Average intensity: of voxels in aggregate k, denoted Ī[0].

• Maximum intensity:µ[2][s]
k

maximal average intensity of the sub-
aggregates at scale 2.

• Variance of average intensities of scale r: V [r] = Ī2[r]− (Ī
[0]
k

)2,

where Ī2[r] denotes the average of (Ī
[0][r]
l

)2 for all sub-aggregates
l of k at scale r.

• Average of variances: of scale r denoted ν̄[r] where ν
[r][r]
k

=

V [0][r].

Shape:

• Volume: m[0] is the aggregate volume in voxel units.

• Location: x̄[0], ȳ[0], z̄[0].

• Shape moments: The length, width, depth (L[0], W [0],D[0] re-
spectively), and orientation are specified by applying principal com-
ponent analysis to the covariance matrix of the aggregate.

• Intensity moments: averages of products of the intensity and the

coordinates of voxels in aggregate k, denoted Ix
[0]

, Iy
[0]

, Iz
[0]

.

Neighborhood statistics:

• Boundary surface area: denoted Bkl. Bkl refers to the surface
area of the common border of aggregates k and l. It is accumulated
by weighted aggregation such that all the weights on the finest graph
are set to 1.

• Neighborhood Contrast: defined as the difference between the av-
erage intensity of a segment and its neighborhood average inten-

sity, formulated as: < Constrast >k= Īk
[0] −

∑
l

Bkl Īl
[0]∑

l
Bkl

Table 2. Aggregative features for an aggregate k

neighboring tissues. Voxel-by-voxel analysis is limited in
the ability to utilize such scale-dependent properties.

We refer to such properties as aggregative features. The
weighted-aggregation scheme provides a recursive mecha-
nism for calculating such properties along with the segmen-
tation process. We use these properties for two purposes.
First, we use these aggregative properties to affect the con-
struction of the segmentation pyramid. Second, these prop-
erties are available for the classification procedure below
(Sec. 2.3).

2.2.1 Aggregative features

For an aggregate k at scale s we express an aggregative
property as a number reflecting the weighted average of
some property q emerged at a finer scale r, (r ≤ s). For
example, the average intensity of k is an aggregative prop-
erty, since it is the average over all intensities measured at
the voxels (nodes of scale r = 0) that belong to k. More
complex aggregative properties can be constructed by com-
bining several properties ( e.g., variance below) or by taking
averages over aggregative properties of finer scales ( e.g.,
average of variances below). We denote such a property by

Q
[r][s]
k , and shorten this to Q[r] when the context is clear.
In addition to these properties we can define binary ag-

gregative properties, reflecting relations between two aggre-
gates k and l at scale s. Such properties, denoted by Qkl,
are useful for describing boundary relations between neigh-
boring tissues, e.g., surface area of boundary between k and
l or the contrast between the average intensity of an aggre-
gate k and the average intensity of its neighbors.

The aggregative properties of an aggregate k are in fact
averages over its sub-aggregates properties. Such properties
can be accumulated from one level of scale to the next with
the interpolation weights determining the relative weight of
every sub-aggregate. For a detailed description on the accu-
mulation of such properties see [7].

Construction of the classifier based on these features re-
quires consideration of the inter-subject and intra-subject
variability, therefore all features were normalized for each
brain. Table 2 lists the features for aggregate k at scale s.
The features were selected based on interaction with expert
radiologists. However, the effect of each feature in classifi-
cation is determined by an automatic learning process.

2.3 Classification

Once the MRI scan is segmented and features are com-
puted, so that each aggregate is characterized by a high-
dimensional feature vector f (see Table 2), we proceed to
the classification stage. A classifier utilizing multiple de-
cision trees [2] is trained using labeled data. Then, given
an unlabeled scan the classifier is used to detect the lesions.
Below the classification is described.

2.3.1 Multiple decision trees

To construct the decision tree classifier, a learning process
is applied using MRI scans with MS lesions delineated by
experts. The process obtains two kinds of data. (1) A col-
lection of M candidate segments, Cand = {f1, . . . , fM},
each is described by a d-dimensional feature vector (each
feature is normalized to have zero mean and unit variance),
and (2) a mask indicating the voxels marked as lesions by
an expert . Since many of the candidate segments may con-
tain a mixed collection of lesion and non-lesion voxels we
label as a lesion a segment in which ≥ 70% of its voxels
were marked by an expert as lesion. We denote this class
by c1. We further mark as non-lesions only those segments
which do not contain lesion voxels at all and denote this
class by c2. The rest of the segments are ignored at the
training stage.

We next use the training data to construct multiple deci-
sion trees. A subset of the segments are randomly selected
and used to construct a tree from the root downwards. At
the root node all the labeled segments are considered and
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Figure 2. MS-lesion detection. From left to right: the original data(a), the expert labeling (b) the automatic segmenta-
tion (c) and the full range of soft classifiation (d) overlaid on a FLAIR slice. The different colors in (d) refer to different
normalized intensity levels (ranging from blue to red).

are repeatedly split into two subsets. At each tree node we
apply a Fisher Linear Discriminant (FLD) [4] to the data
determining the optimal separation direction and threshold
s that leads to a maximal impurity decrease. This training
procedure results in a forest of K decision trees T1, . . . , TK

each trained with a random selection of segments.
During the testing phase an unseen MRI scan is obtained.

After segmentation and feature extraction we classify ev-
ery segment f by each of the K trees. Each tree Tq then
determines a probability measure PTq

(f ∈ cj) according
to the distribution of training patterns in the terminal leaf
node reached. These measures are integrated by taking their
mean 1

K

∑K
q=1 PTq

(f ∈ cj). Finally, a test segment is as-
signed with the label cj that maximizes this mean.

2.3.2 Classification of voxels

The classification process is applied to three segmentation
scales, corresponding to small, intermediate, and large seg-
ments respectively. For each of these scales we construct
a separate forest consisting of K = 100 trees, trained with
a random selection of Ns ≤ 3000 patterns. The candidate
segments for classification may overlap, so that a voxel may
belong to more than one segment. To measure the total le-
sion load (TLL) it is necessary to generate a result in terms
of voxels.

The classifier labels the candidate segments as lesion or
non-lesion with some probability (Sec. 2.3.1). All candi-
dates are projected onto the data voxels using the interpo-
lation matrix. Therefore, the interpolation matrix (eq. 3)
determines an association weight for each voxel and candi-
date. A voxel belongs to a candidate if the corresponding
association weight ≥ 0.5. The maximum probability over
all candidates to which the voxel belongs, determines the
probability of the voxel to be a lesion. We further employ
both a hard and a soft classification of voxels. In the hard
classification a voxel is classified as a lesion if its probabil-
ity to be a lesion ≥ 0.5. However, since the ’ground truth’

of the lesions may vary among different experts it might
be helpful to provide a soft classification of the candidates
rather than just a binary result. To create the soft classifica-
tion, each 2D slice is first normalized by the average inten-
sity of the intra-cranial cavity (ICC) in the related 2D slice.
Then, by selecting from the hard assignment only voxels
with normalized values above a certain threshold (1.75, 1.3
for multi-channel, FLAIR data respectively) one can deter-
mine a specific soft assignment, which we denote as auto-
matic classification result.

3 Application to Multiple Sclerosis (MS)

Below we present validation results of employing our in-
tegrated system to both simulated and real MR data.

Before applying classification we eliminate candidates
whose properties differ considerably from those expected
from a lesion. Those include very non salient regions
(saliency> 7), very large regions (volume> 5000 voxels),
regions located very close to the midsagittal plain (|x| < 6),
and very dark regions (intensity < 0.75 and contrast to
neighborhood < −0.25, where both are divided by the aver-
age ICC intensity). In addition we eliminate aggregates that
overlap with anatomical structures where as a rule lesions
do not develop. Those include the eyes and the cerebro-
spinal fluid (CSF). To identify those structures we currently
mark the segments corresponding to those structures man-
ually. We further use the automatic skull stripping utility
(Brain Extraction Tool [13]) to identify the brain region and
eliminate segments that exceed beyond these regions.

The segmentation complexity is linear in the number of
voxels. The complexity for generating a tree classifier is
O(d2Ns log(Ns)+d3Ns+dNs(log(Ns))2) and dominated
by O(dNs(log(Ns))2), where Ns is the number of training
patterns and d is the number of features. The testing com-
plexity is O(d log(Ns)) per one test sample.



3.1 MR simulator data

We first present results of our integrated system on
the Simulated Brain Database (SBD) provided by the Mc-
Connell Brain Imaging Center ([3]). Currently, the SBD
contains three simulated models of brains (phantoms) with
’mild’, ’moderate’, and ’severe’ levels of MS lesions. We
tested our approach on the three MS phantoms each includ-
ing T1, T2 and PD images (see figure 3) using the default
parameters (”normal” [17]): voxel size 1mm3, SD of noise
3% and intensity nonuniformity (INU) 20%. The multi-

Figure 3. Multi-channel data. From left to right
T1, PD, T2, ’ground-truth’ overlaid on the T2 image
(red). Below, magnifications of the lesion area.

channel experiment was performed on the three channels for
30 slices, which contain 80% of the lesion load. The MS le-
sions presented in these models are not symmetric between
the left and right lobes. Training was performed on the right
half of all three brain models and testing on the left half of
the brains, where the midpoint was defined by the midsagit-
tal plain. The detection rate measures the percentage of
correct classifications of candidate segments in the test set
(see definitions in sec. 2.3.1). The classification forests of
the segments test set on all scales obtained a detection rate
of (1,0.99,0.99) for the lesion class (c1), non-lesion class
(c2) and total candidate set respectively.

Denote (S) as a set of voxels detected as lesions by our
system and (R) as the set of voxels labeled as MS lesions
in the ’ground truth’ reference. nS ,nR denote the num-
ber of connected components (lesions) in S and R corre-
spondingly. Table 3 lists classification measures which are
commonly used (e.g., [9],[14],[17]). These measures are
presented in Table 4 and Table 6. Table 4 shows results
obtained after overlaying the candidates from all scales de-
tected as MS by the forest classifiers (see sec. 2.3.2).

To compare our results with other methods we applied
the automatic classification of the detected area using one
specified threshold for all subjects (Sec. 2.3.2). We ob-
tained an average of κ = 0.80 ± 0.11 (mean±S.D) on all
three phantoms. In comparison, the authors in [17] tested

• #Hits: nS/nR

• Overlap: |S∩R|/|R|. Number of voxels in the intersection divided
by the number of voxels in R.

• FP rate: |S ∩ R̄|/|R|.
• Disconnected FP (DFP) rate: Number of voxels in extra volume

which are disconnected to any ground-truth lesion divided by |R|.
• Similarity measure: {κ} = 2|S ∩ R|/(|S| + |R|)

Table 3. Classification measures

Set #Hit Overlap FP DFP κ

Mild: 0.74 0.87 1.1 0 0.67
Moderate: 0.85 0.98 0.83 0.04 0.86
Severe: 0.93 0.98 1.02 0.01 0.87
Mean 0.84 0.94 0.99 0.02 0.8
SD 0.1 0.06 0.14 0.02 0.11

Table 4. Phantom classification measures for each
model separately, summarizing with the mean and
S.D results on all three models.

their pipeline on the simulated data with varying levels of
noise and INU. Their best classification accuracy reported
for the single condition with the same parameters used in
our tests was 0.81.

3.2 Real MR Data

To further evaluate our approach on clinical images,
which reflect the full range of pathological variability, we
tested our algorithm on real MR data [10].

This study consists of 16 subjects for which MS lesions
were manually traced by a human expert. In this case we
used single channel FLAIR images which are known for
their high sensitivity to lesions, offering a diagnostic ca-
pability beyond other sequences. The voxel size used is
0.97mm ×0.97mm or 0.86mm ×0.86mm (for 6 and 10 sub-
jects respectively), with slice thickness 5mm (24 slices). We
divide the data as follows: set A includes examination of 12
patients and set B includes examinations of four additional
patients which had a monthly follow up, so that four time
points were available for each patient.

3.2.1 Validation Results

Throughout the classification stage ten experiments were
conducted. In each experiment, nine patients from set A
were randomly selected for training. The test set consists
of the remaining patients of set A and all patients of set B.
In each one of the ten experiments three multiscale forests
were generated. Table 5 presents average detection rates for



(a) ’Ground-Truth’ (b)Automatic Segmentation

Figure 4. 3D view of MS lesions detected. Comparison of expert labelling with automatic segmentation overlayed on
an axial FLAIR slice.

Scale lesion non-lesion Total

Small 0.90 ± 0.02 0.97 ± 0.01 0.97 ± 0.01
Interm 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01
Large 0.97 ± 0.02 0.98 ± 0.01 0.978 ± 0.004

Table 5. Detection rates obtained on real data over
ten randomized experiments.

each scale over ten experiments. Table 6 lists the average
classification measures over the ten experiments for test sets
A and B. We also assessed the significance of correlation
coefficient between the TLL volume detected by expert and
automatic segmentation for each set. The two upper rows in
Table 6 demonstrate the results obtained for superior slices
(above the eyeballs) where on average 0.88 ± 0.05 of le-
sion volume occurs. The results in two lower rows were
obtained on all slices. They are slightly lower due to the
many artifacts in FLAIR data found in inferior slices.

Comparing to results reported in literature demonstrates
the difficulty of the MS detection problem and reveals the
high accuracy obtained by our approach. Correspondence
results reported in [14] on multi-channel data were κ =
0.45, 0.51, for 5mm, 3mm slice thickness respectively. In
[17] the average κ = 0.6, whereas the κ similarity between
pairs of 7 experts ranges from 0.51 to 0.67.

Over superior slices, our average κ ≥ 0.64. Results for
all slices is comparable to the state-of-the-art (κ ≥ 0.6).
The extra volume exhibited by high FP measure should be
further explored. In our experiments, the main extra volume
usually surrounds the lesion volume and the DFP is signif-
icantly small compared to the FP. Preliminary assessment
of our results indicates that this extra volume is somewhat
related to other WM classes (e.g. ’dirty-appearing’ WM
DAWM [8]). Moreover, the delineation of lesion volume
varies significantly between different experts, i.e, volume
ratios reported in literature may exceed 1.5 and even ap-

proach 3 ([14, 16, 17]). Therefore, we may conclude that
the FP measure is in the range of the inter-rater variability.

3.2.2 Volume Precision Over Time

We analyzed four sets of images that were acquired over
four months (set B). Generally tests for robustness of repro-
ducibility analysis should be performed on data rescanned
repeatedly from the same brain. Here since the interval be-
tween two scans was not short, the volume may also vary
due to actual changes in patient pathology. However we
performed a serial analysis and computed the ratio of vol-
ume difference between our detection and the ground-truth
divided by the ground truth volume. The average results
over time for the four subjects were (0.1 ± 0.05, 0.06 ±
0.06, 0.08 ± 0.04, 0.39 ± 0.11) respectively.

4 Discussion

We have presented a novel multiscale approach that com-
bines segmentation with classification for detecting abnor-
mal 3D brain structures. Our focus was on analyzing 3D
MRI brain data containing brain scans of multiple sclerosis
patients. Our method is based on a combination of a pow-
erful multiscale segmentation algorithm, a rich feature vo-
cabulary describing the segments, and a decision tree-based
classification of the segments. By combining segmentation
and classification we are able to utilize integrative, regional
properties that provide regional statistics of segments, char-
acterize their overall shapes, and localize their boundaries.

We adapted the multiscale segmentation algorithm to
handle 3D multi-channel MRI scans and anisotropic voxel
resolutions. The rich set of features employed were se-
lected in consultation with expert radiologists. All the fea-
tures are computed as part of the segmentation process, and
they are used in turn to further affect the segmentation pro-
cess. The classification step examines each aggregate and
labels it as either lesion or non-lesion. This classification is



Slices Test set #Hit Overlap FP DFP κ corr. significance

Superior A: 0.85 ± 0.1 0.91 ± 0.05 1.53 ± 0.72 0.22 ± 0.21 0.64 ± 0.07 p < 0.005
B: 0.83 ± 0.08 0.93 ± 0.02 1.36 ± 0.33 0.12 ± 0.12 0.66 ± 0.05 p < 0.005

All A: 0.82 ± 0.09 0.89 ± 0.05 1.67 ± 0.71 0.36 ± 0.33 0.6 ± 0.07 p < 0.005
B: 0.80 ± 0.08 0.91 ± 0.02 1.37 ± 0.39 0.18 ± 0.16 0.62 ± 0.06 p < 0.005

Table 6. Classification measures for real MR sets, averaged over ten experiments.

integrated across scale to determine the voxel occupancy
of the lesions. We have demonstrated the utility of our
method through experiments on simulated and real MRI
data, including several modalities (T1, T2, PD and FLAIR).
Comparison of the results to other automated segmentation
methods applied to Multiple Sclerosis shows the high accu-
racy rates obtained by our system.

Our approach is flexible with no restrictions on the MRI
scan protocol, resolution, or orientation. Unlike common
approaches our method does not require a full brain tissue
classification into white matter (WM), gray matter (GM),
and cerebro-spinal fluid (CSF), and it is not limited to find-
ing the lesions in the WM only, risking the omission of sub-
cortical lesions.Furthermore, our learning process requires
only a few training examples as shown specifically in the
experiments.

We believe that our method can further be improved by
better exploiting the rich information produced by the seg-
mentation procedure. We plan to explore other features
that can characterize lesions, as well as features that can
characterize dirty appearing white matter (DAWM). Also of
importance is to incorporate prior knowledge of anatomic
structures into the framework using a brain atlas. Finally,
we wish to extend our approach and apply it to other tasks
and modalities in medical imaging.
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