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Abstract The utilization of multiple cues aggravates an old prob-
lem. In many multi-cue segmentation algorithms each mod-
We present a bottom-up aggregation approach to image ule comes with its own set of parameters, and those join an
segmentation. Beginning with an image, we execute a se-additional set of parameters intended to control the relative
guence of steps in which pixels are gradually merged to influence of each module. These parameters may depend
produce larger and larger regions. In each step we consider non-trivially on the particular statistics of the input image,
pairs of adjacent regions and provide a probability measure or even the statistics of different regions in the same image.
to assess whether or not they should be included in the saméVhile existing methods may be robust to changes in some
segment. Our probabilistic formulation takes into account of those parameters, segmentation results in many cases
intensity and texture distributions in a local area around may depend critically on the proper assignments of param-
each region. It further incorporates priors based on the ge- eter values. The common practice is to leave those parame-
ometry of the regions. Finally, posteriors based on intensity ters to be set by the user, but in effect most users leave the
and texture cues are combined using a mixture of expertsparameters in their default values. Allowing these parame-
formulation. This probabilistic approach is integrated into ters to automatically adapt to an image (or even locally to
a graph coarsening scheme providing a complete hierarchi- image portions) can greatly simplify the use of segmenta-
cal segmentation of the image. The algorithm complexity tion algorithms and potentially allow them to consistently
is linear in the number of the image pixels and it requires provide better results. Indeed, recent algorithms attempt to
almost no user-tuned parameters. We test our method orachieve parameter-free segmentation either by relying on a
a variety of gray scale images and compare our results to training set that includes a variety of manually segmented
several existing segmentation algorithms. images (e.g./13)) or by estimating a global set of parame-
ters based on stability criteridT].

In this paper we explore a different approach which relies
primarily on local information available within the image to

Segmentation algorithms aim at partitioning an image be segmented. We present a parameter free probabilistic
into regions of coherent properties as a means for sepaapproach to segmentation. Beginning with an image, we
rating objects from their backgrounds. As objects may execute a sequence of steps in which pixels are gradually
be separable by any of a variety of cues, be it intensity, merged to produce larger and larger regions. In each step
color, texture, or boundary continuity, many recent algo- we consider pairs of adjacent regions and provide a proba-
rithms (e.g. R0, [19,/17]) have been designed to utilize and bility measure to assess whether or not they should be in-
combine multiple cues. Typically in such algorithms, each cluded in the same segment. We illustrate this method by
cue is handled by a separate module whose job is to assessonstructing modules to handle intensity contrast and tex-
the coherence of nearby pixels or regions according to thatture differences, and use an adaptively controlled “mixture
cue, and a segmentation decision is obtained by incorpo-of experts”-like approach to integrate the different cues and
rating these similarities into a combined measure. Carefulreach unified segmentation decisions. To demonstrate the
design of these modules along with the use of appropriateimportance of adaptive, local cue integration consider the
optimization methods has led to noticeable successes, buexample in Figurd, which shows two pairs of regions. The
the challenge of reliably segmenting objects in a variety of left pair can be distinguished by intensity cues, whereas the
natural images still lies ahead. right pair of patches, which have similar texture, should be

1. Introduction
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18 which a division of the image into a set of regioRs = 162
1(1)2 {R1,Ra, ..., R,}isgiven, along with a set of observations, 122
11 H,; € R? for each regionR; (i = 1...n). Our objective is -
1o to further merge these regions to produce larger segments 166
of coherent properties.
113 : : . : : 167
To achieve this goal we consider pairs of adjacent re-
114 . : 168
gions,R; andR;, and provide a measure to assess whether
115 ; X 169
or not they should be merged into a single segment. We de-
116 ! : ; 170
1 fine a binary random variabg; that assumes the valuejg 1
118 if R; andR; belong to the same segment angif t?eyqdo 172
119 not. We then wish to estimate the probabiliys;’; |1, ;) 173
120 which we will use to determine whether or not to merge the 174
two regions based on their respective properties. 175

Since segmentation decisions may be affected by several 175
cues, we need a method to integrate the different cues. Here 177
we consider both intensity and texture cues and integrate 17s

121 \
122

=

124

125 _ _ _ ) ] them using the “mixture of experts”-like model, as follows. 179
126 Figure 1.The importance of adaptive, local cue integration. Left: 180
two patches that can be distinguished by intensity (the patches P<S+|7.'[A ﬁ) -
127 : - L il iy I 181
have uniform textures). Right: two patches with similar texture oL
128 that should be merged despite their different intensities (due to ZP(SZ;., cx|Hi, Hj) = 182
129 lighting). % 183
130 - o - - 184
131 D PsfIHi Hy,en)PlenlHi, Hy). (1) .
132 merged despite their different intensities. k 186
133 Our approach is designed to work with bottom-up merge This equation implies that the probability of a merge 187
134 strategies for segmentation. A large number of methodsis determined separately for each cyg and the term 188

135 approach segmentation using bottom-up merge strategiesp(c,|H;, H;) enables us to adjust the influence of each cue 189
136 beginning with the classic agglomerative clustering algo- dynamically according to the characteristics of the regions. 190

137 rithm [5] to watershedZ?,14] and region growing (includ- To evaluate the probability of a merge for each cue we 191
138 ing methods that use probabilistic approachés, [L5]) to apply Bayes’ formula: 192
139 more recent algebraic multigrid inspired aggregat/®#].[ 193
140 Merge algorithms generate a hierarchy of segments, allow- T a7 L;‘;P(sjj|ck) 194
141 ing subsequent algorithms to choose between possible seg-P(Sijmi’Hﬂ" k) = Ty = = @) 195
. . . LijP(sij|ck) + Lij(P(Sij|ck))
142 mentation hypotheses. For implementation we adapt the 196
143 coarsening strategy |ntroduced.|]:|9[, as it enables incor- WhereL;'E. N p(ﬁi,ﬁﬂsgb, ¢,) denote the likelihood den- 197
144 porating at every level of the hierarchy measurements ap—sities i vjen = res ectivfe V. These likelihoods are deter- 198
145 propriate to the scale at that level. We further test our givens;; P Y. 199

146 parameter-free approach on a database with manually Segr_nmed locally according to properties of surrounding re- 200

147 mented images and compare our results to several existing%ons' We further use a prior 'Fhat IS mdgpendent of cue, 201
148 algorithms (sijlck) = P(si;), and determine this prior based on the 00
149 The paper is divided as follows. Secti@nintroduces geometry of the two regions, 1.e., their relative amount of 203
o . . common boundaries.
150 our probabilistic framework. Sectia® describes how we In the remainder of this section we elaborate on how we 204
o Incorporate our probabilistic framework into a graph coars- model the likelihood densities, the cue arbitration, and prior 0
152 ening procedure. Finally, Secti@giprovides an experimen- robabilities ' ' P 206
153 tal evaluation of our method. P ' 207
154 . . . 208
Lo babil ‘ « 2.1. likelihood densities S0
2. Probabilistic framewor
156 Below we describe how we derive the likelihood densi- 210
157 We consider a bottom-up aggregation approach to im-ties for each of our cues, intensity and texture. Both like- 211

158 age segmentation. In this approach beginning with an im-lihoods are determined from the image by local properties 212
159 age, we execute a sequence of steps in which pixels aref surrounding regions. Roughly speaking, the underlying 213
160 gradually merged to produce larger and larger regions. Inprinciple in our choice of likelihoods is that in principle we 214
161 this section we focus on one step of such a procedure, inconsider it likely that a region would merge with its most 215



similar neighbor, while we consider it unlikely that aregion 2.1.2 Texture likelihood densities

would merge with all of its neighbors. We further define ,

these likelihoods to be symmetric and take scale considera—T 0 accou.nt for texture we apply to each regiGpa bank .
tions into account. of edge filters and store their total absolute responses in a
histogramh; € H; containingr = ||h|| bins (the filters we

use are specified in Secti@?). To measure the difference
between two histogrants; andh; we use a measure similar
For two neighboring region®; and R;, denote their aver-  to the Chi Square difference tes():

age intensities by; andI;, we model both Iikelihoodﬂfj

2.1.1 |Intensity likelihood density

for the case of intensity i1 as zero mean Gaussian density Do — Z <hi(l€) —h;(k) ) 2 10)
functions of their average intensity differente; = 7, — 1, Y 4= \h(k) +hy(k) )
ie.,

Liij = p(Aij|Siij) = N(0, O'iij)' (3) Assuming that each response is distributed normally

h;(k) ~ N(ux,o) we construct two new? variables

(v denotes the number of degrees of freedafy)y,a™ and

D;;o~ as follows. We use again the concept that two re-

gions with similar texture are more likely to be in the same
To determines; . ,, we consider for region its neigh- ~ segment. Recall, that the; distribution receives its maxi-

bor whose average intensity is most similar (likewise for mum atv — 2. Let D;" = miny, D;;, we modelL;; in (2) by

regiony). Denote the minimal external difference by =

where the standard deviations are given as sums of two
terms:

+ +
055 = Olocal + Oscale 4)

miny, |Ag| then L5 = p(Dyjls) = X*(Dija™), (11)
e = Min(AF, AT). 5) wherea™t = W guaranties that the closest region

in terms of texture will receive the highest likelihood. Sim-
ilarly, we seta~ to reflect the difference in texture relative
to the entire neighborhood. We therefore compute the aver-
age texture difference in the neighborhood, weighted by the

To determines;,_,;, we take into account for regiof
and similarly for regiony, the average intensity difference
over all of its neighbors];, i.e.,

A- S (TinAik) 6) length of the common boundaries between the regions
Zk(Tik) D — Zk(TikDik) (12)
wherer;;, denotes the length of the common boundaries be- ¢ Yop(min)
tween R; and each of its neighborB), (see SectioiB.2).
. - v—2
Then we define and seiv™ = 010
_ Al +4A5 .
Tlocal = 5 (r) 2.2 Prior

. . j: .

We further increase the standard deviation of each of the e determine the prioP(sj;) according to the geome-
likelihoods byos.qi.. Suppose the image contains additive Y Of the regions. Roughly speaking, a-priori we consider
zero mean Gaussian noise with known standard deviation€ighboring regions with long common boundaries more
Tnoise. AS We consider larger regions the effect of the noise likely to belong to Fhe same segment 'than regions with short
on the average intensity of the regions shrinks. In particular, COmmon boundaries. Hence, we define the prior as:
for a regionR,; containing(?; pixels the standard deviation

-
i i T i P(sf) = — 4 . 13
of the noise added to the average intensity is approximately (si;) (S, T S Tor) (13)
R; _ Onoise . .
Tndise =~ (8)  2.3.Cue integration
Hence we choose As we mentioned in the beginning of Secti@rwe in-
Onoise ©) tegrate segmentation decisions from different cues using a
Oscale = e T | .
l min(vVa%, /) local “mixture of experts”-like model. This model allows us

to control the influence of each cue and adapt it to the infor-
Onoise Can be estimated in a number of wayd[Y] e.g., by mation contained in each region. Thus, for example, when
taking the minimal standard deviation across random imagewe compare two textured regions we can discount the effect
patches. Throughout our experiments, however, we used af intensity and by this overcome brightness variations due
constant value. to lighting.
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524 To determine the relative influence of every cue we need 78
925 to estimateP(c|H;, ;). To that end we want to evaluate 379
926 for each region whether or not it is characterized by tex- 380
321 ture. For each regiof; we calculate 256-bin histogram 8l
328 of local gradients magnitudes’ inside the region. Since, y 62
329 textured regions are often characterized by significant edge 23 383
30 responses in different orientations and scelel, [we ex- E 84
3L pect the gradients magnitude histogram of a non-textured 385
932 region to be fairly sparse. To measure sparseness we first 386
933 normalize the histogramd(, G; = 1) and apply to each 87
34 region the measur@[; 368
335 389
336 1 IG"]l1 390
a7 5= = (1 ) (4 01
338 _ _ 392
339 wheren denotes the number of bins & and ||G*||,, de- 393
340 notes the’,, norm of G*. Note that we exclude from this ' 394
341 caIcuIatlon pixels which lie along the boundary of a region Figure 2 Samples from the training set used to determine the logis- 395
2o since they may reflect boundary gradients rather than tex- tic function [L6). Top: texture samples. Bottom: intensity samples 206
343 ture gradients. We elaborate on this further in Secfion 397
344 Finally, we combine these measures by posterior probabilities defined in Secti@gnWe produce the 398
345 plea|Hi, H;) = min(P(ea|Hs), PlealH,)), (15)  coarsergraphs using the coarsening strategy of SWA, butre- #%°
346 place inheritance of weights by computing new posteriors. “0°
347 with ¢, denotes the texture cue. We further model the indi- Overall, we achieve a method that is as efficient as the SWA 401
348 vidual probabilities using the logistic function: algorithm, but relies on different, probabilistic measures to 402
349 . 1 determine segmentation and requires almost no user tuned “°3
222 plea|H;) = == (16) parameters. 38‘51
352 To estimate the constant parameters we used)50 ran-  3.1. Graph coarsening 406
%53 dom patches form the Brodatz data <2t 4nd a similar . . . . 407
94 number of non-textured patches selected manually from leergo]an 'ma%(?] we[ok}Jeg.m by constructing a 4-connected  4og
955 random images as a training set. A sample from this setIraphG™ = (VI E7), in which every pixel is repre- - 409
356 is shown in Figuré&. Then, a maximum likelihood estima- sented by a node and neighboring pixels are connected by 410
357 tion (MLE) regression was used to estimaté, and these =~ 2" edge. Using the formulation described in Sectipwe ALl
izi parameters were used throughout in all our experiments, 2550¢1ate & weight with each edgg, ji
%0 3. Algorithm pij = P(sj|Hi, H;). (17) 414
361 415
362 Our probabilistic framework is designed to work with utilizing a uniform prior at this first stage. 416
363 any merge algorithm for segmentation. Here we use the We then execute repeatedly the following steps in or- 417
364 merge strategy suggested for the Segmentation by Weightedler to progressively construct smaller grapBg/), G, ..., 418
365 Aggregation (SWA) algorithm/19, 6], which employs a  each contains about half the number of nodes in the preced- 419
366 hierarchy construction procedure inspired by Algebraic ing graph: 420
367 Multigrid (AMG) solutions for differential equationsl]. Coarse node selection: Given a graphGl—1 = 421
368 The SWA algorithm begins with a weighted graph repre- (VI*~1, Els=1) we begin the construction a®l*! by se- 422
369 senting image pixels, and in a sequence of steps creates kcting a set of seed nodés ¢ VI*~1I, which will con- 423

370 hierarchy of smaller (“coarse”) graphs with soft relations stitute the subsequent level. Let us denote the unselected 424
371 between nodes at subsequent levels. The edge weights inodes byF = VIs=1 — C. Then, the selection of the 425

372 the new graphs are determined by inheritance from previ- seeds is guided by the principle that edgéimode should be 426
373 ous levels and are modified based on regional properties.strongly coupled” to nodes it i.e., for each nodé e F 427
374 These properties are computed recursively as the merge prowe require that 428
375 cess proceeds. Below we use the coarsening strategy of the 429
376 SWA algorithm and modify it to incorporate our probabilis- Zjec Dij > (18) 430
377 tic framework. In particular, we use as edge weights the Zjev[s—u Dij ’ 431



wherey is a parameter (usually, = 0.2). The construction  3.2.1 Unary features

of C'is done using a sequential scan of the noddsglir !/, _ , .
Our intensity and texture features can be obtained by sum-

adding toC' every node that does not satisfgf with re- . fth ding | Il bixels i
spect to the nodes already @ The scanning order may mation of the corresponding feature values over all pixels in
a region. For every node at scales we can compute such

be determined according to a certain desired property of the i X

regions, e.g., by decreasing size of the nodes, influening a feature by taking a weighted sum of the feature values of

to contain larger regions its descendants. Specifically, for a pixele denote its fea-
OnceC is selected we construgtl®! to include copies ~ ture value byg;. Denote byT};) the extent to which pixel

of the nodes irC'. To simplify notations we assume without i belongs to the regioh at scales, T/ can be determined

loss of generality that the nodes2, ..., |C| € VI~ com- from the matrix product 'l = []°. ! TlmIm+11. We fur-
poseC, while the rest are iF". This allows us to assign the ther denote byy!*! the weighted average of for all pixels
same index to nodes iril®!. i which belong to regiott i.e.,
Inter-level interpolation: We determine the inter-level in-
terpolation weights as follows. For each node F' we S5l D tg‘;]q,;
denote byN; = {j € Clp;; > 0} its “coarse neighbor- Q) = Z-t[S] ’ (21)
hood.” We define a matris’ls~ 1l of size|VI—1| x |C]) ik
by: Then,Qf] can be computed using the following recursive
Pij/ Y ken, Pik forie F,j e N; formula: Qls=1pls1l
t; = 1 foricC,j—i (19) o = 25 tisYy Q) 7 22)
0 otherwise. Zj tijg-Sfl]

Computing regional properties: For each coarse node whereQ Y denote the size of aggregatat scales — 1,
i € VI¥l we compute intensity and texture properties by which is computed recursively in a similar way, atyd is
averaging over the properties of its descendants. These ar¢he elemengk in the matrix7'(s—11s].

stored in a feature vectot; s We further elaborate on the We use this recursive formulation to compute the follow-

computation of regional properties in Secti®s. ing features:

Coarse graph probabilities: Finally, the edge weights of ~Average intensity: Starting with the intensity valug; at

the coarse graph are determined. Unlike in SWA, we do noteach pixel at scale), the quantityf,[:] provides the average

inherit those weights from the previous level. Instead we intensity in a regiork at scales.

compute new posteriors for the nodes of the coarse graphTexture: For each pixel, we measure short Sobel-like fil-

For every pair of neighboring nodeis;j € V*/ we assign  ter responses, followind, in four orientations), Z, =, 3=

the weight and accumulate them recursively to obtain 4-bin histogram

pgj] = P(s]; |ﬁ£s] 7 ﬁgsl). (20) for each region at each scale. Since filter responses at points
near the boundaries of a segment may respond strongly to

These posteriors are determined, as is described in Secthe boundaries, rather than to the texture at the region we

tion2, using the newly computed regional properties. employ a top-down cleaning process to eliminate these re-

sponses from the histogram.
3.2. Features

In order to determine the edge weights at every level we 3.2.2  Binary features
need to compute posterior probabilities as in Sec@.ofhe To determine the prior probabilit?(sjg) we need to com-

compgtatlon of the§e posteriors uses the average Inter]S'I%ute for every pair of neighboring regions the length of their
and histogram of filter responses computed for every re- . o )
common boundaries. Beginning at the level of pixels, we

gion, as well as the length of boundaries between every twoinitialize the common boundaries. of two neiahborin
neighboring regions. The merge strategy described above ©S 9 9

i . pixels to 1 (we use 4-connected pixels) and 0 otherwise.
enables us to compute these properties efficiently for every. : . )
. . . Then, for every neighboring regiorisand! at scales we
node, by averaging the same properties computed for its de-

scendants. The properties we are using can be divided intcf;:zllf the length of their common boundaries using the
two kinds: unary features, computed for a single region, ' [s] [s]_ Lls]
1= Z ik Tijtjl (23)

j

e.g., the average intensity or histogram of filter responses, T,
and binary features, e.g., the length of the common bound-
ary between two regions. Below we describe how we com- Again, this quantity can be accumulated recursively from

pute these properties during the coarsening process. one level to the next.
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Algorithm | F-measure Scoré 594
Our Method|  0.86 + 0.012 295
SWA V1 0.83 £ 0.016 296
1 \ SWAV2 | 0.76+0.018 oo
: N-Cuts 0.72 +0.018 298
‘ MeanShift | 0.57 £ 0.023 o2
! Table 1.0ne segment coverage test results 282
. = 602
defined as 603
A (24) oo4
E P+ R 605
Figure 3.$ample from the evaluatiqn dataset. Each color_repre- The amount of fragmentation is given simply by the number 606
sent; a different ampunt of votes given by the human subject ac-of segments needed to cover the foreground object 607

cording to the following key: blue=3, green=2 red=1. . . ) "
We applied our segmentation algorithm to all 100 images 608
in the database and compared our results with several state 609
4. Experiments of the art algorithms including: Zi)
. . 1. Segmentation by weighted aggregation (SWIA)] 612
Evaluating the results produced by segmentation algo- We tested two variants, one which uses the full i3
rithms is challenging, as it is difficult to come up with range of features described if] [(denoted by SWA 614
canonical test sets providing ground truth segmentations. V1) and a second variant which relies only on fea- 415
This is partly because manual delineation of segments in tures similar to the ones used by our method, i.e., &6
everyday complex images can be laborious. Furthermore, jnensity contrast and filter responses (denoted by 17
people _often t_end t(_) mcorporate into their segmentations SWA V2) (WINDOWS implementation airvw.cs. 18
sgmannc conS|de.rat|ons whlch are bey_ond the scope of Qata Weizmann.ac.il VisSion/SWA/ ) 610
driven segmentation algorithms. For this reason many exist- 620
ing algorithms show only few segmentation results. Anim- 2. Normalized cuts segmentation including intervening 621
portant attempt to produce an extensive evaluation database  Contours/[L0] (Matlab implementation atyww.cis. 20
for segmentation was recently done at BerkelE3].[ This upenn.edu/jshi/ ). 623

dataset however has its own limitations, as can be noticed

by the differences between subjects. In many cases images 3- Mean-Shift BJ. ~ This method uses intensity cues ~ °**
are under-segmented, and semantic considerations seem to  Only (EDISON implementation atwww.caip. o
dominate the annotated segmentations. rutgers.edu __|segmentation). Zij
To evaluate our method and compare it to recent algo- For our methods only a single parametey, ;. needed to 628
rithms we have compiled a database containifig gray  pe specified. We set this parameter to a fixed value for all 629
level images along with ground truth segmentations. Thejmages §,,,;.. = 18). The other algorithms were run with 630
database was designed to contain a variety of images Withseyeral sets of parameters. The normalized cuts algorithm 631
objects that differ from their surroundings by either inten- \yas run with the requested number of segments between 632
sity, texture, or other low level cues. To avoid potential am- o _ 1. For the Mean-Shift and SWA we tested around 633
biguities we only selected images that clearly depict one 4 different sets of paraments. In each case we selected 634
object in the foreground. To obtain ground truth segmen- for the final score the set of parameters that gave the best 635
tation we asked abodt) subjects to manually segment the performance for the entire database. 636
images into two classes foreground and background with \we performed two tests. In the first test we selected in 637
each image segmented by three different human subjectSeach run the segment who fits the best the foreground, ac- 632
We further declared a pixel as foreground if it was marked ¢ording to the F-measure score. The results are given in 639
as foreground by at least two subjects. A sample from the Taple 1. Our method outperforms other methods, demon- 640
database is shown in Figufiz The complete database is strating the highest averaged F-measure score. The next 641
available in the supplementary material. best score is achieved by the SWA algorithm utilizing its 642
We evaluated segmentation results by assessing itSull set of features. Note that the performance of the mean 643
consistency with the ground truth segmentation and its shift algorithm suffers since this implementation does not 644
amount of fragmentation. For consistency we used®he handle texture. In the second test, we measured the aver- 645
measurg21]. Denote byP and R the precision and recall agedF-measure, while permitting a few segments to cover 646
values of a particular segmentation than the F-measure ighe foreground. For each run we selected the union of the 647


www.cs.weizmann.ac.il/~vision/SWA/�
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Algorithm | Averaged F-measure Average numbe
Score of fragments
Our Method 0.87 £0.017 2.66 +0.30
SWA V1 0.89 +0.013 3.924+0.35
SWA V2 0.86 +0.012 3.71£0.33
N-Cuts 0.84 £0.013 3.12+0.17
MeanShift 0.88 +0.011 12.08 £ 0.96

Table 2.Fragment coverage test results

(9]

[10]

[11]

[12]

segments which covers the foreground the best, according

to the F-measure score. The results are given in TeBle

The averaged’-measure of the different algorithms is fairly
similar. Yet, our method needs the least humber of frag-

ments to cover the foreground.

In Figure |4, we compare our method with the segmen-
tation methods that were listed above on eleven examples.

5. Summary

[13]

[14]

We have presented a parameter-free approach to image
segmentation. Our approach uses a bottom-up aggregatiorﬂls]
procedure in which regions are merged based on probabilis-

tic considerations. The framework utilizes adaptive para-
metric distributions whose parameters are estimated locally

using image information. Segmentation relies on an integra-[16]

tion of intensity and texture cues, with priors determined by
the geometry of the regions. We further applied the method

to a large database with manually segmented images and17]
compared its performance to several recent algorithms ob-

taining favorable results.
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