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Abstract

We present a bottom-up aggregation approach to image
segmentation. Beginning with an image, we execute a se-
quence of steps in which pixels are gradually merged to
produce larger and larger regions. In each step we consider
pairs of adjacent regions and provide a probability measure
to assess whether or not they should be included in the same
segment. Our probabilistic formulation takes into account
intensity and texture distributions in a local area around
each region. It further incorporates priors based on the ge-
ometry of the regions. Finally, posteriors based on intensity
and texture cues are combined using a mixture of experts
formulation. This probabilistic approach is integrated into
a graph coarsening scheme providing a complete hierarchi-
cal segmentation of the image. The algorithm complexity
is linear in the number of the image pixels and it requires
almost no user-tuned parameters. We test our method on
a variety of gray scale images and compare our results to
several existing segmentation algorithms.

1. Introduction

Segmentation algorithms aim at partitioning an image
into regions of coherent properties as a means for sepa-
rating objects from their backgrounds. As objects may
be separable by any of a variety of cues, be it intensity,
color, texture, or boundary continuity, many recent algo-
rithms (e.g. [20, 19, 17]) have been designed to utilize and
combine multiple cues. Typically in such algorithms, each
cue is handled by a separate module whose job is to assess
the coherence of nearby pixels or regions according to that
cue, and a segmentation decision is obtained by incorpo-
rating these similarities into a combined measure. Careful
design of these modules along with the use of appropriate
optimization methods has led to noticeable successes, but
the challenge of reliably segmenting objects in a variety of
natural images still lies ahead.

The utilization of multiple cues aggravates an old prob-
lem. In many multi-cue segmentation algorithms each mod-
ule comes with its own set of parameters, and those join an
additional set of parameters intended to control the relative
influence of each module. These parameters may depend
non-trivially on the particular statistics of the input image,
or even the statistics of different regions in the same image.
While existing methods may be robust to changes in some
of those parameters, segmentation results in many cases
may depend critically on the proper assignments of param-
eter values. The common practice is to leave those parame-
ters to be set by the user, but in effect most users leave the
parameters in their default values. Allowing these parame-
ters to automatically adapt to an image (or even locally to
image portions) can greatly simplify the use of segmenta-
tion algorithms and potentially allow them to consistently
provide better results. Indeed, recent algorithms attempt to
achieve parameter-free segmentation either by relying on a
training set that includes a variety of manually segmented
images (e.g., [13]) or by estimating a global set of parame-
ters based on stability criteria [17].

In this paper we explore a different approach which relies
primarily on local information available within the image to
be segmented. We present a parameter free probabilistic
approach to segmentation. Beginning with an image, we
execute a sequence of steps in which pixels are gradually
merged to produce larger and larger regions. In each step
we consider pairs of adjacent regions and provide a proba-
bility measure to assess whether or not they should be in-
cluded in the same segment. We illustrate this method by
constructing modules to handle intensity contrast and tex-
ture differences, and use an adaptively controlled “mixture
of experts”-like approach to integrate the different cues and
reach unified segmentation decisions. To demonstrate the
importance of adaptive, local cue integration consider the
example in Figure1, which shows two pairs of regions. The
left pair can be distinguished by intensity cues, whereas the
right pair of patches, which have similar texture, should be
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Figure 1.The importance of adaptive, local cue integration. Left:
two patches that can be distinguished by intensity (the patches
have uniform textures). Right: two patches with similar texture
that should be merged despite their different intensities (due to
lighting).

merged despite their different intensities.
Our approach is designed to work with bottom-up merge

strategies for segmentation. A large number of methods
approach segmentation using bottom-up merge strategies,
beginning with the classic agglomerative clustering algo-
rithm [5] to watershed [22, 14] and region growing (includ-
ing methods that use probabilistic approaches [16, 15]) to
more recent algebraic multigrid inspired aggregation [19].
Merge algorithms generate a hierarchy of segments, allow-
ing subsequent algorithms to choose between possible seg-
mentation hypotheses. For implementation we adapt the
coarsening strategy introduced in [19], as it enables incor-
porating at every level of the hierarchy measurements ap-
propriate to the scale at that level. We further test our
parameter-free approach on a database with manually seg-
mented images and compare our results to several existing
algorithms.

The paper is divided as follows. Section2 introduces
our probabilistic framework. Section3 describes how we
incorporate our probabilistic framework into a graph coars-
ening procedure. Finally, Section4 provides an experimen-
tal evaluation of our method.

2. Probabilistic framework

We consider a bottom-up aggregation approach to im-
age segmentation. In this approach beginning with an im-
age, we execute a sequence of steps in which pixels are
gradually merged to produce larger and larger regions. In
this section we focus on one step of such a procedure, in

which a division of the image into a set of regionsR =
{R1, R2, . . . , Rn} is given, along with a set of observations,
~Hi ∈ Rd for each regionRi (i = 1 . . . n). Our objective is
to further merge these regions to produce larger segments
of coherent properties.

To achieve this goal we consider pairs of adjacent re-
gions,Ri andRj , and provide a measure to assess whether
or not they should be merged into a single segment. We de-
fine a binary random variablesij that assumes the valuess+

ij

if Ri andRj belong to the same segment ands−ij if they do

not. We then wish to estimate the probabilityP (s+
ij | ~Hi, ~Hj)

which we will use to determine whether or not to merge the
two regions based on their respective properties.

Since segmentation decisions may be affected by several
cues, we need a method to integrate the different cues. Here
we consider both intensity and texture cues and integrate
them using the “mixture of experts”-like model, as follows.

P (s+
ij | ~Hi, ~Hj) =
∑

k

P (s+
ij , ck| ~Hi, ~Hj) =

∑

k

P (s+
ij | ~Hi, ~Hj , ck)P (ck| ~Hi, ~Hj). (1)

This equation implies that the probability of a merge
is determined separately for each cueck, and the term
P (ck| ~Hi, ~Hj) enables us to adjust the influence of each cue
dynamically according to the characteristics of the regions.

To evaluate the probability of a merge for each cue we
apply Bayes’ formula:

P (s+
ij | ~Hi, ~Hj , ck) =

L+
ijP (s+

ij |ck)

L+
ijP (s+

ij |ck) + L−ij(P (s−ij |ck))
(2)

whereL±ij , p( ~Hi, ~Hj |s±ij , ck) denote the likelihood den-
sities givens±ij respectively. These likelihoods are deter-
mined locally according to properties of surrounding re-
gions. We further use a prior that is independent of cue,
P (sij |ck) = P (sij), and determine this prior based on the
geometry of the two regions, i.e., their relative amount of
common boundaries.

In the remainder of this section we elaborate on how we
model the likelihood densities, the cue arbitration, and prior
probabilities.

2.1. likelihood densities

Below we describe how we derive the likelihood densi-
ties for each of our cues, intensity and texture. Both like-
lihoods are determined from the image by local properties
of surrounding regions. Roughly speaking, the underlying
principle in our choice of likelihoods is that in principle we
consider it likely that a region would merge with its most

2
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similar neighbor, while we consider it unlikely that a region
would merge with all of its neighbors. We further define
these likelihoods to be symmetric and take scale considera-
tions into account.

2.1.1 Intensity likelihood density

For two neighboring regionsRi andRj , denote their aver-
age intensities byIi andIj , we model both likelihoodsL±ij
for the case of intensity in (2) as zero mean Gaussian density
functions of their average intensity difference∆ij = Ii−Ij ,
i.e.,

L±ij = p(∆ij |s±ij) = N (0, σ±ij). (3)

where the standard deviationsσ± are given as sums of two
terms:

σ±ij = σ±local + σscale (4)

To determineσ+
local, we consider for regioni its neigh-

bor whose average intensity is most similar (likewise for
regionj). Denote the minimal external difference by∆+

i =
mink |∆ik| then

σ+
local = min(∆+

i , ∆+
j ). (5)

To determineσ−local, we take into account for regioni,
and similarly for regionj, the average intensity difference
over all of its neighbors,∆−

i , i.e.,

∆−
i =

∑
k(τik∆ik)∑

k(τik)
, (6)

whereτik denotes the length of the common boundaries be-
tweenRi and each of its neighborsRk (see Section3.2).
Then we define

σ−local =
∆−

i + ∆−
j

2
. (7)

We further increase the standard deviation of each of the
likelihoods byσscale. Suppose the image contains additive
zero mean Gaussian noise with known standard deviation
σnoise. As we consider larger regions the effect of the noise
on the average intensity of the regions shrinks. In particular,
for a regionRi containingΩi pixels the standard deviation
of the noise added to the average intensity is approximately

σRi
noise =

σnoise√
Ωi

. (8)

Hence we choose

σscale =
σnoise

min(
√

Ωi,
√

Ωj)
. (9)

σnoise can be estimated in a number of ways ([9]), e.g., by
taking the minimal standard deviation across random image
patches. Throughout our experiments, however, we used a
constant value.

2.1.2 Texture likelihood densities

To account for texture we apply to each regionRi a bank
of edge filters and store their total absolute responses in a
histogramhi ∈ ~Hi containingν = ‖h‖ bins (the filters we
use are specified in Section3.2). To measure the difference
between two histogramshi andhj we use a measure similar
to the Chi Square difference test [10]:

Dij =
∑

k

(
hi(k)− hj(k)
hi(k) + hj(k)

)2

. (10)

Assuming that each response is distributed normally
hi(k) ∼ N (µk, σk) we construct two newχ2

ν variables
(ν denotes the number of degrees of freedom),Dijα

+ and
Dijα

− as follows. We use again the concept that two re-
gions with similar texture are more likely to be in the same
segment. Recall, that theχ2

ν distribution receives its maxi-
mum atν− 2. LetD+

i = mink Dik we modelLij in (2) by

L±ij = p(Dij |s±ij) = χ2(Dijα
±), (11)

whereα+ = ν−2
min(D+

i ,D+
j )

guaranties that the closest region

in terms of texture will receive the highest likelihood. Sim-
ilarly, we setα− to reflect the difference in texture relative
to the entire neighborhood. We therefore compute the aver-
age texture difference in the neighborhood, weighted by the
length of the common boundaries between the regions

D−
i =

∑
k(τikDik)∑

k(τik)
, (12)

and setα− = ν−2
1
2 (D−

i +D−j )
.

2.2. Prior

We determine the priorP (s±ij) according to the geome-
try of the regions. Roughly speaking, a-priori we consider
neighboring regions with long common boundaries more
likely to belong to the same segment than regions with short
common boundaries. Hence, we define the prior as:

P (s+
ij) =

τij

min(
∑

k τik,
∑

k τjk)
. (13)

2.3. Cue integration

As we mentioned in the beginning of Section2 we in-
tegrate segmentation decisions from different cues using a
local “mixture of experts”-like model. This model allows us
to control the influence of each cue and adapt it to the infor-
mation contained in each region. Thus, for example, when
we compare two textured regions we can discount the effect
of intensity and by this overcome brightness variations due
to lighting.

3
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To determine the relative influence of every cue we need
to estimateP (ck| ~Hi, ~Hj). To that end we want to evaluate
for each region whether or not it is characterized by tex-
ture. For each regionRi we calculate a256-bin histogram
of local gradients magnitudesGi inside the region. Since,
textured regions are often characterized by significant edge
responses in different orientations and scales [11], we ex-
pect the gradients magnitude histogram of a non-textured
region to be fairly sparse. To measure sparseness we first
normalize the histogram (

∑
k Gi

k = 1) and apply to each
region the measure [7]:

Si =
1

1−√n

(
1− ‖Gi‖1

‖Gi‖2

)
, (14)

wheren denotes the number of bins inGi and‖Gi‖p de-
notes thè p norm of Gi. Note that we exclude from this
calculation pixels which lie along the boundary of a region
since they may reflect boundary gradients rather than tex-
ture gradients. We elaborate on this further in Section3.
Finally, we combine these measures by

p(c2| ~Hi, ~Hj) = min(P (c2| ~Hi), P (c2| ~Hj)), (15)

with c2 denotes the texture cue. We further model the indi-
vidual probabilities using the logistic function:

p(c2| ~Hi) =
1

(1− e−(aSi+b))
. (16)

To estimate the constant parametersa, b we used950 ran-
dom patches form the Brodatz data set [2] and a similar
number of non-textured patches selected manually from
random images as a training set. A sample from this set
is shown in Figure2. Then, a maximum likelihood estima-
tion (MLE) regression was used to estimatea, b, and these
parameters were used throughout in all our experiments.

3. Algorithm

Our probabilistic framework is designed to work with
any merge algorithm for segmentation. Here we use the
merge strategy suggested for the Segmentation by Weighted
Aggregation (SWA) algorithm [19, 6], which employs a
hierarchy construction procedure inspired by Algebraic
Multigrid (AMG) solutions for differential equations [1].
The SWA algorithm begins with a weighted graph repre-
senting image pixels, and in a sequence of steps creates a
hierarchy of smaller (“coarse”) graphs with soft relations
between nodes at subsequent levels. The edge weights in
the new graphs are determined by inheritance from previ-
ous levels and are modified based on regional properties.
These properties are computed recursively as the merge pro-
cess proceeds. Below we use the coarsening strategy of the
SWA algorithm and modify it to incorporate our probabilis-
tic framework. In particular, we use as edge weights the

Figure 2.Samples from the training set used to determine the logis-
tic function (16). Top: texture samples. Bottom: intensity samples

posterior probabilities defined in Section2. We produce the
coarser graphs using the coarsening strategy of SWA, but re-
place inheritance of weights by computing new posteriors.
Overall, we achieve a method that is as efficient as the SWA
algorithm, but relies on different, probabilistic measures to
determine segmentation and requires almost no user tuned
parameters.

3.1. Graph coarsening

Given an image we begin by constructing a 4-connected
graphG[0] = (V [0], E[0]), in which every pixel is repre-
sented by a node and neighboring pixels are connected by
an edge. Using the formulation described in Section2, we
associate a weight with each edgeeij ,

pij = P (s+
ij | ~Hi, ~Hj), (17)

utilizing a uniform prior at this first stage.
We then execute repeatedly the following steps in or-

der to progressively construct smaller graphs,G[1], G[2], ...,
each contains about half the number of nodes in the preced-
ing graph:
Coarse node selection: Given a graph G[s−1] =
(V [s−1], E[s−1]) we begin the construction ofG[s] by se-
lecting a set of seed nodesC ⊂ V [s−1], which will con-
stitute the subsequent level. Let us denote the unselected
nodes byF = V [s−1] − C. Then, the selection of the
seeds is guided by the principle that eachF -node should be
”strongly coupled” to nodes inC, i.e., for each nodei ∈ F
we require that

∑
j∈C pij∑

j∈V [s−1] pij
> ψ, (18)

4
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whereψ is a parameter (usually,ψ = 0.2). The construction
of C is done using a sequential scan of the nodes inV [s−1],
adding toC every node that does not satisfy (18) with re-
spect to the nodes already inC. The scanning order may
be determined according to a certain desired property of the
regions, e.g., by decreasing size of the nodes, influencingC
to contain larger regions.

OnceC is selected we constructV [s] to include copies
of the nodes inC. To simplify notations we assume without
loss of generality that the nodes1, 2, ..., |C| ∈ V [s−1] com-
poseC, while the rest are inF . This allows us to assign the
same index to nodes inV [s].
Inter-level interpolation: We determine the inter-level in-
terpolation weights as follows. For each nodei ∈ F we
denote byNi = {j ∈ C|pij > 0} its “coarse neighbor-
hood.” We define a matrixT [s−1][s] of size|V [s−1]| × |C|)
by:

tij =





pij/
∑

k∈Ni
pik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise.

(19)

Computing regional properties: For each coarse node
i ∈ V [s] we compute intensity and texture properties by
averaging over the properties of its descendants. These are

stored in a feature vector~Hi
[s]

We further elaborate on the
computation of regional properties in Section3.2.
Coarse graph probabilities: Finally, the edge weights of
the coarse graph are determined. Unlike in SWA, we do not
inherit those weights from the previous level. Instead we
compute new posteriors for the nodes of the coarse graph.
For every pair of neighboring nodes,i, j ∈ V [s] we assign
the weight

p
[s]
ij = P (s+

ij | ~H[s]
i , ~H[s]

j ). (20)

These posteriors are determined, as is described in Sec-
tion 2, using the newly computed regional properties.

3.2. Features

In order to determine the edge weights at every level we
need to compute posterior probabilities as in Section2. The
computation of these posteriors uses the average intensity
and histogram of filter responses computed for every re-
gion, as well as the length of boundaries between every two
neighboring regions. The merge strategy described above
enables us to compute these properties efficiently for every
node, by averaging the same properties computed for its de-
scendants. The properties we are using can be divided into
two kinds: unary features, computed for a single region,
e.g., the average intensity or histogram of filter responses,
and binary features, e.g., the length of the common bound-
ary between two regions. Below we describe how we com-
pute these properties during the coarsening process.

3.2.1 Unary features

Our intensity and texture features can be obtained by sum-
mation of the corresponding feature values over all pixels in
a region. For every nodek at scales we can compute such
a feature by taking a weighted sum of the feature values of
its descendants. Specifically, for a pixeli we denote its fea-
ture value byqi. Denote byT [s]

ik the extent to which pixel

i belongs to the regionk at scales, T
[s]
ik can be determined

from the matrix productT [s] =
∏s−1

m=0 T [m][m+1]. We fur-
ther denote bȳQ[s] the weighted average ofqi for all pixels
i which belong to regionk i.e.,

Q̄
[s]
k =

∑
i t

[s]
ik qi∑

i t
[s]
ik

. (21)

Then,Q̄[s]
k can be computed using the following recursive

formula:

Q̄
[s]
k =

∑
j tjkΩ[s−1]

j Q̄
[s−1]
j∑

j tjkΩ[s−1]
j

, (22)

whereΩ[s−1]
j denote the size of aggregatej at scales − 1,

which is computed recursively in a similar way, andtjk is
the elementjk in the matrixT [s−1][s].

We use this recursive formulation to compute the follow-
ing features:
Average intensity: Starting with the intensity valueIi at
each pixeli at scale0, the quantitȳI [s]

k provides the average
intensity in a regionk at scales.
Texture: For each pixel, we measure short Sobel-like fil-
ter responses, following [6], in four orientations0, π

2 , π
4 , 3π

4
and accumulate them recursively to obtain 4-bin histogram
for each region at each scale. Since filter responses at points
near the boundaries of a segment may respond strongly to
the boundaries, rather than to the texture at the region we
employ a top-down cleaning process to eliminate these re-
sponses from the histogram.

3.2.2 Binary features

To determine the prior probabilityP (s±ij) we need to com-
pute for every pair of neighboring regions the length of their
common boundaries. Beginning at the level of pixels, we
initialize the common boundariesτij of two neighboring
pixels to 1 (we use 4-connected pixels) and 0 otherwise.
Then, for every neighboring regionsk and l at scales we
compute the length of their common boundaries using the
formula:

τ
[s]
k,l =

∑

ij

t
[s]
ik τijt

[s]
jl (23)

Again, this quantity can be accumulated recursively from
one level to the next.
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Figure 3.Sample from the evaluation dataset. Each color repre-
sents a different amount of votes given by the human subject ac-
cording to the following key: blue=3, green=2 red=1.

4. Experiments

Evaluating the results produced by segmentation algo-
rithms is challenging, as it is difficult to come up with
canonical test sets providing ground truth segmentations.
This is partly because manual delineation of segments in
everyday complex images can be laborious. Furthermore,
people often tend to incorporate into their segmentations
semantic considerations which are beyond the scope of data
driven segmentation algorithms. For this reason many exist-
ing algorithms show only few segmentation results. An im-
portant attempt to produce an extensive evaluation database
for segmentation was recently done at Berkeley [12]. This
dataset however has its own limitations, as can be noticed
by the differences between subjects. In many cases images
are under-segmented, and semantic considerations seem to
dominate the annotated segmentations.

To evaluate our method and compare it to recent algo-
rithms we have compiled a database containing100 gray
level images along with ground truth segmentations. The
database was designed to contain a variety of images with
objects that differ from their surroundings by either inten-
sity, texture, or other low level cues. To avoid potential am-
biguities we only selected images that clearly depict one
object in the foreground. To obtain ground truth segmen-
tation we asked about50 subjects to manually segment the
images into two classes foreground and background with
each image segmented by three different human subjects.
We further declared a pixel as foreground if it was marked
as foreground by at least two subjects. A sample from the
database is shown in Figure3. The complete database is
available in the supplementary material.

We evaluated segmentation results by assessing its
consistency with the ground truth segmentation and its
amount of fragmentation. For consistency we used theF-
measure[21]. Denote byP andR the precision and recall
values of a particular segmentation than the F-measure is

Algorithm F-measure Score
Our Method 0.86± 0.012

SWA V1 0.83± 0.016
SWA V2 0.76± 0.018
N-Cuts 0.72± 0.018

MeanShift 0.57± 0.023
Table 1.One segment coverage test results

defined as

F =
2RP

P + R
. (24)

The amount of fragmentation is given simply by the number
of segments needed to cover the foreground object.

We applied our segmentation algorithm to all 100 images
in the database and compared our results with several state
of the art algorithms including:

1. Segmentation by weighted aggregation (SWA)[19].
We tested two variants, one which uses the full
range of features described in [6] (denoted by SWA
V1) and a second variant which relies only on fea-
tures similar to the ones used by our method, i.e.,
intensity contrast and filter responses (denoted by
SWA V2) (WINDOWS implementation atwww.cs.
weizmann.ac.il/˜vision/SWA/ )

2. Normalized cuts segmentation including intervening
Contours [10] (Matlab implementation atwww.cis.
upenn.edu/˜jshi/ ).

3. Mean-Shift [3]. This method uses intensity cues
only (EDISON implementation atwww.caip.
rutgers.edu segmentation).

For our methods only a single parameter,σnoise needed to
be specified. We set this parameter to a fixed value for all
images (σnoise = 18). The other algorithms were run with
several sets of parameters. The normalized cuts algorithm
was run with the requested number of segments between
2 − 10. For the Mean-Shift and SWA we tested around
40 different sets of paraments. In each case we selected
for the final score the set of parameters that gave the best
performance for the entire database.

We performed two tests. In the first test we selected in
each run the segment who fits the best the foreground, ac-
cording to the F-measure score. The results are given in
Table 1. Our method outperforms other methods, demon-
strating the highest averaged F-measure score. The next
best score is achieved by the SWA algorithm utilizing its
full set of features. Note that the performance of the mean
shift algorithm suffers since this implementation does not
handle texture. In the second test, we measured the aver-
agedF -measure, while permitting a few segments to cover
the foreground. For each run we selected the union of the
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Algorithm Averaged F-measure Average number
Score of fragments

Our Method 0.87± 0.017 2.66± 0.30
SWA V1 0.89± 0.013 3.92± 0.35
SWA V2 0.86± 0.012 3.71± 0.33
N-Cuts 0.84± 0.013 3.12± 0.17

MeanShift 0.88± 0.011 12.08± 0.96
Table 2.Fragment coverage test results

segments which covers the foreground the best, according
to theF -measure score. The results are given in Table2.
The averagedF -measure of the different algorithms is fairly
similar. Yet, our method needs the least number of frag-
ments to cover the foreground.

In Figure 4, we compare our method with the segmen-
tation methods that were listed above on eleven examples.

5. Summary

We have presented a parameter-free approach to image
segmentation. Our approach uses a bottom-up aggregation
procedure in which regions are merged based on probabilis-
tic considerations. The framework utilizes adaptive para-
metric distributions whose parameters are estimated locally
using image information. Segmentation relies on an integra-
tion of intensity and texture cues, with priors determined by
the geometry of the regions. We further applied the method
to a large database with manually segmented images and
compared its performance to several recent algorithms ob-
taining favorable results.
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Original image Our method SWA V1 Normalized cuts Mean-shift

Figure 4.Results of applying our method compared with other state of the art segmentation algorithms. The top four images taken from
the Berkeley segmentation database and the rest from our evaluation database.
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