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Abstract

We present an algorithm for edge detection suitable for
both natural as well as noisy images. Our method is based
on efficient multiscale utilization of elongated filters mea-
suring the difference of oriented means of various lengths
and orientations, along with a theoretical estimation of the
effect of noise on the response of such filters. We use a
scale adaptive threshold along with a recursive decision
process to reveal the significant edges of all lengths and
orientations and to localize them accurately even in low-
contrast and very noisy images. We further use this algo-
rithm for fiber detection and enhancement by utilizing sto-
chastic completion-like process from both sides of a fiber.
Our algorithm relies on an efficient multiscale algorithm
for computing all “significantly different” oriented means
in an image inO(N log ρ), whereN is the number of pix-
els, andρ is the length of the longest structure of interest.
Experimental results on both natural and noisy images are
presented.

1. Introduction

One of the most intensively studied problems in com-
puter vision concerns with how to detect edges in images.
Edges are important since they mark the locations of discon-
tinuities in either depth, surface orientation, or reflectance.
Edges and fibers constitute features that can support seg-
mentation, denoising, recognition, matching and motion
analysis tasks.

Accurate detection of edges can be challenging, particu-
larly when low contrast edges appear in the midst of noise.
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Figure 1.Electron microscope images: demonstrating the chal-
lenge of detecting edges (at different scales) embedded in noise.

Figure 2.Two adjacent noisy intensity profiles (right) parallel to a
long edge (left) in an image acquired by an electron microscope.

The images in Figure1, acquired by an electron micro-
scope, exemplify this kind of challenge. Despite the noise
(see profile plots in Figure2), such low contrast edges are
evident to the human eye due to their consistent appear-
ance over lengthy curves. Accurate handling of low contrast
edges is useful also in natural images, where boundaries be-
tween objects may be weak due to similar reflectance prop-
erties on both sides of an edge, shading effects, etc.

This paper presents an algorithm for edge detection and
fiber enhancement designed to work on both natural as well
as very noisy images. Our method is based on efficient uti-
lization of filters measuring difference of oriented means
of various lengths and orientations, along with a theoretical
estimation of the effect of noise on the response of such fil-
ters. In particular, we derive a scale adaptive threshold and
use it to distinguish between significant real responses and
responses due to noise at any length. We complement this
with a recursive decision process to distinguish between re-
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sponses due to consistent, long edges and responses due to
several scattered sub-edges. These enable us to consider-
ably reduce the effect of noise without relying on a prior
step of isotropic smoothing, and consequently reveal and
accurately localize very noisy, low-contrast edges. More-
over, short gaps can be overcome, and despite the use of
long filters the ”correct” ends of an edge can be delineated
due to the scale multiplicity. We further present an applica-
tion of this algorithm to fiber detection and enhancement by
employing a stochastic completion-like process from both
sides of a fiber. This process is quite robust to varying fiber
width and fiber branching.

Our algorithm relies on a fast, bottom-up procedure, fol-
lowing [1], to construct all “significantly different” oriented
means at all locations, lengths, and orientations. By this,
our method utilizes the same number of filters at every
length, so that as we increase the length of the filter we re-
duce its spatial resolution and proportionally increase its di-
rectional resolution. This, along with our recursive decision
process, yield efficient runtime complexity ofO(N log ρ),
whereN is the number of pixels andρ is the length of the
longest structure of interest, typicallyρ ≤ O(

√
N). Exper-

imental results on various images are presented.

2. Previous work

Common algorithms for edge detection (e.g., [3]) over-
come noise by applying a preprocessing step of smoothing,
typically using a gaussian kernel of a user specified width.
Scale-space representations extend this approach, allowing
for a simultaneous delineation of edges from all scales by
combining spatially varying gaussian smoothing with auto-
matic scale selection [10, 18]. Such isotropic smoothing,
however, often reduces the contrast of weak edges, may
blend adjacent edges, and may result in poor localization
of edges.

To avoid the pitfalls of isotropic smoothing, anisotropic
diffusion schemes [15, 19, 9] were proposed as a means for
edge-preserving smoothing and image enhancement. These
methods utilize a diffusion tensor designed to avoid smooth-
ing in the direction of the intensity gradients, while allow-
ing smoothing in coherence directions. These approaches
improve edge localization considerably, and edges at differ-
ent scales are revealed at different iterations of the diffusion
process. These edges remain visible in their original loca-
tion for many iterations before they finally fade out. A scale
selection mechanism however is required to extract edges
of different scales. As the reliance on local gradients in
traditional diffusion processes may lead to accumulation of
noise, recent methods [19, 9] modify the diffusion tensor
through isotropic spatial averaging or resetting of its eigen-
values. Such spatial smoothing and eigenvalue modifica-
tions are, however, adapted to a single scale. Moreover, by
using an averaged diffusion tensor, these methods accumu-

late squaredlocal intensity differences, and this may lead
to smoothing across noisy, low contrast edges. The reliance
on local gradients is a common problem also in both single
and multiscale variational methods [14, 2].

Another stream of work utilizes filters of various lengths,
widths, and orientation, yieldingcurvelet and contourlet
image decomposition [17, 4, 7]. The focus of these meth-
ods, however, is mainly on achieving sparse representations
of images and not on edge extraction or fiber enhancement.

Finally, recent methods for edge detection in natural im-
ages [16, 11] compare histograms of intensity, color (and
also texture in [11]) in two half disks on either sides of an
edge, while in [16] the size of the disc is related to the length
of the edges. While this approach avoids smoothing across
a measured edge, the use of large discs may lead to smooth-
ing across nearby edges. Furthermore, the histograms are
calculated at all locations and orientations leading to inef-
ficient schemes. Our decision process can be related to the
logical-linear application proposed in [6].

3. Multiscale edge detection algorithm

Our goal is tosimultaneouslyextract edges of all lengths,
in both natural and noisy images. LetI(x, y) denote a con-
tinuous function representing image intensities given in a
two-dimensional domain. We denote byoriented meansthe
family of averagesof I(x, y) along rectangular patches of
a given center locationx = (x, y), lengthL, width w, and
orientationθ. Typically in our implementationw is set to
a small constant, yieldingelongatedoriented means. The
family of oriented means can be obtained via integrals of
the form

F (x, L, w, θ) =
1

wL

∫ w/2

−w/2

∫ L/2

−L/2

(1)

I(x + γ cos θ − δ sin θ, y + γ sin θ + δ cos θ)dγdδ.

Our approach utilizesresponses of differences of oriented
means (briefly denotedresponses). This family of re-
sponses is defined as

D(x, L, w, s, θ) =
1
2
F (x +

s

2
(− sin θ, cos θ), L,

w

2
, θ)

−1
2
F (x− s

2
(− sin θ, cos θ), L,

w

2
, θ), (2)

with s ≥ w/2 to avoid overlap.D defines an average differ-
ence of neighboring oriented means of thesame orientation.

Given a collection of responses, our first task (Sec-
tion 3.1) is to determine which response is significant. This
is achieved by applying a scale adaptive threshold deter-
mined by measuring the magnitude of the noise in the image
and by considering the length and width of the measured re-
sponse. Next (Sec.3.2) we examine the set of significant re-
sponses at each length. While some of these responses may



indeed indicate the presence of an edge of the appropriate
length, others may be due to scattered collections of shorter
edges. We therefore apply a recursive decision process to
distinguish between these two cases . Finally, our algorithm
relies on a framework and a data structure for efficient com-
putation of oriented means [1] (Sec.3.3).

3.1. Multiscale noise estimation

Our first task is to identify differences of oriented means
that elicit significant responses. In this section we derive
a scale adaptive threshold that takes into account the prop-
erties of the noise as well as the length and width of our
filter. Below we assume that the noise does not vary signifi-
cantly across the image and that the pixel noise is normally
distributed asN(0, σ2).

Suppose we apply differences of oriented means
D(x, L, w, s, θ) to an image composed of white noise. De-
note byDL,w the discrete form ofD(x, L, w, s, θ), soDL,w

is the average difference of two averages ofwL/2 normal
distributions. Consequently,DL,w itself distributes nor-
mally, DL,w ∼ N(0, σ2

L), whereσ2
L = σ2/(wL).

In order to differentiate between responses due to real-
edges and those that are due to noise, we wish to estimate
the chance that given a real numbert À σL, a valued drawn
from the distributionDL,w ∼ N(0, σ2

L) satisfies|d| < t,

i.e., p(|d| < t) = 1√
2πσL

∫ t

−t
exp

(
− x2

2σ2
L

)
dx. Therefore,

we first estimate the following integral fort À σL

∫ ∞

t

exp(− x2

2σ2
L

)dx =
∫ ∞
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2σ2
L
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≈ exp
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.

With this estimate, we obtain

p(|d| < t) ≈ 1−
√

2
π

σL

t
exp(− t2

2σ2
L

) .= 1− ε. (4)

Suppose we produceO(N) responses of lengthL, where
N is the number of pixels in the image. To differentiate be-
tween true edge responses and noise responses, we would
like to determine an adaptive thresholdt(w,L, N) such that
with high probability the values ofall noise responsesd ob-
tained for a noise image will fall in the range[−t, t]. Ac-
cording to (4), this means(1− ε)N = O(1), which implies
1 − εN = O(1), in other words to assure high-probability
we demand1 − εN ≥ 1/2 or ε <≈ 1

2N . Plugging the def-
inition of ε (4) into the latter relation and taking the natural
logarithm leads to the following approximate relation

t2(w, L,N)
2σ2

L

= ln N + ln(
σL

t
) ≈ ln N, (5)

Figure 3.Scale-adaptive noise estimation: length-L vs. the ratio
between the scale-adaptive threshold andσ.

where the approximation is due to the relationln(σL/t) ¿
t2/(2σ2

L), under the assumptionσL ¿ t.
This approximation yields the relation

t(L,w, N) = σ

√
2 ln N

wL
, (6)

which means that a response which exceedst(L,w,N) can
potentially indicate the existence of a real edge. This is the
scale-adaptive thresholdthat we have used throughout our
experiments. Clearly, it can be very useful only if we are
able estimateσ, the standard deviation of the pixel noise.
We suggest to estimateσ in the following simple way: for
each pixel we calculate the minimal standard deviation ob-
tained from the collection of3× 3 windows containing the
pixel. We then construct a histogram summarizing the em-
pirical distribution of this minimal standard deviation ob-
tained for all the pixels.σ is determined as the90th per-
centile value of this histogram.

We have further confirmed this adaptive threshold empir-
ically. We generated synthetic white noise images (200 ×
200 pixels) with different values of standard deviationσ,
and measured for a widthw = 4 the maximal response over
all length-L responses, forL = 2, 4, 8, 16, 32, 64. Figure3
shows that the ratio obtained between the maximal response
andσ is comparable to the theoretical estimate of the ratio,

i.e.,
√

2 ln N
wL .

3.2. Recursive decision process

A responseD(x, L, w, s, θ) of length L (and fixedw)
is considered significant if it exceeds the length adaptive
threshold, i.e.,D ≥ TL

.= t(L,w, N). However, while the
threshold is designed to eliminate responses due to noise,
long responses may still exceed the threshold due to scat-
tered, short edges of high contrast. In this section we de-
scribe a recursive procedure whose objective is to distin-
guish between responses due to long edges from responses
due to scattered sub-edges.

A natural way to determine the composition of a re-
sponse is to consider sub-portions of the edge and test
whether they too give rise to a significant response. For a re-
sponse of lengthL consider an arbitrary sub-edge of length
cL (0 < c < 1). Based on our analysis, such a response is



considered significant if it exceeds the thresholdTcL. How-
ever, sinceTcL > TL, requiring every portion of an edge to
exceed its respective threshold would amount to requiring
the complete length-L edge to exceed the higher threshold
TcL, making the scale-adaptive threshold useless. A more
relaxed approach is to require each sub-edge of lengthcL to
pass the threshold for the complete edgeTL. This approach
too is unsatisfactory since, due to noise, short portions of a
long edge may fall below the threshold.

We address this problem by requiring that most of the
sub-edges will pass some lower threshold and that the re-
maining gaps will be short relative to the length of the edge.
We therefore define two parameters,α andβ (0 ≤ α, β ≤
1). We setαTL to be a low threshold for length-L responses.
Namely, responses of lengthL that exceedαTL and do not
exceedTL are considerednearly significant, i.e., they are
not significant enough to form an edge on their own, but
they can form sub-portions of longer edges. In addition, we
setβL to be a threshold on the total gap size for length-L
edges, i.e., a length-L edge cannot be considered significant
if it contains sub-portions of total length> βL that do not
exceed their respective low threshold. With such a long gap
the response cannot be marked as an edge even if it exceeds
its corresponding thresholdTL.

We implement these principles in a recursive procedure
as follows. We setw and s to constants and begin with
the set of responsesD(x, L, w, s, θ) obtained for filters of
some predetermined short length, e.g.,L = 1. We classify
each response to one of the following three classes: (1)sig-
nificant (D > TL) (2) nearly-significant(αTL < D ≤ TL)
and (3)non-significant(D ≤ αTL). For the first two classes
the total gap size is set to “0”, while for the latter the gap
size is set to “L”.

We proceed by sequentially considering lengths of pow-
ers of 2. The classification of every length-L response
at locationx, D(x, L, w, s, θ), is affected by the classi-
fication of its associated length-L/2 responses,D(x ±
(L/4)(cos θ, sin θ), L/2, w, s, θ) as described below. In ad-
dition, the total gap size is set to be the sum of gap sizes
associated with these responses.

• A length-L responseD is classifiedsignificantif it ex-
ceeds the respective threshold,D > TL, and its to-
tal gap size is belowβL. In this case the response is
marked as apotential edgeand its gap size is reset to
zero.

• A length-L responseD is classifiednearly-significant
if αTL < D ≤ TL and its total gap size is belowβL.
In this case, its gap size is not updated.

• A length-L responseD is classifiednon-significantif
D ≤ αTL or if its total gap size exceedsβL. In this
case its total gap size is reset toL.

Marked potential edges are further tested for statistical sig-
nificance. We consider the intensity profiles along the two
sides of a potential edge and denote byσlocal the maximum
of the two empirical standard deviations on either side. We

then remove edges for whichD < c
√

2 ln N
wL σlocal, typi-

cally c = 1. This condition generalizes (6) by replacing
the global noiseσ with a local estimate of the noise,σlocal,
yielding a scale-dependent local threshold. This test allows
us to be less strict with the selection ofα andβ.

Finally, we apply a process ofangular non-maximal sup-
pressionfollowed by spatial non-maximal suppressionat
each lengthL. The non-maximal suppression is a necessary
step to ensure well-localized edges, expressed by a single
response. Moreover, we perform an inter-scale suppression,
to ensure that each edge is identified with its maximal per-
ceptual length.

This inter- and intra-scale decision process along with
the scale-adaptive threshold allow us to overcome noise
without prior smoothing, and therefore to reveal and accu-
rately localize very noisy, low-contrast edges.

3.3. Hierarchical construction of oriented means

We construct our differences of oriented means by
adding and subtracting width-1 oriented means of the ap-
propriate length. The family of width-1 oriented means,
F (x, L, w, θ) is defined over an infinite set of locations,
lengths, and orientations, but under minimal smoothness as-
sumptions ofI(x, y) it is possible to obtain any oriented
mean in this family from only a finite collection of oriented
means. Oriented means at interim locations, lengths, and
orientations can then be computed by interpolation with an
accuracy determined by the spatial and angular resolutions.

Following [1], the minimal spatial and angular resolu-
tions depend on the lengthL as follows.

• The minimal spatial resolution in the direction of in-
tegration is inversely proportional to the integration
length. In particular, when doubling the integration
length, the number of evaluation points may be halved.

• The spatial resolutionperpendicularto the direction of
integration is independent of the integration length.

• The minimal angular resolution is proportional to the
integration length. In particular, if the integration
length is doubled, the number of angles computed per
site must also be doubled.

A direct consequence of these observations is that thetotal
number of integrals at any lengthL is independent ofL.

Figure4(left) depicts the commondirect approachto ap-
proximating discrete oriented means of orientation|θ| ≤ π

4 .
Using the trapezoid rule, the oriented mean for, e.g., the
line segment depicted in Figure4(left), is given by the



Figure 4.Left panel: Direct calculation of oriented mean (w =
1, L = 4): an interpolation from the given data points to the red
points is followed by the trapezoid rule. Right panel: Base level
initialization: stencil of four length-1 integrals for each pixel (left)
cover the whole grid (right).

sum over the three interior points (obtained by interpolation
from nearby data points) plus the average of the endpoints,
divided by four. Similar calculation applies for oriented
means withπ

4 ≤ θ ≤ 3π
4 . However, this direct approach

is quite expensive to approximate many oriented means.
In the remainder of this section we follow [1] and de-

scribe a fast,hierarchical recursive calculationof “all sig-
nificantly different” oriented means in a discrete image. In
the context of a discrete image, we define thelength of an
oriented meanon a uniform grid as the length of its maxi-
mal projection onto the x- and y-axis, where the length units
are pixels. The hierarchical construction is as follows. At
the base level, for each pixel four length-1 oriented means
are calculated (see Figure4(right)). The total number of
oriented means at this level is therefore4N . Recursively,
given4N oriented means of lengthL we proceed to com-
puting new4N oriented means of length2L. Following the
principles outlined above, the angular resolution should be
doubled. Consequently, the new oriented means can be di-
vided into two equally sized sets. Half of the new oriented
means follow the same directions of those of the previous
level, while the other half of the oriented means follow in-
termediate directions. The first set of oriented means can
be computed simply by taking the average of two, length-L
oriented means with one coinciding endpoint (see Figure5,
left panel). The second set of oriented means can be ob-
tained by interpolation of four length-L oriented means of
nearby directions. These four oriented means form a tight
parallelogram around the desired length-2L integral. This is
illustrated in Figure5 (left panel), where the average of the
four length-1 oriented means is used to construct a length-2
oriented mean. This can be viewed as first linearly inter-
polating the two nearest directions to approximate the new
direction at length-1, then creating a length-2 oriented mean
by averaging two adjacent interpolated oriented means.

It should be emphasized that the numerical error intro-
duced by this fast calculation, relative to the slow, direct
approach, is smaller than the error induced by discretiz-
ing I(x, y). The algorithm is very efficient, it calculates
“all significantly different” oriented means inO(N log ρ),
whereN is the number of pixels in the image andρ is the
length of the longest oriented mean, typicallyρ ≤ O(

√
N).

Figure 5.Left panel: Building integrals of length-2 from integrals
of length-1, for existing directions (left), by taking the average of
length-1 adjacent integrals (dashed lines) in that direction, and for
a new direction (right), by averaging four nearest integrals (dashed
lines). Right panel: The red lines denote length-4 vertically ori-
ented means, which are calculated at each2nd row (pink rows).
The blue lines denote length-4 horizontally oriented means, which
are calculated at each2nd column (blueish columns).

3.4. Implementation

For our implementation we maintain ahierarchical data
structureof the angular and spatial resolutions as follows.
At the base level, for each pixel length-1 oriented means
at four directions are calculated. The angular resolution of
length-2L oriented means is twice the angular resolution of
length-L oriented means. The spatial resolution is halved
as the length is doubled as follows. Length-L verticallyori-
ented means (π4 ≤ θ ≤ 3π

4 ) are calculated atevery(L/2)th-
row, at each pixel in this row. Length-L horizontallyori-
ented means (|θ ≤ π

4 |) are calculated atevery (L/2)th-
column, at each pixel in this column. In this manner, each
length-L oriented mean has anoverlapof lengthL/2 with
another length-L oriented mean of the same orientation, in
order to improve accuracy. As a result, at each scale (length)
the number of oriented means is8N , except for the short-
est level (length-1) for which4N oriented means are calcu-
lated. Note that at each length only4N of the8N oriented
means are used to construct the subsequent level. The grid
setting forL = 4 is illustrated in Figure5(right).

Our recursive decision process is evoked during the con-
struction of oriented means after the construction of every
length, maintaining the low complexity of the algorithm.
For this decision process we associate with each length-L
response the two (if the longer response follows an orien-
tation of the previous level) or four (if the longer response
is of a “new” orientation) length-L/2 responses from which
it was generated. Finally, the local standard deviation test
can be applied by accessing the raw pixels, assuming only
a sparse set of responses are considered significant. Alter-
natively,σlocal can be recursively accumulated by comput-
ing in addition oriented means for the squared intensities,
I2(x, y), doubling the overall complexity.

4. Experiments

Our algorithm employs differences of oriented means
D(x, L, w, s, θ) at lengthsL = 1, 2, 4, 8, 16, 32, 64, with
s = 2, w = 2 ands = 5, w = 4 for the edge detection in



natural images and noisy images, respectively.

4.1. Noisy images

We have implemented our edge detection algorithm and
tested it on very noisy images acquired by electron micro-
scope. For this implementation we useα =

√
0.5 and

β = 3/8. Figure 6 contains images of a plant under
certain photosynthetic conditions. Depending on lighting,
the membranes, which are sub-cell organs (organelles), are
sometimes very close to each other. As demonstrated in the
figure, our algorithm performs very well in detecting the
edges of the membranes, independently of the scale (length)
and the membranes’ density (Figure6, middle row). Canny
edge detector (with optimized parameters) cannot reveal
these dense edges, due to the pre-smoothing (Figure6, bot-
tom row). We compare our algorithm with our own imple-
mentation (following [8]) of the Beltrami flow anisotropic-
diffusion. The enhanced images and their respective inverse
gradients are shown in Figure7. It can be seen that different
structures are enhanced in different iterations, yet the dense
organelles structure is not revealed at any iteration, and the
overall result is severely affected by the amount of noise
present in this image. Figure8 contains images of bacte-
ria environment. Our algorithm extracts edges at all scales,
both elongated and circular.

4.2. Natural images

We have further applied our algorithm to the 100gray
level test images of the Berkeley segmentation dataset and
human annotation benchmark [12]. For this implementa-
tion we useα =

√
0.8 andβ = 0. Although this dataset

is not ideal for evaluating our method as (1) human anno-
tation is affected to a large extent by semantic considera-
tions, (2) subjects only marked subsets of the boundaries,
and (3) our method does not deal with texture; it never-
theless demonstrates that our method achieves competitive
results on natural images. To determine boundary classifi-
cation we associate a response with every edge point in a
manner similar to that used in [11]. Specifically, we com-
pute two intensity histograms for the two half-discs (using
discs of radius 7 pixels) centered in each edge center and
oriented according to the edge direction. We then use a
χ2 histogram difference measure to compare the two his-

togramsχ2(g, h) = 1
2

∑ (gi−hi)
2

gi+hi
. We finally normalize

these values (for each image) between 0 and 1. Figure9
shows some example images, demonstrating the exact lo-
calization of edges that can be achieved with our method.

We further used the standard F-measure test, which pro-
vides a trade-off between precision(P ) and recall(R) de-
fined asF = PR/(γR + (1 − γ)P ), with γ set to0.5.
These are computed using a distance tolerance of2 pixels to
allow for small localization errors in both the machine and

Figure 6.Edge detection. Top row: original images. Middle row:
edges obtained by algorithm overlaid on the original images. Bot-
tom row: edges obtained by Canny edge detector.

Figure 7.Image enhancement and inverse gradient by Beltrami
flow. Top row: image enhancement after 8, 11 and 20 iterations,
respectively (from left to right). Bottom row: respective inverse
gradients.

human boundary maps. Table1 shows the F-measure val-
ues achieved by our algorithm compared to other edge de-
tection algorithms. Note that somewhat better performance



Figure 8.Edge detection. Left column: original images. Right
column: edges obtained by our algorithm overlaid on the original
images.

is achieved by methods that use color and texture features
such as [11]. Code and results of other algorithms are ob-
tained from Berkeley athttp://www.eecs.berkeley.edu/Research/Projects/

CS/vision/grouping/segbench/ .

Algorithm F-measure

our multiscale edge detection algorithm 0.61

Brightness Gradient 0.60

Multiscale Gradient Magnitude 0.58

Second Moment Matrix 0.57

Gradient Magnitude 0.56

Random 0.41
Table 1.F-measure comparison over edge detection algorithms.

Our non-optimized (combined Matlab and C++) imple-
mentation requires 3, 11, and 18 seconds for171 × 246,
481×321, and512×512 images respectively on a Pentium
4, 2.13GHz PC.

5. Fiber detection and enhancement

Our method is further extended to detect and enhance
elongated fibers. Fibers appear in many types of images,
particularly in biomedical imagery and airborne data. De-
tection of fibers can be difficult due to both imaging con-
ditions (noise, illumination gradients) and shape variations
(changes in widths, branchings). We propose a method that
uses edges, along with their sign (transition from dark to
light or vice versa) to highlight the fibers. Specifically, we
begin by detecting all edges in the image. We next mark
those edges as either “red” or “blue”, by classifying their
gradient orientation relative to a pre-specified canonical ori-
entation. We then construct two diffusion maps, one for the
red and the other for the blue edge maps, by convolving the
binary edge map with a gaussian filter. Finally, we multi-
ply the two diffusion maps to obtain the enhanced fibers.

This process is analogous to stochastic completion of con-
tours [13] with each edge point emitting particles to its sur-
roundings. The product of the diffusion maps reflects the
probability of beginning in one edge and ending in a neigh-
boring edge of opposite gradient sign. This process is quite
robust to varying fiber width and fiber branching, and al-
though many red and blue responses may appear in the im-
age, only those that can be paired are enhanced.

We applied our fiber enhancement process to fluorescent
images of nerve cells. Comparison of these cells under dif-
ferent conditions requires quantitative measurements of cel-
lular morphology, and a commonly used measure is the total
axonal length. Typically, a single experiment produces hun-
dreds of images, many of which may suffer from low signal
to noise ratio. Therefore, there is an obvious need for fast
and accurate automatic processing of such images. Using
our multiscale fiber enhancement method we identify the
branching axonal structures and measure their total length.
Figure10shows examples of images of nerve cells and their
enhanced axonal structures. The total axonal length was
further computed automatically from the enhanced images
and compared to a manual length estimation applied to the
original images. The two measures match with slight devia-
tion, see Table2. For this implementation we useα =

√
0.5

andβ = 0.0.

Manual estimation 11940 4467 3407 7347

Automatic estimation 11180 4106 3620 9092

Relative error (percents) -6.37 -8.08 6.25 23.75
Table 2.Measuring total axonal length: manual length estimation
vs. automatic length estimation (in pixel units), for the four left-
most images in Figure10.

6. Conclusion

We have presented an algorithm for edge detection suit-
able for both natural as well as noisy images. Our method
utilizes efficient multiscale hierarchy of responses measur-
ing the difference of oriented means of various lengths and
orientations. We use a scale-adaptive threshold along with a
recursive decision process to reveal the significant edges at
all scales and orientations and to localize them accurately.
We have further presented an application to fiber detec-
tion and enhancement by utilizing stochastic completion-
like process from both sides of a fiber. Our current method
identifies curved edges as concatenation of short straight re-
sponses. We plan to construct a direct framework to detect
curved edges. We further plan to extend our algorithm to
handle edges of varying widths and to estimate and incor-
porate local noise.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/�
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/�


Figure 9.Edge detection results. Top: original images. Middle: our results. Bottom: human-marked boundaries.

Figure 10.Neuron enhancement results. Top: original images acquired by light microscope. Bottom: enhanced neurons.
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