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1 Introduction

Despite their dizzying speed, modern supercomputers are still incapable of handling many most
vital scientific problems. This is primarily due to the scale gap, which exists between the
microscopic scale at which physical laws are given and the much larger scale of phenomena we
wish to understand.

This gap implies, first of all, a huge number of variables (e.g., atoms or gridpoints or pixels),
and possibly even a much larger number of interactions (e.g., one force between every pair of
atoms). Moreover, computers simulate physical systems by moving few variables at a time; each
such move must be extremely small, since a larger move would have to take into account all the
motions that should in parallel be performed by all other variables. Such a computer simulation
is particularly incapable of moving the system across large-scale energy barriers, which can each
be crossed only by a large, coherent motion of very many variables.

This type of obstacles makes it impossible, for example, to calculate the properties of nature’s
building blocks (elementary particles, atomic nuclei, etc.), or to computerize chemistry and
materials science, so as to enable the design of materials, drugs and processes, with enormous
potential benefits for medicine, biotechnology, nanotechnology, agriculture, materials science,
industrial processing, etc. With current common methods the amount of computer processing
often increases so steeply with problem size, that even much faster computers will not do.

Past studies have demonstrated that scale-born slownesses can often be overcome by multi-
scale algorithms. Such algorithms have first been developed in the form of fast multigrid solvers
for discretized PDEs [1], [2], [3], [4], [13], [15], [14]. These solvers are based on two processes:
(1) classical relaxation schemes, which are generally slow to converge but fast to smooth the
error function; (2) approximating the smooth error on a coarser grid (typically having twice the
meshsize), by solving there equations which are derived from the PDE and from the fine-grid
residuals; the solution of these coarse-grid equations is obtained by using recursively the same
two processes. As a result, large scale changes are effectively calculated on correspondingly
coarse grids, based on information gathered from finer grids. Such multigrid solvers yield linear
complexity , i.e., the solution work is proportional to the number of variables in the system.

In many years of research, the range of applicability of these methods has steadily grown, to
cover most major types of linear and nonlinear large systems of equations appearing in sciences
and engineering. This has been accomplished by extending the concept of “smoothness” in
various ways, finally to stand generally for any poorly locally determined solution component,
and by correspondingly diversifying the types of coarse representations, to include for instance
grid-free solvers (algebraic multigrid [7], [8], [9], [16]), non-deterministic problems ([10], [20],
[21], [11], [12]) and multiple coarse-level representations for wave equations [5].

It has been shown (see survey [29]) that the inter-scale interactions can indeed eliminate
all kinds of scale-associated difficulties, such as: slow convergence (in minimization processes,
PDE solvers, etc.); critical slowing down (in statistical physics); ill-posedness (e.g., of inverse
problems); conflicts between small-scale and large-scale representations (e.g., in wave problems,
bridging the gap between wave equations and geometrical optics); numerousness of long-range
interactions (in many body problems or integral equations); the need to produce many fine-level
solutions (e.g., in optimal control, design and data assimilation problems), or a multitude of
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eigenfunctions (e.g., in calculating electronic structures) or very many fine-level independent
samples (in statistical physics); etc. Since the local processing (relaxation, etc.) in each scale
can be done in parallel at all parts of the domain, the multiscale algorithms, based on such
processing, proved ideal for implementation on massively parallel computers.

To obtain even further generality, there emerge however two basic reasons to go much beyond
these multigrid methods. First, they cannot perform well for highly nonlinear cases, where
configurations cannot be decomposed into weakly-interacting local and non-local parts. Second,
for many systems, even attaining linear complexity is not good enough, since the number of
variables is huge. Such systems on the other hand are typically highly repetitive, in the sense
that the same small set of governing equations (or Hamiltonian terms) keep repeating itself
throughout the physical domain. This opens the way to the possibility of having, at the coarse
level too, a small set of governing equations that are valid everywhere, and that can be derived
from fine-level processing conducted only in some small representative “windows” (see below).

These two basic reasons point in fact in the same direction. Instead of relaxing the given
system of equations so as to obtain a smooth error that can be approximated on a coarse level,
one should use coarse level variables that are little sensitive to relaxation (e.g., representing
chosen averages, rather than a subset of individual fine-level values) and that represent the full
solution rather than the correction to any given current approximation. Such coarse variables
can be chosen (as described below) so that the coarse-level equations can be derived just by
local processing. We use the term “upscaling” for this type of direct (full-solution) transition
from a fine level to a coarser one. Such a transition is valid even in those highly nonlinear
cases where all scales interact with each other so strongly that correction-based multi-leveling
is inapplicable.

In fact, upscaling, under the name “renormalization”, was first introduced into exactly those
systems where all scales interact most strongly: systems of statistical mechanics at the critical
temperature of phase transition. The renormalization group (RG) method (see, e.g., [17], [18],
[19], [65], [66]) was developed contemporaneously with, but independently of the multigrid
method, its chief purpose having been to investigate the behavior of such critical systems at the
limit of very large scales. The RG method has thus mainly focused on analyzing, theoretically
and computationally, the fixed point of the group of successive renormalization steps, and various
universal asymptotic power laws associated with it. Little has been done to upscale systems
without a fixed point, which is the prevalent situation in many practical problems. This is
related to the fact that the RG computational efficiency remained very limited, due to the lack
of a systematic coarse-to-fine transitions, which is needed either for accelerating simulations at
all levels (as in multigrid solvers) and/or for confining them to small representative windows (as
described below).

Systematic Upscaling. Building on the complementary advantages of multigrid and RG
described above, Systematic Upscaling (SU) is a methodical derivation of equations (or sta-
tistical rules) that govern a given physical system at increasingly larger scales, starting at a
microscopic scale where first-principle laws are known, and advancing, scale after scale, to ob-
tain suitable variables and operational rules for processing the system at much larger scales.
Unlike classical RG, the SU algorithms include repeated coarse-to-fine transitions, which are es-
sential for (1) testing the adequacy of the set of coarse-level variables (thus providing a general
tool for constructing that set); (2) accelerating the finer-level simulations; and, most importantly
(3) confining those simulations to small representative subdomains (called windows) within the
coarser-level simulations. (SU was described briefly in [68] and at length in [69].)

Difference from ad-hoc multiscale modelling. Upscaling should not be confused with
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various methods of multiscale modelling (also called “multiscale simulation”) being developed
in several fields (e.g., materials science). Those methods study a physical system by employing
several different ad-hoc models, each describing a very different scale of the system. Their
basic approach is the fine-to-coarse parameter passing , in which data obtained from simulating
a finer scale model, often coupled with experimental observations, are used to determine certain
parameters of a larger scale model, regarding the latter as a coarse graining of the former. The
most basic feature missing in this approach (as in RG) is the accurate transition from coarse
levels back to finer ones, and the use of this transition as a systematic vehicle for choosing
an adequate set of coarse variables and for iterating between the levels to accelerate fine-level
calculations or restrict them to small windows. Successful as multiscale modelling methods
are in many cases, they lack generality, are often inapplicable (e.g., when the scales are not
widely separated) or inaccurate (based on questionable large-scale models), and involve much
slowdown due to large scale gaps. SU, by contrast, inherits from multigrid and RG general
and methodical procedures to construct and iteratively employ all intermediate scales and thus
attain slowness-free efficiency and fully-controlled coarse-level accuracy.

Other numerical upscaling methods. The research on numerical upscaling, i.e., precise
numerical derivation of coarse-level (e.g., macroscopic) equations from fine-level laws, has had of
course a long history. In particular it has been active in computational mechanics for at least 30
years. Many systems of “homogenization”, i.e., rigorous derivation of macroscopic (continuum
or discretized-continuum) equations from microscopic (either continuum, or discrete continuum,
or atomistic) laws have been advanced, first in the engineering literature and then in more
rigorous mathematical analyses.

Most widely developed are methods of asymptotic expansion, in particular multiple-scale
asymptotic expansion for periodic heterogeneous structures; see, e.g., [57], [58], [59]. For elasto-
dynamics of composite materials, high-order methods were developed, introducing effects such as
polarization, dispersion and attenuation of a single-frequency stress waves [56], [60]. Such expan-
sions for initial/boundary-value problems in periodic media were developed by Jacob Fish and
his group ([62], [63], [64]), who then extended the theory to discrete-state (atomistic) fine-scale
models [42], and then also to finite temperatures [43].

Asymptotic expansions, not assuming fine-scale periodicity but relying on vast scale sep-
arations, were developed for singularly perturbed systems of differential equations based on
rigorously derived averaging principles, both for deterministic and stochastic problems ([46],
[47], [48], [49] for example; see comprehensive survey in [67]). The usefulness of these theories
was limited since “it is often impossible, or impractical, to obtain the reduced equations in
closed form. . . This has motivated the development of algorithms such as projective and coarse
projective integration ([50], [51], [52]) within the so-called equation-free framework ([53], [54]).
In this framework, short bursts of appropriately initialized fine-scale simulations are used to
estimate on demand the numerical quantities required to perform scientific computing tasks
with coarse-grained models (time derivatives, the action of (slow) Jacobians, and, for the case
of stochastic coarse-grained models, the local effective noise drift and diffusivity [55]).” (Quoted
from [45].)

The developed method is in fact not entirely free of any equation. It actually tends to be
rather similar to the Heterogeneous Multiscale Method (HMM) [44], which numerically solves
continuum equations of a known form but with certain unknown local data (e.g., the stress - in
a fluid dynamics macroscopic model), finding the latter by performing atomistic simulations on
tiny subdomains, with constraints (e.g., the local average gradient) supplied by the macroscopic
model.
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The ”equation-free” and HMM methods require re-derivation of the macroscopic quantities
by running the microscopic model at each spatial gridpoint within each time step (with grid and
time step resolution fine enough for accurate macroscopic simulation). So they are not exactly
”upscaling” methods in the strict sense defined above. More important, such schemes would
usually require double scale separation as well as extensive work at each fine-level simulation.
Indeed, if the fine (temporal or spatial) step is hf , and the scale of desired coarse (macroscopic)
resolution is hc, there usually exists also at least one intermediate scale hi � hf at which the
equations homogenize (and equilibrate, in the stochastic case). Now hi must of course be much
smaller than hc for this multiscale processing to pay off. Moreover, one would typically need
at least O(h2

i /h2
f ) time steps (or iterations, in static or equilibrium problems) at each fine-level

simulation to reliably calculate the coarse coefficients in the HMM methods, and sometimes
even up to O(h2

c/h2
f ) such steps to capture the coarse-level derivatives needed in the equation-

free framework (unless one uses multigrid-like accelerations, which means introducing more
computational levels between hf and hi, or sometimes even between hf and hc).

A general approach for deriving coarse-level from fine-level equations, which does not require
scale separation, is based on interpolation. This was originally introduced in the multigrid
framework, including in particular in its nonlinear (FAS) version [2]. The approach has been
applied to the case of atomistic (not PDE) fine level, for example in the framework of the quasi-
continuum (QC) method, used in particular to derive coarse equations at subdomains where the
continuum equations break down (e.g., at the tip of a crack).

It is worth noting that early versions of the QC method had previously appeared in the
multigrid literature: the method of local refinements of the PDE discretization in which each
finer level locally corrects the equations of the next coarser level is part of the FAS approach
(see, e.g., Secs. 7–9 in [2]), and the particular situation in which the finest level is atomistic, is
described for example in Sec. 1.1 of [11].

As shown, for example by Fish and Chen [61], the efficiency of interpolation-based methods
depends critically on the interpolation scheme. This issue has in fact a long history in the
multigrid literature, starting with [37], [41], [7], [8], [9], [16], and all later papers on Algebraic
Multigrid (AMG). Still more general and accurate methods for deriving interpolations, based on
relaxed vectors and Bootstrap AMG (see Sec. 17.2 in [29]), or on adaptive smooth aggregation
[40], were developed in recent years.

The interpolation-based multiscale methods were extended to simple finite-temperature mod-
els in statistical mechanics ([10], [12], [38], [39], reviewed in Sec. 13.1 of [29]), showing the
feasibility of calculating thermodynamic limits (observable averages at system sizes tending to
infinity) at “statistically optimal” efficiency (achieving accuracy ε in O(ε−2) random number
generations!). However, attaining similar performance for the highly nonlinear models of sta-
tistical physics (involving inseparable interaction scales) by interpolation-based methods proved
impossible (as explained in Sec. 13.1 of [29]), which gave rise to the Renormalization Multigrid
(RMG) method ([6] or Sec. 13.2 of [29]), the forerunner of the SU methods described here.

In the SU method, no scale separation is assumed; in fact, small ratio between successive
scales can often be essential: it ensures slowdown-free computations that at each scale can be
confined to certain representative windows, each containing a moderate, bounded number of
variables.

Notice that SU does not depend on having a coarse level of continuum type (see examples
below). Moreover, unlike other approaches, SU is being developed also for non-local interactions
(see Sec. 6.1 below). Note as well that the SU coarsening can also be used for vast acceleration

4



of fine level calculations, sometimes even by just one modest coarsening step (e.g., with just 1:3
coarsening ratio: see Sec. 2.1 below).

A basic feature of SU is that coarsening is derived once for all . That is, the life of each window
is limited: once it has accumulated enough statistics (translated into coarser level equations) its
task is over. The total size-times-duration of all the windows serving a given system at a given
level depends only on the number of different local situations that can arise, not on the overall
size and duration of the system. This implies enormous potential savings not only in computer
resources, but also in human effort. Because, coarsened equations developed by one can be used
by others, possibly without ever returning to the fine level. One may, for example, just develop
the first level of coarsening a macromolecule (or even just part of it), thereby already providing
it with much faster simulations; another investigator can then build on this the next coarser
level (or add the coarsening of another part), and so on. The upscaling of an important physical
system can thus become a gradual and collaborative systematic endeavor.

The development of SU methods should provide necessary tools for surmounting extreme
computational bottlenecks in many areas of science and engineering, such as: statistical mechan-
ics, especially at phase transition; elementary-particle physics; electronic structure of molecular
systems (for deriving the inter-atomic force fields); molecular dynamics of fluids, condensed
matter, nano structures and macromolecules, including proteins and nucleic acids; materials
science; turbulent fluid dynamics; and global optimization of systems with multiple-scale energy
barriers.

Plan of this article. Section 2 outlines the basic procedures of the SU methodology, in
terms of examples from partial differential equations, molecular and macromolecular dynamics,
and statistical dynamics. It also reports some preliminary results. Section 3 gives more pre-
cise details of the derivation of coarse equations, using for illustration one particular example
(polymer in equilibrium). Section 4 describes the creation of windows and the algorithmic flow
between windows at various levels. Sec. 5 mentions some special situations, such as boundaries.
Sec. 6 is a brief survey of possible extensions of the SU methodology to deal with long-range
interactions, time-dependent systems, complex fluids, low temperatures and global optimiza-
tion in systems with multiscale attraction basins, and transition from quantum mechanics to
molecular dynamics.

2 Systematic Upscaling (SU): An outline

Local equations and interactions. Computationally we will always deal with a discrete
system, whose n variables (or unknowns) u1, u2, . . . , un will typically be either the discrete values
of functions (grid values, or finite elements, etc.), or the locations of particles. An equation in
the d-dimensional physical space (usually 1 ≤ d ≤ 4) is called local if it involves only O(1)
neighboring unknowns. A discretized partial differential equation, for example, is a system of
local equations. Similarly, an “interaction”, i.e., an additive term in an energy functional or
Hamiltonian H, is called local interaction if it involves only O(1) neighboring variables. In
equilibrium calculations we will usually assume H to already include the (kBT )−1 factor, so
that the probability density P (u) of each configuration u = (u1, u2, . . . , un) is proportional to
exp(−H(u)).

For simplicity of discussion we describe SU first for systems which are stationary or at
equilibrium, and such that their equations or interactions are local. We will however point out in
Sec. 6 extensions to long-range equations or interactions, and to dynamic and non-equilibrium
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systems.

Coarsening. Similar to multigrid, SU is based on two processes: The usual local processing
(relaxation in deterministic problems, Monte Carlo (MC) in stochastic ones) and repeated coars-
ening , creating increasingly coarser descriptions of the same physical system, with inter-scale
interactions to be described below. At each coarsening stage, one constructs from a current level
of description (the fine level) a coarser level, employing the following general principles.

To each fine-level configuration u = (u1, . . . , un) one defines (using the criterion below) a
unique coarse-level configuration Cu = uc = (uc

1, . . . , u
c
m), which is a vector with a reduced

number of variables; typically the scale ratio is 1.5 < n/m < 10 (except of course for problems
with widely separated scales, where the equations homogenize, or a renormalization fixed-point
emerges, already at some intermediate scale. Introducing additional computational scales is
then needed only between the finest scale and that intermediate scale. How to choose this fine-
to-coarse transition C is of course a central question, which we discuss in detail below, after
giving several examples and defining first the coarse-to-fine transition.

Examples of such fine-to-coarse transformations C:
(i) For discretized continuous (e.g., PDE) problems — each coarse variable is usually an

average of several neighboring fine variables. (See Sec. 5 for an example where averaging only
works only up to a certain scale, above which more elaborate variables should be added.)

(ii) For a simple polymer, which consists of a chain of n atoms at the three-dimensional
locations (u1, u2, . . . , un) — each coarse-level “atom” location uc

j is at the average location of q,
say, consecutive real atoms:

uc
j =

1
q
(uqj−q+1 + uqj−q+2 + · · ·+ uqj) , (j = 1, . . . ,m; m =

n

q
) . (1)

(iii) For a simple atomistic fluid, described by the positions u in space of its n molecules
— the coarse level variables are defined at the points of a lattice placed over the flow domain,
with each variable uc

j summarizing a property of the set of molecules around that lattice point
(e.g., their total mass, or density, total dipole moment, etc.). Or each uc

j may be a vector
which summarizes several such properties. At lower temperatures, as the fluid starts to solidify,
additional types of coarse variables must enter, accounting for larger-scale order parameters (see
Sec. 6.6).

(iv) For a lattice of Ising spins — each coarse variable is again an Ising spin, standing for
the sign of the sum of a block of fine-level spins.

Generalized interpolation. To any given coarse configuration U = (U1, . . . , Um), there
are generally many fine-level configurations u which are compatible with U (i.e., such that
Cu = U). The interpolation (transition from U to one specific fine configuration u) is created
by compatible Monte Carlo (CMC) (or compatible relaxation, in the deterministic case), i.e.,
by the local processing, restricted to configurations compatible with U . The interpolation is
completed once the CMC has practically reached its equilibrium (or the compatible relaxation
has converged).

For instance, in the case of polymer (Example (ii) above), if the coarse variables are defined by
(1), each step in a CMC would offer a simultaneous change of two consecutive atomic positions,
uk and uk+1, such that uk + uk+1 is kept unchanged (qj − q + 1 ≤ k ≤ qj − 1; 1 ≤ j ≤ m).

The CMC interpolation was first introduced for the case of lattice Ising spins, establishing
its fast equilibration [6].
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The general coarsening criterion. The fine-to-coarse transformation C is said to be ade-
quate if (and to the extent that) a compatible Monte Carlo that equilibrates fast (or a compatible
relaxation that converges fast) is available.

In our polymer example, for instance, if the polymer force field includes the usual bond
length, bond angle and dihedral (torsion) interactions, it turns out that the coarsening (1) is
adequate for q = 2 or 3, but a larger q yields much slower CMC equilibration. (This result makes
sense: at coarsening ratio q ≤ 3, the fixed coarse values uc

j implicitly nearly fix the dihedral
values, which determine the large-scale polymer configuration.)

In the framework of Algebraic Multigrid (AMG), the criterion of fast convergence of compat-
ible relaxation as a tool for choosing the coarse variables (introduced in [36]) is already used by
several groups. (Particularly useful is the fact that the rate of convergence of (suitably arranged)
compatible relaxation is an accurate predictor of the obtainable multigrid convergence rate; so
accurate in fact that it can be used to design and debug the AMG solver.)

A major problem in coarsening any system is to find a suitable set of coarse variables. The
above criterion gives a general and very effective tool for developing such a set. Importantly, a
coarsening that satisfies that criterion practically implies local dependence of every fine variable
on neighboring coarse variables, and hence the theoretical possibility to construct, just by local
processing, a set of “equations” (in the form of numerical tables) that will govern simulations
at the coarse level. How to go about this construction in practice is discussed in Sec. 3 below.

Moreover, in highly repetitive systems (defined above), this local construction of the coarse
equations need not be done everywhere: the coarse-level equations can iteratively be derived
by comparing coarse-level with fine level simulations, where the latter are performed only in
some relatively small windows (subdomains, on the boundaries of which the fine level is kept
compatible with the coarse level. See Sec. 4 below for details.)

Thus, the fine level simulations supply (or correct) the equations (or Hamiltonian) of the
next coarser level. On the other hand, the coarse level selects the windows where these fine-level
simulations should take place. A window is opened over a region where the coarse level has
detected local relations in a range for which fine level computations in previous windows could
not supply accurate equations (see more in Sec. 4). Iterating back and forth between windows
at all the levels quickly settles into a self-consistent multilevel equilibrium and compatibility;
as in multigrid, if the coarsening ratio n/m is not large, no slowdown should occur. More
important, at each level the computations need extend only over a collection of small windows,
whose number depends on the diversity of local situations, not on the size of the entire system.

2.1 Experimental results from the four simple examples mentioned above have already
revealed the very high potential of the SU approach. For instance, in Example (ii), in which
conventional simulations run into extreme slowdowns, even the single coarsening level (1), with
q = 3, already accelerates the simulation by at least two orders of magnitude, while accurately
reproducing all the relevant statistics (using the coarse Hamiltonian described in Sec. 3 below.
This result was obtained in computations devised by Dr. Dov Bai). The reason for this acceler-
ation is that this first coarsening already effectively averages over the attraction basins caused
by the local minima of the fine-level dihedral interactions.

Also, as mentioned, wide experience has been accumulated confirming the effectiveness of
the above general coarsening criterion in the special case of Algebraic Multigrid. The criterion
has also been essential in developing coarse variables for high-Reynolds flows (see Sec. 5 below).
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3 Derivation of coarse equations

Basic hypothesis: localness of coarsening. The solution to a system each of whose equa-
tions is local cannot be determined locally: it depends on all equations, near and far. However,
what can essentially be determined just from local information are coarser-level equations (or
interactions). More precisely: provided the coarse set of variables is adequate (satisfying the
above general coarsening criterion), a coarse system of local equations (interactions) equivalent
to the fine-level system (in the sense that a coarse solution/equilibrium would yield the fine
solution/equilibrium by a brief compatible local processing) is obtainable locally (i.e., by pro-
cessing only a fine-level neighborhood comparable in size to the typical distance between coarse
variables) with an error that decreases exponentially as a function of the total work, assuming
this work is invested to suitably enlarge the number of variables involved in each coarse equation
and increase the size of the fine-level neighborhood and the number of iteration involved in the
local processing. This hypothesis has emerged from the long and diverse experience with both
RG and multigrid solvers.

The actual derivation of the coarse equations, incorporating RG-type techniques, is based
on fine-level simulations in representative regions. The simulations give a sequence of fine-level
configurations u, which is readily translated into a sequence of coarse configurations uc = Cu.
There exist several approaches as to how and in what form to derive governing coarse-level rules
from such a sequence. We briefly describe two basic approaches with which some experience has
already been gained (recommending mainly the second of them).

3.1 Dependence table. In this (older) approach, the sequence of coarse configurations
calculated by fine-level simulations is used to accumulate statistics of the dependence of each
coarse variable (the “pivot”) on a certain set of neighboring coarse variables (the “neighbor-
hood”). For this purpose the set of possible neighborhood configurations is partitioned into bins
(described below). In fully deterministic problems, the average value of the pivot in each bin
is accumulated and then tabulated. From such a table, the pivot value for any given neighbor-
hood configuration can be interpolated, which is all one needs in order to operate (e.g., perform
Gauss-Seidel relaxation) at the coarse level. In stochastic problems, additional statistics (e.g.,
variance) of the pivot over each neighborhood bin are tabulated, enough to enable accurate
Monte Carlo simulations at the coarse level. Successful experience with simple versions of this
approach, including the cases of Examples (iii) and (iv) above, are reported in [6], [24], [25] and
[26].

The partition into bins should be done in terms of neighborhood functionals S1, S2, . . . ,
roughly ordered in decreasing order of their influence on the pivot. For example, S1 can be the
sum of the values at the nearest neighbors to the pivot; S2 — the sum of the next-nearest neigh-
bors; S3 — the variance in the set of nearest-neighbor values; etc. The space S = (S1, S2, . . .) is
divided into (very roughly equi-probability) bins. The number of bins need not be very large; it
only needs to allow sufficiently accurate interpolation to any probable value s ∈ S. The interpo-
lation is usually done by a polynomial whose integral over each bin near s yields the statistics
accumulated at that bin; the interpolation accuracy can of course deteriorate with decreasing
probability of s.

The construction of the space of functionals S and its binning should be guided by physical
insight. It need not be very particular: many different choices would be adequate, due to
the interdependence between neighborhood functionals. Still, the construction will usually be
cumbersome. Therefore, for most models, the next approach seems preferable, so we describe it
in a greater detail.
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3.2 Coarse Hamiltonian. In this approach the sequence of coarse configurations is used to
calculate averages of quite many coarse-level observables O1, O2, . . . , Oµ. Denote the average of
Oi by 〈Oi〉f , subscript f indicating that this average of the coarse observable has been calculated
in the fine-level simulations. The coarse level itself is intended to be governed by a (yet to be
calculated) Hamiltonian-like functional Hc(uc), that is, the probability of a coarse configuration
uc will be proportional to exp(−Hc(uc)). For any given approximate Hc, one can run simulations
at the coarse level during which 〈Oi〉c, the average of Oi according to Hc, can be calculated.
Our first aim is to construct Hc such that 〈Oi〉c = 〈Oi〉f , (i = 1, . . . , µ).

For this purpose Hc is written in the general form

Hc(uc) =
K∑

k=1

akHk(uc) , (2)

where each Hk is a known functional of uc (see examples below) and {ak} is a set of coefficients
that need to be found. A crude approximation to Hc, possibly with a reduced number of terms
(reduced K), can inexpensively be obtained from small-scale fine-level calculations assuming in-
dependence of various quantities (as in the example below). The approximation is then improved
in few Newton-like iterations, during which additional terms may be added to Hc (increasing
K). Specifically, in each iteration Hc is changed by adding to it δHc =

∑
k δakHk. Using the

first-order relation (used already by K.G. Wilson and R.H. Swendsen; cf., e.g., [27])

δ〈O〉 = 〈O〉〈δHc〉 − 〈O · δHc〉 , (3)

one gets a system of µ equations

K∑
k

(〈Oi〉〈Hk〉 − 〈OiHk〉)δak = 〈Oi〉f − 〈Oi〉c , (i = 1, . . . , µ) (4)

where 〈Oi〉, 〈Hk〉 and 〈OiHk〉 are averages calculated during the fine-level simulations. (Cor-
responding averages are also calculated in the coarse-level simulation, for a purpose explained
below.) the corrections {δak} at each iteration are calculated to satisfy (4) best, in a least-square
sense. We choose for this purpose enough observables: µ > K. Usually, the set of observables
{Oi}i will include H1,H2, . . . ,HK and some others. Then Hc is replaced by Hc + δHc and if
this change is not small enough, another iteration is performed with the new Hc.

These Newton-like iterations converge fast. Having converged, the relation 〈Oi〉c = 〈Oi〉f is
satisfied for i = 1, . . . , µ, but possibly not for observables which were not included in the process.
To check the accuracy of the calculated Hc, we therefore calculate the discrepancy 〈O〉f− =
〈O〉c for many additional observables, in particular for all the “second moment”, or product
observables OiHk, (i = 1, . . . , µ; k = 1, . . . ,K), whose averages, needed in (4), have anyway
been calculated. An observable O for which the discrepancy 〈O〉f − 〈O〉c remains particularly
large can be added to the list of Hamiltonian terms (increasing K) to facilitate decrease of
this discrepancy in the next iterations. Due to the inter-dependence of observables, obtaining
in this way accurate reproduction of the observables that have had the largest discrepancies
will usually cause the discrepancies to sharply decrease in other observables as well, including
still-higher-moment observables. The iterations continue as long as all such observables exhibit
satisfactorily small discrepancies.

Example. A test of the coarse Hamiltonian approach has been carried out with the polymer
case (Example (ii) in Sec. 2), employing a united-atom model of polymethylene taken from [28],

9



using the coarsening (1) with q = 3. (A detailed description, but with q = 4, has appeared in
[22].) The given fine-level Hamiltonian in this case is the sum of bond lengths, bond angles,
bond dihedrals (torsions) and Lennard-Jones interactions. Similarly, the first approximation to
Hc is chosen in the form

Hc(uc) =
∑

i

F1(|ri − rr+1|) +
∑

i

F2(θi) +
∑

i

F3(τi) +
∑

|i−j|>2

F4(|ri − rj |) , (5)

where ri = uc
i is the location of the i-th coarse “atom”, |ri − ri+1| is the distance between two

successive coarse “atoms”, θi is the angle (ri−1, ri, ri+1), τi is the torsion (ri−1, ri, ri+1, ri+2), i.e.,
the angle between the plane spanned by (ri−1, ri, ri+1) and the one spanned by (ri, ri+1, ri+2),
and F4 is a Lennard-Jones-like interaction. Each of the initially-unknown functions F` can be
expanded in the form

F`(ξ) =
∑

j

a`,jwj(ξ) , (` = 1, 2, 3, 4) (6)

with unknown coefficients a`,j and known basis function wj(ξ); e.g., local basis functions (one-
dimensional finite elements). Upon collecting (over the relevant

∑
i in (5)) all the Hamiltonian

terms that include the same unknown a`,j , the coarse Hamiltonian (5) obtains the general form
(2).

A reasonable first approximation to F4 is the given Lennard-Jones interactions, multiplied by
q2. A first approximation to F1 (similarly: F2, F3) can be calculated by fine-level simulation of a
rather short polymer chain (e.g., n = 24 and m = 8) from the bare distribution of the distances
{|ri − ri+1|}m−2

i=2 , omitting the exceptional distances at the ends (i = 1 and i = m − 1), for
which a different function F1 may separately be calculated. These first approximations ignore
all correlations between the internal coordinates ({|ri − ri+1|}, {θi} and {τi}). The iterations
described above will then automatically correct for those correlations, introducing on the way
some new explicit correlation terms into Hc (increasing K by adding “second-moment” terms as
described above). With the improved Hc one can then make simulations at the coarse level with
much longer chains (e.g., n = 120) and further improve Hc by making additional iterations, now
making the fine-level simulations in windows within that longer chain (see Sec. 4). Then Hc can
be similarly used to derive Hamiltonians at still coarser levels, with simulations on still longer
chains. The longer chains may produce new situations (e.g., contact points due to folding) that
require some new, window-within-window calculations at all finer levels to further correct Hc.
The formulation is very flexible, allowing the introduction of new Hamiltonian terms to account
for new situations (see next).

4 Window Developments

Usually the computation starts in a rather small finest-level domain, with some artificial bound-
ary conditions. For example, in the case of atomistic fluids (Example (iii) above), one can start
with several hundreds (in two-dimensional problems) or several thousands (in 3D) particles, with
periodic boundary conditions, where the period is chosen so that the fluid has its known average
density. Similarly, in the case of discretized PDE problems (e.g., a fluid satisfying discretized
Navier-Stokes equations), one can start with a grid of several hundreds (in 2D) to several thou-
sands (in 3D) gridpoints, with periodic boundary conditions. In the polymer case, one can start
with a short chain, as mentioned above.

¿From the computations in those small domains, one derives the first approximation to the
first-coarse-level equations (or Hamiltonian), as in the example above. Being coarser, the new
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level then allows inexpensive calculations in a much larger domain. Note, however, that these
computations in a larger domain are likely to encounter situations not accounted for by the
initial small-domain fine-level simulations. For instance, the density fluctuations in the large
domain can be much larger than in the small domain, creating regions with densities outside the
ranges that have been simulated (or that have accumulated enough statistics) at the fine level.
Similarly, in the polymer example, the short initial chain may well have lacked folding situations
typical to longer chains. To obtain more accurate coarse equations in such new situations, more
fine-level small-domain calculations should be done.

Some of the needed additional calculations could in fact have been done in advance. Namely,
several small-domain calculations could initially be launched, independent of each other, to
simulate for example several different average densities, or several different mixtures of atomic
species or chain elements. However, it is difficult to anticipate in advance all the different local
situations that will arise. So, generally, much of the needed additional fine level simulations
will be carried out “upon demand”, in regions where the coarse level encounters new situations,
and they will be carried out as fine level windows within the coarse level simulation. This has
also the advantage of giving these simulations more realistic boundary conditions (for fluids), or
more realistic folding situations (for polymers), etc.

A window is created by replacing a certain coarse subdomain (where new situations have
arisen) by a fine-level patch (including again several hundreds to several thousands degrees of
freedom). On the boundary of that patch the fine-level simulations are kept compatible with
the coarse simulations using the generalized interpolation described above. As in Sec. 3 above,
the fine simulation will give rise to (or correct) the coarse equations characteristic to the refined
subdomain.

The coarse-level equations derived in the window can of course be used outside that window’s
subdomain, wherever similar conditions exist. Also, the window may be shut off (returning to
pure coarse level simulations at that subdomain) as soon as it has accumulated enough statistics
to make the derived course equations as accurate as desired.

The process can of course be recursive: The coarse-level simulations can be used to construct
equations for a still coarser level, which will be simulated in a still larger domain, possibly
creating, upon encountering additional local conditions, new windows of the first coarse level,
with new fine-level windows inside them. And so on.

5 Some Special Situations

Various special situations require special or modified coarse-level equations (or additional terms
in Hc). In the case of PDEs, special coarse equations would usually be needed near boundaries,
with different equations near different types of fine-level boundary conditions.

In some cases, new types of variables need be introduced to satisfy the above general coars-
ening criterion. For example, in Navier-Stokes simulations of incompressible two-dimensional
fluids, at fine enough scale suitable coarsening can be defined in terms of averages of the vorticity
function ω. But this coarsening is no longer adequate for large time steps and/or large spatial
meshsizes that do not sufficiently resolve the rotation of the flow in strong vortexes. It has been
shown that suitable coarsening (satisfying the above coarsening criterion) at such scales can
be constructed by decomposing the vorticity function into the sum of idealized vortexes (radial
local functions that satisfy the steady-state Euler equations) and the averages of a remaining
low-vorticity part (work in progress, in collaboration with Jim McWilliams, Boris Diskin and
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Young Ju Lee).
In the polymer case described above, each of the coarse-level functions Fl should have a

separate special expansion (6) for the internal-coordinates near the ends of the chain. Hence
these coordinates will have different sets of unknowns alj, which thus cannot be collected together
with the terms arising away from the ends. Also, at large scales, special situations arise when
the polymer folds upon itself, bringing into proximity atoms that are not neighbors along the
chain. Special terms should then be added to Hc that depend on the distances between such
atoms and on local angles created by them.

6 Extensions in Brief

Various important extensions of the upscaling techniques, to diverse physical situations, can be
developed. The following principal directions have already been preliminarily considered.

6.1 Long range interactions (e.g., between electrostatic charges) can each be decomposed
into the sum of a smooth interaction and a local one (“smooth” and “local” being meant on the
scale of the next coarse level; all familiar physical interactions can be decomposed this way; see
[23] and examples in [30], [33] and [32]). To any desired accuracy, the smooth part can directly
be represented at the coarse level, e.g., by aggregated charges and dipoles moving with the
coarse level “atoms” (in Example (ii) above) or by (high order) adjoint interpolation of charges
to the coarse-level lattice (in Example (iii)). The local part is essentially transferred, together
with all other local interactions, using the fine/coarse iterations described above. Effectively,
the amount of work invested per charge involves only calculating its local interactions, and, even
more importantly, only charges within selected windows need be treated. It can be shown that
this is possible due to the smoothness of the non-local interactions, which makes them minimally
sensitive to the local MC moves, especially when the latter are explicitly designed to conserve
certain moments of the charge distribution.

6.2 Dynamical systems. Generally, for time-dependent systems, the equilibrium coarsen-
ing criterion of Sec. 3.1 is replaced by the requirement that the fine-level configuration (if its
evolution is stable) or its ensemble statistics (in the case of instability) at any given time can
fully be recovered from the coarse configurations at a small number of previous time steps. De-
pendence tables (e.g., in kinetic Monte Carlo computations) have been derived in the form of
flux dependence on both current-time and previous-time neighboring coarse variables [34]. A
general computational criterion has been formulated for the size of the time steps to increase
with the spatial coarsening level, so as to maintain full efficiency. A Hamiltonian-like functional
that governs every time step can also be developed analogously to the one described in Sec. 3.

For Hamiltonian systems (e.g., corresponding to Examples (ii) and (iii) in Sec. 3.1), the
multiscale structure allows a natural combination of temperature-accurate statistical simulation
at small scales with time-accurate dynamics at large scales. Assuming that after any given time
interval the fine-scale degrees of freedom settle into a local equilibrium slave to the coarse-level
averages (where that level increases with the size of the time interval), the general equilibrium
criterion for choosing the coarse variables (see Sec. 2) still directly applies. Large time steps,
based on implicit discretization of Newton law, can then be made, using a multigrid-like solver
where the relaxation at fine levels is replaced by CMC (cf. Sec. 14.8 in [29]). This approach
yields two benefits in performing very large time steps: firstly, it allows much easier handling of
local minima. Secondly, it avoids the killing of highly-oscillatory modes (those vibrations that
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are not resolved by the time step), which would occur if the implicit equations of a large time
step were imposed at all scales. Instead, these modes assume stochastic amplitudes according to
their equilibrium probability distribution. The desired temperature is introduced very directly
in this way, avoiding the need for fabricating Langevin stochastic forces.

Another possible approach, for fluids, is to first develop at equilibrium a coarse-level Hamil-
tonian Hc(uc) such that the relation Probability(uc) ∼ exp(−Hc(uc)/kBT ) will simultaneously
hold for a full range of temperatures T . (This can be achieved by adding several moments
(Hc)m to the list of observables (Oi) used in (4), and constructing a joint Hamiltonian (see
below) for different temperatures in the range of interest). Then use Hc in Newtonian dynamics
at the coarse level, where effective coarse-level masses (and their possible dependence on the
coarse coordinates) are determined by comparing (in windows of fine-level dynamic simulations)
coarse-level accelerations with the gradient of Hc.

Still another approach for fluids, is a Boltzmann-type upscaling in the 6D space of positions
and velocities. Starting simulations at the individual-particle level, increasingly coarser spatial
levels will describe velocity distributions at progressively higher resolutions.

6.3 Stochastic coarsening. Our studies (e.g., [34]) have shown that averaging upon coars-
ening should often better be stochastic. The added stochasticity is important to create smoother
coarse dynamics, hence simpler dependence table or easier Hc, especially for a fine level with
discrete-state (e.g., integer-valued) variables or highly oscillating Hamiltonian. One general way
is to modify a deterministic averaging (or anterpolation — the adjoint of interpolation) by adding
to each coarse variable a small increment, where the field of increments is in equilibrium gov-
erned by a Hamiltonian-like functional Hp. A corresponding CMC process has been developed,
and the general coarsening criterion then effectively checks that Hp has been properly designed,
i.e., so that it prohibits increment fields that correspond to long-range moves.

6.4 Joint Hc. The same coarse functional Hc should sometimes simultaneously satisfy {<
Oi >c =< Oi >f}i for several different MC situations, such as: (a) under different external
fields; (b) at different temperatures (cf. Sec. 6.2); (c) in different energy basins (cf. Sec. 6.6).
Generally, this can be achieved by adding in (2) terms Hk that are particularly sensitive to the
differences between the different simulated situations.

6.5 Complex fluids. More elaborate coarse Hamiltonians are needed for fluids with more
complex molecules of one or several species, such as water with methanol, or glycerol, etc. A
gradual construction can then be planned, starting for example with Hc constructed for atomistic
equilibrium in a periodic domain containing only two molecules. Adding then to the simulation
one molecule at a time, the coefficients of Hc are updated by (4), with additional terms Hk that
correspond at each iteration to correlation observables that are still ill approximated.

6.6 Low temperatures (example). At high temperatures, the coarse variables for a simple
fluid in equilibrium are gridpoint values, each standing for some local averaging of m(x), the
masses m of particles at positions x = (x1, x2, x3) near the gridpoint. At lower temperatures,
as the fluid starts to crystallize, roughly with periods u(`) = (u(`)

1 , u
(`)
2 , u

(`)
3 ), (` = 1, 2, 3), say,

three new coarse-level fields should enter, standing for local averaging of exp(2πiw(`)x) ∗m(x),
(` = 1, 2, 3), where w(`) · u(`) ' δk`. If the crystal is perfect and w(`) are exactly known, these
coarse variables will be constants. When w(`) are only approximate, these variables will oscillate
smoothly. Similar averaging at the next coarser levels will then describe these oscillations,
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effectively correcting the erroneous w(`). If the crystal is not perfect, meaningful averaging of
this type will persist only up to a certain scale; usually, the lower the temperature the larger
that scale (See Sec. 14.7.3 in [29]).

Also upon lowering the temperature, energy barriers emerge at increasingly larger scales. By
insisting on constructing, level after level, joint Hc (see Sec. 6.4), statistically correct transitions
between different energy basins can efficiently be simulated.

6.7 Multiscale annealing. Thus, as a system is gradually cooled, increasingly larger-scale
degrees of freedom are identified. This identification of increasingly larger collective moves makes
such a computation extremely more effective than simple simulated annealing [35] for minimizing
the energy (the limit T → 0), especially in the physically common situation of multiscale nested
attraction basins. The multiscale annealing may provide efficient solvers to very difficult global
optimization problems. (See more in Sec. 18.2 in [29], and [31].)

6.8 Coarse-level computability of fine observables. Often, an observable of interest is
not directly expressed in terms of the coarse-level variables. We have developed a general proce-
dure (similar to Sec. 3.2) for computing a functional dependence of a quantity of interest upon
the coarse variables, based on suitable statistics accumulated during the fine-level simulations.

6.9 Determinism and stochasticity. The discussion above is written mainly in terms of
stochastic systems, but can be extended to deterministic ones. Moreover, a stochastic system
at the fine level often yields a deterministic system at large enough scales. The opposite exists
too: A deterministic fluid flow at the viscous scale acquires stochastic features at the large scales
reigned by turbulence. Similarly, a particle system governed by Newtonian dynamics can give
rise to various stochastic developments at different scales. The coarsening approaches described
above can accommodate such transitions.

6.10 Upscaling from quantum mechanics to molecular dynamics. The electronic
distribution of a molecular system with N valence electrons can be approximately computed
by solving the Kohn-Sham equations. (This involves the calculation of N eigenfunctions of a
Schroedinger operator, whose potential depends on the eigenfunctions. Very efficient multigrid
is developed for this task; see Sec. 9 in [29].) It is estimated that such calculations can solve suf-
ficiently large systems to enable upscaling to molecular dynamics (MD) or molecular equilibrium
(ME), ie., derivation of the MD or ME force fields. The coarse-level variables in this upscaling
are quite obviously the nuclear positions. The force field tables for ME calculations, for example,
can iteratively be derived by comparing the ME simulations with Kohn-Sham solutions, where
the latter need be computed only in relatively small windows. This is similar to the derivation
of the coarse-level macromolecular force field described in Sec. 3.2.

An even more intriguing possibility is the attempt to use the SU approach to derive the
molecular force fields directly from the fundamental, high-dimensional equations of quantum
mechanics, using Feynman’s path integrals, as sketched in [70].
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