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An efficient parallelizable multigrid framework for the simulation of elastic solids
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2 Background9

We review certain fundamental concepts of elasticity theory, ini-10

tially focusing on a static linear elasticity formulation, followed by11

a general outline of a multigrid solver for this elliptic problem.12

2.1 Linear elasticity13

We represent the deformation of a elastic volumetric object using14

a deformation function φ which maps any material point X∗ of15

the undeformed configuration of the object, to its position x∗ in16

the deformed configuration, i.e. x∗ = φ(X∗). For simplicity, we17

will use the symbol φ to denote both this deformation function, as18

well as the deformed position of a material point as φ∗ = φ(X∗).19

A deformation of an object gives rise to elastic forces aiming to20

restore the object to an equilibrium configuration [Bonet and Wood21

1997]. These forces are analytically given by the divergence form22

f = −∇TP or, componentwise fi = −
∑

j
∂jPij. (1)

where P is the first Piola-Kirchhoff stress tensor. We note that the23

partial derivatives in this and all subsequent formulas are taken with24

respect to the material (undeformed) coordinates. The stress tensor25

P is computed from the deformation map φ; the analytic expres-26

sion that defines the dependence of P on φ, known as the constitu-27

tive equation, is an instrinsic property of every elastic material.28

We will henceforth adopt the common conventions of using sub-29

scripts after a comma to denote partial derivatives, and omit cer-30

tain summation symbols by implicitly summing over any right-31

hand side indices that do not appear on the left-hand side of a32

given equation. Consequently, equation (1) is compactly written33

as fi = −Pij,j . The constitutive equation of linear elasticity is34

P = 2µε+ λtr(ε)I or Pij = 2µεij + λεkkδij (2)

In this equation, µ and λ are the Lamé parameters of the linear35

material, and are computed from Young’s modulus E (a measure36

of material stiffness) and Poisson’s ratio ν (a measure of material37

incompressibility) as µ = E/(2+2ν), λ = Eν/((1+ν)(1−2ν)).38

Also, δij is the Kronecker delta, ε is the small strain tensor39

ε = 1
2
(F + FT )− I or εij = 1

2
(φi,j + φj,i)− δij (3)

and F is the deformation gradient tensor, defined as Fij = φi,j .40

Using (1,2,3) we derive the differential equation of linear elasticity41

fi = −µφi,jj − (µ+ λ)φj,ij = Lijφj (4)

In this equation L = −µ∆I− (µ+λ)∇∇T is the partial differen-42

tial operator of linear elasticity. A static elasticity problem amounts43

to determining the deformation map φ that leads to an equilibrium44

of the total forces on a deformable object, i.e. Lφ + f ext = 0,45

where f ext are the external forces applied on the object. Substitut-46

ing f = −f ext, the static elasticity problem becomes equivalent to47

the linear partial differential equation Lφ = f .48

2.2 Multigrid correction scheme49

Multigrid techniques have been predominatly targeted towards el-50

liptic partial differential equations, such as the preceeding formu-51

latin of elasticity. Although their is a broad gamut of multigrid52

cycles and schemes, the overall philosophy is well reflected in the53

multigrid V-cycle correction scheme which will be described in this54

section. Alternative schemes will be discussed in section 13.55

Multigrid methods are based on the concept of a smoother which56

is a procedure resigned to smooth, and at the same time reduce the57

magnitude of the residual r = f − Lφ of the differential equa-58

tion, by modifying the current estimate of the unknown function59

φ. For example, if the differential equation in question has been60

discretized into a system of linear equations, Gauss-Seidel or Ja-61

cobi iteration could be two candidates for a simple smoother. An62

inherent property of elliptic systems is that a smooth distribution63

of residuals generally implies a certain degree of smoothness in the64

error e = φ − φexact as well, although a careful discretization65

is often needed to guarantee that this property is reflected in the66

discrete form of the problem. Smoothers are typically simple, lo-67

cal and relatively inexpensive routines, which are quite efficient at68

eliminating high frequencies of the residual (and, as a consequence,69

of the error). Nevertheless, once the high frequency component of70

the error has been eliminated as a result of a few applications of the71

smoother, subsequent iterations are characterized by rapidly decel-72

erated convergence towards the solution. Multigrid methods seek73

to remediate this effect of smoother stagnation, using the smoother74

as a building block to construct a solver that achieves constant rate75

of convergence towards the solution, regardless of the prevailing76

frequencies of the residual or error. This property is acomplished77

by observing that any lower frequency error that persists after a78

few smoothing iterations will appear to be higher frequency if the79

problem is resampled using a coarser discretization step. By transi-80

tioning to ever coarser discretizations the smoother retains it ability81

to make significant progress towards the solution of the problem.82

The components of a multigrid algorithm are:83

• The discretization of the continuous operator L at a number84

of different resolutions, denoted as Lh,L2h,L4h and so on.85

• The Smoothing subroutine, defined at each resolution.86

• The Prolongation and Restriction subroutines. These im-87

plement an upsampling and downsampling operation respec-88

tively, between two different levels of resolution.89
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• An exact solver, used for solving the partial differential equa-90

tion at the coarsest discretization resolution. Any reasonable91

solver may be used, as the small size of the coarsest problem92

is expected to lead to a negligible runtime for this subroutine.93

Table 1 Multigrid Correction Scheme – V(1,1) Cycle
1: procedure MULTIGRID(φ,f , L) . φ is the current estimate
2: uh ← φ, bh ← f . total of L+1 levels
3: for l = 0 to L−1 do
4: Smooth(L2lh,u2lh,b2

lh)
5: r2lh ← b2

lh − L2lhu2lh

6: b2
l+1h ←Restrict(r2lh)

7: u2l+1h ← 0
8: end for
9: Solve u2Lh ← (L2Lh)−1b2

Lh

10: for l = L−1 down to 0 do
11: u2lh ← u2lh+Prolongate(u2l+1h)
12: Smooth(L2lh,u2lh,b2

lh)
13: end for
14: φ← uh

15: end procedure

Table 1 gives the pseudocode for a V(1,1) cycle of the Multi-94

grid correction scheme, Notably, this description does not pre-95

sume a specific discretization, or a particular implementation of96

the smoothing, restriction or prolongation operators. The following97

sections detail our specific implementation of these components,98

and the factors that motivated these design decisions.99

3 Discretization100

Our method uses a staggered finite difference discretization on uni-101

form grids. This is a familiar concept in the field of computational102

fluid dynamics (e.g. [Fedkiw et al. 2001]) where staggered finite103

difference methods are commonplace. In contrast, these formula-104

tions are less widespread in the simulation of solids, especially for105

computer graphics applications, where unstructured meshes cou-106

pled with finite element or mass-spring methods are more common.107

This trend is generally justified by the all-around geometric and al-108

gorithmic versatility of these formulations. Nevertheless, finite dif-109

ference based approaches to elasticity have been investigated [Ter-110

zopoulos et al. 1987; Terzopoulos and Fleischer 1988], and a num-111

ber of authors [Müller et al. 2004; James et al. 2004; Rivers and112

James 2007] have turned to regular grid representations for reasons113

of efficiency, even for discretizations other than finite differences.114

Regular vs. Unstructured grids Our main motivation for using115

a discretization based on regular grids, is avoiding the storage and116

access overhead of an unstructured mesh. Consider the example of117

a deformable model, discretized using 100K vertices. Representing118

the state (e.g. nodal positions) of this model would require 1.2MB119

of storage, using single-precision. As a rule of thumb, a tetrahedral120

representation using the same number of vertices would typically121

have more than 400K tetrahedra and require at least 6.4MB of stor-122

age to represent the mesh alone. In a parallel, streaming computing123

platform, this explicit representation of topology would compete124

with the representation of the state variables for limited cache and125

bandwidth resources. Additionally, unstructured meshes generally126

require indirect memory access or scatter-gather mechanisms which127

may lead to suboptimal utilization of the available bandwidth. Fur-128

thermore, uniform grids allow the use of constant stencils for the129

restriction and prolongation operations (and in some cases, for the130

discrete PDE operator Lh itself), whereas this data would have to131

be precomputed and streamed from memory in the case of unstruc-132

tured grids. In section 12 we give further details on the working set133

size reductions enabled by our uniform discretization. Of course,134

a different measure of comparison should be established between135

uniform grids and unstructured, yet highly adaptive meshes, a topic136

discussed in more detail in section 13. Overall, our approach deliv-137

ers very good performance at high resolution levels that compensate138

for the lack of a conforming or adaptive geometry.139

Finite differences vs. Finite elements In principle, either fi-140

nite difference or finite element discretizations would have been141

viable options for our system, assuming that either method would142

be used with a regular grid. Our framework is based on finite differ-143

ences as this method enables us to obtain a sparser, more compact144

discrete system of equations. This property enables computational145

savings and more efficient utilization of resources such as mem-146

ory bandwidth and stream buffers. In 3D, for example, each of the147

equations of linear elasticity Li = −µ∂jj − (µ + λ)∂ij can be148

discretized to second-order accuracy using a stencil of 15 nonzero149

coefficients. For comparison, the finite element discretization of150

[Kazhdan and Hoppe 2008] yields 25 nonzero coefficients per equa-151

tion for the much simpler 2D Poisson problem. Discretizing the 3D152

linear elasticity equations using trilinear finite elements and 8-point153

Gauss quadrature would typically require 81 nonzero coefficients154

per equation. Care needs to be taken however since certain use-155

ful properties of finite elements, such as symmetry and convenient156

treatment of certain boundaries, are not automatically guaranteed157

in a finite difference scheme. A significant fraction of our paper is158

dedicated to the implementation strategies necessary to retain these159

desired properties within our finite diffence scheme.160

Staggered vs. Collocated grids The deformation map φ is a161

vector-valued function of the material coordinate vector X . Thus162

φ(X)=(φ1(X), φ2(X), φ3(X)) where each φi is a scalar-valued163

function. When discretizing these quantities, it would be most intu-164

itive to use collocated grids, where all components of φ are speci-165

fied at the same location, for example at the nodes of a background166

grid. Unfortunately, for the equations of elasticity such a dis-167

cretization may result in grid-scale oscillations, especially for near-168

incompressible materials. A comprehensive study of the causes and169

consequences of this behavior specifically for the equations of elas-170

ticity is beyond the scope of our current exposition. It is however171

qualitatively analogous to an artifact observed in the simulation of172

fluids with non-staggered grids, where spurious oscillations may be173

left over in the pressure field after a Poisson solver has been used174

to project a velocity field to its divergence-free component. In the175

context of multigrid methods, such oscillatory discretizations can176

be far more problematic, as they may not respect the fundamental177

property of elliptic PDEs that a low residual implies a smooth error,178

requiring more elaborate and expensive smoothers to compensate.179

We avoid this issue altogether by adopting a staggered discretiza-180

tion, which is free of this oscillatory behavior, and aligns naturally181

with the rest of our theoretical formulations.182

Our staggered discretization is illustrated in Figure 2. A back-183

ground cartesian grid serves as a reference for the placement of the184

unknown variables. Each component φi of the deformation func-185

tion φ is stored in a separate cartesian lattice, which is offset from186

the nodes of the background reference grid. Specifically, φi vari-187

ables are stored at the centers of the background grid faces perpen-188

dicular to the cartesian axis vector ei. For example, φ1 values are189

stored on grid faces perpendicular to e1, i.e. those parallel to the190

yz-plane. The same strategy is followed in 2D, where faces of grid191

cells are now identified with grid edges, thus φ1 values are stored192
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Figure 2: Staggering of variables in 2D(left) and 3D(right). Equa-
tions L1,L2,L3 are also stored on φ1,φ2,φ3 locations respectively.

at the center of y-oriented edges, and φ2 values at the center of x-193

oriented edges. We proceed to define the discrete approximations194

to first-order derivatives using central finite differences195

D1u[x, y, z] = u[x+ 1
2
hx, y, z]− u[x− 1

2
hx, y, z]

D2u[x, y, z] = u[x, y+ 1
2
hy, z]− u[x, y− 1

2
hy, z]

D3u[x, y, z] = u[x, y, z+ 1
2
hz]− u[x, y, z− 1

2
hz]

where (hx, hy, hz) are the dimensions of the cells of the back-196

ground grid. Second-order derivative stencils are simply defined197

as the composition of two first-order stencils, i.e. Dij = DiDj .198

An implication of these definitions is that the discrete first deriva-199

tive of a certain quantity will not be collocated with it. For example,200

all derivatives of the formDiφi are naturally defined at cell centers,201

while D1φ2 is located at centers of z-oriented edges in 3D, and at202

grid nodes in 2D. This is not a problem, however, as all second-203

order derivatives are centered at the appropriate locations for a con-204

venient discretization of (4). In particular, all stencils involved in205

the discretization of equation Li are naturally centered on the loca-206

tion of variable φi. Thus, the staggering of the unknown variables207

implies a natural staggering of the discretized differential equations.208

Figure 3 illustrates this fact in 2D, where the discrete stencils for the209

operators L1 and L2 form the system (4) are shown to be naturally210

centered at φ1 and φ2 variable locations, respectively.211

4 Construction of the Smoothing operator212

The staggered discretization described in the previous section could213

be used essentially unmodified in the case of a relatively compress-214

ible material, i.e. with a Poisson’s ratio ν not exceeding 0.2-0.3.215

However, a majority of materials of interest to computer graphics,216

including the muscles and flesh of animated characters, are highly217

incompressible. A number of authors [Irving et al. 2007; English218

and Bridson 2007; Kaufmann et al. 2008] have discussed the chal-219

lenges presented by the simulation of near-incompressible materials220

and proposed techniques to cope with this problem. For a multigrid221

solver, naive use of standard smoothers (e.g. Gauss-Seidel) in the222

presence of high incompressibility could lead to complications such223

as slow convergence or even loss of stability. We present a compre-224

hensive and computationally inexpensive solution to this problem225

for linear elasticity, practically achieving performance independent226

of the material parameters. Moreover, in sections 7 and 8 we show227

how this treatment generalizes to nonlinear constitutive models.228

4.1 Augmentation and stable discretization229

Simulation of near-incompressible materials is known to cause nu-230

merical complications to a range of solvers, including techniques231

based on finite element, finite difference or other discretizations.232

In particular, our PDE formulation also requires special treatment233

in this case. When Poisson’s ratio approaches the incompressible234

Figure 3: Discrete stencils for operators L1(left) and L2(right) of
the PDE system (4). The red and green nodes of the stencil corre-
spond to φ1 and φ2 values respectively. The dashed square indi-
cates the center of the stencil, where the equation is evaluated.

limit ν → 0.5, the Lamé parameter λ becomes several orders of235

magnitude larger than µ. As a consequence, the dominant term236

of the elasticity operator L = −µ∆I−(µ+λ)∇∇T is the rank237

deficient operator −(µ+λ)∇∇T ; thus L becomes near-singular.238

More specifically, we see that any divergence-free field φ will be239

in the nullspace of the dominant term, i.e. −λ∇∇Tφ = 0. Thus,240

a solution to the elasticity PDE Lφ = f could be perturbed by a241

divergence-free displacement of substantial amplitude, without in-242

troducing a large residual for the differential equation. In the con-243

text of a multigrid scheme, this observation has far deeper impli-244

cations other than indicating that the discretized system of equa-245

tions will have a high condition number; here, the eigenspace cor-246

responding to the smallest eigenvalues of the operator L contains247

the entire class of divergence-free functions. These can be arbitrar-248

ily oscillatory, and lead to high-frequency errors that the multigrid249

method cannot smooth efficiently or correct using information from250

a coarser grid. Fortunately, this complication is not a result of in-251

herently problematic material behavior, but rather an artifact of the252

form of the governing equations chosen to describe this physical253

phenomenon. Our solution is to reformulate the PDEs of elastic-254

ity into an equivalent system, which does not suffer from the near-255

singularity of the original differential operator. This stable differen-256

tial description of near-incompressible elasticity is adapted from the257

theory of mixed variational formulations [Brezzi and Fortin 1991]258

and was demonstrated by [Gaspar et al. 2008] in simple academic259

problems of linear elasticity. Our work extends these formulations260

to nonlinear materials and domains with arbitrary boundaries.261

We introduce a new auxiliary variable p (which we will refer to as262

the pressure) defined as p = −(λ/µ)∇Tφ = −(λ/µ)divφ. Note263

that, although p is a scaled divergence of the deformation field, we264

do not pursue or depend on any explicit associations of this variable265

with any “physical” pressure quantity. We can now write266

Lφ = −µ∆φ− (µ+ λ)∇∇Tφ

= −µ(∆I + ∇∇T )φ− λ∇(∇Tφ)

= −µ(∆I + ∇∇T )φ+ µ∇p (5)

As a result, the equilibrium equation Lφ = f can be equivalently267

written as the system268 (
−µ(∆I+∇∇T ) µ∇

µ∇T µ2

λ

)(
φ
p

)
=

(
f
0

)
(6)

The top part of system (6) follows directly from equation (5), while269

the bottom equation is simply a rescaled version of the definition of270
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Figure 4: Placement of pressures in 2D (left) and 3D (right).

pressure p. Conversely, the original differential equation (4) can be271

obtained from (6) by simply eliminating the pressure variable. Thus272

the augmented differential equation system of (6) is equivalent to273

the governing equations of linear elasticity (e.g. the two systems274

agree in the value of φ when solved). The important consequence275

of this manipulation is that this new discretization is stable, in the276

sense that the eigenspace corresponding to the smaller eigenvalues277

of this augmented differential operator does not contain high fre-278

quency deformation modes. This property can be rigorously proven279

via Fourier analysis; we can verify however that as λ tends to infin-280

ity, the term µ2/λ vanishes, and the resulting limit system is now281

non-singular. This stability property indicates that it is possible to282

smooth the error of this system efficiently with inexpensive, local283

smoothers. Such a smoother is described in detail in section 4.2.284

The newly introduced pressure variables are also discretized on an285

offset cartesian lattice, with each pressure begin stored in the center286

of a cell of the background lattice (see Figure 4). Pressure equa-287

tions, i.e. the last row of system (6), are also centered and stored288

at cell centers. As was the case with the non-augmented elastic-289

ity equations, the staggering of deformation (φ) and pressure (p)290

variables is such that all discrete fist and second order differential291

operators are well defined where they are naturally needed. Finally,292

as a consequence of our staggered discretization, equations (4) and293

(6) are equivalent at the differential and at the discretization level,294

i.e. the discrete forms of the equations are algebraically identical,295

after eliminating pressures from the augmented form.296

4.2 Distributive smoothing297

Although the augmented system (6) has the necessary stability to298

admit, in principle, efficient local smoothing, this cannot be ac-299

complished with a standard Gauss-Seidel or Jacobi iteration, as the300

discrete augmented equations lack the formal convergence guar-301

antees of these methods. First, we note that the discrete form302

of system (6) is not a symmetric definite matrix; the upper left-303

most block −µ(∆I+∇∇T ) is symmetric positive definite but the304

discrete form of the off-diagonal blocks (µ∇ and µ∇T ) is ac-305

tually skew-symmetric as the discrete first order operators satisfy306

DT
i =−Di. Also, negating the pressure equation to make the sys-307

tem symmetric, would still render it indefinite. Secondly, in the308

incompressible limit the diagonal constant term µ2/λ vanishes, so309

neither Gauss-Seidel nor Jacobi methods would be usable.310

Apart from these technical difficulties, it is generally known that311

for a differential equation such as (6) exhibiting nontrivial cou-312

pling between the variables φ1, φ2, φ3 and p, a smoothing scheme313

which updates several variables at once is often the optimal choice314

in terms of efficiency [Trottenberg et al. 2001]. We note that this is315

not the same as a more costly block smoother where a larger num-316

ber of equations are solved simulatenously; we still process one317

equation at a time, but the residual is eliminated by changing the318

value of several variables, rather than just one. We adopt the dis-319

tributive smoothing scheme introduced by [Gaspar et al. 2008] for320

linear elasticity, which we later extend to nonlinear problems. Let321

us redefineL to denote the augmented differential operator of equa-322

tion (6), and write u = (φ, p) for the augmented set of unknowns323

and b = (f , 0) for the right-hand side vector. Thus, system (6) is324

written as Lu = b. Consider the following change of variables325 (
φ
p

)
=

(
I −∇

∇T −2∆

)(
ψ
q

)
or v =Mu (7)

where v = (ψ, q) is the vector of auxiliary unknown variables,326

and M is called the distribution matrix. In accordance with our327

staggered formulation, the components ψ1, ψ2, ψ3 of the auxiliary328

vector ψ will be collocated with φ1, φ2, φ3 respectively, while q329

and p values are collocated as well. Using the change of variables330

of equation (7), our augmented system Lu = b is equivalently331

written as LMv = b. Composing the operators L andM yields332

LM =

(
−µ∆I 0

µ(1 + µ
λ

)∇T −µ(1 + 2µ
λ

)∆

)
(8)

That is, the composed system is lower triangular, and its diago-333

nal elements are simply Laplacian operators. This system can be334

smoothed with any scheme that works for the Poisson equation,335

including the Gauss-Seidel or Jacobi methods. In fact, the entire336

system can be smoothed practically with the same efficiency as the337

Poisson equation, following a forward substitution approach, i.e.338

we smooth all ψ1-centered equations across the domain first, fol-339

lowed by sweeps of ψ2, ψ3, and q-centered equations in sequence.340

One seeming obstacle to realizing these benefits, is that we do not
have the auxiliary variables (ψ, q) at our disposal. As a matter of
fact, computing (ψ, q) from (φ, p) would necessitate solving sys-
tem (7). Fortunately, such an explicit transformation is not neces-
sary. We start by reviewing the standard Gauss-Seidel iteration for
solving (or smoothing) the system Lu = b. At every step of the
iteration, we focus on a different equation Li (here i indicates a
single discrete equation, as opposed to the three coordinate compo-
nents of L). Each Gauss-Seidel step amounts to calculating a point-
wise correction to the variable ui collocated with the equation Li,
such that the residual of Li vanishes. In more detail, we seek to
replace variable ui with ui + δ, or equivalently u with u+ δei. As
a result of this value change, the residual of the equation becomes
r = b − L(u + δei). The unknown variable δ is determined by
requiring that ri = eTi r becomes zero after this correction, thus

eTi (b− L(u+ δei)) = 0⇒ (eTi Lei)δ = eTi (b− Lu)

The last equation is equivalent to Liiδ = rold
i or δ = rold

i /Lii,341

where Lii is the i-th diagonal element of the discrete operator and342

rold
i denotes the i-th component of the residual vector before the343

correction. Operating in an analogous fashion, a Gauss-Seidel step344

on the distributed system LMv = b amounts to changing ψi into345

ψi + δ, or equivalently v into v+ δei, such that the i-th residual of346

the distributed equation is annihilated, as follows347

eTi (b− LM(v + δei)) = 0⇒ eTi (b− L(u+ δMei)) = 0

⇒ (eTi LMei)δ = eTi (b− Lu)⇒ δ = rold
i /(LM)ii

In this derivation we leveraged the fact that the auxiliary vector v is348

only used in the formMv which is equal to the value of the origi-349

nal variable u. After the value of δ has been determined, u can be350

updated to u + δMei. This update can be put in a more conve-351

nient form by observing that the discrete operatorM is symmetric352

(discrete first-order derivative operators are skew-symmetric), thus353

Mei can be taken form either the i-th column or row of the dis-354

cretized operator. Therefore, the correction u ← u + δMei is355
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simply implemented by adding a δ-scaled version of the finite dif-356

ference stencil of the i-th row ofM to the current solution u. Fi-357

nally, the diagonal element eTi LMei can be precomputed as the358

inner product of the stencils for the i-th row of L and the i-th row359

of M (again, due to symmetry). The computational cost of dis-360

tributive smoothing is comparable to that of simple Gauss-Seidel361

iteration, yet it allows efficient smoothing of the equations of lin-362

ear elasticity, independent of Poisson’s ratio. We summarize the363

distributive smoothing process in pseudo-code in Table 2.364

Table 2 Distributive Smoothing
1: procedure DISTRIBUTIVESMOOTHING(L,M,u,b)
2: for v in {φ1, φ2, φ3, p} do . Must be in this exact order
3: for i in Lattice[v] do . i is an equation index
4: DISTRIBUTIVESMOOTHINGSTEP(L,M,u,b,i)
5: end for
6: end for
7: end procedure
8: procedure DISTRIBUTIVESMOOTHINGSTEP(L,M,u,b,i)
9: r ← bi − Li · u . Li is the i-th row of L

10: δ ← r/(LM)ii
11: u += δmT

i . mi is the i-th row ofM
12: end procedure

5 Treatment of boundaries365

The discretization and smoothing procedures discussed in the pre-366

vious sections did not address the effect of boundaries, focusing367

on the treatment of the interior region of the simulated deformable368

body. In fact, we have been able to evaluate the validity and ef-369

ficiency of the preceding formulations using a periodic domain,370

which is devoid of any boundaries. Our findings are reported in371

section 12 and can serve as a theoretical upper bound of multi-372

grid efficiency. Multigrid theory suggests that a general boundary373

value problem can be solved at the same efficiency as a periodic374

problem, at the expense of more intensive smoothing effort at the375

boundary. In theoretical studies of multigrid efficiency, the com-376

putational overhead of this additional boundary smoothing is of-377

ten overlooked, as the cost of interior smoothing is asymptotically378

expected to dominate. Nevertheless, in our experience, practical379

problem sizes may never reach this asymptotic regime, and generic380

boundary smoothing approaches could become a performance bot-381

tleneck, even for problems with millions of degrees of freedom. In382

this section, we develop a boundary discretization strategy, includ-383

ing a novel treatment of traction boundary conditions, that facili-384

tates the design of efficient and inexpensive boundary smoothers.385

5.1 Domain description386

Our geometrical description of the computational domain is based387

on a partitioning of the cells of the background grid. Initially,388

cells that have an overlap with the simulated deformable body are389

characterized as interior cells, otherwise they are designated ex-390

terior cells. Additionally, any cell can be user-specified to be a391

constrained (or Dirichlet) cell. Specifying a Dirichlet cell over-392

rides any interior/exterior designation it may otherwise carry. Geo-393

metrically, the interface between interior and Dirichlet cells corre-394

sponds to the boundary of the computational domain where Dirich-395

let boundary conditions are given, while traction (or free) boundary396

conditions are imposed on the interface between interior and ex-397

terior cells. Intuitively, Dirichlet cells correspond to kinematically398

constrained parts of the object, such as the skeleton of an articulated399

character. This partitioning of the domain is illustrated in Figure 5.400

This definition provides an intuitive way to specify the degrees of401

Figure 5: Classification of cells and variables near the boundary

freedom of our problem and their associated equations. Any of the402

variables φ1, φ2, φ3 or p located strictly inside the interior region403

(i.e. either on a interor cell center, or on the face between two in-404

terior cells) is designated an interior variable. For every interior405

variable we also introduce in our system the discrete equation of406

(6) centered at the same location. Any variable which is included in407

the discrete stencil of an interior equation, but is not interior itself,408

is a boundary variable; such a variable will be further designated409

a Dirichlet boundary variable if it touches a Dirichlet cell (either410

inside or on the boundary of one), otherwise it is designated a trac-411

tion boundary variable. Variables not appearing in the stencil of any412

interior equation are labeled inactive and can generally be ignored.413

5.2 A general-purpose box smoother414

We first describe a general-purpose treatment of the boundary equa-415

tions and variables. In order to allow for a unique solution to our416

discrete problem, one additional equation must be provided for each417

boundary variable. Note that, as a result of our domain description,418

there will be no boundary pressure variables, i.e. no exterior pres-419

sure ever appears on the discrete stencil of an interior equation. For420

every Dirichlet boundary variable φi we need to specify a Dirichlet421

condition of the form φi(X
∗) = φ∗i , while every traction bound-422

ary variable φi will be naturally matched with a traction condition423

eTi P(X∗)N = t∗, whereN is the normal vector to the object sur-424

face (t∗=0 would be the zero-traction or free boundary condition).425

The point X∗ used in these boundary equations need not coincide426

with the location of the boundary variables, allowing the flexibil-427

ity to use a boundary condition defined on the object surface even428

when the associated boundary variable is offset from it due to stag-429

gering. As a consequence, averaging (for Dirichlet equations) or430

one-sided finite differences (for traction equations) may be needed431

in the discrete formulation of these boundary equations. In general,432

any first-order accurate (or better) finite difference approximation433

for either type of boundary condition is acceptable for our purposes.434

Although a well-posed system can be constructed as described, the435

distributive smoothing scheme cannot be used in the immediate436

vicinity of the boundary. In that region, the distributive corection437

for certain variables extends outside the domain, affecting bound-438

ary and even inactive variables. Moreover, the boundary equations439

themselves need to be smoothed, and that cannot be accomplished440

by simply substituting a different smoother for the specific equa-441

tions where distributive smoothing is not applicable. In such situa-442

tions a box smoother is a broadly applicable solution. This process443

amounts to collectively solving a number of equations in a rect-444

angular box, simultaneously adjusting the values of all variables445

within that region. More formally, we compute a collective correc-446

tion δ = (δi1 ,.., δiN ) such that the N equations i1,.., iN will be447

simultaneously satisfied after the correction has been applied. The448

correction vector can be obtained as the solution of the equation449

5



Online Submission ID: 0175

Figure 6: Left: Extent of distributive smoothing (interior region),
Right: Boundary region with some boxes used by the box smoother.

L∗δ = r∗, where L∗ is the N×N submatrix of L corresponding450

to the rows and columns indexed i1 through iN , and r∗ contains451

the corresponding N entries of the residual vector before the cor-452

rection. Our complete smoothing subroutine starts with a boundary453

box smoothing sweep, proceeds with a sweep of interior distribu-454

tive smoothing and finishes with a last boundary pass. The criterion455

for performing distributive smoothing on a certain interior equation456

is that the discrete stencil of the corresponding distributed equation,457

i.e. the i-th equation of the composed system (LM)v = b needs458

to contain only interior variables, as illustrated in Figure 6 (left).459

During the boundary sweep, we collectively solve all equations in460

overlapping boxes that are two grid cells wide, and centered at the461

centers of all the outermost layer of interior cells, as seen in Figure462

6 (right). The local system L∗δ = r∗ can be pre-factorized using463

a pivoted LU decomposition and solved by means of forward and464

back substitution. In our experiements the box smoother performed465

very well, generally allowing the entire multigrid scheme to con-466

verge at the interior efficiency (i.e. achieving the convergence rates467

observed for a periodic problem).468

5.3 A fast symmetric Gauss-Seidel smoother469

Although the box smoother described in section 5.2 was effective in470

achieving a good convergence rate, the runtime overhead associated471

with it was enormous. For a problem with 32K vertices, the execu-472

tion time of boundary smoothing was about 60 – 80 times longer473

than that of the interior distributive smoothing. Asymptotically,474

the cost of boundary smoothing is O(N2/3), while the distributive475

smoothing has an asymptotic O(N) complexity, where N is the476

number of vertices in the simulation. These asymptotics, however,477

will not materialize into a tangible befit for realistic problem sizes.478

Even for models with 2M vertices, boundary smoothing would still479

require more than 15 times the runtime of interior smoothing. Fur-480

thermore, when using a direct solver for box smoothing in a parallel481

machine we would waste substantial memory bandwidth to stream-482

ing the precomputed LU factors, and tolerating on-the-fly factoriza-483

tion would likely be an even costlier alternative.484

We propose a novel formulation that enables equation-by-equation485

smoothing that is both efficient and inexpensive. The main obstacle486

to designing efficient equation-by-equation boundary smoothing487

schemes, is that the discrete system of equations near the boundary488

lacks properties such as symmetry, definiteness or diagonal domi-489

nance. In particular, loss of definiteness is predominantly a side-490

effect of the augmented discretization (6) the distributive smoother491

owes its efficiency to. Additionally, even natural discretizations492

of the boundary conditions (especially for the traction boundary)493

can easily result in loss of symmetry, even in our non-augmented494

system (4). An alternative local smoother would be the Kaczmarz495

method [Trottenberg et al. 2001], which does not require symme-496

try or definiteness of the boundary system; we have nevertheless497

found the Kaczmarz smoother to converge extremely slowly (a fact498

well documented in the literature) and consequently requiring a499

very large number of iterations, making it a very sub-optimal so-500

lution. Our proposed solution stems from a novel perspective of the501

constitutive equations and the boundary conditions that results in a502

well conditioned, symmetric positive definite boundary system.503

First, we revisit the constitutive equation of linear elasticity (2).504

The scalar coefficient tr(ε) appearing in equation (3) is equivalently505

written as tr(ε)=
∑

i
εii=

∑
i
φi,i − d, where d=tr(I) equals the506

number of spatial dimensions. Similarly, the last equation of system507

(6) is equivalent to −(µ/λ)p = ∇Tφ =
∑

i
φi,i. Thus, we have508

tr(ε) = −(µ/λ)p− d, and equation (2) becomes509

P = µ(F + FT )− µpI− (2µ+ dλ)I (9)

The difference between equations (2) and (9) is that the original def-510

inition of stress is physically valid for any given deformation field511

φ while the formulation of equation (9) will correspond to the real512

value of stress only when the augmented system (6) is solved ex-513

actly. We can verify that the position equations L1,L2,L3 of sys-514

tem (9) are equivalent to the divergence form Liu=−∂jPij , where515

P is now given by the new definition of equation (9). The dis-516

crete stencils for these equations can be constructed as a two-step517

process. First, we construct a finite difference stencil for the ex-518

pression −∂jPij , treating every value Pij appearing in this stencil519

as a separate variable (see Figure 7, left). As a second step, finite520

difference approximations are substituted in place of the Pij values.521

For interior equations, this process yeilds exactly the same results522

as the direct discretization of system (6). Certain interior equations523

near the boundary, however, are special in the sense that their sten-524

cil extends onto boundary variables. For those equations, we turn525

our attention to the stress variables appearing in their discrete di-526

vergence form. Such a stress variable Pij will be characterized as527

interior if the discrete stencil for Pij uses only interior or Dirichlet528

variables, and exterior if its stencil uses at least one traction bound-529

ary variable (see Figure 8, left). In our proposed formulation, any530

exterior stresses will not be evaluated by means of a finite difference531

stencil; instead a specific value will be substituted for them, using532

an appropriate traction boundary condition. More specifically:533

• Stress variables of the form Pij (i 6= j) are centered on grid534

edges in 3D (see Figure 7, right) and on grid nodes in 2D.535

This stress variable appeared in the finite difference approx-536

imation of the term −∂jPij in equation Li. Let X∗ be the537

location where equation Li is centered. The stress variable538

Pij is located one half of a grid cell away from X∗, along539

the direction ej . Without loss of generality, assume Pij is lo-540

cated at X∗+
hj

2
ej . Pij neighbors exactly four cells; out of541

those, the two centered atX∗ ± hi
2
ei are interior cells, since542

we assumed that Li was an interior equation. The two other543

neighbor cells of Pij are centered atX∗ ± hi
2
ei + hjej . We544

Figure 7: Left: Equations L1,L2 expressed as divergence stencils.
Right: Placement of the components of stress tensor P in 3D.
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Figure 8: Left: Stress variables used in the divergence form of
certain interior equations. Boundary stress variables are colored
red, interior stresses are green. All boundary stresses can be set to
a specific value using a traction condition from a nearby boundary.
Right: Interior and boundary gradients used in pressure equations.

can verify that if those two cells were interior or Dirichlet, Pij545

would have been an interior stress, i.e. its finite different sten-546

cil would have only included interior or Dirichlet variables.547

Thus, if Pij is an exterior stress, one of the cells centered at548

X∗ ± hi
2
ei + hjej must be exterior. This means that Pij549

is incident on a traction boundary face perpendicular to the550

direction ej , thus the traction condition Pej = t associated551

with this part of the boundary specifies a value Pij = ti for552

this component of the stress. In the common case of a free553

boundary the traction value is simply zero, giving Pij = 0.554

• Stress variables of the form Pii are located at cell centers,555

and appear in the finite difference approximation of −∂iPii556

in equation Li. Similar to the previous case, Pii is located557

one half grid away from the location X∗ of Li along the di-558

rection ei. Without loss of generality, assume Pij is located at559

X∗+hi
2
ei. From (9) we havePii = 2µ∂iφi−µp−(2λ+dµ),560

thus the stencil for Pii uses variables φi(X∗), p(X∗+hi
2
ei)561

which are both interior (since Li is interior) and the one ad-562

ditional variable φi(X∗+hiei). Pii would be an exterior563

stress only if φi(X∗+hiei) was an exterior variable; in this564

case Pii would have been “near” (specifically half a cell away565

from) a traction boundary face normal to ei. Once again, we566

will use the traction condition associated with this boundary567

to set Pii = ti (or Pii = 0 for a free boundary). The subtlety568

of this formulation is that the stress variable Pii is not located569

exactly on the boundary; nevertheless the discrete stencil for570

Pii is still a valid first-order approximation of the continuous571

quantity Pii at the boundary. At the worst case, our solver572

merely loses second-order accuracy, which is a widely accept-573

able compromise for computer graphics purposes, and creates574

hardly any visible artifacts in our experience.575

In summary, we have justified that all exterior stress variables576

can be eliminated (and replaced with known constants) from the577

divergence form of interior position equations. A similar treat-578

ment is performed on the discretiztion of the pressure equation579

Lp=µ
∑

i
Fii + µ2

λ
p. Similar to stresses, the deformation gra-580

dients Fii are also characterized as interior or exterior, based on581

whether they touch traction boundary variables. Since Pii =582

2µFii − µp − (2λ + dµ), we observe that Fii is exterior if and583

only if the stress Pii is exterior (see figure 8, right). For such exte-584

rior gradients or stresses we can use the traction condition Pii = ti585

to eliminate Fii from the pressure equation. This is accomplished586

by replacing Lp ← Lp− 1
2
(Pii − ti) for every exterior gradient587

Fii. If more than one gradients are exterior, we can annihilate all588

of them from the stencil for Lp in a similar fashion. Note that in589

the process of annihilating these exterior gradients, we modify the590

original coefficient µ2/λ of the pressure variable at the center of591

Lp, yet the modified coefficient will retain a positive sign regard-592

less of how many gradients are eliminated.593

Our manipulations effectively remove all traction boundary vari-
ables from the discretization of the interior equations. For every
Dirichlet boundary variable, we assume a Dirichlet condition of the
form φi = ci is provided. Thus, we can substitute a given value for
every Dirichlet variable in the stencil of every interior equation that
uses it. As a result, our overall discrete system can be written as
L∗u∗ = b − bD = b∗, where u∗ only contains interior variables,
and bD results from moving the known Dirichlet variables to the
right-hand side. The discrete system matrix L∗ has as many rows
and columns as interior variables, and will differ from L near the
boundaries, as it incorporates the effect of the boundary conditions.
An analysis of our formulation can verify that L∗ has the form

L∗ =

(
Lφ G
−GT Dp

)
In this formulation Lφ is symmetric, positive definite, and Dp

is a diagonal matrix with positive diagonal elements. The skew-
symmetry of the off-diagonal blocks is anticipated, since G origi-
nates from a discretization of first-order derivatives. As a final step,
we define the substitution matrix U

U =

(
I −GD−1

p

0 I

)
and use it to pre-multiply our equation as594

UL∗u∗ =

(
Lφ + GD−1

p GT 0
−GT Dp

)
u∗ = Ub∗ (10)

Equation (10) is the basis of our boundary smoother. The top left595

block Lφ + GD−1
p GT is a symmetric and positive definite matrix596

and can be smoothed via Gauss-Seidel iteration. One may recog-597

nize that this matrix is qualitatively similar to the discretization of598

our non-augmented system (4) and, in fact, the two are identical599

away from boundaries. In section 4.1 we discussed the problematic600

conditioning of this matrix in the near-incompressible regime. In601

our boundary smoother, however, this formulation is only used for602

a very narrow region around the boundary, specifically the same in-603

terior equations affected by our previous box smoother formulation604

(depicted as red interior nodes in Figure 6, right). The boundary and605

interior regions are smoothed in separate sweeps; during the sweep606

of the boundary smoother, all interior variables not being smoothed607

are effectively treated as Dirichlet values. The fact that the bound-608

ary smoother is confined in a narrow region between boundary con-609

ditions has a strong stabilizing effect, as compared to its use for in-610

terior smoothing. In practice, we found that 2 Gauss-Seidel bound-611

ary sweeps for every sweep of the distributive interior smoother are612

sufficient for Poisson’s ratio up to ν = .45, while 3-4 Gauss-Seidel613

sweeps will accommodate values as high as ν = .495.614

The last step in the boundary smoothing process is the treatment615

of the pressure and boundary variables, which were not included616

in the Gauss-Seidel update. Since the lower right block of equa-617

tion (10) is diagonal, all pressure equations can be satisfied exactly618

via a simple Gauss-Seidel sweep (which is essentially equivalent to619

forward-substitution). Note that this update of pressures only needs620

to occur once after the position variables have been smoothed by621

a given number of sweeps. Lastly, the boundary traction variables622

can be updated using the traction conditions Pij = ti that have623

been imposed. For simplicity we will assume that no interior cell624
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is trapped between two exterior cells which are adjancent on two625

opposing faces, i.e. the active domain does not contain a one-cell626

wide isthmus between traction boundaries. This assumption is only627

required of the finest level of discretization in the multigrid scheme628

and can be procedurally accomplished by minimal thickening of the629

active domain. In this case all external diagonal stress components630

Pii have a stencil that touches only a single boundary variable, lo-631

cated at the surface of the active domain. Thus, if the equation632

Pii = ti is stored at the location of this specific boundary variable,633

a Gauss-Seidel step will compute the exact value of that boundary634

variable. Similarly, all off-diagonal stress components Pij (i 6= j)635

will contain only a single boundary variable, located outside the636

active domain, whose value has not been already determined, and637

we store the boundary condition Pij = ti on the location of that638

variable. In summary, after the smoothing of interior position vari-639

ables, all our smoother has to do to is perform Gauss-Seidel relax-640

ation on pressure equations, diagonal stress equations Pii = ti and641

off-diagonal stress equations Pij = ti, in this specific order. At the642

end of the process, all boundary equations will be satisfied exactly643

(i.e. they will have zero residuals), which we exploit next.644

6 Construction of the Transfer operators645

We designed the Restriction (R) and Prolongation (P) operators646

employed by the algorithm of Table 1 aiming to keep implementa-647

tion as inexpensive as possible, while conforming to the textbook648

accuracy requirements for full multigrid efficiency (see [Trotten-649

berg et al. 2001]). We define the following 1D averaging operators650

B1u[x] = 1
2
u[x−h

2
] + 1

2
u[x+h

2
]

B2u[x] = 1
4
u[x−h] + 1

2
u[x] + 1

4
u[x+h]

B3u[x] = 1
8
u[x− 3h

2
] + 3

8
u[x+h

2
] + 3

8
u[x−h

2
] + 1

8
u[x+ 3h

2
]

The restriction and prolongation operators will be defined as tensor651

product stencils of the preceeding 1D operators as652

R1 = B2 ⊗ B1 ⊗ B1 PTi = 8 B2 ⊗ B3 ⊗ B3

R2 = B1 ⊗ B2 ⊗ B1 PT2 = 8 B3 ⊗ B2 ⊗ B3

R3 = B1 ⊗ B1 ⊗ B2 PT3 = 8 B3 ⊗ B3 ⊗ B2

Rp = B1 ⊗ B1 ⊗ B1 PTp = 8 B1 ⊗ B1 ⊗ B1

whereRi,Pi are the restriction and prolongation operators used for653

variable ui, respectively. We opted to define the prolongation oper-654

ator in terms of its transpose, since PTi has the same stencil every-655

where, while Pi is composed of several different stencils. We can656

easily verify that P simply corresponds to trilinear interpolation.657

Our domain description for the finest grid was based on a parti-658

tioning of the cells into interior, exterior and Dirichlet. The coarse659

background grid is derived by the natural 8-to-1 coarsening of the660

cartesian background lattice. Furthermore, a coarse cell is desig-661

nated a Dirichlet cell if any of its eight fine sub-cells is Dirichlet.662

If any of the fine sub-cells are interior and none is Dirichlet, the663

coarse cell will be considered interior. Otherwise, the coarse cell is664

exterior. Thus, the coarse active domain is geometrically a super-665

set of the fine domain, while its Dirichlet parts are more extensive.666

Despite this geometrical discrepancy, which is in any case no larger667

than the grid size, we were still able to retain the interior efficiency668

of the multigrid scheme, by taking a few simple additional steps.669

In our treatment of boundary equations in section 5.3 we effectively670

forced all boundary conditions to be satisfied exactly after every ap-671

plication of the smoother, by absorbing boundary equations into the672

interior system. In general, if a smoother by design leaves a residual673

Figure 9: Fine grid domain description (left) and its coarse grid
form (right). Red dots indicate (a) coarse Dirichlet equations that
were interior in the fine grid, and (b) the fine grid equations they
restrict residuals from. Green circles indicate fine interior variables
that prolongate their correction from boundary coarse variables.

on the boundary equations, this residual has to be restricted (sepa-674

rately from interior residuals) onto the boundary equations of the675

fine grid. In our case all boundary residuals in the fine grid are676

zero, thus all coarse boundary equations will be homogeneous; for677

Dirichlet equations they will have the form u2h
i = 0 (i.e. the coarse678

grid incurs no correction), while traction equations will be of the679

form P̂ 2h
ij = 0, where P̂ is the homogeneous part of P (i.e. we680

omit any constant terms). We also note that, due to the possible681

geometrical change of the Dirichlet region, certain coarse Dirichlet682

equations will be centered on locations that were interior in the fine683

grid (shown as red dots in Figure 9, right). The fine grid interior684

equations (red dots in Figure 9, left) that would restrict their resid-685

uals onto these (now Dirichlet) coarse locations, will not have their686

residuals well represented on the coarse grid. We compensate for687

this inaccuracy by performing an extra 2-3 sweeps of our boundary688

Gauss-Seidel smoother over these equations, driving their residuals689

very close to zero, just before the Restriction operation takes place.690

In section 5.3 we stated that the interior domain must not have a691

one-cell wide isthmus, where an interior cell is neighbored by two692

exterior cells across two opposing faces, in order for the traction693

boundary variables to be exactly computable using a sequence of694

Gauss-Seidel updates. Although this property can be procedurally695

enforced in the fine grid, the coarse grid could easily violate it,696

as illustrated in Figure 9. Instead of attempting to compute these697

coarse boundary variables in some more elaborate way, we simply698

elect to not use them. This is possible, since the formulation of699

section 5.3 defines a form of the equations that completely excludes700

the traction boundary variables. The consequence of this approach701

is that certain fine grid variables (depicted as green circles in Figure702

9, left) cannot get an accurate correction, since it would have to703

be prolongated from an omitted coarse boundary variable. Again,704

we found that performing 2-3 Gauss-Seidel smoother sweeps over705

these equations immediately after the prolongation of the correction706

will be enough to compensate for this inaccurate correction.707

7 Co-rotational linear elasticity708

Our discussion so far was based on the constitutive equations of709

linear elasticity. This model allowed us to detail the theoretical and710

engineering subtleties associated with designing a highly efficient711

multigrid scheme, and provides excellent conditions for the imple-712

mentation of real-time multigrid solvers for models with hundreds713

of thousands of degrees of freedom. The physical validity, however,714

of linear elasticity is primarily limited to scenarios of moderate de-715

formation. In the large deformation regime, and in the presence716
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of large rotational deformations in particular, the linear elasticity717

model develops artifacts such as volumetric distortions in parts of718

the domain with large rotations. Interestingly, our experiments with719

linear elasticity seemed to indicate that visually plausible deforma-720

tions were attainable even for certain examples with higher defor-721

mation, where conventional wisdom would lead us to expect more722

visible artifacts; we traced this effect to our ability to use a high723

Poisson’s ratio which helped with volume conservation in the mod-724

erate deformation regime. Nevertheless, it is easy to demonstrate725

cases where linear elasticity produces visibly nonphysical results,726

and where a nonlinear treatment of deformation is required.727

Our first extension is the co-rotational linear elasticity model, which728

has been used in slightly different forms by a number of authors in729

computer graphics [Müller et al. 2002; Hauth and Strasser 2004;730

Müller and Gross 2004], and has also been employed in the con-731

text of a finite element based multigrid framework by [Georgii and732

Westermann 2006]. The co-rotational formulation extracts the ro-733

tational component of the local deformation at a specific part of the734

domain by computing the polar decomposition of the deformation735

gradient tensor F = RS into the rotation R and the symmetric736

tensor S. The stress is then computed as P = RPL(S), where PL737

denotes the stress of a linear material, as described in equation (2).738

Thus, the co-rotational formulation computes stress by applying the739

constitutive equation of linear elasticity in a frame of reference that740

is rotated with the material deformation, and subsequently rotating741

the result back to unrotated coordinates. After the necessary substi-742

titions, the constitutive equation takes the following form743

P = 2µ(F−R) + λtr(RTF−I)R

= 2µF + λtr(RTF)R− (2µ+ dλ)R

= 2µF− µpR− (2µ+ dλ)R (11)

where the last form of the stress in equation (11) results from in-744

troducing an auxiliary pressure variable p=−(λ/µ)tr(RTF) in a745

fashion similar to the augmentation used for the linear elasticity746

problem in section 4.1. As before, the augmented position equa-747

tions are defined as −∂jPij=fi. After combining with the equa-748

tions defining the pressures and rearranging some terms we get749 (
−2µ∆I µ(∇TRT )T

µ(R∇)T µ2

λ

)(
φ
p

)
=

(
f+(2µ+dλ)∇ ·R

0

)
(12)

which we use as the augmented PDE of co-rotational linear elas-750

ticity. The notation for the off-diagonal blocks of the matrix in751

equation (12) were used to indicate whether the operators ∇,∇T
752

operate or not on the rotation matrix R. In index form, these oper-753

ators equal [µ(∇TRT )T ]i = µ∂jRij , and [µ(R∇)T ]i = µRij∂j754

respectively. Discuss quasi-linear form here755
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