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Multi-Level Adaptive Solutions 
to Boundary-Value Problems* 

By Achi Brandt 

Abstract. The boundary-value problem is discretized on several grids (or finite-element 
spaces) of widely different mesh sizes. Interactions between these levels enable us (i) 
to solve the possibly nonlinear system of n discrete equations in 0(n) operations (40n 
additions and shifts for Poisson problems); (ii) to conveniently adapt the discretization 
(the local mesh size, local order of approximation, etc.) to the evolving solution in a 
nearly optimal way, obtaining "--order" approximations and low, n, even when singular- 
ities are present. General theoretical analysis of the numerical process. Numerical ex- 
periments with linear and nonlinear, elliptic and mixed-type (transonic flow) problems- 
confirm theoretical predictions. Similar techniques for initial-value problems are briefly 
discussed. 

1. Introduction. In most numerical procedures for solving partial differential 
equations, the analyst first discretizes the problem, choosing approximating algebraic 
equations on a finite-dimensional approximation space, and then devises a numerical 
process to (nearly) solve this huge system of discrete equations. Usually, no real inter- 
play is allowed between discretization and solution processes. This results in enormous 
waste: The discretization process, being unable to predict the proper resolution and the 
proper order of approximation at each location, produces a mesh which is too fine. 
The algebraic system thus becomes unnecessarily large in size, while accuracy usually 
remains rather low, since local smoothness of the solution is not being properly exploit- 
ed. On the other hand, the solution process fails to take advantage of the fact that 
the algebraic system to be solved does not stand by itself, but is actually an approxi- 
mation to continuous equations, and therefore can itself be similarly approximated by 
other (much simpler) algebraic systems. 

The purpose of the work reported here is to study how to intermix discretization 
and solution processes, thereby making both of them orders-of-magnitude more effective 
The method to be proposed is not "saturated", that is, accuracy grows indefinitely as 
computations proceed. The rate of convergence (overall error E as function of compu- 
tational work W) is in principle of "infinite order", e.g., E exp(-fdW) for a d-dimen- 
sional problem which has a solution with scale-ratios > 03> 0; or E exp(-W/2), for 
problems with arbitrary thin layers (see Section 9). 

The basic idea of the Multi-Level Adaptive Techniques (MLAT) is to work not 
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with a single grid, but with a sequence of grids ("levels") of increasing fineness, each of 
which may be introduced and changed in the process, and constantly interact with 
each other. For description purposes, it is convenient to regard this technique as com- 
posed of two main concepts: 

(1) The Multi-Grid (MG) Method for Solving Discrete Equations. This method 
iteratively solves a system of discrete (finite-difference or finite-element) equations on a 
given grid, by constant interactions with a hierarchy of coarser grids, taking advantage 
of the relation between different discretizations of the same continuous problem. This 
method can be viewed in two complementary ways: One is to view the coarser grids as 
correction grids, accelerating convergence of a relaxation scheme on the finest grid by 
efficiently liquidating smooth error components. (See general description in Section 2 
and algorithm in Section 4.) Another point of view is to regard finer grids as the cor- 
rection grids, improving accuracy on coarser grids by correcting their forcing terms. 
The latter is a very useful point of view, making it possible to manipulate accurate solu- 
tions on coarser grids, with only infrequent "visits" to pieces of finer levels. (This is 
the basis for the multi-grid treatment of nonuniform grids; cf. Sections 7.2 and 7.5. 
The FAS mode for nonlinear problems and the adaptive procedures stem from this 
viewpoint.) The two seemingly different approaches actually amount to the same al- 
gorithm (in the simple case of "coextensive" levels). 

The multi-grid process is very efficient: A discrete system of n equations (n 
points in the finest grid) is solved, to the desired accuracy, in 0(n) computer operations. 
If P parallel processors are available, the required number of computer steps is 
0(n/F + log n). For example, only 40n additions and shifts (or 35n microseconds 
CYBER 173 CPU time) are required for solving the 5-point Poisson equation on a grid 
with n points (see Section 6.3). This efficiency does not depend on the shape of the 
domain, the form of the boundary conditions, or the mesh-size, and is not sensitive to 
choice of parameters. The memory area required is essentially only the minimal one, 
that is, the storage of the problem and the solution. In fact, if the amount of numer- 
ical data is small and only few functionals of the solution are wanted, the required 
memory is only 0(log n), with no need for external memory (see Section 7.5). 

Multi-grid algorithms are not difficult to program, if the various grids are suitably 
organized. We give an example (Appendix B) of a FORTRAN program, showing the 
typical structure, together with its computer output, showing the typical efficiency. 
With such an approach, the programming of any new multi-grid problem is basically 
reduced to the programming of a usual relaxation routine. The same is true for non- 
linear problems, where no linearization is needed, due to the FAS (Full Approximation 
Storage) method introduced in Section 5. 

Multi-grid solution times can be predicted in advance-a recipe is given and com- 
pared with numerical tests (Section 6). The basic tool is the local mode (Fourier) 
analysis, applied to the locally linearized-frozen difference equations, ignoring far 
boundaries. Such an analysis yields a very good approximation to the behavior of the 
high-frequency error modes, which are exactly the only significant modes in assessing the 
multi-grid process, since the low-frequency error modes are liquidated by coarse-grid 
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processing, with negligible amounts of computational work. Thus, mode analysis gives 
a very realistic prediction of convergence rates per unit work. (For model problems, 
the analysis can be made rigorous; see Appendix C.) The mode analysis can, therefore, 
be used to choose suitable relaxation schemes (Section 3) and suitable criteria for 
switching and interpolating between the grids (Appendix A). Our numerical tests ranged 
from simple elliptic problems to nonlinear mixed-typed (transonic flow) problems, 
which included hyperbolic regions and discontinuities (shocks). The results show that, 
as predicted by the local mode analysis, errors in all these problems are reduced by an 
order of magnitude (factor 10) expending computational work equivalent to 4 to 5 re- 
laxation sweeps on the finest grid. 

(2) Adaptive Discretization. Mesh-sizes, orders of approximation and other dis- 
cretization parameters are treated as spatial variables. Using certain general internal 
criteria, these variables are controlled in a suboptimal way, adapting themselves to the 
computed solution. The criteria are devised to obtain maximum overall accuracy for a 
given amount of calculations; or, equivalently, minimum of calculations for given accur- 
acy. (In practice only near-optimality should of course be attempted, otherwise the 
required control would become more costly than the actual computations. See Section 
8.) The resulting discretization will automatically resolve thin layers (when required), 
refine meshes near singular points (that otherwise may "contaminate" the whole solu- 
tion), exploit local smoothness of solutions (in proper scale), etc. (see Section 9). 

Multi-grid processing and adaptive discretization can be used independently of 
each other, but their combination is very fruitful: MG is the only fast (and convenient) 
method to solve discrete equations on the nonuniform grids typically produced by the 
adaptive procedure. Its iterative character fits well into the adaptive process. The two 
ideas use and relate similar concepts, similar data structure, etc. In particular, an 
efficient and very flexible general way to construct an adaptive grid is as a sequence of 
uniform subgrids, the same sequence used in the multi-grid process, but where the finer 
levels may be confined to increasingly smaller subdomains to produce the desired local 
refinement. In this structure, the difference equations can be defined separately on 
each of the uniform subgrids, interacting with each other through the multi-grid process 
Thus, difference equations should only be constructed on equidistant points. This 
facilitates the employment of high and adaptive orders of approximation. Moreover, 
the finer, localized subgrids may be defined in terms of suitable local coordinates, 
facilitating, for example, the use of high-order approximations near pieces of boundary, 
with all these pieces naturally patched together by the multi-grid process (Section 7). 

The presentation in this article is mainly in terms of finite-difference solutions to 
partial-differential boundary-value problems. The basic ideas, however, are more general 
applicable to integro-differential problems, functional minimization problems, etc., and 
to finite-element discretizations. The latter is briefly discussed in Sections A.5 and 
7.3 and as closing remarks to Sections 8.1 and 8.3. Extensions to initial-value problems 
are discussed in Appendix D. Section 10 presents historical notes and acknowledge- 
ments. 

Contents of the article: 
1. Introduction 
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2. Multi-Grid Philosophy. Suppose we have a set of grids Go, G1, . . . , GM, all 
approximating the same domain Q with corresponding mesh-sizes ho > hi > --. > 
hM. For simplicity one can think of the familiar uniform square grids, with the mesh- 
size ratio hk+ 1 : hk = 1 : 2. Suppose further that a differential problem of the form 

(2.1) LU(x) = F(x) in Q2, AU(x) = -(x) on the boundary M2, 

is given. On each grid Gk this problem can be approximated by difference equations 
of the form 

(2.2) LkUk(x) = Fk(x) for x E Gk, AkUk(x) = qDk(x) for x E aGk. 

(See example in Section 3.1.) We are interested in solving this discrete problem on the 
finest grid, GM. The main idea is to exploit the fact that the discrete problem on a 
coarser grid, Gk, say, approximates the same differential problem and hence can be used 
as a certain approximation to the GM problem. A simple use of this fact has long been 
made by various authors (e.g., [141); namely, they first solved (approximately) the Gk 
problem, which involves an algebraic system much smaller and thus much easier to 
solve than the given GM problem, and then they interpolated their solution from Gk 
to GM, using the result as a first approximation in some iterative process for solving 
the GM problem. A more advanced technique was to use a still coarser grid in a similar 
manner when solving the Gk problem, and so on. The next natural step is to ask 
whether we can exploit the proximity between the Gk and GM problems not only in 
generating a good first approximation on GM, but also in the process of improving the 
first approximation. 

More specifically let uM be an approximate solution of the GM problem, and let 

(2.3) LMuM -FM - fM, AMuM = M - OM 

The discrepancies fM and OM are called the residual functions, or residuals. Assuming 
for simplicity that L and A are linear (cf. Section 5 for the nonlinear case), the exact 
discrete solution is UM - uM + VM, where the correction VM satisfies the residual 
equations 

(2.4) LMVM=fM, AMVM= M. 

Can we solve this equation, to a good first approximation, again by interpolation from 
solutions on coarser grids? As it is, the answer is generally negative. Not every GM 
problem has meaningful approximation on a coarser grid Gk. For instance, if the right- 
hand side fM fluctuates rapidly on GM, with wavelength less than 4hM, these fluctua- 
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tions are not visible on, and therefore cannot be approximate by, coarser grids. Such 
rapidly-fluctuating residuals fM are exactly what we get when the approximation uM 
has itself been obtained as an interpolation from a coarser-grid solution. 

An effective way to damp rapid fluctuations in residuals is by usual relaxation 
procedures, e.g., the Gauss-Seidel relaxation (see Section 3). At the first few iterations 
such procedures usually seem to have fast convergence, with residuals (or corrections) 
rapidly decreasing from one iteration to the next, but soon after the convergence rate 
levels off and becomes very slow. Closer examination (see Section 3 below) shows that 
the convergence is fast as long as the residuals have strong fluctuations on the scale of 
the grid. As soon as the residuals are smoothed out, convergence slows down. 

This is then exactly the point where relaxation sweeps should be discontinued 
and approximate solution of the (smoothed out) residual equations by coarser grids 
should be employed. 

The Multi-Grid (MG) methods are systematic methods of mixing relaxation sweeps 
with approximate solution of residual equations on coarser grids. The residual equations 
are in turn also solved by combining relaxation sweeps with corrections through still 
coarser grids, etc. The coarsest grid Go is coarse enough to make the solution of its 
algebraic system inexpensive compared with, say, one relaxation sweep over the finest 
grid. 

The following sections further explain these ideas. Section 3.1 explains, through 
a simple example, what is a relaxation sweep and shows that it indeed smooths out the 
residuals very efficiently. The smoothing rates of general difference systems are sum- 
marized in Section 3.2. A full multi-grid algorithm, composed of relaxation sweeps 
over the various grids with suitable interpolations in between, is then presented in 
Section 4. An important modification for nonlinear problems is described in Section 5 
(and used later as the basic algorithm for nonuniform grids and adaptive procedures). 
Appendix A supplements these with suitable stopping criteria, details of the interpola- 
tion procedures and special techniques (partial relaxation). 

3. Relaxation and its Smoothing Rate. 
3.1. An Example. Suppose, for example, we are interested in solving the partial 

differential equation 

(3.1) LU(x, a 2U(x, y) +ca2 u(x, = F(x, y LU(x y)= a ax2 2 

with some suitable boundary conditions. Denoting by Uk and Fk approximations of 
U and F, respectively, on the grid Gk, the usual second-order discretization of (3.1) is 

uk+ -2Uk + Uk _ I uk +I -2Uk + kU 
(3.2) LkUk -a h -U +U 1,g + c Ue, - U a = F+ 

k ~ ? k F 

where 

a'P= U"(k hk), Fakh = a hk); A, g integers. 

(In the multi-grid context it is important to define the difference equations in this 
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divided form, without, for example, multiplying throughout by h k, in order to get the 
proper relative scale at the different levels.) Given an approximation u to Uk, a simple 
example of a relaxation scheme to improve it is the following. 

Gauss-Seidel Relaxation. The points (cx, ,B) of Gk are scanned one by one in 
some prescribed order; e.g., lexicographic order. At each point the value u,', is re- 
placed by a new value, u such that Eq. (3.2) at that point is satisfied. That is, uca , 
satisfies 

u l - -2u + u ua - 2u' ?u 
(3.3) a414 c 14, a4 Fk 

where the new values u, l' ,s, u,_ 1 are used since, in the lexicographic order, by the 
time (cx, () is scanned new values have already replaced old values at (a - 1, () and 
(a,3- 1). 

A complete pass, scanning in this manner all the points of Gk, is called a (Gauss- 
Seidel lexicographic) Gk relaxation sweep. The new approximation u does not satisfy 
(3.2), and further relaxation sweeps may be required to improve it. An important 
quantity therefore is the convergence factor, p say, which may be defined by 

(3.4) p=11z llvll, where v Uk u, v =Uku, 

11 being any suitable discrete norm. 
The rate of convergence of the above relaxation scheme is asymptotically very 

slow. That is, except for the first few relaxation sweeps we have p = 1 - 0(h2). This 
means that we have to perform 0(h- 2) relaxation sweeps to reduce the error order of 
magnitude. 

In the multi-grid method, however, the role of relaxation is not to reduce the 
error, but to smooth it out; i.e., to reduce the high-frequency components of the error 
(the lower frequencies being reduced by relaxation sweeps on coarser grids). In fact, 
since smoothing is basically a local process (high frequencies have short coupling range), 
we can analyze it in the interior of Gk by (locally) expanding the error in Fourier series. 
This will allow us to study separately the convergence rate of each Fourier component, 
and, in particular, the convergence rate of high-frequency components, which is the 
rate of smoothing. 

Thus to study the 08 (6, 02) Fourier component of the error functions v and 
v before and after the relaxation sweep, we put 

(3.5) vag eA_ i(Ola+020) and v-,f1Aoei(ola+02f) 

Subtracting (3.2) from (3.3), we get the relation 

(3.6) a(va+ 2J0?a )?cv~1 U~? a~) , (3.6) ~a(+ 1' - 2 va, + Va_,: + C(v a,o+ I - 2 v., + va g-) I 

from which, by (3.5), 

(aeio I + ce 2)A 0 + (ae- 
io ? + ce- io 2 - 2a - 2c)A0 = 0. 

Hence the convergence factor of the 0 component is 
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(3.7) ~~~~AO ae'02 ?ce'02 
(3-7) ~ ~ ~ ~ = i0o -i02 0A 2a + 2c - ae- l - ce 2 

Define 101 = max(l011, 1021). In domains of diameter 0(1) the lowest Fourier 
components have 101 = O(hk), and their convergence rate therefore is, p(0) = 1 - O(h2). 
Here, however, we are interested in the smoothing factor, which is defined by 

(3.8) p= max P(0)3 
p7 10 1<7r 

where p is the mesh-size ratio and the range p3r S 101 < ir is the suitable range of high- 
frequency components, i.e., the range of components that cannot be approximated on 
the coarser grid, because its mesh-size is hk 1=hkI. We will assume here that p = 
h, which is the usual ratio (cf. Section 6.2). 

Consider first the case a = c (Poisson equation). A simple calculation shows that 
p, = p(r/2, arccos 4/5) = .5. This is a very satisfactory rate; it implies that three relax- 
ation sweeps reduce the high-frequency error-components by almost an order of mag- 
nitude. Similar rates are obtained for general a and c, provided a/c is of moderate size. 

The rate of smoothing is less remarkable in the degenerate case a < c (or c < a). 
For instance, 

(3.9) 8(2' ?2 ) = [a2 + (c + 2a)2II' 

which approaches 1 as a 0. Thus, for problems with such a degeneracy, Gauss- 
Seidel relaxation is not a suitable smoothing scheme. But other schemes exist. For 
example, 

Line Relaxation. Instead of treating each point (a, ,B) of Gk separately, one takes 
simultaneously a line of points at a time, where a line is the set of all points (oa, ,B) in 
Gk with the same a (a vertical line). All the values uc: on such a line are simultaneous- 
ly replaced by new values u., which simultaneously satisfy all the Eqs. (3.2) on that 
line. (This is easy and inexpensive to do, since the system of equations to be solved 
for each such line is a tridiagonal, diagonally dominant system. See, e.g., in [171.) As 
a result, we get the same relation as (3.3) above, except that u,,,+ 1 is replaced by 

u,+ Hence, instead of (3.7) we will get: 

(3.10) pl(0)= |2(a +c-c cos 02)-ae- 

from which one can derive the smoothing factor 

(3.11) p=max{5 /2'a +?2c} 

which is very satisfactory, even in the degenerate case a < c. 
3.2. General Results. The above situation is very general (see [41 and Chapter 3 

of [31): For any uniformly elliptic system of difference equations, it can be shown 
that few relaxation sweeps are enough to reduce the high-frequency error components 
by an order of magnitude. The same holds for degenerate elliptic systems, provided a 
suitable relaxation scheme is selected. A scheme of line-relaxation which alternately uses 
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all line directions and all sweeping directions is suitable for any degenerate case. More- 
over, such a scheme is suitable even for nonelliptic systems, provided it is used 
"selectively"; i.e., the entire domain is swept in all directions, but new values are not 
introduced at points where a local test shows the equation to be nonelliptic and the 
local "time-like" direction to conflict with the current sweeping direction (a con- 
flict arises when some points are to be relaxed later than neighboring points belonging 
to their domain of dependence). In hyperbolic regions a selected direction would local- 
ly operate similar to marching in the local "time-like" direction, thus leaving no (or 
very small) residuals. 

By employing local mode analysis (analysis of Fourier components) similiar to the 
example above, one can explicitly calculate the smoothing rate llog ,1- 1 for any given 
difference equation with any given relaxation scheme. (Usually p should be calculated 
numerically; an efficient FORTRAN subroutine exists; typical values are given in Table 
1, in Section 6.2.) In this way, one can select the best relaxation scheme from a given 
set of possibilities. The selection of the difference equation itself may also take this 
aspect into account. This analysis can also be done for nonlinear problems (or linear 
problems with nonconstant coefficients), by local linearization and coefficients freeze. 
Such localization is fully justified here, since we are interested only in a local property 
(the property of smoothing. By constrast, one cannot make similar mode analysis to 
predict the overall convergence rate p of a given relaxation scheme, since this is not a 
local property). 

An important feature of the smoothing rate p is its insensitivity. In the above 
example no relaxation parameters were assumed. We could introduce the usual relaxa- 
tion parameter co; i.e., replace at each point the old value u,f not with the calculated 
ua ,, but with u, + co(uO,,, - uOf p). The mode analysis shows, however, that no 
X # 1 provides a smoothing rate better than co = 1. In other cases, co = 1 is not 
optimal, but its p is not significantly larger than the minimal p. In delayed-displace- 
ment relaxation schemes a value X < wcritical < 1 should often be used to obtain 
p < 1, but there is no sensitive dependence on the precise value of c, and suitable 
values are easily obtained from the local mode analysis. Generally, smoothing rates of 
delayed-displacement schemes are somewhat worse than those of immediate-displace- 
ment schemes, and the latter should therefore be preferred, except when parallel pro- 
cessing is used. In hyperbolic regions immediate-displacement schemes should be used, 
with C = 1. 

3.3. Acceleration by Weighting. The smoothing factor p may sometimes be 
further improved by various parameters introduced into the scheme. Since p is reliably 
obtained from the local mode analysis, we can choose these parameters to minimize p. 
For linear problems, such optimal parameters can be determined once and for all, since 
they do not depend on the shape of the domain. For nonlinear problems precise 
optimization is expensive and one should prefer the simpler, more robust relaxation 
schemes, such as SOR. 

One general way of parametrization is the weighting of corrections. We first cal- 
culate, in any relaxation scheme, the required correction 6uV, = uV - uV (where v= 
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(a, ,B) or, for a general dimension d, v = (vl, v2, Vd), v integers). Then, instead 
of introducing these corrections, we actually introduce corrections which are some 
linear combination of buV at neighboring points. That is, the actual new values are 

(3.12) UV = UV + E Cj1Y5Uv+^r 
yEr 

where the weights co)y are the parameters, 'y = (7 1 Y2' . . . )' d), y integers, and r is a 
small set near (0, 0, . . ., 0). For any fixed r we can optimize the weights. In case 
r = {0}, wO is the familiar relaxation parameter. Weighting larger r is useful in 

delayed-displacement relaxation schemes. For immediate-displacement schemes one can 
examine taking weighted averages of old and new values. 

Examples. In case of simultaneous displacement (Jacobi) relaxation for the 5- 
point Poisson equation, the optimal weights for r = {0} is co = .8, for which the 
smoothing factor is i = .60. For the set r = (y1,1 72): ly11 ?+ [721 < 1} the optimal 
weights are coo = 6coo +1 = 6co?+,, = 48/41, yielding A = 9/41. This rate seems 
very attractive; the smoothing obtained in one sweep equals that obtained by 
(log 9/41)/(log 1/2) = 2.2 sweeps of Gauss-Seidel relaxation. Actually, however, each 
sweep of this weighted-Jacobi relaxation requires nine additions and three multiplications 
per grid point, whereas each Gauss-Seidel sweep requires only four additions and one 
multiplication per point, so that the two methods have almost the same convergence 
rate per operation, Gauss-Seidel being slightly faster. The weighted Jacobi scheme is 
considerably more efficient than any other simultaneous-displacement scheme, but like 
any carefully weighted scheme, it is considerably more sensitive to various changes. 

The acceleration by weighting can be more significant for higher-order equations. 
For the 13-point biharmonic operator, Gauss-Seidel relaxation requires twelve additions 
and three multiplications per grid point and gives ,ii = .802, while weighted Jacobi 
(with weights cooo = 1.552, wo,? I = co+l o = .353) requires seventeen additions and 
five multiplications per point and gives A = .549, which is 2.7 times faster. (The best 
relaxation sweep for the biharmonic equation A2 U = F is to write it as the system 
AV = F, AU = V and sweep Gauss-Seidel, alternatively on U and V. Such a double 
sweep costs eight additions and two multiplications per grid point, and yields i = .5. 
But a similar procedure is not possible for general fourth-order equations.) 

4. A Multi-Grid Algorithm (Cycle C) for Linear Problems. There are several 
actual algorithms for carrying out the basic multi-grid idea, each with several possible 
variations. We present here an algorithm (called "Cycle C" in [3]) which is easy to 
program, generally applicable and never significantly less efficient than the others 
("Cycle A" and "Cycle B"). The operation of the algorithm for linear problems is 
easier to learn, and is therefore described first. In the next section the FAS (Full 
Approximation Storage) mode of operation, suitable for nonlinear problems and other 
important generalizations, will be described. A flow-chart of the algorithm is given in 
Figure 1. (For completeness, we also flowchart, in Figure 2, Cycles A and B.) A 
sample FORTRAN program of Cycle C, together with a computer output, is given in 
Appendix B. 
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Set k -M, fkuI-FM, k_MIk Vi U 

v Vk -_ R e la x I L=f k Ak =o kv k 

YES YES 

flwk=M !k=O 

kc<M |k>O 

ki k| 1 k-k-l J 

vk_Vk + Jk vk-l ||vk_o- l 

f k_-Ik (f k L vkL I ) k-el 

k. Ik (+kI- _k+1 vk+l) 
k-il 

FIGURE 1. Cycle C, Linear Problems 

Cycle C starts with some approximation um being given on the finest grid GM. 
In the linear case one can start with any approximation, but a major part of the com- 
putations is saved if uom has smooth residuals (e.g., if uom satisfies the boundary condi- 
tions and LMuom - FM is smooth. As explained in Section 6, smoothing the residuals 
involves most of the computational effort). In the nonlinear case, one may have to use 
a continuation procedure, usually performed on coarser grids (cf. Section 8.2). Even 
for linear problems, the most efficient algorithm is to obtain uom by interpolating from 
an approximate solution um- 1 calculated on GM- 1 by a similar algorithm. (Hence the 
denomination "cycle" for our present algorithm, which would generally serve as the 
basic step in processes of continuation, refinement and grid adaptation, or as a time 
step in evolution problems.) For highest efficiency, the interpolation from uM- 1 to 
um should be of sufficiently high order, to exploit all smoothness in uM- 1. (Cf. (A.7) 
in Section A.2, and see also Section 6.3.) 

The basic rule in Cycle C is that each vk (the function defined on the grid Gk; 
k = 0, 1, . , M - 1) is designed to serve as a correction for the approximation vk+1 

previously obtained on the next finer grid Gk+ 1, if and when that approximation 
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FIGURE 2. Cycles A and B, Linear Problems 

actually requires a coarse-grid correction, i.e., if and when relaxation over Gk+1 ex- 
hibits a slow rate of convergence. Thus, the equations to be (approximately) satisfied 
by uk are** 

(4.1) LkVk = fk AkVk _ _k 

where f k and pk are the residuals (to the interior equation and the boundary condition, 
respectively) left by vk+ 1, that is, 

(4.2) fk = Ik+(fk+l _Lk+lvk+l), ok = Ik+ k+l - Ak+lVk+ ). 

* *We denote by Vk the functions in the equations, to distinguish them from their com- 
puted approximations vk. When vk is changing in the algorithm (causing Vk- I to change), Vk 
remains fixed. 



MULTI-LEVEL ADAPTIVE SOLUTIONS TO BOUNDARY-VALUE PROBLEMS 345 

We use the notation Ik to represent interpolation from Gm to Gk. In case m > k, Ik 

may represent a simple transfer of values to the coarser grid Gk from the corresponding 
points in the finer grid Gm; or instead, it may represent transfer of some weighted 
averages. In case k > m, as in step (e) below, Ik is usually a polynomial interpolation 
of a suitable order (at least the order of the differential equation. See Sections A.2 
and A.4 for more details). 

The equations on Gk are thus defined in terms of the approximate solution on 
Gk+ . On the finest grid GM, the equations are the original ones; namely 

(4.3) fM =FM M =M, uM =uM. 

The steps of the algorithm are the following: 
(a) Set k < M (k is the working level; we start at the finest level), and introduce 

the given approximation vM < um. 
(b) Improve vk by one relaxation sweep for the difference equations (4.1). 

Symbolically, we write such a sweep as 

(4.4) vk Relax [L k . = fk , A k = k]Vk 

(c) If relaxation has sufficiently converged (the precise criterion is described in 
Sections A.7 and A.8), go to step (e). If not, and if the convergence rate is still fast (by 
a criterion given in Section A.6) go back to step (b). If convergence is not obtained 
and the rate is slow, go to step (d). 

(d) If k = 0 (meaning slow convergence has taken place at the coarsest grid GO), 
go back to step (b) (to continue relaxation nevertheless, since on Go relaxation is very 
inexpensive. If, however, the problem is indefinite, then slow rate of divergence may 
occur, in which case the Go problem should be solved directly. This is as inexpensive 
as relaxation, but requires additional programming. See Section 4.1 below). If k > 0, 
lower k by 1 (to compute correction on the next, coarser level). Compute fk and k 

on this new level, using (4.2), put vk = 0 as the starting approximation, and go to step 
(b). 

(e) If k = M (convergence has been obtained on the finest level), the algorithm 
is terminated. If k < M (Vk has converged and is ready to serve as a correction to 
vk+ 1), put 

(4.5) vk+1 vk+ +?Ik+lvk 

Then advance k by 1 (to resume computations at the finer level) and go to step (b). 
The storage required for this algorithm is only a fraction more than the number 

of locations, 2n say, required to store uM and FM on the finest grid. Indeed, for a d- 
dimensional problem, a storage of roughly 2n/2d locations is required to store vM- 
and fM- 1, the next level requires 2n122d, etc. The total for all levels is 

(4.6) 2n(l + 2 -d + 2-2d + ?.. . ) < 2n2d/(2d - 1). 

(In the FAS version below, a major reduction of storage area is possible through seg- 
mental refinement. See Section 7.5.) 
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4.1. Indefinite Problems and the Size of the Coarsest Grid. If, on any grid Gk, 
the boundary-value problem (4.1) is a nondefinite elliptic problem, with eigenvalues 

(4.7) Nk < Xk < ... < Xk < 0 < 1k < 1k 

and with the corresponding eigenfunctions Vk, Vk. V, Vk 1. . then it can- 
not be solved by straight relaxation. Any relaxation sweep will reduce the error com- 
ponents in the space spanned by Vlk, V+2,.. . , but will magnify all components in 
the span of Vk, V. Vk. A multi-grid solution, however, is not seriously affected 
by this magnification, provided the magnified components are suitably reduced by the 
coarse-grid corrections. This will usually be the case, since these components are basically 
of low frequency and are well approximated on coarser grids. But care should be taken 
regarding the coarsest grid: 

On the coarsest grid, an indefinite problem should be solved directly (i.e., not by 
relaxation of any kind. Semi-iterative solutions, like Newton iterations for nonlinear 
problems, are, of course, permissible). Furthermore, this grid should be fine enough to 
provide rough approximation to the first (l + 1) eigenfunctions, so that 

(4.8) o <xk+l/xk < 
2 < ji l+ ,1 ?k<M-1), 

where wk is an "under-interpolation" factor that should multiply Ik+ 1 in (4.5) above 
when the usual value (wk = 1) does not satisfy (4.8). This means that Go should contain 
at least 0(l), probably 21, points. Also, Go should be just fine enough to still have smooth- 
ing capability at any finer level Gk. For example, if SOR relaxations with co < co are 
used, ho should satisfy (see [4] or Section 3 in [3]) 

(4.9) Re{B(O, h)/b0(h)} > 0 (O < h < hl), 

where B(O, h) is the symbol of Lh (see (A.3) in Appendix A) and bo(h) is its central coef- 
ficient. 

Usually, Go can still be coarse enough to have the direct solution of its equations 
still far less expensive than, say, one relaxation sweep over the finest grid, so that the in- 
definite problem is solved with the same overall efficiency as definite problems. 

5. The FAS (Full Approximation Storage) Algorithm. In the FAS mode of the 
multi-grid algorithms, instead of storing a correction vk (designed to correct the finer-level 
approximation u k+1), the idea is to store the full current approximation uk, which is the 
sum of the correction vk and its base approximation uk+ : 

(5.1) uk = Ik4+uk+l + Vk (k = 0, , . . . ,M- 1). 

In terms of these full-approximation functions, we can rewrite the correction equations 

(4.1)-(4.3) as*** 

(5.2) LkUk = Fk, AkUk = sjk 

Again we distinguish between the notation Uk used to write the equations and the com- 
puted approximation uk. Equation (5.2), for k < M, is not equivalent to (2.2), although they both 
use the notation Uk. 
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where 
F = Lk(4+kuk+l) + Ik(Fk+ 1 Lk+luk+l), 

(5.3) Fk - Ak(4k Uk+1) + Ik+ 4(ck+l _ Ak+luk+1), (k = 0, 1, * ,M 1), 

and where for k = M we have the original problem, i.e., 

(5.4) FM = FM ,M = (DM. 

For linear problems, Eqs. (5.2)-(5.4) are exactly equivalent to (4.1)-(4.3). The 
advantage of the FAS mode is that Eqs. (5.2)-(5.4) apply equally well to nonlinear prob- 
lems. To see this, consider for instance the nonlinear equation LMUM = FM given on 
the finest grid. Given an approximate solution uM we can still improve it by relaxation 
sweeps, with smoothing rates i (varying over the domain, but still reliably estimated 
by mode analyses, applied locally to the linearized-frozen equation). As in the linear 
case, the smoothed-out functions are the residual fM = FM - LMuM and the correction 
UM - uM. Therefore, the equation that can be approximated on coarser grids is the 
residual equation LMUM - LMuM = fM. Its coarser-grid approximation is 

(5.5) LM 1 UM-1 -LM-1IM-l uM = IM-'fM 

which is the same as (5.2) for k = M - 1. In interpolating UM- 1 (or a computed 
approximation uM- 1) back to GM, we should actually interpolate UM- 1 - IM- lum 

because this is the coarse-grid approximation to the smoothed-out function UM - uM. 
Similarly, in interpolating an (approximate) solution uk of (5.2) to the finer grid 
Gk+l, the polynomial interpolation should operate on the correction. Thus the inter- 
polation is 

(5.6) uk+1 <uk+1 + Ik+ 1(uk-+Ik uk+ 1), 

which is equivalent to (4.5). Note that generally, 

ik+lik uk+l # uk+l 
k k+1 

The FAS (Cycle C) algorithm is the same algorithm as in Section 4, with the 
FAS equations (5.2)-(5.4) replacing (4.1)-(4.3), and with (5.6) replacing (4.5). It is 
flowcharted in Figure 3. 

The FAS mode has several important advantages: It is suitable for general non- 
linear problems, with the same procedures (relaxation and interpolation routines) used 
at all levels. Thus, for example, only one relaxation routine need be written. More- 
over, this mode is suitable for composite grids (nonuniform grids created by increasing- 
ly finer levels being defined on increasingly smaller subdomains; see Section 7.2), which 
is the basis for grid adaptation on one hand, and segmental refinement (see Section 
7.5) on the other hand. Generally speaking, the basic feature of the FAS mode is that 
the function stored on a coarse grid Gk coincides there with the fine-grid solution: 
uk = IkuM. This enables us to manipulate accurate solutions on coarse grids. 

The storage required for the FAS algorithm is again given by (4.6). With seg- 
mental refinement (Section 7.5) it can be reduced far below that, even to O(log n). 
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An important by-product of the FAS mode is a good estimate for the truncation 
error, which is useful in defining natural stopping criteria (see Section A.8) and grid- 

adaptation criteria (Section 8.3). Indeed, for any k < m < M it can easily be shown 

(by induction on m, using (5.2)-(5.3)) that 

,Pk- ik Fm =LkvIk um) )Ik L 

,-k - ik (-M A /k(Ik Um) )Ik Am UMm, 

which are exactly the Gm approximations to the Gsktruncation errors. 

A slight disadvantagbiiy An i An featue longer calculation required in com- 

puting h, almost twice longer than calculating f k in the former (Correction Storage) 
mode. This extra calculation is equivalent to one extra relaxation sweep on Gk, but 

only for k < M, and is about 5% to 10%b of the total amount of calculations. Hence, 

for linear problems on uniform grids, the CS mode is slightly preferable. 

6. Performance Estimates and Numerical Tests. 

6. 1. Predictability. An important feature of the multi-grid method is that, 

although iterative, its total computational work can be predicted in advance by local 
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mode (Fourier) analysis. Such an analysis, which linearizes and freezes the equations 
and ignores distant boundaries, gives a very good approximation to the behavior of 
high-frequency components (since they have short coupling range), but usually fails to 
approximate the behavior of the lowest frequencies (which interact at long distances). 
The main point here, however, is that these lowest frequencies may indeed be ignored 
in the multi-grid work estimates, since their convergence is obtained on coarser grids, 
where the computational work is negligible. The purpose of the work on the finer 
grids is only to converge the high frequencies. Thus, the mode-analysis predictions, 
although not rigorous, are likely to be very realistic. In fact, these predictions are in 
full agreement with the results of our computational tests. This situation is analogous 
to the situation in time dependent problems, where precise stability criteria are derived 
from considering the corresponding linearized-frozen-unbounded problems. (See page 
91 in [30].) Rigorous convergence estimates, by contrast, have no use in practice. 
Except for very simple situations (see Appendix C and Section 10) they yield upper 
bounds to the computational work which are several orders of magnitude larger than 
the actual work. 

The predictability feature is important since it enables us to optimize our pro- 
cedures (cf. Section 3.3, Appendix A). It is also indispensable in debugging multi-grid 
programs. 

6.2. Multi-Grid Rates of Convergence. To get a convenient measure of conver- 
gence per unit work, we define as our Work Unit (WU) the computational work in 
one relaxation sweep over the finest grid GM. The number of computer operations in 
such a unit is roughly wn, where n is the number of points in GM and w is the num- 
ber of operations required to compute the residual at each point. (In parallel process- 
ing the count should, of course, be different. Also, the work unit should be further 
specified when comparing different discretization and relaxation schemes.) If the 
mesh-size ratio is p = hk+ l/hk and the problem's domain is d-dimensional, then a 
relaxation sweep over G'-j costs approximately pjdj WUs (assuming the grids are co- 
extensive, unlike those in Section 7). 

Relaxation sweeps make up most of the multi-grid computational work. The 
only other process that consumes any significant amount of computations is the Ik-1 
and Ik 1 interpolations. It is difficult to measure them precisely in WU's, but their 
total work is always considerably smaller than the total relaxation work. In the ex- 
ample in Appendix B, the interpolation work is about 20% of the relaxation work. 
Usually the percentage is even lower, since relaxing Poisson problems is particularly 
inexpensive. To unify our estimates and measurements we will therefore define the 
multi-grid convergence factor ,u as the factor by which the errors are reduced per one 
WU of relaxation, ignoring any other computational work (which is never more than 
30% of the total work). 

The multi-grid convergence factor may be estimated by a full local mode analy- 
sis. The following is a simplified analysis, which gives a good approximation. We 
assume that a relaxation sweep over any grid Gk affects error components el? X 
only in the range 7r/hk 1 1 (31 < 7r/hk, where 
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d 
(6.1) 0 = ( 15 902* *.*. ' d)' * X x E 1x1, 191 = max l0jl. 

j= 1 1? 6j<d 

(The O/hk of Section 3 and Appendix A is denoted here by 9, to unify the discussion 
of all levels.) In fact, if a proper interpolation scheme is used (see Section A.2), only 
components in the range 191 < (1 + e)7r/hk- 1, say, are affected by interactions with 
coarser grids. But if proper residual-weighting is also used (to make a = 1; cf. Section 
A.4), then the combined action of the coarse-grid correction cycles and the Gk relax- 
ation sweeps yield convergence rates which are slowest at 1e1 = 7r/hk- 1 (cf. Appendix 
A). For such 9 the coarse-grid cycles have neutral effect, since a = 1, hence the con- 
vergence rate is indeed as affected only by the Gk relaxation sweeps. 

One relaxation sweep over Gk reduces the error components in the range 
7r/hk- 1 < 11 < 7r/hk by the smoothing factor p. (See Section 3. If the smoothing 
factor near a boundary is slower than ,i, which is not the usual case, smoothing may be 
accelerated there by partial relaxation sweeps-cf. Section A.9.) Thus a multi-grid 
cycle with s relaxation sweeps on each level reduces all error components by the factor 
f. The amount of Work Units expended in these sweeps is 

s + sjfd + S12d +... + S,(M-1)d < S/(1 - d). 

Hence, the multi-grid convergence factor is 

(6.2) 4 = _( _ d) 

which is not much bigger than g. In case a > 1, the effective smoothing factor ,i (see 
(A.8)) should replace , in this estimate. 

Estimate (6.2) is not rigorous, but is simple to compute and very realistic. In 
fact, numerical experiments (Sections 6.4-6.5) usually show slightly faster (smaller) 
factors ,u, presumably because the worst combination of Fourier components is not always 
present. 

The theoretical multi-grid convergence factors, for various representative cases, are 
summarized in Table 1. 

Explanations to Table 1. The first column specifies the difference operator and 
the dimension d. Ah denotes the central second-order ((2d + 1)-point) approximation, 
and A(4) the fourth-order ((4d + 1)-point "star") approximation, to the Laplace opera- h 
tor. A2 is the central 13-point approximation to the biharmonic operator. The opera- 
tors ax, ay, axx and ayy are the usual central second-order approximations to the 
corresponding partial-differential operators. a- is the backward approximation. Up- 
stream differencing is assumed for the inertial terms of the Navier-Stokes equations; 
central differencing for the viscosity terms, forward differencing for the pressure terms, 
and backward differencing for the continuity equation. Rh is the Reynolds number 
times the mesh-size. 

The second column specifies the relaxation scheme and the relaxation parameter 
u. SOR is Successive Over Relaxation, which for co = 1 is the Gauss-Seidel relaxation. 

xLSOR (yLSOR) is Line SOR, with lines in the x (y) direction. yLSOR +, yLSOR - 
and yLSORs indicate, respectively, relaxation marching forward, backward and sym- 
metrically (alternately forward and backward). CSOR means Collective SOR (see 
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Section 3 in [3]) and the attached c's are wi for the velocity components and C-'2 for 
the pressure. "Downstream" means that the flow direction and the relaxation marching 
direction are the same; "upstream" means that they are opposite. ADLR denotes 
Alternating Direction Line Relaxation (a sweep of xLSOR followed by a sweep of 
yLSOR). SD is Simultaneous Displacement (Jacobi) relaxation, WSD is Weighted Si- 
multaneous Displacement with the optimal weights as specified in Section 3.3 above (and 
with other weights, to show the sensitivity). WSDA (for A2) is like WSD, except that 
residuals are computed in less operations by making first a special pass that computes 
AhU. yLSD is y-lines relaxation with simultaneous displacement, ADLSD is the corre- 
sponding alternating-direction (yLSD alternating with xLSD) scheme. 

TABLE 1. Theoretical smoothing and MG-convergence rates 
A - a - 

|h d| Relax. Scheme w ; | p | | in I add mul WM Lh~~~ . 

ih 1 SOR 1 1:3 .557 .693 2.73 2 1 9.0 
1:2 .477 .668 2.49 3 2 6.9 
2:3 .378 .723 3.08 3 2 7.5 

2 SOR 1 1:3 .667 .697 2.77 4 1 '6.8 
.8 1:2 .552 .640 2.24 5 2 4.1 
1 .500 .595 1.92 4 1 3.5 

1.2 .552 .640 2.24 5 2 4.1 
1 2:3 .400 .601 1.96 4 1 2.9 

LSOR 1 1:2 .447 .547 1.66 8 4 3.1 
ADLR 1 .386 .490 1.40 8 4 2.6 

.8 .456 .555 1.70 8 4 3.1 

SD .8 1:2 .600 .682 2.61 5 2 4.8 
WSD 1.17, .195 .220 .321 0.88 9 3 1.6 

1.40, .203 .506 .600 1.96 9 3 3.6 

3 SOR 1 1:3 .738 .746 3.42 6 1 7.8 
1:2 .567 .608 2.01 6 1 3.7 
2:3 .441 .562 1.73 6 1 2.0 

"h (4) 2 SOR .8 1:2 .581 .665 2.46 9 3 9.1 
1 .534 .625 2.13 8 2 7.9 

1.2 .582 .666 2.46 9 3 9.1 
LSOR 1 .484 .580 1.84 14 7 6.8 

3 SOR 1 .596 .636 2.21 12 2 7.0 

3 + 2a 3 + a 2 SOR 1 1:2- 62 .699 2.79 8 2 5.2 mc x Y YY LSOR,ADLR .447 .547 1.66 12 5 3.1 

"h2 2 SOR 1 1:2 .802 .847 6.04 12 3 11.1 

1 2:3 .666 .798 4.43 12 3 6.5 
WSD 1.552, .353 1:2 .549 .638 2.22 17 5 4.1 

1.4 , .353 1.03 div. div. 17 5 div. 
WSDA 1.552, .353 .549 .638 2.22 14 4 4.1 

NAVIER - STOKES CSOR 

Rh = 0 2 downstr. 1, .5 1:2 .800 .846 5.98 18 6 11.0 
any 1, .5 .800 .846 5.98 33 16 11.0 
100 1.1, .5 1.73 div. div. 33 16 div. 
100 .8, .5 .93 .947 18.7 33 16 34.5 

10 upstream 1, .5 .884 .912 10.8 33 16 20.0 
100 1, .5 .994 .995 220. 33 16 400. 
100 .8, .5 .984 .988 83. 33 16 150. 

0 3 downstr. 1, .5 .845 .863 6.79 33 8 10.7 
any 1, .5 .845 .863 6.79 60 25 10.7 

10 upstream 1, .5 .874 .889 8.49 60 25 13.4 
100 1, .5 .989 .990 100. 60 25 160. 

STOKES' (Rh =0) SOR 1,.33 .707 _ __ 
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TABLE 1 (Continued). Here d = 2, 2 = 1 2 

Lh Relax. 
Scheme w 1 

a + sa , E<<l SOR, xLSOR any 1- 0(s) 

a3 + ca yLSOR 1 max(5 1/2 a xx yLSORa+2c 

(q = min(-a c)) ADLR 5 1/4 (1+2q)-1/2 c a 

SD, yLSD, ADLSD 1 1 

SD (2q+2) / (3q+2) (q+2)/(3q+2) 

yLSD (2a+2c)/(2a+3c) (2a+c) / (2a+3c) 

ADLSD 2/3, 2/3 < 31/2 577 

Ah- h a yLSOR 1 max [+,+2/4 2) 

A hax yLSOR+ 1 max [, 5+6n+2n2 2 1/ 

(0>o) yLSOR- max (I I _+n+i1 3 ''2+n+i 

yLSORs < 3 1/2 577 

Navier - Stokes SOR (pressure >.1 2 2 

with large Rh in corrected by the - - 
2 or 3 dimensions continuity equation), 

downstream or up- 
stream, with any 
relaxation parameters. 

The next columns list A = hk: hk+ I (see discussion below), the smoothing factor 
, as defined by (3.8), and ,u calculated by (6.2). We also list the multi-grid conver- 
gence rate llog p1I 1, which is the theoretical number of relaxation Work Units required 
to reduce the error by the factor e, and WM, the overall multi-grid computational work 
(see Section 6.3). To make comparisons of different schemes possible, we also list, for 
each case, the number of operations per grid point per sweep. This number times n 
(the number of points in GM) gives the number of operations in a Work Unit. We list 
only the basic number of additions and multiplications (counting shifts as multiplica- 
tions), thus ignoring the operations of transferring information, indexing, etc., which 
may add up to a significant amount of operations, but which are too computer- and 
program-dependent to be specified. Also, we assumed that the right-hand sides fk, 

including fM, are stored in the most efficient form (e.g., h2fM is actually stored). Note 
that the SOR operation count is smaller for co = 1 (Gauss-Seidel) than for any other . 
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For Navier-Stokes equations with CSOR we found ,i to be largest when relaxing 
upstream, and smallest when relaxing downstream. We also found that in marching 
alternately back and forth, the worst overall smoothing rate is for flows aligned with 
the relaxation, i.e., flows for which this relaxation is alternately upstream and down- 
stream. The worst , is therefore (pu,uld) , where p,U and pd are, respectively, the 
"upstream" and "downstream" values shown in the table. 

Numbers in this table were calculated by Allan S. Goodman, at IBM Thomas 
J. Watson Research Center. A more extensive list is in preparation. 

Mesh-Size Ratio Optimization. Examining Table 1, and many other unlisted 
examples, it is evident that the mesh-size ratio - = 1: 2 is close to optimal, yielding 
almost minimal Ilog , 1 and minimal WM. This ratio is more convenient and more 
economical in the interpolation processes (which are ignored in the above calculations) 
than any other efficient ratio. In practice, therefore, the ratio p- = 1: 2 should al- 
ways be used, giving also a very desirable standardization. 

6.3. Overall Multi-Grid Computational Work. Denote by WM the computa- 
tional work (in the above Work Units) required to solve the GM problem ((2.2), k- 
M) to the level of its truncation errors rM (cf. Section A.8). If the problem is first 
solved on GM- 1 to the level rM- 1, and if the correct order of interpolation is used 
to interpolate the solution to GM (so that unnecessary high-frequencies are not ex- 
cited, cf. Section A.2, and in particular (A.7) for i = 1), then the residuals of .this 
first GM approximation are O(rm- 1). The computational work required to reduce 
them to 0(1M) is log O(rM AM- ')/log u. Hence, 

(6.3) WM = WM- ? log 4og ,i. 

Similarly, we can solve the GM-i problem expending work 

(6.4) WM_ J = WM-j- + ? jd log~ I =/log 

(since a GM-i work unit is jid times the GM unit). If we use p-order approximations, 
then 

(6.5) krkIk ? 0(hp)/O(hp_) = ) 

Hence, using (6.4) for j = 0, 1, 2, . . , M - 1 and neglecting WO, 

W < (1 + d + 2d + ...)p log ^/log j 

Or, by (6.2), 

(6.6) WM 6 (p log ^)/((I - pd)2 log ,i). 

(The same p was assumed in computing the first approximation and in the improve- 
ment cycles. This of course is not necessary.) 

Typical values of this theoretical WM are shown in Table 1 above. In actual 
computations a couple of extra Work Units are always expended in solving a problem, 
because we cannot make nonintegral numbers of relaxation sweeps or MG cycles, and 
also because we usually solve to accuracy below the level of the truncation errors. 
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For 5-point Poisson problems, for example, the following procedure gives a GM 
solution with residuals smaller than rM. (i) Obtain uM-l on GM-', with residuals 
smaller than rM- 1. (ii) Starting with the cubic interpolation UM <-I' 4um- ul(pre- 
ferably by using the difference operator itself; cf. [7] ), make a MG correction cycle 
such as Cycle C with -q = 0 (i.e., switching to Gk- 1 after two sweeps on Gk), with 
Ik- 1 transfer by injection (cf. Section A.4) and Ik_ 1 by linear interpolation, and 
with "convergence" on Gk defined as obtained after the first sweep following a return 
from Gkl. A precise count shows Step (ii) to require 30n + O(n/2) operations, 
where n is the number of points in GM. Thus, the total number of operations is 

(1+ + + ) 30n + o(ny2) < 40n + o(ny2). 

Incidentally, none of these operations is a full multiplication: only additions and shifts 
(multiplications or divisions by 2 or 4) are used. The theoretical WM for this problem 
(sixth line in Table 1) amounts to only 17.5n operations, since it ignores interpolation 
work (10.3n operations in the above procedure) and allows nonintegral numbers of 
sweeps and cycles. In fact, numerical tests showed the above algorithm to yield resid- 
uals considerably below the truncation errors. (The only cases in which the residuals 
approached 50% of the truncation errors were cases with high smoothness, in which 
the correct MLAT discretization would be different; namely, of higher order. (Cf. 
Section 8 and the remark following formula (A.7).) If one is interested in still smaller 
residuals, then another MG correction cycle can be added to the above algorithm. This 
will require 20n more operations and will make the residuals much smaller than (typi- 
cally 2% of) the truncation errors. For n > 500, a program implementing the above 
algorithm runs less than 40n microseconds on CDC CYBER 173. 

6.4. Numerical Experiments: Elliptic Problems. A typical numerical experiment 
is shown in Appendix B, including the FORTRAN program and the computer output. 
The output shows a multi-grid convergence factor 

(.009051)1/12.92 = 

28.1 / 

which is close to, and slightly faster than, the theoretical value 4 = .595 shown in 
Table 1. 

Many numerical experiments with various elliptic difference equations in various 
domains were carried out at the Weizmann Institute in 1970-1972, with the collabora- 
tion of Y. Shiftan and N. Diner. Some representative results were reported in [2], and 
many others in [11]. These experiments were made with other variants of the multi- 
grid algorithm (variants A and B), but their convergence factors agree with the same 
theoretical rates 4. The experiments with equations of the form aUx + cU with 
a > c, showed poor convergence rates, since the relaxation scheme used was Gauss- 
Seidel, and not the appropriate line relaxation (cf. Section 3.1). Some of these rates 
were better than predicted by the mode analysis, because the grids were not big enough 
to show the worst behavior. The convergence rates found in the experiments with the 
biharmonic equation were also rather poor (although nicely bounded, independently 
of the grid size), again because we used Gauss-Seidel relaxations and injections 
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instead of the appropriate schemes (cf. Sections 3.3 and A.4). All these points 
were later clarified by mode analyses, which fully explain all the experimental results. 
In solving the stationary Navier-Stokes equations, as reported in [2], SOR instead of 
CSOR was employed (cf. Table 1 above), and an additional over-simplification was done 
by using, in each multi-grid cycle, values of the nonlinear terms from the previous cycle, 
instead of using the FAS scheme (Section 5). 

Nevertheless, these experiments did clearly demonstrate important features of the 
multi-grid method: The rate of convergence was essentially insensitive to several factors, 
including the shape of the domain Q2, the right-hand side F (which has some influence 
only at the first couple of cycles; cf. Section A.2) and the finest mesh-size hM (except 
for mild variations when hM is large). The experiments indicated that the order I of 
the interpolations Ik should be the order of the elliptic equation, as shown in Section 
A.2 below. (Note that in [2] the order was defined as the degree 1 of the polynomial 
used in the interpolation, whereas here I = 1 + 1.) 

More numerical experiments are now being conducted at the Weizmann Institute 
in Israel and at IBM Research Center in New York, and will be reported elsewhere. In 
this article they are briefly mentioned in Sections 6.3, 7.2, A.4, A.6, A.7. We will 
separately report here only an extreme case of the multi-grid tests-the solution of 
transonic flow problems. 

6.5. Numerical Experiments: Transonic Flow Problems. These experiments were 
started in 1974 at the Weizmann Institute with J. L. Fuchs, and recently conducted at the 
NASA Langley Research Center in collaboration with Dr. Jerry South while the present 
author was visiting the Institute for Computer Applications in Science and Engineering 
(ICASE). They are preliminarily reported in [12], and will be further reported else- 
where. One purpose of this work was to examine the performance of the multi-grid 
method in a problem that is not only nonlinear, but more significantly, is also of mixed 
(elliptic-hyperbolic) type and contains discontinuities (shocks). 

We considered the transonic small-disturbance equation in conservation form 

(6.7) [(K - ?ox)ox I x + CO,y = ? 

for the velocity disturbance potential ?(x, y) outside an airfoil. Here K = (1 - M!)I/2 13, 
K = +( 1+ )Mo, M. is the free-stream Mach number, and y = 1.4 is the ratio 
of specific heats. r is the airfoil thickness ratio, assumed to be small. c = 1, unless 
the y coordinate is stretched. The airfoil, in suitably scaled coordinates, is located at 
{y = 0, lxi < ?/2, and we consider nonlifting flows, so that the problem domain can, 
by symmetry, be reduced to the half-plane {y > 0}, with boundary conditions 

(6.8) ?(x, y) -O as x2 +y2 - 00, 

(6.9) 0 0 for Ixi > ?h, 
F'(x) for lxi < , 

where rF(x) is the airfoil thickness function which we took to be parabolic. Equation 
(6.7) is of hyperbolic or elliptic type depending on whether K - 2K4x is negative or 
positive (supersonic or subsonic). 
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The difference equations we used were essentially the Murman's conservative 
scheme (19]; for a recent account of solution methods, see [8]), where the main idea 
is to adaptively use upstream differencing in the hyperbolic region and central differ- 
encing in the elliptic region, keeping the system conservative. For relaxation we used 
vertical (y) line relaxation, marching in the stream direction. The multi-grid solution 
was programmed both in the CS (Section 4) and the FAS (Section 5) modes, with 
practically the same results. We used cubic interpolation for Ik+l and injection for 

k-~~~~~~~~~~~~~~~ ik-1 k 
Local mode analysis of the linearized-frozen difference equations and vertical- 

forward line relaxation gives the smoothing factor 

( 
|b + bm + ibL|' 2c + b b+(x) = K - 2Kkx (x ? h/2), 

at elliptic (subsonic) points, and ,i = 0 at supersonic points. We were interested in 
cases where K < 1 and ox > 0, and hence, in smooth elliptic regions (b+ - b_) with- 
out coordinate stretching we get Ai - 1/12 + il = 0.45 and , - = 0.55. 

The actual convergence factors, observed in our experiments with moderately super- 
critical flows (M. = 0.7 and M.c, = 0.85, r = 0.1) on a 64 x 32 grid, were , = 0.52 
to 0.53, just slightly faster than the theoretical value. (See detailed output in [12]. 
The work count in [12] is slightly different, counting also the work in the Ik 
transition.) 

For highly supercritical flows (Moo = 0.95, r = 0.1) the MG convergence rate 
deteriorated, although it was still three times faster than solution by line relaxation 
alone. The worse convergence pattern was caused by a conceptual mistake in our test 
for slow convergence (cf. Section A.6). For switching to a coarse grid in a transonic 
problem, it is not enough that slow reduction per relaxation sweep is shown in the 
residual norm. Slow change per sweep should also be exhibited in the number of super- 
sonic (or subsonic) points. When this extra test was introduced we obtained fast con- 
vergence (, < .73) even for M = .98. Further improvement may be obtained by includ- 
ing partial relaxation sweeps (see Section A.9) in a narrow region behind the shock, 
where b+ > b_ so that p is close to 1. We had certain difficulties in the convergence 
on the coarsest grids, which may indicate the need for the residual weighting (A.12). 

Coordinate stretching, which transforms the bounded computational domain to 
the full half-plane, gave difference equations that again exhibited slow multi-grid con- 
vergence rates. This, too, is explainable by the mode analysis. For example, in the 
regions where the y coordinate is highly stretched, c in (6.7) becomes very small, and 
hence, , in (6.10) is close to 1. The theoretical remedies: alternating-direction line 
relaxations and partial relaxation sweeps. The latter was tried in one simple situation 
(stretching only the x coordinate), and indeed restored the convergence rate of the 
corresponding unstretched case. 

7. Nonuniform Grids. Many problems require very different resolution in differ- 
ent parts of their domains. Special refinement of the grid is required near singular 
points, in boundary layers, near shocks, and so on. Coarse grids (with higher approxi- 
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mation order) should be used where the solution is smooth, or in subdomains far from 
the region where the solution is accurately needed, etc. A general method for locally 
choosing mesh-sizes and approximation orders is described in Section 8. An important 
feature of the method is adaptivity: the grid may change during the solution process, 
adapting itself to the evolving solution. In this section, we propose a method of orga- 
nizing nonuniform grids so that the local refinement is highly flexible. The main idea is 
to let the sequence of uniform grids Go, Gl, . . ., GM (cf. Section 2) be open-ended 
and noncoextensive (i.e., finer levels may be introduced on increasingly smaller sub- 
domains4to produce higher local refinement, and coarser levels may be introduced on 
increasingly wider domains to cover unbounded domains), and, furthermore, to let each 
of the finer levels be defined in terms of suitable local coordinates. The multi-grid FAS 
process remains practically as before (Section 5), with similar efficiency. Also discussed 
is a method which employs this grid organization for "segmental refinement", a multi- 
grid solution process with substantially reduced storage requirement. 

7.1. Organizing Nonuniform Grids. How are general nonuniform grids organized 
for actual computations? There are two popular approaches: One, usually used with 
the finite element method, is to keep the entire system very flexible, allowing each 
grid point to be practically anywhere. This requires a great deal of bookkeeping: grid 
points' locations and pointers to neighbors need to be stored; sweeping over the grid is 
complicated; obtaining the coefficients of the difference equations (or the local "stiff- 
ness") may require lengthy calculations, especially where the grid is irregular; and these 
calculations should be repeated each relaxation sweep, or else additional memory areas 
should be allocated to store the coefficients. Also, it is more difficult to organize a 
multi-grid solution on a completely general grid (see, however, Sections 7.3 and A.5), 
and complete generality is not necessary for obtaining any desired refinement pattern. 

Another approach for organizing a nonuniform grid is by a coordinate transfor- 
mation, with a uniform grid being used over the transformed domain. On such grids, 
topologically still rectangular, the multi-grid method can be implemented in the usual 
way, the lines of Gk- 1 being every other line of Gk. Decisions (stopping criteria, 
residual weighting, relaxation mode and relaxation directions) should be based on the 
transformed difference equations. Very often, however, coordinate transformation does 
not offer enough flexibility. A local refinement is not easy to produce, unless it is a 
one-dimensional refinement, or a tensor product of one-dimensional refinements. The 
difficulties are enlarged in adaptive procedures, where it should be inexpensive to change 
local mesh-sizes several times in the solution process. Moreover, the transformation 
usually makes the difference equation much more complicated (requiring additional 
storage for keeping coefficients, or additional work in recomputing them every sweep), 
especially when the transformation does become sophisticated (i.e., adaptive, and not 
merely a product of one-dimensional transformations), and in particular if higher-order 
approximations should be used in some or all subdomains. 

Thus, be it in the original or in some transformed domain, one would like to 
have a convenient system for local refinements, with minimal bookkeeping and efficient 
methods for formulating and solving difference equations. The following system is 
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proposed (and then generalized, in Sections 7.3, 7.4): 
A nonuniform grid is a union of uniform subgrids, Go, G1, . . , GM, with cor- 

responding mesh-sizes ho, h1, . . . , hm. Usually hk : hk+l = 2: 1 and every other 
grid line of Gk+l is a grid line of Gk. Unlike the description in Section 2, however, 
the subgrids are not necessarily extended over the same domain. The domain of Gk+ 1 
may be only part of the domain of Gk (but not vice versa). Thus we may have differ- 
ent levels of refinement at different subdomains. 

For problems on a bounded domain QZ, several of the first (the coarsest) subgrids 
may extend to the entire domain Q2. That is, they do not serve to produce different 
levels of refinement; but they are kept in the system for serving in the multi-grid pro- 
cess of solving the difference equations. Go should be coarse enough to have its system 
of difference equations relatively inexpensive to solve (i.e., requiring less than O(2;nk) 
operations, where nk is the number of grid points in Gk. But cf. Section 4.1). The 
finer subgrids typically extend only over certain subdomains of Q2, not necessarily con- 
nected. Generally, Gk is stretched over those subdomains where the desired mesh-size 
is hk or less. Thus, very fine levels (e.g., with M = 20, so that hM = 2-20ho) may be 
introduced, provided they are limited to suitably small subdomains. 

Such a system is very flexible, since grid refilnement (or coarsening) is done by 
extending (or contracting) uniform subgrids. There are several possible ways of storing 
functions on a (possibly disconnected) uniform grid, allowing for easy grid changes. 
For example, each string (i.e., connected row or column) of function values can be 
stored separately, at an arbitrary place in one big storing area, with a certain system of 
pointers leading from one string to the next. The extra storage area needed for these 
pointers is small compared with the area needed for storing the function values them- 
selves. One such system, with subroutines for creating, changing and interpolating be- 
tween the grids, is now under construction, and is described in [26]. 

If the (original or transformed) problem's domain is unbounded, we usually put 
suitable boundary conditions on some finite, "far enough" artificial boundary. In the 
present system, we do not have to decide in advance where to place the artificial 
boundary: We can extend (or contract) the coarsest subgrid(s) as the solution evolves. 
Moreover, we can add increasingly coarser levels (G-1, G-2, . . . ) to cover increasing- 
ly wider domains, if required by the evolving solution. In this way, we may reach 
computational domains of large diameter R, by adding only O(log R) grid points 
(assuming the desired mesh-size, out at distance r, is proportional to r, or larger. This 
should usually be the case, especially if appropriate higher-order approximations are 
used at large distances). 

There appears to be a certain waste in the proposed system, as one function value 
may be stored several times, when its grid point belongs to several levels Gk. This is 
not the case. First, because the amount of such extra storage is small (less than 2-d 
of the total storage; see (4.6)). Moreover, the stored values are exactly those needed 
for the multi-grid process of solution: In fact, in that process, the values stored for 
different levels at the same grid point are not identical; they only converge to the same 
value as the process proceeds. 
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FIGURE 4. Example of Nonuniform Grid 
A section of the domain Q2 and its boundary 3iQ is shown, covered with a coarser grid 
Gk (line intersections) and a fi'ner grid Gk+1 (crosses and circles). For the case of 
5-point (or 9-point "box") difference equations, Gk+1 inner points are marked with 
crosses, its outer points with circles. (For convenient interpolation, outer points should 
lie on Gk lines.) At outer points belonging to Gk, the converged solution satisfies the 
Gk difference equations, such as the 5-point relations indicated by squares. At other 
outer points, such as those shown with triangles, the solution is always an interpolation 
from values at adjacent Gk points. (Note that starting values at outer points should be 
such that these interpolation relations are satisfied. The FAS interpolation steps will 
then automatically preserve these relations.) 

7.2. nTe Multi-Grid Algorithm on Nonuniform Grids. The following is a descrip- 
tion of the modification in the FAS multi-grid algorithm (Section 5) in case of a non- 
uniform grid with the above structure. The algorithm remains almost the same, except 
that the difference equations (5.2)-(5.4) are changed to take account of the fact that 
the levels Gk do not necessarily cover the same domain. Denoting by Gm the set of 
points of Gk which are inner points of a finer level Gm (i.e., points where the Gm dif- 
ference equations are definedt; see Figure 4), the modified form of the difference 
equations on Gk is 

tWe use the term "inner", and not "interior", because these points may well be boundary 
points. Indeed, at boundary points difference equations are defined, although they are of a special 
type, called boundary conditions. The only Gm points where Gm difference equations are not de- 
fined are points on or near the internal boundary of Gm; i.e., the boundary beyond which the level 
Gm is not defined, but some coarser levels are. If the grid lines of Gk do not coincide with grid 
lines of Gm, Gk is defined as the set of points of Gk to which proper interpolation from inner m k points of Gm is well defined. For m > M, Gm is empty. 
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(7.1) LkUks P A kUk =_ , 

where 

(7.2) F k and ?!k = (!k in Gk - Gk and for k =M, 
(7.3) P~~~~~~Fk ~k+1' 

(7.3) F7 = Fkk+ 1 and k = ok + in Gk 

(7.4) Fk = Ik (m - Ltmum) + Lk(Ik um), 

(7.5) 4?k = Ik(?" - t um Ak(Ik UM). bm Im (m - Am um ) +~ .\(uM) 
Fk and 4)k, as in Section 2, are the Gk approximation to the original right-hand sides 
F and 4), respectively. 

Observe that, by (7.2)-(7.3), each intermediate level Gk plays a double role: On 
the subdomain where the finer subgrid Gk+ 1 is not defined, Gk plays the role of the 
finest grid; and the difference equation there is an approximation to the original differ- 
ential equation. At the same time, on the subdomain where finer subgrids are present, 
Gk serves for calculating the coarse-grid correction. These two roles are not confused 
owing to the FAS mode, in which the correction vk iS only implicitly computed, its 
equation being actually written in terms of the full approximation uk. In other words, 
Fk may be regarded as the usual Gk right-hand side (Fk), corrected to achieve Gm 
accuracy in the Gk solution. Indeed 

(7.6) Fm I Fm = Lk(Im) Im(L ut), 

which is the Gm approximation to the Gk truncation error. 
The only other modification required in applying Cycle C to nonuniform grids is 

in the convergence switching criteria. See Section A.10. 
When converged, the solution so obtained satisfies Eqs. (2.2) in the inner part of 

Gk - Gk+1 (k = 0, 1, ... , M). On outer (i.e., noninner) points the solution automa- 
tically satisfies either a coarser-grid difference equation (if the point belongs to a coarser 
grid) or a coarser-grid interpolation relation (see Figure 4). Note that, in this procedure, 
difference equations should be defined on uniform grids only. This is an important 
advantage. Difference equations on equidistant points are much simpler, more accu- 
rate. The basic weights for each term (e.g., the weights (1, -2, 1) for the second-order 
approximation to a2/ax2) can be read from small standard tables; whereas on a general 
grid those weights should be recomputed (or stored) separately for each point, and they 
are very complicated for high-order approximations. 

Another advantage is that the relaxation sweeps, too, are on uniform grids only. 
This simplifies the sweeping, and is particularly important where symmetric and alter- 
nating-direction sweeps of line relaxation are required (cf. Section 3). 

Numerical experiments indicate that the typical multi-grid convergence factors, 
measured by the overall error reduction per work unit and predicted by local mode 
analysis (cf. Section 6), are retained in multi-grid solutions on nonuniform grids. The 
work unit, though, is somewhat different: It is the computational work of one sweep 
on all levels, not only on GM, since here GM may make up only a small part of the 
points of the final nonuniform grid. 
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7.3. Finite-Element Generaliztion. The structure and solution process outlined 
above can be generalized in various ways. An important generalization is to employ 
piecewise uniform, rather than strictly uniform, levels. 

Quite often, especially in problems that use finite-element discretizations, the 
"basic" partition Go (e.g., the coarsest triangulation) of the domain is a nonuniform 
one, but one which is particularly suitable for the geometry of the problem. Finer 
levels G1, G2, . . ., are defined as uniform refinements of that basic level; e.g., hk 

2-kho; so that hk is constant within each basic element. 
Having defined the levels Gk in this manner, the rest may in principle be as be- 

fore: The actual composite grid may use only certain, arbitrary portions of each level; 
i.e., the actual subgrids Gk need not be coextensive, allowing for adaptive refinements. 
Coarser levels (G- 1, G-2, . . . ) may be added if the basic level Go is not coarse 
enough for full-speed multi-grid solution. (Although there is no general algorithm for 
coarsening a nonuniform Go, and usually Go is coarse enough). Data structures, similar 
to the uniform case may be used, but should be constructed separately for each basic 
element (or each set of identical basic elements). 

The multi-grid algorithm is the same as in Section 7.2. The discrete equations 
are thus defined separately for each level. The reproduction of these equations during 
relaxation is not as convenient as in the strictly uniform case, but still, in the interior 
of any basic element the equations can readily be read from fixed tables, one table for 
each set of identical basic elements. 

7.4. Local Transformations. Another important generalization of the above 
structure is to subgrids which are defined each in terms of another set of variables. 
For example, near a boundary or an interface, the most effective local discretizations 
are made in terms of local coordinates in which the boundary (or interface) is a co- 
ordinate line. In particular, with such coordinates it is easy to formulate high-order 
approximations near the boundary; or to introduce mesh-sizes that are different across 
and along the interface (or the boundary layer); etc. Usually it is easy to define suitable 
local coordinates, and uniformly discretize them, but it is more difficult to patch to- 
gether all these local discretizations. 

A multi-grid method for patching together a collection of local grids G1, G2, 
. . ., Gm (each being uniform in its own local coordinates) is to relate them all to a 
basic grid Go, which is uniform in the global coordinates and stretches over the entire 
domain. The relation is essentially as above (Section 7.2); namely, finite-difference 
equations are separately defined in the inner points of each grid, and the FAS multi- 
grid process automatically combines them together through its usual interpolation 
periods. 

A Remark: To a given collection of local grids we may have to add intermediate 
grids to obtain fast multi-grid convergence. That is, if a given local grid Gk is much 
finer than the basic grid Go, we have to add increasingly coarser grids, all of them uni- 
form grids in the same local coordinates, such that the coarsest of them has a mesh- 
size which is (in the global coordinates) nowhere much smaller than the basic mesh- 
size ho. Similarly, if the basic global grid Go is not coarse enough, the usual multi-grid 
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sequence of global grids Go, G1, . . ., GM = Go should be introduced. Thus, in each 
set of coordinates we will generally have several grids. 

Such a system offers much flexibility. Precise treatment of boundaries and inter- 
faces by the global coordinates is not required. The local coordinates may be changed 
in the course of computations, e.g., to fit a moving interface. New sets of local coordi- 
nates may be introduced (or deleted) as the need arises. 

The data structure required for creating, changing and employing such grids is 
basically again just any data structure suitable for changeable uniform grids. This, how- 
ever, should be supplemented by tables for the local transformations, such that one can 
efficiently (i) reproduce the local difference equation, and (ii) interpolate from local to 
global grid points, and vice versa. See [26]. 

7.5. Segmental Refinement. The multi-grid algorithm for nonuniform grids 
(Section 7.2) can be useful even in the case of uniform grids, if the computer memory 
is not sufficiently large to store the finer levels. 

"Segmental refinement" is the refinement of one subdomain at a time. To see 
why and how this is possible, observe that with the FAS mode (Section 5) the full solu- 
tion uM is obtained on all grids. But on a coarser grid Gk, the uM solution satisfies 
a "corrected" difference equation, with k =- Fk replacing Fk. It is therefore not 
necessary to keep the fine grid, once Fk has been computed. 

The corrected forcing function Fk can be computed by segmental refinement. 
Refining only one subdomain, one can use the algorithm above (Section 7.2) to obtain 
a multi-grid solution, including the values of FM in the refined subdomain. Keeping 
this Fk (instead of Fk), one can then discard this refinement, and refine a second sub- 
domain. And so on, through a sequence of subdomains covering the entire domain. 

Since subsequent subdomain refinements change the solution everywhere, some 
further changes are also due in the values of FM on former subdomains. However, at 
points inner to (and few meshes away from the boundary of) such a former subdomain, 
these further changes are much smaller than the first correction FM - Fk, since they 
represent changes in the Gk truncation error due to small smooth changes in the solu- 
tion, while the first correction represents the full Gk truncation error. Thus, if the 
refinement segments are chosen so that neighboring segments overlap (several mesh 
intervals into each other), then the further corrections may be ignored. If extra accura- 
cy is desired, another cycle of segmental refinements may be performed. Another way 
of viewing this technique is to observe that the roll of the finer levels, relative to the 
coarser ones, is only to liquidate high-frequency error components which cannot be 
"seen", on the coarser grids. These components have a short (just-few mesh-sizes) 
coupling range, and can therefore be computed at any point by refining only few neigh- 
boring meshes. 

With this technique one can operate the multi-grid algorithm almost in its full 
efficiency, using a storage area which is much smaller than that of the finest grid. This 
has been confirmed by preliminary (one-dimensional) numerical tests. 

In principle, the required storage area can be reduced to only a constant cube, of 
id locations, on each level (where even J = 15 probably offer enough overlap without 
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substantial reduction in efficiency). Thus, the overall storage requirement can in prin- 
ciple be reduced to 

2Jd {I + log R/1og J 

locations, where h is the finest mesh-size and R is the diameter of the domain. No 
external memory is needed. 

8. Adaptive Discretization Techniques. The previous section described a flexible 
data structure and solution process which facilitate implementation of variable mesh- 
sizes h. The difference equations in that process are always defined at inner points of 
uniform subgrids, which make it easy to employ high and variable approximation orders 
p. How, then, are mesh-sizes and approximation-orders to be chosen? Should boundary 
layers, for example, be resolved by the grid? What is their proper resolution? Should 
we use high-order of approximation at such layers? How to detect such layers auto- 
matically? In this section we propose a general framework for automatic selection of 
h and p in a (nearly) optimal way. In Section 9, we will study some special cases, and 
show how this proposed system automatically resolves or avoids resolving a thin layer, 
depending on the alleged goal of the computations. 

8.1. Basic Principles. We will treat the problem of selecting the discretization 
parameters h and p (and possibly other parameters, see Section 8.4) as an optimization 
problem: We will seek to minimize a certain error estimator E, subject to a given 
amount of computational work W. (Or, equivalently, minimize the work W to obtain 
a given level E of the error estimator. We will see that the actual control quantity is 
neither E nor W, but their rate of exchange.) It is important, however, to promptly 
emphasize that we should not take this optimization too pedantically; it is enough, for 
instance, to obtain E which is one or two orders of magnitudes larger than the minimum 
(or, equivalently, to invest work W which is by some fraction more than theoretically 
needed. Note below that log(l/Emin) is usually proportional to W). Full optimization 
is not our purpose, is enormously harder and, in fact, is self-defeating, since it requires 
too much computational work to be invested in controlling h and p. We will aim at 
having the control work much smaller than the actual numerical work W, using the 
optimization problem only as a loose directive for sensible discretization. 

The Error Estimator E is a functional that estimates, for any given numerical 
approximation, the overall error in solving the differential boundary-value problem. 
In principle, such a functional should be furnished whenever a problem is submitted 
for numerical solution; in practice, it is seldom provided. To have such an estimator 
depends on having a clear and well-defined idea about the goal of the computations, 
i.e., an idea about what error norm we intend to minimize. Given the goal, even 
roughly, we can usually formulate E quite easily. We assume that the numerical ap- 
proximation Uh is in some suitable neighborhood of the true solution (this is a neces- 
sary and justifiable assumption; see Section 8.2), so that E can be written as a linear 
functional 

(8.1) E= G(x)r(x) dx. 
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r(x) is a local estimate of the truncation error, i.e., the error by which the numerical 
solution Uh fails to satisfy the differential equation LU = F; or, more conveniently, 
the error by which the differential solution U fails to satisfy the discrete equation 
Lh Uh = Fh. That is, 

(8.2) r(x) = IL U(x) - Lh U(x)I 

G(x) is the nonnegative "error-weighting function" (or distribution), through which the 
goal of the computations should be expressed. 

The choice of G can be crude. In fact, multiplying G by a constant does not 
change our optimization problem. Also, we can make large errors, up to one or two 
orders of magnitudes, in the relative values of G at two different points, since we are 
content in having E only to that accuracy. What matters is only large changes in G, 
e.g., near boundaries. For example, if we have a uniformly elliptic problem of order 
m, and if we are interested in computing good approximations to U and its derivatives 
up to order 1 and up to the boundary, then a suitable choice is 

(8.3) G(x) = dm/2-1I 

where dx is the distance of x from the boundary. (The formula should be suitably 
modified near a boundary corner.) This and similar choices of G are easily found by 
local one-dimensional crude analysis of the relation between a perturbation in the equa- 
tions and the resulting perturbation in the quantity we wish to approximate. Even 
though crude, such choice of G would specify our goal much closer than people usually 
bother to. Moreover, we can change G if we learn that it fails to properly weigh a 
certain region of the computation; it can serve as a convenient control, conveying our 
intentions to the numerical discretization and solution. 

The Work Functional W In solving the discrete equations by the multi-grid 
method, the main overall computational work is the number of Work Units invested 
in relaxations, times the amount of computations in each Work Unit (see Section 6). 
If the discretization and relaxation schemes are suitable, the number of Work Units is 
almost independent of the relaxation parameters h and p. (See e.g., the rate ,i for 
A(4) VS Ah in Table 1 above.) Since for our optimization problem we need W only 
up to a multiplicative constant, we can take into account only the amount of compu- 
tations in a single Work Unit, i.e., the work in one relaxation sweep over the domain. 
The local number of grid points per unit volume is h(x)-d, and the amount of com- 
putation at each grid point is a function w(p(x)), where p(x) is the local order of 
approximation. Hence, we can regard the work functional as being 

(8.4) W = WjPg dx. 

Global Optimization Equations. Treating the discretization parameters as spatial 
variables, h(x) and p(x), the Euler equations of minimizing E for fixed W are 

(8.5a) =0x+ xah ? 
ah(x) ah(x) 
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(8.5b) aE + X aw 0 
ap(x) ap(x) 

where X is a constant (the Lagrange multiplier). It is easily seen that X is actually the 
marginal rate of exchange between work and optimal accuracy, i.e., 

dEmin d log lIE (8.6) X=- W = E dW 

and the meaning of (8.5) is that we cannot lower E by trading work (e.g., by taking 
smaller h at one point and larger at another, keeping W constant, or trading a change 
in h with a change in p). 

Equations (8.5) make some essential simplifications in the optimization problem: 
They regard h and p as defined at all points x E Q2. Also, h and p are assumed to be 
continuous variables, whereas in practice they are discrete. (p should be a positive 
integer, in some schemes a positive even integer. Values of h are restricted by some 
grid-organization considerations.) These simplifications are crucial for our approach, 
and they are altogether justified by the fact that we are content in having only an 
approximate optimum. The practical aspect, of choosing permissible h and p close to 
the solution of (8.5), is discussed in Section 8.3. One restriction we should, however, 
take into account in the basic equations, namely, the restriction 

(8.7) PO 0 p(x) < p1 (x). 

Without such a restriction, the optimization equations may give values of p which can- 
not be approximated by permissible values. po is usually 1 or (in symmetric schemes) 
2. The upper bound p1 may express the highest feasible order due to round-off errors; 
or the highest order for which we actually have appropriate (stable) discretization for- 
mulae, with special such restriction near boundaries (hence the possible dependence of 
p1 on the position x). With this restriction, Euler's equation (8.5b) should be rewritten 
as 

f> 0 if p(x) = PO, 

(8.8) - + X ~ = 0 if PO<p(x) < p 1(x) 
(8.8) 3ap(x) ap(x) < 0 if p(x) = pi(x). 

Local Optimization Equations. Substituting (8.1) and (8.4) into (8.5a) and (8.8), 
we get the following equations at each point x EQ: 

(8.9a) G aT Xdw) =?0 

(8.9b) Ga7p + I) 0, 
ap hd < 

where the equality-inequality sign, in (8.9b) and hereinafter, corresponds to the three 
cases introduced in (8.8). In principle, the pair of equations (8.9) determines, for each 
x E Q2, the local optimal values of the pair (h, p), once X is given. 

Thus X is our global control parameter. Choosing larger X, we will get an opti- 
mized grid with less work and poorer accuracy; lowering X, we invest more work and get 
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higher accuracy. For each X, however, we get (approximately) the highest accuracy for 
the work invested. In principle X should be given by whoever submits the problem for 
numerical solution; i.e., he should tell at what rate of exchange he is willing to invest 
computational work for additional accuracy (see (8.6)). In practice this is not done, 
and X usually serves as a convenient control parameter (see Sections 8.2 and 8.3). 

To compute h and p from (8.9) we should know the behavior of r as a function 
of h and p. Generally, 

(8.10) r(x, h, p) ; t(x, p)hP, 

where t(x, p) depends on the equations and on the solution. Since it is assumed that 
all our numerical approximations are in some neighborhood of the solution (see Section 
8.2), we may assume that the truncation-error estimates, automatically calculated.by 
the multi-grid processing (see (5.7), for example), give us local estimates for t(x, p). In 
practice, we never actually solve (8.9), but use these relations to decide upon changes 
in h and p (see Section 8.3), so that we need to estimate r(x, h, p) only for h and p 
close to the current h(x) and p(x). 

In finite-element formulations the differential problem is often given as a problem 
of minimizing a functional A(U. Thus the natural discretization optimization problem 
is to minimize A(Uk) in a given amount of work W, where the space Sk of approxima- 
tions Uk is not fixed. This can be translated to practical criteria for adapting Sk. (See 
end of Section 8.3.) 

8.2. Continuation Methods. Continuation methods are generally used in numer- 
ical solutions of nonlinear boundary value problems. A certain problem-parameter, Y 
say, is introduced, so that instead of a single isolated problem we consider a continuum 
of problems, one problem P(y) for each value of y in an interval yo < ?y < y*, where 
P(yo) is easily solvable (e.g., it is linear), and P(-y*) is the target (the given) problem. 
The continuation method of solution is to advance y from yo to -y* in steps &y. At 
each step we use the final solution of the previous step (or extrapolation from several 
previous steps) as a first approximation in an iterative process for solving P(y). The 
main purpose of such continuation procedures is to ensure that the approximations we 
use in the iterative process are always "close enough" to the solution (of the current 
P(y)), so that some desirable properties are maintained. Usually -y is some natural 
physical parameter (the Reynolds number, the Mach number, etc.) in terms of which 
either the differential equations or the boundary conditions, or both, are expressed. 

The continuation process is not a waste, for several reasons. In many cases, the 
intermediate problems P(y) are interesting by themselves, since they correspond to a 
sequence of cases of the same physical problem. More importantly, in solving nonlinear 
discretized problems the continuation process is not only a method of computing the 
solution, but also, in effect, the only way to define the solution, i.e., the way to select 
one out of the many solutions of the nonlinear algebraic system. The desired solution 
is defined as the one which is obtained by continuous mapping from [yO, Y*J to the 
solution space with a given solution at yo (e.g., the single solution, if P(yo) is linear). 
By the continuation process, we keep every intermediate numerical solution in the 
vicinity of a physical solution (to an intermediate problem), hence the target numerical 
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solution is, hopefully, near the target physical solution, and is not some spurious solu- 
tion of the algebraic system. Thus, although sometimes we may get away without a 
continuation process (simply because a starting solution is "close enough", so that the 
continuation may be done in just one step), in principle a continuation process must be 
present in any numerical solution of nonlinear problems. Moreover, such a process is 
usually inexpensive, since it can be done with crude accuracy, so that its intermediate 
steps usually total less computational work than the final step of computing an accurat 
solution to P(-y*). 

A continuation process is necessary, in principle, not only for nonlinear problems 
but also for linear problems with grid adaptation. In fact, when h or p are themselves 
unknown, the discrete problem is nonlinear, even if the differential problem is linear. 

In our system, a continuation process with crude accuracy and little work is auto 
matically obtained by selecting a large value for the control parameter X (cf. Section 
8.1). Then, in the final step (-y = y*), X is decreased to refine the solution. Thus, the 
overall process may be viewed as a multi-grid process of solution, controlled by the twa 
parameters y and X. 

The most efficient way of changing y is probably to change it as soon as possible 
(e.g., when the multi-grid processing exhiibits convergence to a crude tolerance), and to 
control the step-size 5-y by some automatic procedure, so that &,y is sharply decreased 
when divergence is sensed (in the multi-grid processing), and slowly increased otherwise. 

In changing y it is advisable to keep the residuals as smooth as possible, since 
higher-frequency components are more expensive to liquidate (lower components being 
liquidated on coarser grids). Thus, for example, if a boundary condition should be 
changed while changing y, it is advisable to introduce this change into the system at a 
stage when the algorithm is working at the coarsest level. 

'y-Extrapolation. In some cases the given problem (y = y*) is much too difficult 
to solve, e.g., because the differential solution fluctuates on a scale too fine to be re- 
solved. In such cases one is normally not interested in the details of the solution but 
rather in a certain functional of the solution. It is sometimes possible in such cases to 
solve the problem for certain values of -y far from y*, and to extrapolate the correspond 
ing functional values to -y = y*. 

8.3. Practice of Discretization Control. The main practical restrictions imposed 
on the theoretical discretization equations (8.9) are the following: The approximation 
order p should be a positive integer. In many problems p is also restricted to be even, 
since odd orders are less efficient. The mesh-size function h(x) should be such that a 
reasonable grid can be constructed with it. Thus, in the grid structure outlined in Sec- 
tion 7.1, h is restricted to be of the form h = 2-kho, where k is an integer. Also, in 
the multi-grid discretization method outlined in Section 7.2, any uniform subgrid truly 
influences the global solution only if it is large enough, i.e., if at least some of its 
inner points belong also to coarser grids. These discretization restrictions will actually 
help us in meeting another practical requirement, namely, the need to keep the control 
work (computer work invested in testing for and affecting discretization reformulations) 
small compared with the numerical work (relaxation sweeps and interpolations). 
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The practical adaptive procedure is proposed to be generally along the following 
lines: 

A. Testing. In the multi-grid solution process (possibly incorporating a continua- 
tion process), at some natural point we get an estimate of the decrease in the error 
estimator E introduced by the present discretization parameters. For example, in FAS 
Cycle C (see its flowchart in Figure 2), at the point where new Fk is computed, the 
quantity 

(8.11) -AE = G IP - Ik Fk+11 

at each point may serve as a local estimate for the decrease in E per unit volume (cf. 
(8.1) and (5.7)), owing to the refinement from hk to hk+1. Each such decrease in E 
is related to some additional work AW (per unit volume). For example, the refinement 
from hk to hk 1 requires the additional work 

(8.12) AW = h (p) - (per unit volume). 
k+1 k 

Hence we compute the ratio of exchanging accuracy per work Q = -AE/AW. At re- 
gions where this ratio is much bigger than X (the control rate of exchange; cf. Section 
8.1) we say that the present parameter (hk+ 1 in the example) is highly profitable, and 
it is worth trying to further refine the discretization (e.g., introduce there the subgrid 
Gk+2 with hk+2 = hk+1I2). At regions where Q is much smaller than X, we may 
coarsen the discretization (abolish the Gk+ 1 subgrid). 

Extrapolated Tests. More sophisticated tests may be based on assuming the 
truncation error to have some form of dependence on h and p, such as (8.10) above. 
Instead of using AE and A W at the previous change (from hk to hk + in the above 
example) we can then anticipate the corresponding values AE and AIW at the next 
change (from hk+ 1 to hk+2), which are the more appropriate values in testing whether 
to make that next change. Thus, in the above example, assuming (8.10) and hk+2 = 

hk+112 = hk/4, we get AE= 2-PAE, AW = 2dAW, and hence 

(8.13) Q = W= 2-PdQ = k+l 
d - l)2P 

l 

The extrapolated ratio Q is used in testing for grid changes. This may seem risky, 
since it depends on assuming (8.10). But in fact there is no such risk, because we can 
see from (8.13) that testing with Q is not that much different from testing with Q. 
(In fact, if p is constant, testing with Q is equivalent to testing with Q against another 
constant X.) And the test with Q does not presume (8.10); it only assumes that the 
finer (Gk+1) approximation is considerably better than the coarser one, so that their 
difference roughly corresponds to an added accuracy due to the refinement. Note also 
that the multi-grid stopping criteria ((A.17) or (A.20) in Appendix A) are precisely 
such that Q can be reliably computed from the final approximation. 

B. Changing the DiscretizatiorL The desired grid changes are first just recorded 
(e.g., incidentally to the stage of computing Fk) and only then they are simultaneously 
introduced, taking into account some organizational and stabilizational considerations: 
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A change (e.g., refinement) is introduced only if there is a point where the change is 
"overdue" (e.g., a point where Q > lOX). Together with such a point the change is 
then also introduced at all neighbor (and neighbor of neighbor, etc.) points where the 
change is "due" (e.g., where Q > 3X). The changed subgrid (Gk+2 in the above exam- 
ple) is then augmented as follows: (i) Around each new grid point we add extra 
points, if necessary, so that the grid point (corresponding to a Gk+l point where a 
refinement was due) becomes an inner point (cf. Section 7.2) in the new subgrid 
(Gk+2). (ii) Holes are filled; that is, if, on any grid line, a couple of points are miss- 
ing in between grid points, then the missing points are added to the grid. 

The control work in this system is negligible compared with, say, the work of 
relaxing over Gk+ 1, because: (i) The tests are made in the transition from Gk+l to 
Gk, which takes place only once per several Gk+ 1 relaxation sweeps. (ii) Q is com- 
puted and tested only at points of the coarser grid Gk, and at each such point the worl 
is smaller than the relaxation work per point. (iii) Changing the discretization is itself 
inexpensive since it is done by extending or contracting uniform grids (cf. Section 7.1), 
the main work being in interpolating the approximate solution to the new piece of 
uniform subgrid. 

Practical discretization control in finite-element formulations (see closing remark 
to Section 8.1) is natural: Let uk E Sk be the evolving approximate solution, and u1 

its projection on a subspace S' obtained from Sk by (locally) removing some of the 
parameters (omitting some grid points or lowering the local polynomial degree). It is 
easy to locally calculate AA = A(ul) - A(uk). It is also easy to estimate AW = Wk - 

Wv, where W, is the work in relaxing over Si; in a suitable work unit, Wk - W, may 
simply equal the number of parameters removed. The removed parameters are "highly 
profitable" if Q = AA/AW is much larger than X, in which case it is worth adding 
more such parameters (more grid points or higher polynomial terms, correspondingly). 

8.4. Generalizations. In some problems it is not enough to adapt h and p. Som( 
times different increments h(l), h(2), . . ., h(d) should be used at the d different direc 
tions, and each hG) should be separately adapted. Basically the same procedures as 
above can be used to test and execute, for example, a change from h(G) to h(G)/2. 
More generally, one would like to adapt the local coordinates (cf. Section 7.4), e.g., 
near discontinuities. Automatic procedures for such adaptation have not been so far 
developed, but are conceivable. 

Other discretization parameters, such as the centering of each term in the differ- 
ence operator, may be treated adaptively. (In fact, such adaptive discretization is al- 
ready in use in mixed-type problems, where it was introduced by Murman to obtain 
stability. See, e.g., [9].) In problems with unbounded domains, the discrete domain 
may be determined adaptively (with increasingly coarser levels; cf. Section 7.1), using a 
procedure that decides to extend the domain if the previous extension was highly prof- 
itable in terms of -AE/AW. In many problems, some terms in the difference operator 
can altogether be discarded on most levels Gk. In particular, in singularly perturbed 
problems, the highest-order terms may be kept only on the finest-narrowest levels. 
Decision can again be made in terms of -AE/AW, in an obvious way. 
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9. Adaptive Discretization: Case Studies. To get a transparent view of the dis- 
cretization patterns and the accuracy-work relations typical to the adaptive procedures 
proposed above, we consider now several test cases which are simple enough to be 
analyzed in closed forms. That is, we consider problems with known solutions and 
simple behavior of the local truncation errors, and we calculate the discretization func- 
tions h(x) and p(x) that would be selected by the local optimization equations (8.9), 
and the resulting relation between the error estimator E and the computational work W. 

9.1. Uniform-Scale Problems. A problem is said to have the uniform scale q(x) 
if the local truncation error (8.2) has the behavior 

(9.1) r(x, h, p) t(x) (h) (Po P Ap I). 

Such a behavior occurs, for example, when the solution is a trigonometric or exponen- 
tial function exp(O - x), where 0 is either a constant or a slowly varying function (see 
example in Section 9.2). We will also assume for simplicity that (see (8.4)) 

(9.2) w(p) = wop1. 

Usually 1 = 1, since the number of terms in the difference equations, and hence also the 
amount of computer operations at each grid point, are proportional to p. 1 = 2 is 
appropriate if we assume that we have to increase the precision of our arithmetic when 
we increase p. Rescaling W, we can assume that wo = 1. 

Using (9.1)-(9.2) in Eqs. (8.9), we get 

(9.3a) Gr = Xdpl lhd, 

(9.3b) Gr log + Xlpl lh d >0. 
77 

Hence, denoting by p the value of p that satisfies 

(9.4) p 1 l-elpId - lGtflde Idl, 

we have 

(9.5a) h =e-I/dl p = p if pO < ? p< 

(9.5b) h = (Xdp- 17PottG 1 G- 1) /(Po +d P if p P, 

(9.5c) h = (Xdpl- 17P l t- 1 G- 1 )l/(P 1 +d), p =P1 if p1 <P- 

Notice that at any point either p or h, but never both, is "adaptive", i.e., dependent of 
X. Where p is adaptive (po < p = p < p1), h is fixed and each "scale cube" q is 
divided into el mesh cells. 

Assume now further that the computer precision is unlimited (which is never 
really the case, but may provide insight), so that 1 = 1 and p1 = o?. If sufficiently 
high accuracy is desired, then X is sufficiently small to have p > p0, so that (9.5a) 
applies. By (8.1) and (9.3a) this implies 

(9.6) E = Xde fl d dx, 
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and hence, by (8.6), 

(9.7) E = Coe W/(edfrVd dx) = CO e-COdw 

where ,B is some average value of the scale q(x). In this (idealized) case, E decreases 
exponentially with W. For realistic W this convergence rate becomes poor when ,B is 
very small, as in singularly perturbed problems. In such problems, however, for realistic 
W (9.5a) no longer applies, and another rate of convergence, independent of f, takes 
over (see Section 9.3). 

9.2. One-Dimensional Case. Consider a 2-point boundary-value problem 

(9.8) 2 dx2U d (9.8)~ ~ ~ dXT +d ~U = 0 in O x <1 

with constant 7i > 0 and with boundary conditions U(O) and U(1) such that the solu- 
tion is U = e-2X/,. An elliptic (stable) difference approximation to such an equation 
can be central for iq > h but should be properly directed for 71 < h. (The first-order 
term being the main term, the second-order term should be differenced backward re- 
lative to it with approximation order p' = p - [log ?/log h]. See [4] and Section 3.2 
in [3].) In either case, the truncation error is approximately 

(9.9) r(x, h, p) = t(x)( 'Y, where t(x) = 1 -2x/re 

We now choose the error weighting function to be 

(9.1I0) G(x)-1, 

which would be the choice (see (8.3)) when one is interested in accurate computation 
of boundary first-order derivatives (corresponding, e.g., to boundary pressure or drag, 
in some physical moaels). We again assume no precision limitations, so that 1 = 1 and 
p1 = oo. We take po = 2 since second-order is no more expensive than first-order 
approximation. Inserting these into (9.5), we get 

(9.1 la) h = 7, p = log 1 - I 2x for 0 < x < x0, e )2X 7 
(9.1 lb) h = T7 e2(x-xo)/(3n), p =2 for x < x < 1 

e 
where 

(9.1 1 c) xo - lg2;-3) 

If x0 > 1, then (9.11a) applies throughout, and hence 

(9.12) W=fdx=ejlog - 1 - 

(9.13) E= rdx= =2e I 
W/el/? o 7 2i1 

and the condition xo > 1 itself becomes, by (9.1 ic), (9.12), 

(9.14) W > (2 + ? /l?)e/1?. 

Thus, if W satisfies (9.14), E converges like (9.13). 
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9.3. Singular Perturbation: Boundary-Layer Resolution. When 7 is very small, 
problem (9.8) is singularly perturbed, and its solution has a boundary layer near x = 0. 
The above mesh-size h = r/e is too small to be practical. Indeed, in the optimal dis- 
cretization (9.1 1), for small 7 we get small xo, and an "external region" xo < x < 1 is 
formed where the mesh-size grows exponentially from q/e. The small mesh-size is used 
only to resolve the boundary layer. In this simplified problem the solution away from 
the boundary layer (i.e., for x > q) is practically constant, so that indefinitely large h 
is suitable. Usually h will grow exponentially, as in (9.1 Ib), from h = q/e to some 
definite value suitable for the external region. In the transition region we have p = 2, 
i.e., the minimal order of differencing is used in the region where h changes. This may 
be useful in practical implementations. 

From (9.11) and (9.9) we get for small q 

(9.15) Wf - dx (log 2x/ 

(9 . 16) ~E 7-O dx =T2 log -1, w ( )/e- (4 Wle),/ 
where the integrals are separately calculated in (0, xo) and (xo, 1). Thus, E converges 
exponentially as a function of W/2 instead of W, but this rate is independent of q and 
does not deteriorate as 7 O 0. 

9.4. Singular Perturbation Without Boundary-Layer Resolution. To see the 
effect of choosing different error weighting functions, consider again the above problem 
(Sections 9.2, 9.3), but with the choice G(x) = x. This choice is typical to cases where 
one is not interested in calculating boundary derivatives of the solution (see (8.3)). We 
then get 

(9.17) p = log 2 - 1 - 2 < log, 2. 

Therefore, for small q and reasonable X, p < 0 and p = 2 for all x. Hence, no resolu- 
tion of the boundary layer is formed. Indeed, by (9.5b), for very small q (singular- 
perturbation case) 

(9.18) (h 3 2X 2x/n > 4Xe 
x 77 

so that h > q. In the practical situation where the solution in the external region is not 
constant, the actual mesh-size will be determined by the external regime. 

9.5. Boundary Corners. Consider the two-dimensional Poisson equation AU = F 
with smooth F and homogeneous boundary conditions, near a boundary corner with 
angle 7r/a, ?h < a < 1. Denoting by r the distance from the corner, at small r the 
solution U is O(ri), and so is also the error weighting function G (if accuracy is sought 
in the solution, but not in its derivatives near the boundary). Hence, r = O(hpra-P-2) 

and a7/ah = O(hP- r,-P-2). If we fix the order of approximation p, then the opti- 
mal mesh-spacing derived from (8.9a) is 

(9.19) h = O(X1/(P+2)r) p + 22a 
p+I21 
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Hence, by (8.4) and (8.1) the total work and total error contribution from a region of 
radius r around the corner are, respectively, 

W = | dx dy = O(X-2l(p+2Y -2 ) 

E = J Gr dx dy = O(Xp /(P + 2Y - 2 0) 

Hence the relation E - W-PId (the usual relation in d-dimensional smooth problem 
with pth-order approximation) still holds uniformly. The corner does not "contaminate 
the global convergence. 

In the practical grid organization (Section 8.3) finer levels Gk with increasingly 
smaller mesh-sizes hk = 2-kho will be introduced near the corner. By (9.19), the 
level Gk will extend from the corner to a distance rk = a2a-p-2WO. Since 3 < 1, 
for small hk we get hk > rk. This gives us in practice a natural stopping value for the 
refinement process: The finest mesh-size near the corner is such that hk - 4rk, so that 
level Gk still has an inner point belonging to Gk 1. 

9.6. Singularities. Like boundary corners, all kinds of other problem singularities 
when treated adaptively, cause no degradation of the convergence rate (of E as a func- 
tion of W). 

Consider for example the differential equation LU = F where F is smooth except 
for a jump discontinuity at x = 0. Whatever the approximation order p, the system 
will find -AE (see (8.11)) to be 0(1) at all points whose difference equation include 
values on both sides of the discontinuity. At these points further refinements will, 
therefore, be introduced as long as - AE/AW > 0(X). Thus, around x = 0, some fixed 
number (depending only on p) of mesh-points will be introduced at each level Gk, until 
a mesh-size hi - 0(X1 Id) is reached. The total amount of added work is therefore 
proporiional to the number of levels introduced, which is 0(log h). The error contri- 
bution of the discontinuity is 0(hd), which is exponentially small in terms of the added 
work. 

This and similar analyses show that the adaptive scheme retains its high-order con- 
vergence even when the problem is only piecewise smooth, or has algebraic singularities, 
etc. 

10. Historical Notes and Acknowledgements. Coarse-grid acceleration techniques 
were recommended and used by several authors, including Southwell [251, [13], [14], 
Stiefel [15], Fedorenko [5], Ahamed [19], Wachspress [17], de la Vallee Poussin [16] 
and Settari and Aziz [24]. Southwell called his technique "block" and more generally 
"group relaxation", described it as "almost essential to practical success", and gave 
heuristic explanation as well as practical implementation methods based on variational 
considerations ("the aim being to reduce the total energy by as great an amount as 
possible"). He also depicted procedures of "advance to a finer net" [14]. Techniques 
of multiplicative coarse-grid corrections (special cases of which appeared in [14], [19]) 
were developed by Wachspress [17, Chapter 9], who called them "v4riational tech- 
niques". This work motivated several studies, by Froelich, Wagner, Nakamura and Reed 
(see a brief survey in [18]) and was applied in nuclear reactor design computations. 



374 ACHI BRANDT 

All these were two-level methods. The multi-grid idea was introduced by 
Fedorenko [6], mainly for theoretical purposes. Namely, he rigorously proved that 
W(n, e), the number of operations required to reduce the residuals, of a Poisson prob- 
lem on a rectangular grid with n points, by a factor e, is O(nllog el). Bakhvalov [1] 
generalized this result to any second-order elliptic operator with continuous coefficients. 
For large n, this is the best possible result-except for the actual value of the coeffi- 
cient. The Fedorenko estimate can be written as 

W(n, .01) < 210000n + W(106, .01), 

and the Bakhvalov constants are still much larger. For admissible values of n these 
estimates are therefore far worse than estimates obtained in other methods, and they 
did not encourage any development of the method. Fedorenko experimented with a 
two-level algorithm only, and seemed to imply that for practical grid sizes ADI may be 
more efficient. He did not realize the true practical potential, in both efficiency and 
programming simplification, of a full, systematic multi-grid approach. (It can be proved 
that W(n, .01) < 168uz, and in practice W(n, .01) t 50n is obtainable. See Appendix 
C.) 

The first full multi-grid algorithms and numerical tests were described in [2]. 
Our original approach was to regard the finer levels as "correcting" the coarser level 
(cf. Sections 1, 7.2 and 7.5 above). For uniform nonadaptive grids this approach turns 
out to be equivalent to the one implied by [6], but fundamentally it is different and 
more powerful, since the process is not confined to preassigned discrete systems. 

A systematic multi-grid approach for a restricted class of problems, with some- 
what different procedures of relaxation and transfer to coarser grids, is described in 
[21]. Another similar method was independently developed in [28]. The multi-grid 
method is also portrayed in [23] and a new rigorous 0(n) convergence theorem for 
finite-element formulations is given in [29]. 

Adaptive discretization procedures were introduced by several authors. See for 
example [10], [20], [22] and references in [22]. The present approach is different, 
not only in its multi-level setting, but also in its basic criteria and procedures. It has 
common features with procedures for initial-value problems in ordinary differential 
equations, described in Chapter 5 of [27]. 

It is my pleasure to acknowledge the help I received from my students and col- 
leagues throughout the work reported here. Yosef Shiftan, Nathan Diner, Yehoshua 
Fuchs and Dan Ophir in the Weizmann Institute; Jerry South in NASA Langley Re- 
search Center; and Will Miranker, Don Quarles, Fred Gustavson and Allan Goodman at 
IBM Thomas J. Watson Research Center-thank you all. I am also grateful for valuable 
discussions I had with Olof Widlund, Eugene Wachspress, Antony Jameson, Perry 
Newman, Jim Ortega, Ivo Babuska and Werner Rheinboldt. 

Appendix A. Interpolations and Stopping Criteria: Analysis and Rules. The 
multi-grid algorithms described above (Sections 4 and 5) need to be supplemented 
with some rules of interpolation and some stopping criteria. More specifically, for the 
interpolation Irk- 1, transferring weighted residuals from a fine grid Gk to the next 
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coarser grid Gk- 1, we should prescribe the weights, while for Ik_ 1, interpolating 
corrections from Gk 1 back to Gk, the method and order of interpolation should be 
prescribed. Stopping criteria should define convergence at the various levels and detect 
slow convergence rates. Numerical tests show that the parameters to be used are very 
robust: Full efficiency of the multi-grid algorithm is. obtained for stopping parameters 
that do not depend on the geometry and the mesh-size, and which may change over a 
wide range (see, e.g., Appendix B), provided the correct forms of the stopping criteria 
are used, and some basic rules of interpolation are observed. To find the correct forms 
and rules, and to determine the stopping parameters, we have to analyze the Coarse- 
Grid Correction (CGC) cycle, which consists of interpolating (Ik- 1) the residuals to, 
the coarser grid Gk 1, solving the corresponding residual problem on Gk 1, and then 
interpolating (Ik_ 1) that solution back as a correction to the Gk approximation. 

We can use a local mode analysis (for the linearized, coefficient-frozen difference 
equations), similar to the example in Section 3. Such an analysis may be inaccurate 
for the lowest frequency modes, for which the interaction with the boundary is signif- 
icant. But these lowest modes are of little significance in our considerations, since they 
are efficiently approximated on the coarsest grids with little computational work, and 
since care will be taken (i) to choose interpolation schemes that do not convert small 
low-frequency errors into large high-frequency errors; and (ii) to stop relaxation sweeps 
before low-frequency error components become so large that they significantly feed the 
high frequencies (e.g., by boundary and nonlinear interactions). In fact, we will see 
that the dominant components (i.e., the components that are slowest to converge in 
the combined process of relaxation and coarse-grid corrections) are the Fourier com- 
ponents efo -I1 for which 101 is close to frr, where (in a general d-dimensional problem) 

d 

(AO0) 0 (O1 02 * MId)' 0 - X= oZx, 101 = max 10.1 (A.0) ~ ~ ~ ~ ~ ~ j=11 <j<d 

h = hk = phkl. 

These components feed on each other in the interpolation processes between Gk and 
Gk- 1, they are slower to converge by relaxation, and in the CGC cycles they may 
even diverge. 

To simplify the discussion we will assume that the mesh-size ratio has its usual 
value p = ?h, which is the only one to be used in practice (cf. Section 6.2). 

A.I. Coarse-Grid Amplification Factors. For any given set of difference opera- 
tors Lk and a multi-grid scheme, a local mode analysis of the complete MG cycle can 
be made (cf. Appendix C), and the various parameters can be optimized. The essential 
information can, however, be obtained from a much simpler analysis that treat sepa- 
rately the two main processes, relaxation sweeps and CGC cycles. The smoothing rate 
p (see Section 3) is the main quantity describing the relaxation sweeps. The CGC local 
mode analysis is summarized below (for algebraic details see Section 4.5 of [3]). 

In the CGC analysis, together with each basic Fourier component eio xlh 

(O < 101 < 7r/2) we should treat all the Gk components that coincide with it on Gk- 1, 
i.e., all components eiO *X/h (O < 1011 < 7r) such that O, 01 (mod r) for j =1, 2, .... 
d. We call such components 0' harmonics of 0. We are especially interested in those 
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harmonics that are not separated from 0 by the relaxation sweeps, e.g., the set 

T = {0' 0 (mod 7r): ,u(0') > u(0)2}. 

Denote by ITO I the number of members in this set. (Usually ITO I = 2', where a is the 
number of coordinates j for which 10l t 7r/2.) In terms of the 0 Fourier component 
and its harmonics, the CGC cycle has two effects: 

(i) Assuming the components not in T. to be comparatively small when the 
CGC cycle is entered, the set of components in T. is transformed in the cycle by a 
certain matrix, whose spectral radius turns out to be 

So 0(O) if 1TO1 = 1, 
max(1, uo0(0)) if 1TO1 > 1, 

where 

(A.2) ? () = I 
'E Bk(0 ) R(O, ') Bk- J20)-lp(0t,l 

The functions p(0'), R(0, 0') and B1(0) are the "symbols" f Ik- , ik- and L', 
respectively, i.e., 

Ik-1 eiO'*x /h = p(0')ei9 *x (cf. (A.10) below), 

(A.3) ik41eiOx/h = E R(0, 0')eiO X/h 
O'-O (mod iTr) 

L1e 
i*x I/h I = B1(O)eiO*x/hl (1 = k, k - 1). 

(If L is a system of equations, and the right-hand side of (A.2) is therefore a matrix, 
then o0(0) is meant to be the spectral radius of that matrix.) For small 101 we have 

1TO 1 = 1 and hence 

(A.4) u(0) = u0(0) = 1 - p(O) + O(I0lp + J01'), 

where p is the approximation order of Lk and Lk_ (or the minimum of the two) and 
I is the order of the Ik_1 interpolation ( = 2 for linear interpolation, etc.). The 
principal CGC amplification factor is 

(A.5) a= max o(0) = max(l, o0), where ao0 = max u0(0). 
0<IO 10< /2 0<I 10< -/2 

(ii) The CGC cycles also generate new secondary harmonics 0" 4 TO. The rate 
of generating these, i.e., the ratio of the new 0" amplitude to the old amplitude of the 
combined harmonics, turns out to be 

(A.6) 1(0) = I Bk(0") R(0, 0") Bk 1(20)-1p(0")l = O(IOII-m), 

where m is the order of the differential equations. 
It follows from (A.4), (A.6), that if p(O) = 1, as it is always chosen to be (cf. 

Section A.4), and if I > m, then components with small 101 are very efficiently reduced 
in the multi-grid process, together with their harmonics. 
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A.2. The Coarse-to-Fine Interpolation Ik_4 On the other hand, it follows from 
(A.6) that if I < m then even a small and smooth residual function may produce large 
high-frequency residuals, and significant amount of computational work will be required 
to smooth them out. This effect was clearly shown in numerical experiments [2], 11 1] 
Hence we have 

The Basic Rule: The order of interpolation should be no less than the order of 
the differential equations. (I > m.) In particular, polynomial interpolation should be 
made with polynomials of degree > m - 1. 

Higher interpolation orders (I > m) are desired in the initial stages of solving a 
problem, when the residuals are (locally) smooth. For instance, in regions where the 
given problem has smoothness of order q (i.e., F(x) = 2AOeiO xIh, AO = (IO-qhq)), 
in order to ensure that the high-frequency residuals remain O(hq), at the ith interpola- 
tion from uM- 1 to uM the order should be 

(A.7) I > m + max[q - (i - 1)p, O] . 

(In fact, as long as q > ip, this interpolation need not be followed by Gk relaxation 
sweeps, since the low-frequency amplitudes are still dominant. Relaxation would only 
feed from these low components to high-frequency ones, causing additional work later. 
Still better, however, instead of this multi-grid mode without intermediate Gk relaxa- 
tion, is to make a higher-order correction on Gk- 1.) 

Eventually, however, the smoothness of F (which is the original residual function) 
is completely lost in subsequent residuals and the convergence of components in the 
dominant range (101 - nT/2) becomes our main concern. For these components, higher 
interpolation orders (I > m) is no more effective than the minimal order (I = m). This 
again was exhibited in numerical experiments [2], [1 1], which confirmed that the 
multi-grid efficiency is not improved (except in the [qlpl first cycles) by using I > m. 

An efficient method to implement high-order interpolations in case of equations 
of the form A' U = F is to base the interpolation on suitably-rotated difference approx- 
imations. See [14, p. 53] and [7]. 

A.3. The Effective Smoothing Rate. The smoothing factor ,u was defined in 
(3.8) as the largest convergence factor for all components not represented at the coarser 
level. More relevant, however, is the largest factor among all components for which the 
coarse-grid correction is not effective, namely, 

(A.8) ,u=max{p(O): ir/2<IO1<7r or ao(0)>l}, 

which we call the "effective smoothing factor". It is clear, on one hand, that no factor 
~~~~~~~~~~~~~~~ smaller than , can be generally obtained as a convergence factor per Gk relaxation 

sweep, no matter how well and how often the Gk-l problem is solved. On the other 
hand, the factor ,u can actually be attained (or approached) by correctly balancing the 
number of relaxation sweeps in between CGC cycles (see Section A.6). In most cases 
(all cases examined by us) one can make uo(O) < 1 for all 101 < ir/2 by proper choice 
of Ik 1 (see Section A.4), and it is therefore justifiable to use p as the effective factor 
when relaxation schemes are studied by themselves. 
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A.4. The Fine-to-Coarse Weighting of Residuals (Ik- 1), and the Coarse-Grid 
Operator Lk- 1. The transfer of the Gk residuals rk = fk - Lkuk to the coarser grid 
Gk- 1, to serve there as the right-hand side fk- 1 (see Section 4, Step (e)) can be made 
in many ways. Generally, f k- 1 is defined as some weighted average of the residuals 
in neighboring Gk points: 

(A.9) fk-l (x) = Ik-jrk(x) = Zpv rk(x + vh), 

where v = (v1, v2, . . ., Vd), v1 integers, and the summation is over a small set. In 
terms of these weights, p(O) in (A.2) is given by 

(A. 10) p(O) = ,pve 

The coarse-grid operator Lk- 1 can also be chosen in many ways, e.g., as some 
weighted average of the operator Lk in neighboring points. 

How are these choices to be made? The main purpose should be to minimize a, 
but without investing too much computational work in the weighting. Usually, it is 
preferable to adjust Pv and not Lk- 1, because this provides enough control on a (cf. 
(A.2)) and because complicating Lk- 1 adds many more computations and gets increas- 
ingly complicated as one advances to still coarser levels. For the programmer, using 
the same operators at all levels is an important simplification (cf. Appendix B), espe- 
cially for nonlinear problems. Moreover, if Lk- 1 is derived from L in the same way as 
Lk, its coefficients will automatically be the suitable weighted averages of the coefficient 
of Lk. (In case Lk is given and L is not, and if the coefficients vary rapidly, then the 
weighting (A.1 2) below should be used for defining the Lk- 1 coefficients.) 

It is clear from (A.4) that we should take p(O) = ,pv = 1. There is no a priori 
restriction, however, on the signs of the weights pv. The trivial weighting 

(A.11) p0 = 1, Pv = ? forv#O; p(v)-l, 
called injection, has an important advantage in saving computations, not only because 
the weighting itself is saved, but mainly because it requires the computation of rk only 
at the Gk- 1 points, while other weighting schemes compute rk at all Gk points, an 
additional work comparable to one Gk relaxation sweep. 

Nontrivial weighting of residuals is especially important for difference equations 
with rapidly varying coefficients (large variations per mesh-width), and, in particular, 
for nonlinear equations, especially on coarse grids. In the Gk relaxation sweeps for 
such equations, the slowly converging low frequencies are coupled with high-frequency 
modes. In the correction function Vk (cf. Sections 2 or 4) these accompanying high- 
frequency modes are small (i.e., their amplitudes are small relative to the low-frequency 
amplitudes), and hence Vk can still be well approximated by a function Vk- 1 on the 
coarser grid Gk 1. In the residual rk, however, these accompanying high-frequency 
modes may be large (comparable in amplitude to the low-frequency modes) and their 
distortion of Vk- 1 will be small only if their contribution to fk- 1 Ik-lrk is also 
of high frequency (in Gk- 1). This is indeed the case, except for residual components 
0 = (01 ... X Od) where 101 i r and each l0l is close either to ir or to 0, (j= 1, ..., 
d). Such a component has on Gk- 1 the low frequency 20 (mod 27r), and is therefore 
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disproportionately magnified in Vk- 1. The weighting of residuals should eliminate 
exactly these components. A suitable weighting is 

(A.12) P = 2-d-lvl for lvi = maxlvil < 1, pV = 0 for lvi > 1, 

for which p(O) = lld(l + cos 0,)/2, so that components with 01 ir are sharply reduce4 
Similar weighting is required whenever high frequencies are coupled to low ones. 

Such coupling may be introduced by the relaxation scheme itself, even in constant- 
coefficient problems. For example, a Gauss-Seidel relaxation sweep with red-black 
ordering, starting from a smooth 0(1) error function, will generate high-frequency 
modes with 0(hm) amplitudes in the error and 0(1) amplitutes in the residual. 

Examples. For symmetric second-order equations, injection should usually be 
used. For the 5-point Laplace operator, for example, if we take Ik- 1 to be injection, 
ik 1 linear interpolation, and Lk- 1 also a 5-point Laplace operator, we get u = a0 = 
1, the minimal possible value. Any weighting is a pure waste, including the "optimal" 
weighting 

(A.12a) poo = ?, Po1 = Po01 = P1o = P-10 8' Paoi = 0 for Il ? 131 > 1, 

which minimized a0, giving ao = 1/3, but does not lower a. Numerical tests (modify- 
ing the program of Appendix B) indeed showed no improvement by weighting. 

For higher-order equations, nontrivial weighting offers an important advantage. 
If, for example, Lk and Lk- 1 are 13-point biharmonic operators and Ik 1 is cubic 
interpolation, then a = 3 for injection, while a = 1 for the weighting 

1 
(A.12b) Po1 = Po0i = Pio = P_10 = -, Pa = 0 for lal + 131 # 1. 

Numerical experiments were conducted with difference equations of the form 
(3.2), where the coeffilcients a and c vary wildly, e.g., a and c on GM are random; or 
a = .1 and c = 1 at all points of GM, except for points coinciding with GM-i, where 
a = c = 1; etc. When, and only when, the algorithm (with proper line relaxation) used 
the proper residual weighting ((A.12), with similar weighting for transferring a and c to 
coarser grids, since in these tests a and c were not defined by a differential equation), 
it was found that even in the worst cases, convergence factors , smaller than 0.7 were 
always obtained. With the weighting (A.1 1) or (A.1 2a) cases of divergence were detected. 

A.5. Finite-Element Procedures. The main difference between finite-element 
and finite-difference multi-grid procedures is in the interpolation schemes. In the finite 
element case, interpolation procedures follow automatically from the variational formu- 
lation and the definition of the approximation spaces Sk (corresponding to the levels 
Gk). Usually, Sk is a subspace of Sk- 1. The coarse-to-fine interpolation is, therefore, 
simply the identity operation. Also, if the variational problem in Sk is to minimize 
Ak(Vk), then, for any given approximation vk, the correction problem in the coarser 
space Sk- 1 is, simply, to minimize 

(A.13) Ak_l(Vk 1) =Ak(Vk + Vk-1) (Vk-1 eSk-1) 

Example. Consider the standard example, where Sk is the space of piecewise 
linear functions on the triangulation Gk and Ak is a Dirichlet integral whose minimiza- 
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tion is equivalent to the difference equation Ak Vk = Fk, Ak being the 5-point Laplac- 
ian. Computing Akl by (A.13), it turns out to be equivalent to the equation 
Ak-i vk-l = Ik-1(Fk - AkVK), where Ik-1 has the weights (cf. Section AA4) 

1 1 
Poo = i, Poi = Pii = Pio = Po-i = P-i-i = P-io= * 

These weights give the same multi-grid convergence rate as injection (and are therefore 
redundant). 

A.6. Criteria for Slow Convergence Rates. (A) Relaxation sweeps, say on Gk, 
should be discontinued, and a switch should be made to a coarse-grid correction, when 
the rate of convergence becomes slow; e.g., when 

residual norm a3ji + 3,i 
(A. 1 4) residual norm a sweep earlier . 3 + 3 

The norm here is a suitable (e.g., L2, Loo or (A.18) below) discrete measure, usually of 
the "dynamic" residuals, that is, residuals computed incidentally to the relaxation pro- 
cess. (i^ is the largest amplification factor for Fourier components on the relaxed region. 
,i = 1 can usually be used, except when relaxing on small grids (in partial relaxation 
sweeps, for example). ,u and a are defined in (A.8) and (A.5), respectively. Usually, 
one can choose the Jk-1 weighting so that a =1, in which case , = ,. In any case, 
(A.14) is designed to ensure that, on one hand, the CGC cycle is delayed enough to 
make its a magnification small compared with the intermediate reduction by relaxation 
sweeps. On the other hand, for 0 with ,i(0) considerably slower than w, the CGC 
cycles are still sufficiently frequent to compensate for the slower g, since their reduction 
rate a(0) decreases rapidly ((A.4) with p(O) = 1). The stopping rule (A.14) also prevents 
low error frequencies from dominating the relaxation, thus avoiding significant feeding 
from low to high frequencies (through boundary and nonlinear interactions). 

If the "stopping factor" q varies over the domain of computations (as a result of 
variations in L, in case of nonlinear or nonconstant-coefficients problems), the largest i1 
should be chosen for the stopping criterion (A.14). If log 7? changes too much over 
the domain (which should not happen when a proper relaxation scheme is used), then 
(A.14) must be checked separately in subdomains, and partial sweeping (see Section 
A.9) might be used. 

An appropriate value of 7r may also easily be found by direct trial and error. 
Such a value is typical to the (locally linearized, coefficient-frozen) problem, is inde- 
pendent of either h, Q2 or F, and may therefore be found, once and for all, on a mod- 
erately coarse grid. In some nonlinear problems the value may need some adjustment 
as the computations proceed. Whenever the coarse-grid corrections seem to be ineffec- 
tive, ?? should be increased, e.g., to (1 + 37?)/4. Generally, the overall multi-grid con- 
vergence rate is not very sensitive to increasing i1: At worst, the rate may become 
r1 instead of the theoretically best rate maxng314 (cf. Section 6.2). 

For the Poisson equation with Gauss-Seidel relaxation, for example, we have 
a = 1, , = ,u = .5, hence 7? = .625. The example in Appendix B shows that the 
optimal MG convergence rate "/4 ^ .595 is indeed attained. Experimenting with this 
program gave similar results for any smaller 71 (the reason being that the minimal num- 
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ber of two sweeps at each level is good enough in this problem), while for any 71 < .95 
the total amount of computational work was no more than twice the work at 71 = .62. 

(B) Another way to decide upon discontinuation of relaxation is to directly 
measure the smoothness of the residuals. The switch to coarser grids can be made, for 
instance, when differences between residuals at neighboring points are small compared 
with the residuals themselves. 

A.7. Convergence Citeria on Coarser Grids. In the CGC mode analysis above it 
was assumed that the problem on the coarser grid Gk- 1 was fully solved and then 
interpolated as a correction to the Gk approximation. In the actual multi-grid algorithir 
(Section 4) we solve the Gk- 1 problem iteratively, stopping the iterations when some 
convergence criterion is met. This criterion should roughly detect the situation at whicI 
more improvement (per unit work) is obtained by relaxing on the Gk grid (after inter- 
polating) then by further iterating the Gk- 1 problem (before interpolating). A crude 
mode analysis (similar to Section 4.6.2 in [3]) shows that such a criterion is 

ll k11 - 5jrkl 
_ 7 - 2d 

(A.15) IIrk-I k 8 2-d - 

YSyk lk- 1) 

where d is the dimension, a is given by (A.5), 

max | Bk(0')R(0, 0')Bk-1(20) lp(0') 
1O1<iT/2 O=T 

and p, = ,(l -2 d) on the G' grid (cf. (A.8)). Ilrk- li is any norm, such as L2, Lo or 
(A.18), of the current residuals in the Gk-1 problem, while llrkll is the corresponding 
norm in the Gk problem. It is important that these norms are comparable: They shoul 
be discrete approximations to the same continuum norm. Also, if rk- 1 are the "dy- 
namic" residuals (i.e., computed incidentally to the last Gk- 1 relaxation sweep, using 
at each point the latest available values of the relaxed solution), then rk should be the 
Gk dynamic residuals, unlike the residuals transferred to Gk- 1 (to define fk- 1; cf. 
Section A.4) which must be "static" residuals (i.e., computed over the grid without 
changing the solution at the same time). If, however, rk and rk- 1 are static and dy- 
namic, respectively, the parameter 8 in (A.15) should be multiplied by a certain factor 
f3(see Section 4.6.2 in [3]). 

The stopping criterion (A.15) is based on the assumption that error components 
with 101 = ir/2 dominate the process. In the first [q/pl CGC cycles, however, lower 
components are dominant, and the main consideration is to converge them. Hence, at 
that initial stage, the Gk- 1 convergence criteria should be 

(A.16) lrk | Si 11,rII 11, 

where rk- 1 are the Gk- 1 truncation errors (cf. Section A.8). 
The key factor 8 can also be found by trial and error. Like 71 above, it is essen- 

tially independent of h, Q2 and F, and may, therefore, be found once and for all by 
tests on moderately coarse grids. Numerical experiments show that the overall multi- 
grid efficiency is not very sensitive to very large variations in 8 and, in particular, 8 
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may be lowered by orders of magnitudes without large changes in the efficiency. For 
example: 

For the 5-point Poisson equation with Gauss-Seidel relaxation, injection and linear 
interpolations, (A.15) yields 8 = .219. Numerical experiment (e.g., with the program 
in Appendix B) shows that with any .001 < 8 < .5 the computational work is no more 
than 25% above the work with 8 = .22, and no more than 100% extra work for any 
.0001 < 5 < .7. 

A.8. Convergence on the Finest Grid. On the finest grid GM the solution is 
usually considered converged when the (static) residuals are of the order of the trunca- 
tion error, in some appropriate norm. One way to estimate the truncation error is to 
measure them on coarser grids by (5.7), and extrapolate (taking into account that they 
are O(hP)). Another, related but more straightforward criterion is to detect when the 
GM solution has contributed most of its correction to the GM- 1 solution. In the FAS 
algorithm the natural place to check is when a new FM- 1 is computed, the conver- 
gence test being 

(A.17) ||+ Fp~~~reviousil << liFIMF| 

The norm here may be any (L2, Loo, etc.), but the most relevant one is the discrete 
version of the norm (cf. Section 8.1) 

(A.18) llf1l = G(x)If(x)I dx. 

A.9. Partial Relaxation Sweeps. A partial relaxation sweep over Gk is a relaxa- 
tion sweep that may skip some subdomains of Gk. (Unlike "selective" relaxation 
sweeps, which in principle pass through all the grid points, although corrections may 
not be introduced in some of them. Cf. Section 3.2. A partial sweep may be selective, 
too.) 

Partial sweeps are not used much in standard relaxation calculations. Usually, a 
slow-to-converge subdomain is coupled to other subdomains and therefore cannot be 
relaxed separately. In the multi-grid process, however, only high-frequency error com- 
ponents are to be reduced by relaxation, and this can be done separately in subdomains: 
With regard to high frequencies, subdomains are practically decoupled. Hence, in the 
multi-grid process, partial sweeps are potentially very important. In fact, high-frequency 
amplitudes may vary greatly over the domain, especially if ,i and a vary much, or if 
high-frequency error components are introduced at boundaries, making partial sweeping 
there very desirable. 

Partial sweeping may be performed by applying a criterion for slow convergence 
(Section A.6) separately in subdomains. A subdomain may be excluded from subse- 
quent relaxation sweeps if slow convergence is shown simultaneously on that subdomain 
and on all neighboring subdomains. Under-relaxation may be used to phase-out the 
relaxed region (cf. [3], Section 4.6.4). The subdomains may be chosen quite arbitrarily, 
but each of them should be large enough (at least 4 x 4) to allow for separate smooth- 
ing. 
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A.1O. Convergence Citeria on Nonuniform Grids. When Gk and Gk- l are not 
coextensive (i.e., the domain covered by Gk is only part of the Gk- 1 domain; cf. 
Section 7.2), the convergence criteria (Sections A.7-A.8) should be slightly modified. 
First, in (A.15), llrkll is not a comparable norm, since it may be measured on a much 
smaller subdomain. Instead, one can use the test 

(A.l19) llrk- 111 < 5 llrk- I/r 

where llrk- lII is the residual norm computed on Gk- 1 at the first relaxation sweep 
after switching from Gk. The division by q in (A.19) is designed to compensate for 
the fact that lirk- 1 11 is computed a sweep later than lirkil. 

The other modification is in (A.17), where it was assumed that GM is the finest 
level everywhere. Generally, the convergence test can be, for example, 
(A.20) lIP' - grviou <1 IlFk -Ik" PF+ljI for all k = (0 1 M- 1) 

(A.20)previous" k+1 

where the norms are taken over Gk+1 (or, more precisely, over Gkk+1 - Gk++1). 

Appendix B: Sample Multi-Grid Program and Output. This simple program of 
Cycle C (written in 1974 by the author at the Weizmann Institute) illustrates multi- 
grid programming techniques and exhibits the typical behavior of the solution process. 
For a full description of Cycle C, see Section 4 or the flowchart in Figure 1. 

The program solves a Dirichlet problem for the Poisson equation on a rectangle. 
The same 5-point operator is used on all grids. The Ik- 1 residuals transfer is the trivial 
one (injection), the Ik interpolation is linear. The higher interpolation (A.7) and the 
special stopping criterion (A.1 6), recommended for the first [q/pl cycles, are not im- 
plemented here. 

For each grid Gk we store both vk and f k (k = 1, 2, . . ., ). For handling 
these arrays f k is also called Vk+M. The coarsest grid has NXO x NYO intervals of 
length HO each. Subsequent grids are defined as straight refinements, with mesh-sizes 
H(k) = H012**(k - 1). The function F(x, y) is the right-hand side of the Poisson 
equation. The function G(x, y) serves both as the Dirichlet boundary condition (fM) 
and as the first approximation (u ). The program cycles until the L2 norm of the 
residuals on GM is reduced below TOL, unless the work WU exceeds WMAX. After 
each relaxation sweep on any grid Gk, a line is printed out showing the level k, the L2 
norm of the ("dynamic") residuals computed in course of this relaxation, and WU 
which is the accumulated relaxation work (where a sweep on the finest grid is taken 
as the work unit). 

Note the key role of the GRDFN and KEY subroutines. The first is used to de- 
fine an M x N array vk, i.e., to allocate for it space in the general vector Q (where IQ 
points to the next available location), and to store its parameters. To use array vk 

CALL KEY(k, IST, M, N, H) 

retrieves the grid parameters (dimension M x N and mesh-size HI) and sets the vector 
IST(i) so that v = Q(IST(i) + j). This makes it easy to write one routine for all arrays 
vk; see for example, Subroutine PUTZ(k). Or to write the same routines (RELAX, 
INTADD, RESCAL) for all levels. 
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PRoGRAM CYCLE C C 
EXTLRNAL G,F CYCLE 
CALL MULTIG(3,2,1.,6,.01,30.,G,F) 
STOP 
END 

FUNCTION F(X,Y) Right-hand side of the equation 
F=SZN (3.* (X+Y)) 
REETURN 
END 

FUNCTION G(X,Y) Boundary values and first approximation 
G=COS(2.*(X+Y)) 
EETURN 
END 

SUBROUTINE MULTIG(NXG,NYO,H0O,?,TOL,WMAX,U1,F) 
EXTE-RNAL U1,F 
DTMENSION EPS(10) Multi-grid algorithm (see Fig. 1) 
DO 1 K=1,M 
K2=2** (K-1) 
CALL GEDFN(K,NXO*K2+1,NYO*K2+1,HO/K2) 

1 CALL GRDFN(K+M,NXC*K2+1,NYC*K2+1,HC/K2) 
EPS (1) =TOL 
K=M 
WU=O 
CALL PUTF(M,U1,0) 
CALL PUTF(2*M,F,2) 

5 ERR=1.E30 
3 ERRP=ERR 

CALL RELAX(K,K+M,ERR) 
WU=WU+4.**(K-N) 
WRITE (6,4)K,-RR,WU 

4 FORMAT(' LEVEL',I2,' RESIDUAL NORM=',1PE10.3,' 'WORK=',OPF7.3) 
IF(ZRR.LT.EPS(K))GOTO 2 
IF (WU.GE.WMAX) RETURN 
IF(K.EQ.1.OR. ERR/ERRP.LT. .6)GOTO 3 nw.6 
CALL RESCAL(K,K+M,K+M-1) 
EPS(K-1)=.3*ERR 6-.3 
K=K-1 
CALL PUTZ(K) 
GOTO 5 

2 IF (K.EQ.M) RETURN 
CALL INTADD (K, K+ 1) 
K=K+l 
GOTO 5 
END 

SUBROUTINE GRDFN(N,IMAX,JMAX,HH) Define an IMAX x JMAX 
COMMON/GRD/NST(20) ,IMX(20) ,JMX(20) ,H(20) Nrray vN 
DATA IQ/l/ 
NST (N) =IQ 
IMX (N) =IMAX 
JMX (N) =JMAX 
H (N) =HH 
IQ=IQ+IMAX*JMAX 
RETURN 
END 

SUBROUTINE KEY(K,IST,IMAX,JMAX,HH) 
COM:ION/GRD/NST (20) ,TMX(20) ,JMX(20) ,(20) Set IST such that 
DIMENSION IST(1) vk(I,J)= Q(IST(I) + J), 
_MAX=IMX (K) 
JiIAX=JMX (K) 
IS=NST(K)-J11AX-1 
DO 1 I=1,IMAX JMAX = JMX(K) 
TS=IS + JMAX 

1 ISI(I)=IS HH = H(K) 
HH=H (K) 
RETURN 
END 
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SUBROUT1NE PUTF (K,F,NH) VK - H(K) NH* FK 
COMM1ON Q(18000),IST (600) 
CALL KEY (K,IST,TI,JJ,H) 
H2=d**NH 
DO 1 I=1 ,11 
DO 1 J=1,JJ 
X= (1- 1) *H 
Y= (J- 1) *H 

1 Q (IST (I) +J) =F (X, Y) *H2 
RETURN 
END 

SUBR.OUTINE PUTZ (K) VK + 
COMMON Q (18000) ,IST(200) 
CALL KEY (K,TST,1I,JJ,H) 
DO 1 T=1,II 
DO 1 J=1,JJ 

1 Q (IST (I) 4J) =Q. 
RETURN 
FND 

SUBROUT_NE RELAX(K,KRHS,ERR) 
COMMlON Q(18000) ,IST(20C) ,IRHS(200) A Gauss-Seidel Relaxation sweep 
CALL KEY(K,IST,II,JJ,H) 
CALL KEY (KRHS,IRHS,TI,JJ,H) on the equation 
I1=II- 1 K KRHS 
J1=JJ-1 h = V 
ERR =0. 
DO 1 I=2,1l giving 

O =IST (I) ERR = residuals| L 
IM=IST (I-1) 2 
IP=IST (I-1) 
DO 1 J=2,J1 
A=Q (IR-J) -Q (IO+J+1) -Q (IO+J-1) -Q (IM+J) -Q(IP+J) 
ERR=ERR+(A+Lt.*Q(IO+J))**2 

1 Q (IO-J) =-.25*A 
ERR=SQPT (ERR) /H 
RETURN 
END 

SUBROUTINE TNTADD (KC,KF) Linear interpolation and addition 
COMMON Q (18000) ,ISTC (2C0) ,ISTF (200) 
CALL KEY (KC,ISTC,IIC,JJC,HC) VKF VKF + I KFVKC 
CALL KEY (KF,ISTF,IIF,JJF,HF) KC 
DO 1 IC=2,IIC 
TF=2*IC- 1 
J F = 1 
IFO=ISTF (IF) 
1FM=ISTF (IF-1) 
ICO=ISTC (IC) 
ICM=ISTC (IC-1) 
DO 1 JC=2,JJC 
JF=JF+2 
A=. 5* (Q (ICO+JC) +Q (ICO+JC- 1)) 
AM=.5* (Q (ICM+JC) +Q(ICM+JC-1)) 
Q (IFO+JF) = Q (IFOtJF) +Q(ICO+JC) 
Q(IFM+JF) = Q(IFM+JF)+.5*(Q(ICO+JC)+\)(ICil+JC)) 
Q (IFO+JF-1) =Q(IFO+JF-1)+A 

1 Q (IF4M+JF-1) = Q (IFM+JF-1) +.5*(A4AM) 
RETURN 
END 

SUBROUTINE RESCAL(KF,KRF,KRC) 
COMMON Q (13000) ,IUF (200) ,IRF (200) ,IC (200) Residuals injection 
CALL KEY (KF,IUF,IIF,JJF,HF) 
CALL KEY(KRF,IRF,IIF,JJF,HF) 
CALL KEY (KRC,IfiC,IIC,JJC,HC) 
hG i=IIC 1 vKRC 4 coarse (v~ -&v 
JJC 1JJC-1 V fine hv 
DO 1 IC=2,IIC1 
ICR=IRC (IC) 
F=2* IC- 1 
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JF=1 
IFR=IRF (IF) 
IFO=IUF (IF) 
IFM=IUF (IF-1) 
.FP=IUF (IF+ 1) 

DO 1 JC=2,JJC1 
JF=JF+2 
S=Q(ITF+JF11)+Q(IFO+JF-1)+Q(I$FM+JF)+Q(IFP4JF) 

1 Q (ICR+JC)=4.*(Q(IFR+JF)-S+4.*Q(IiO+JF)) 
RETURN 
END 

LEV]BL 6 RESIDUAL NDFM= 2.014E+01 WORK= 1.000 
LEVEL 6 RESIDUAL NDiM= 2.764E+01 WORK= 2.000 OUTPUT 
LEVEL 5 RESIDUAL NORM= 2.659E+01 WORK= 2.250 
LEVEL 5 RESIDUAL NODRM= 2.555E401 WORK-- 2.500 
LEVEL 4 RESIDUAL NORM= 2.317E+01 WORK= 2.563 
LEVEL 4 RESIDUAL NDRM= 2.095E+01 WORK= 2.625 Error reduction by a factor 
LEVEL 3 RESIDUAL NORM= 1.649E+01 WORK= 2.641 
LEVEL 3 RESIDUAL NORM= 1.285E'01 WORK= 2.656 greater than 10 per cycle. 
LEVEL 2 RESIDUAL NORM= 7.626E+00 WORK= 2.660 
LEVEL 2 RESIDUAL NORM= 3.840EI00 WORK= 2.664 
LEVEL 3 RESIDUAL NORM= 5.058E+00 WORK= 2.680 
LEVEL 4 RESIDUAL NDRM= 8.006E+00 WORK= 2.742 Each cycle costs 4.3 wu 
LEVEL 4 RESIDUAL NORM= 2.545E+00 WORK= 2.805 
LEVEL 5 RESIDUAL NORM= 9.736E+00 WORK= 3.055 
LEVEL 5 RESIDUAL NORM- 2.464E+00 WORK= 3.305 
LEVEL 6 RESIDUAL NORM= 1.064E+01 WORK= 4.305 Insensitivity: Results would 
LEVEL 6 RESIDUAL NORM= 2.442E+00 WGRK= 5.305 
LEVEL e RESIDUAL NORM= 2.399E+C0 WORK= 6.305 be practically the same 
LEVEL 5 RESIDUAL N3RM= 2.351E+00 WOfiK= 6.555 
LEVEL 5 RESIDUAL NORM= 2.303E+00 WORK= 6.805 for any .005 < 6 < .5 
LEVEL 4 RESIDUAL NORM= 2.173E+00 WORK= 6.867 
LEVEL 4 RESIDUAL NORM= 2.043L+00 WORK= 6.930 or any 0 < n < .65 
LEVEL 3 RESIDUAL NORM= 1.739E+00 WORK= 6.945 
LEVEL 3 RESIDUAL NORM= 1. 453E+00 WORK= 6.961 
LEJVL 2 RESIDUAL N3RM= 9.889E-01 WORK= 6.965 
LEVEL 2 RESIDUAL NORM= 6.183E-01 WORK= 6.969 
LEVEL 1 RESIDUAL NORM= 2.760E-01 WOPK= 6.970 
LEVEL 1 RESIDUAL NORM= 5.170E-02 WORK= 6.971 
LEVEL 2 RESIDUAL N3RM= 2.292E-01 WORK= 6.975 
LEVEL 3 RESIDUAL NORM= 5.465L-01 WORK= 6.990 
LEVEL 4 RESIDUAL NORM= 7.710E-01 WORK= 7.053 
LEVEL 4 RESIDUAL NORM= 1.163E-01 WOE K= 7.115 
LEVEL 5 RESIDUAL NORM= 8.657L-01 WORK= 7.363 
LEVEL 5 RESIDUAL NORM= 1.058E-C1 WORK= 7.615 
LEVLL 6 RESIDUAL NDRM= 9.0595E-01 WORK= 8. 615 
LEVEL 6 RESIDUAL NORM= 1.052E-01 WORK= 9.615 
LEVEL 6 RESIDUAL NORM= 1.012E-01 WORK= 10.615 
LEVEL 5 RESIDUAL NORM= 9.759E-02 WOR K= 10.865 
LEVEL 5 RESIDUAL NORM= 9.452E-02 WORK= 11.115 
LEVEL 4 RESIDUAL NORM= 8.710E-02 WORK= 11.178 
LEVEL 4 RESIDUAL NORM= 7.960E-02 WORK= 11.240 
LEVEL 3 RESIDUAL NORM= 6.389E-02 WORK= 11.256 
LEVEL 3 RESIDUAL NORM= 4.931E-02 WORK= 11.271 
LEVEL 2 RESIDUAL NORM= 2.916E-02 WORK= 11.275 
LEVEL 2 RESIDUAL NORM= 1.622E-02 WORK= 11.279 
LEVEL 2 RESIDUAL NORM= 1.017E-02 WORK= 11.283 
LEVEL 3 RESIDUAL NJRM= 1.949E-02 WORK= 11.299 
LEVEL 4 RESIDUAL NOEM= 3.128v-02 WOPK= 11.361 
LEVEL 4 RESIDUAL NORM= 8.843E-03 WORK= 11.424 
LEVEL 5 RESIDUAL NORM= 3.710E-02 WURK= 11.674 
LEVEL 5 RESIDUAL NORM= 8.486E-03 WORK= 11.924 
LLVEL 6 RESIDUAL NORM= 4.0C7E-02 WORK= 12.924 
LEVEL 6 RESIDUAL NORM= 9.051E-03 WORK= 13.924 

To solve on the same domain problems other than Poisson, the only subroutines 
to be changed are the relaxation routine RELAX and the residual injection routine 
RESCAL. The latter is always just a slight variation of the first. 

For different domains, more general GRDFN and KEY subroutines should be 
written. A general GRDFN subroutine, in which the domain characteristic function is 
one of the parameters, has been developed, together with the corresponding KEY 
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routine. This essentially reduces the programming of any multi-grid solution to the 
programming of a usual relaxation routine. See [26]. 

Appendix C. Rigorous Bound to Model-Problem Convergence Rate. We consider 
the model problem: 5-point Poisson equation Ah Uh = F on a (n1 + 1) x (n2 + 1) 
rectangular grid GM with Dirichlet boundary conditions. Let n1 = 2MN1 and let Gk be 
the (2kN1 + 1) x (2kN2 + 1) uniform grid on the same domain, with mesh-size hk = 
2-kho (k = 0, 1, . . .M, A). We will estimate the convergence rate and work per one 
multi-grid cycle CM. 

The cycle CM is defined inductively as follows: (i) Make r relaxation sweeps on 
the GM approximate solution uM. To facilitate the rigorous Fourier analysis we 
choose as our relaxation the Weighted Simultaneous Displacement (WSD, or "weighted 
Jacobi") method with weights coo = WO, wol = Xo- = = wo = 

-1 0 = &-1 , say (see Section 3.3). (ii) Inject (cf. Section A.4) the residual problem to 
GM- 1. (iii) Get an approximate solution vl- 1 to this GM- 1 problem by two CM- 1 

cycles, starting from the zero approximation. (iv) Correct uM < UM + .M_ rM- 1 
where IM-1 is linear interpolation. (v) Make s more relaxation sweeps on GM. 

It is easily calculated that one WSD sweep amplifies the Fourier component 
exp(i0 * x/hm) of the residual by the factor 

p(O) = 1 - (2 - cos 01 - cos 02)(.5Xo0 + co,cos 01 + co1Cos 02). 

Denote by A(0) the amplitude, before the CM cycle, of the 0 = (01, 02) component 
of the residual. Actually present on the grid GM are only components of the form 
0 = (a, ir/nl, cx2ir/n2) (c, = ?1, ?2, . . . , ?(n1 - 1)), and their amplitudes A(01, 02) = 

-AX(011- 02) = -A(-01 02) are real (assuming two of the boundary lines to lie on the 
axes). Since p(0 1' 02) =(?0 1' ?02) is real, the r relaxation sweeps operate separately 
on each residual mode, transforming its amplitude A(0) to A'(0) = /4(0)rA(0). 

For any compoinent 0 = (0k1 02) such that 101 = max(0 1 I, 1021) < 7r/2, denote 
01 = (0,1 02), 02 = (0 1 ? 7, 02) 03 = (01, 02 ? 7r), 04 = (01 ? or, 02 ? 7r), where 
each ? sign is chosen so that 1011 < 7r (1 = 1, 2, 3, 4). Of these four "harmonics", 
only the 01 mode appears on GM- 1, its amplitude there (in the right-hand side of the 
GM- ' residual problem formed in Step (ii)) being 

(C.1) AO = A'(01) + A'(02) + A'(03) + A'(04). 

Let Ek denote an upper bound to the factors by which any Ck cycle reduces the L2 
norm of the residuals on Gk. In particular, the two CM 1 cycles (Step (iii)) are equiv- 
alent to solving a GM- 1 problem with amplitudes ao instead of AO, where 

(C.2) Z lao A0 2 S M E A2. 
101<ir/2 101?<r/2 

Interpolating the computed correction from GM- 1 to GM (Step (iv)), and then relaxing 
on GM (Step (v)), the new residual amplitudes are easily calculated to be 

A(0') - p(0l)s [A'(0') - S(0')ao ] 

- ,(0l)s [,40)rA(0l)-+ - S9)A ? S9)(A )] (I = 1, 2, 3, 4), 
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where 

(1 ? Cos 60)( ? COS 02)(2 - cos 01 - Cos 02) 
S( 2 - cos 206 - cos 202 

Hence 

(C.3) .A(06)2 < 2q2JA(6')2 + 2 S(6')2(A0 - a0)2, 
1 1 1 

where q is an upper bound to the L2 norms of the 4 x 4 matrices Q(0), defined 
by 

Q - (0) = Q(0l)S (8 m - S(6l))g(Om)r (1 < 1, m < 4). 

Denoting Pij = sin2 6. it is easy to check that 

(C.4)~ ~ ~ 1 E( 1)2 2 + 01 + 02 
(C.4) S(' 2= 2- 010 2 ? 2 ? i Zt2 2. 

Hence, summing (C.3) over the relevant range of 0, using (C.2) and (C.4) and then 
(C.1), we obtain 

Z A(0)2 S2q2 E A(0)2 + 4eM-1 E A 
10 I<7r I 10 < 0I 1<r/2 

<(2q2 + 4 M-y4_ 1) A(0)2, 
10 1 < 

where y is any upper bound to all z21g(6l)2r (0 < 101 < 7r/2). Thus, we have obtained 
the bound 

(C.5) e2 = 2q2 + 4ye4 1 

Choosing r = s = 1 and co0 = 1.07, co1 = .155 (to minimize q2), straightforward 
computer calculations show that q2 < .015 and y < 1.18. From (C.5) it now follows, 
by induction on M, that EM < .19. 

The number of operations in the CM cycle is WM < (12r + 1 2s + 4)n1 n2 + 2WMl,. 
Hence, by induction on M, WM < (24r + 24s + 8)n 1 n2 . We thus have in summary 

THEOREM. The above CM cycle reduces the L2 error norm by a factor < .19 
and costs 56 operations (additions and multiplications) per grid point. 

The theorem can be improved, in a sense, by defining the CM cycle to consist of 
r + M relaxation sweeps and only one CM-' cycle, with sufficiently large r. 

(Note, however, that employing arbitrarily large r pays only with simultaneous- 
displacement schemes on rectangular domains, where eigenfunctions of the coarse-grid 
correction cycle are also eigenfunctions of the relaxation.) 

In practice, .1 reduction is obtained in less than 28 operations-per-point. (See 
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Appendix B. The Gauss-Seidel sweep employed there can be done in 5 operations-per- 
point. But for every 3 sweeps on Gk the interpolations Ik- 1 and Ik are also per- 
formed, respectively costing 6 and 10 operations per 4 grid points. Hence, a work unit 
in Appendix B should be considered as representing (3 x 5 + 6/4 + 10/4)/3 = 19/3 
operations per point.) These operations involve only additions and shifts. 

Appendix D. Remarks on Initial-Value Problems. The Multi-Level Adaptive 
Techniques can be used in time-dependent problems. An obvious use could be made 
for implicit difference approximations, where a multi-grid algorithm (as in Sections 4 
or 5) could be employed to solve, at each time step, the equations for the new time 
values. Usually, however, alternating-direction implicit (ADI) discretizations, when 
available, offer the same stability and greater efficiency. The multi-grid approach can 
be used in cases ADI is difficult to apply, such as nonuniform grids (space mesh-sizes 
h(1), ... , h(d) , and possibly also time step h(?), being nonconstant), curved boundaries, 
certain nonlinear problems, etc. But note that if a nonuniform grid is constructed as a 
union of uniform subgrids (cf. Section 7.1), then an ADI procedure may sometimes 
still be applicable. 

Whether the solution is advanced in time explicitly, or by ADI or implicit MG 
procedure, the automatic adaptive discretization techniques described above (Section 8) 
can be modified to operate with it, to optimize h(?), h(1), . . ., h(d) and other dis- 
cretization parameters (the approximation orders, both in space and time, the compu- 
tational boundary for a problem on an unbounded domain, etc.). The main difference 
is of course that here we have the special coordinate, time, along which we march, 
usually without iterating. 

Each parameter can be adapted locally including h(?), which may vary both in 
space and in time, provided we impose a structure as in Section 7, in which h(i) is 
restricted to the values h(') = 2-kh(j). This may create time levels for which the k 0 
boundary is not the natural boundary. The solution on such "internal" boundaries 
may be defined by extrapolation from past time levels. 
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