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BOOTSTRAP AMG∗

A. BRANDT† , J. BRANNICK‡ , K. KAHL§ , AND I. LIVSHITS¶

Abstract. We develop an algebraic multigrid (AMG) setup scheme based on the bootstrap
framework for multiscale scientific computation. Our approach uses a weighted least squares defini-
tion of interpolation, based on a set of test vectors that are computed by a bootstrap setup cycle
and then improved by a multigrid eigensolver and a local residual-based adaptive relaxation pro-
cess. To emphasize the robustness, efficiency, and flexibility of the individual components of the
proposed approach, we include extensive numerical results of the method applied to scalar elliptic
partial differential equations discretized on structured meshes. As a first test problem, we consider
the Laplace equation discretized on a uniform quadrilateral mesh, a problem for which multigrid
is well understood. Then, we consider various more challenging variable coefficient systems coming
from covariant finite-difference approximations of the two-dimensional gauge Laplacian system, a
commonly used model problem in AMG algorithm development for linear systems arising in lattice
field theory computations.
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1. Introduction. We develop bootstrap algebraic multigrid (BAMG) techniques
for solving systems

(1.1) Au = f,

where A ∈ Cn×n is assumed to be Hermitian and positive definite. AMG approaches
for solving (1.1) typically involve a stationary linear iterative method (smoother),
applied to the fine-grid system, and a coarse-grid correction. The corresponding two-
grid method gives rise to the error propagation operator

(1.2) ETG = (I −MA)(I − P (PHAP )−1PHA)(I −MA),

where P : Cnc 7→ Cn with nc < n is the interpolation operator, M is the approximate
inverse of A that defines the smoother, and for any matrixB ∈ Cn×m, BH denotes the
conjugate transpose. A multigrid algorithm is then obtained by recursively solving
the coarse-grid problem, involving Ac = PHAP , using the two-grid method.
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The efficiency of such an approach depends on the proper interplay between the
smoother and the coarse-grid correction. Typically, the AMG smoothing operator,
M , is fixed and the coarse-grid correction is formed to compensate for its deficiencies.
The primary task in defining a multigrid method is then the selection of the sequence
of interpolation operators. A general two-grid process for constructing P is described
by the following generic algorithm:

1. Given the set of n variables on the fine grid, choose a set of nc coarse variables
such that nc < n.

2. Choose a sparsity pattern for interpolation, P ∈ C
n×nc.

3. Define the weights of the interpolation operator, i.e., the entries of P .
Classical AMG as originally introduced in [4, 5] and its widely used implementa-

tion by Ruge and Stüben [20] can be seen as important milestones in the development
of such algebraic setup algorithms. The Ruge–Stüben algorithm exhibits optimal ef-
ficiency for many challenging problems, often substantially outperforming traditional
iterative methods. However, the algorithm and, hence, its effectiveness depend on the
following problem-specific properties:

• The notion of strength of connection used in coarsening variables and forming
interpolation can be defined from the entries of the system matrix.

• The eigenvectors with small in absolute value eigenvalues (lowest eigenvec-
tors) are locally smooth in directions of such strong connections.

• These lowest eigenvector(s) of the system matrix provide a sufficiently accu-
rate local representation of the other low eigenvectors not effectively treated
by the MG relaxation scheme.

For problems where all or some of these properties are violated, efficiency of Ruge–
Stüben AMG deteriorates. This loss in efficiency is often due to the low accuracy of
interpolation for vectors yielding small normalized residuals [1], i.e., vectors x such
that Ax ≈ 0. For simple pointwise relaxation schemes, such as the Gauss–Seidel
iteration we use in our tests, these components coincide with the error not effectively
reduced by the relaxation scheme and, hence, are often referred to as the algebraically
smooth components of the error.

The bootstrap framework for multiscale scientific computation [3] provides general
techniques for analysis, development, and practical application of robust multilevel
methods. In the context of MG algorithms, the bootstrap process1 allows the user to
input any features of the problem at hand (e.g., nested grids and kernel components)
and then use this knowledge to iteratively improve itself until optimal performance is
achieved. The general setup algorithm used in this scheme incorporates several prac-
tical tools and measures derived from the evolving MG solver, including the following:

• compatible relaxation, used in identifying suitable smoothing schemes and
coarse variable sets [2, 8, 12, 14];

• local weighted least squares approximations of a set of test vectors, used
in a greedy algorithm to determine an algebraic distance-based measure of
strength of connection [3] and to define AMG interpolation [14, 17, 19];

• the bootstrap cycling scheme, used to compute sufficiently accurate sets of
test vectors [14, 15];

1Generally, the term bootstrap refers to the idea that a process could better evolve by improving
the process used for its improvement (thus obtaining a compounding effect over time.) As a com-
puting term, bootstrapping (from an old expression “pull oneself up by one’s bootstraps”) has been
used since at least 1958 to refer to a technique by which a simple computer program activates a more
complex system of programs that ultimately lead to a self-sustaining process that proceeds without
external help from manually entered instructions.
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• adaptive relaxation [2, 14] and almost zero modes [3], used to improve both
the AMG setup cycle and the solver.

Many of the bootstrap ideas themselves are applicable to a wide range of multiscale
problems in computational science. Our focus in this paper is on combining several
of these techniques to develop a robust scheme for computing AMG interpolation.

A preliminary form of the bootstrap process for defining AMG interpolation first
appeared in [5], where the use of relaxation applied to the homogeneous system to
produce a single prototype to somehow define classical AMG interpolation was dis-
cussed. More recently, such bootstrap setup algorithms were developed for smoothed
aggregation multigrid (adaptive SA; see [9]), element-free AMG (see [22, pp. 213–
249]), and classical AMG (adaptive AMG, see [7, 10]). The main new ingredient in
these more recent BAMG approaches is the idea to apply the current AMG solver
to the homogeneous system to both test its performance and improve the prototypes
used in computing the sequence of AMG interpolation operators.

The algorithm we consider here combines a BAMG cycle with a weighted least
squares form of interpolation. An additional feature unique to our approach is the use
of an MG eigensolver derived from the existing MG structure to enhance the proto-
types needed in the definition of least squares interpolation. We mention that similar
MG techniques for using eigenvectors to define AMG interpolation were roughly out-
lined in [18, 20]. In another related work [11], an MG eigensolver was developed to
compute an initial SA hierarchy, after which it is abandoned and the usual adaptive
SA setup process is invoked.

An outline of the remainder of this paper is as follows. First, in section 2, we
present the weighted least squares process for computing interpolation and the idea
of adaptive relaxation. In addition, we derive sufficient conditions guaranteeing the
uniqueness of the solution to the least squares problem and compute an explicit form
of the minimizer. Our approach for computing the set of test vectors using bootstrap
techniques is described in section 3. Then, in section 4, we present results of the
method applied to the scalar Laplace equation discretized on a uniform mesh and
several challenging variable coefficient problems. We end with concluding remarks in
section 5.

2. Least squares interpolation. The basic idea of the least squares (LS) inter-
polation approach is to approximate a set of test vectors, V = {v(1), . . . , v(k)} ⊂ Cn,
minimizing the interpolation error for these vectors in an LS sense. In the context
considered here, namely, applying the LS process to construct a classical AMG form
of interpolation, each row of P , denoted by pi, is defined as the minimizer of a local
LS functional: For each i ∈ F find pi such that

(2.1) L(pi) =

k
∑

κ=1

ωκ



v
(κ)
{i} −

∑

j∈Ci

(pi)j v
(κ)
{j}





2

7→ min,

where Ci ⊂ C with C and F = Ω \ C denoting the coarse-grid and fine-grid variables,
respectively. Here, the notation vΩ̃ denotes the canonical restriction of the vector

v to the set Ω̃ ⊂ Ω := {1, .., n}. In the definition of L in (2.1), for example, v{i}
is simply the ith entry of v. Similarly, we can define the canonical restriction of a
matrix, V =

(

v(1) · · · v(k)
)

, to a set Ω̃:

VΩ̃ =
(

v
(1)

Ω̃
· · · v

(k)

Ω̃

)

,
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where VΩ̃ ∈ C|Ω̃|×k. The weights ωκ > 0 can be chosen to reflect the energy (e.g.,
in A-norm ‖v‖A = 〈Av, v〉) of the test vectors. We give our specific choice in the
numerical experiments section.

2.1. Uniqueness of the solution to the local LS problem and an explicit

form of its minimizer. To derive conditions on the uniqueness of the solution
to minimization problem (2.1) and compute an explicit form of the minimizer, we
consider a classical linear algebra formulation of the LS problem. Let

W =







ω1

. . .

ωk






∈ C

k×k, V =
(

v(1) · · · v(k)
)

∈ C
n×k,

and VΩ̃ = (v
(1)

Ω̃
· · · v

(k)

Ω̃
). Then,

k
∑

κ=1

ωκ



v
(κ)
{i} −

∑

j∈Ci

(pi)jv
(κ)
{j}





2

= ‖V{i}W
1
2 − piVCi

W
1
2 ‖2

2,

where the weights of the individual terms in the LS functional are now represented
by a scaling defined by the matrix W . An equivalent LS formulation of (2.1) is
then

(2.2) L(pi) = ‖V{i}W
1
2 − piVCi

W
1
2 ‖2

2 → min .

The minimizer of L in (2.2) and necessary conditions for its uniqueness are now easy
to compute. The derivative of the LS functional L with respect to (pi)j is

∂

∂(pi)j
L(pi) = 2

k
∑

κ=1

ωκ

(

v
(κ)
{i} − piv

(κ)
Ci

) (

v
(κ)
Ci

)

j
.

Setting ∇L(pi) = 0 yields

piVCi
WV HCi

= V{i}WV HCi
.

Thus, if rank(VCi
W

1
2 ) = |Ci|, then VCi

WV HCi
is nonsingular and the solution to the LS

minimization problem is uniquely defined by

pi = V{i}WV HCi

(

VCi
WV HCi

)−1
.

We note that if the restricted vectors VCi
form a basis for the local linear space

Cni , ni = |Ci|, then the solutions to the local LS minimization problems are unique.
This in turn suggests setting a lower bound on the number of vectors, k, used in the
LS fit:

k ≥ max
i∈F

|Ci| =: c.

Further, as we show numerically in section 4, the accuracy of the LS interpolation
operator and, hence, the performance of the resulting solver generally improve with
increasing k, up to some value proportional to c. Our numerical experience suggests
that the number of test vectors need not be larger than 2c to obtain a sufficiently
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accurate P . In fact, these sets of interpolation points can often be adequately chosen
by natural considerations. For example, they can be chosen as the sets of geometrical
neighbors with i in their convex hull. If a chosen set is inadequate, the LS procedure
will show bad fitness (large interpolation errors, i.e., values of the LS functional)
and the set must then be improved. The LS procedure can also be used to detect
variables in the sets Ci that can be discarded without significant accuracy loss. Thus,
this approach allows creating interpolation with whatever needed accuracy, which is
as sparse as possible. Note that it is also possible to adjust the number of test vectors
on the fly if rank deficiency of any of the operators VCi

is detected. Similarly, many
rows of P will typically have fewer than c nonzero entries, that is, |Ci| < c. In such
cases, fewer prototypes may be used in the LS process. We do not pursue this idea
in this paper because it is not expected to result in a significant reduction in setup
costs, and further, as our numerical results show, the quality of the solver generally
improves with an increased number of prototypes.

2.2. Equivalence of adaptive relaxation and a modified LS functional.

A main assumption of classical AMG is that the relaxation scheme used in the MG
algorithm efficiently reduces the residual when applied to the current approximation.
This assumption is in fact central to the definition of classical AMG interpolation,
which is derived by setting the local (pointwise) residual to zero. In [2], the idea of ap-
plying additional local relaxations to the equations i ∈ F for which the corresponding
value of the residual is large was proposed as a possible approach for improving the
performance of classical AMG for certain problems (e.g., problems with singularities).
Assuming aii 6= 0, a Jacobi version of this iteration reads as

(2.3) v
(κ)
{i} = v

(κ)
{i} −

1

aii
r
(κ)
{i},

with r(κ) = Av(κ). Similar approaches can also be employed for more general relax-
ation schemes.

In [14], it was observed that the implicit application of the local Jacobi relaxation
in (2.3) to the prototypes used in the LS definition of interpolation is equivalent to
an operator-induced form of LS interpolation constructed using an element-free AMG
type approach (see [22]). This equivalence of the LS approach with an additional local
relaxation step was also formulated and discussed in a slightly different scope in [17],
where it was defined as a residual-based LS fit,

(2.4) L(pi) =

k
∑

κ=1

ωκ



v
(κ)
{i} −

1

aii
r
(κ)
{i} −

∑

j∈Ci

(pi)jv
(κ)
{j}





2

7→ min,

which in turn was shown to be consistent with a classical AMG operator-induced form
of LS interpolation. We mention that the work in [17] focuses on defining different
versions of the LS interpolation operators using a set of relaxed test vectors; it does
not address the question of how to use the bootstrap process to compute these vectors.
Developing the bootstrap setup scheme for defining LS interpolation is the main focus
and contribution of the work we present here.

Another interesting observation regarding the above residual form of the LS func-
tional is that the element-free AMG and classical AMG forms of LS interpolation
considered in [14, 17] differ from the original definition only when the test vectors
with large weights, ωk?

, are not sufficiently accurate; i.e., the residuals they produce
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are not uniformly close to zero. In fact, our idea of applying adaptive relaxation to
the test vector with largest weight (2.4) and then only to the equations with large
relative values of the residual was motivated by these observations. We include results
and additional discussion of both approaches in the numerical experiments section.

3. The bootstrap algorithm. In its simplest form, the bootstrap process for
computing the test vectors used in constructing the LS interpolation operators pro-
ceeds by applying relaxation to the homogeneous system,

(3.1) Alxl = 0,

on each grid, where l = 0, . . . , L− 1; assuming that a priori knowledge of the alge-
braically smooth error is not available, these vectors are initialized randomly on the
finest grid, whereas on all coarser grids they are defined by restricting the test vectors
computed on the previous finer grid. Given interpolation, the coarse-grid operators
are computed using the variational definition. Once an initial MG hierarchy has been
computed, the current sets of prototypes are further enhanced on all grids using the
existing multigrid structure. Specifically, the given hierarchy is used to formulate
a multigrid eigensolver which is then applied to an appropriately chosen generalized
eigenproblem to compute additional test vectors. This overall process is then repeated
with the current AMG method replacing relaxation as the solver for the homogeneous
systems in (3.1).

Several subtle details must be addressed when formulating the multigrid eigen-
solver (MGE), namely, (1) the specific formulation for the MGE hierarchy as well as
the sorting and filtering of the coarsest-grid eigenvectors within the cycle; (2) deciding
on an efficient cycling strategy when integrating the MGE into the BAMG process;
and (3) measuring and improving the accuracy of the test vectors computed by the
MGE (eigenapproximations) as they are transferred to increasingly finer grids. We
describe our formulation of the MGE next.

3.1. Defining the MGE hierarchy: The generalized eigenvalue problem.

Given the computed BAMG hierarchy of operators A = A0, A1, . . . , AL and their
corresponding interpolation operators P ll+1 , l = 0, . . . , L − 1, define the composite
interpolation operators

(3.2) Pl = P 0
1 · · ·P l−1

l , l = 1, . . . , L

and the sequence of subspaces of Cn spanned by their columns as

C
n ⊃ range (P1) ⊃ · · · ⊃ range (PL) .

For any vector xl ∈ Cnl we then have

〈xl, xl〉Al
= 〈Plxl, Plxl〉A,

where nl is the problem size on grid l. Defining Tl = PHl Pl, it follows that

(3.3)
〈xl, xl〉Al

〈xl, xl〉Tl

=
〈Plxl, Plxl〉A
〈Plxl, Plxl〉2

,

implying that on any grid l, given a vector wl ∈ Cnl and λl ∈ R, such that

(3.4) Alwl = λlTlwl,
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we have

(3.5) RQ(Plwl) =
〈Plwl, Plwl〉A
〈Plwl, Plwl〉2

= λl.

The result follows from (3.3) applied to wl, the eigenvector of the generalized eigen-
value problem (3.4), and the relations Al = PHl APl and Tl = PHl Pl. Note that RQ(·)
is simply the Rayleigh quotient and, hence, (3.5) relates the eigenpairs on different
grids and can be used to define an MGE.

Our algorithm begins by computing the ke eigenvectors with the smallest eigen-
values of the coarsest-grid operator

WL = {w
(κ)
L | ALw

(κ)
L = λ

(κ)
L TLw

(κ)
L , λ

(κ)
L ∈ R, κ = 1, . . . , ke}.

Since the size of AL is small, these eigenpairs,
(

w
(κ)
L , λ

(κ)
L

)

, are computed directly.

Then, on any given grid l, the existing interpolation operator P l−1
l is used to transfer

these vectors to the next finer grid. We note that if wl is a solution to (3.4) on grid
l, then

(

P l−1
l

)H
Al−1P

l−1
l wl = λl

(

P l−1
l

)H
Tl−1P

l−1
l wl,

and so wl−1 = P l−1
l wl is an approximate solution to the generalized eigenvalue prob-

lem. Next, a smoothing iteration is applied to the homogeneous problem on grid
l− 1:

(3.6) (Al−1 − λl−1Tl−1)wl−1 = 0, λl−1 = λl.

Then, the approximation to λl−1 is recomputed:

λl−1 =
〈Al−1wl−1, wl−1〉2
〈Tl−1wl−1, wl−1〉2

.

We note that this procedure resembles an inverse Rayleigh quotient iteration found
in eigenvalue computations (see [23]), with inversion replaced by several relaxation
steps. Algorithm 1 describes one variant of the MGE process for enriching the sets of
test vectors.

3.2. Integrating the MGE and BAMG processes: Cycling strategies.

Combining the bootstrap cycle with the MGE can be done using a variety of cycling
strategies. The two types of cycling schemes we consider are outlined in Figure 3.1.
The top plot is a visualization of two successive iterations of a V -cycle scheme, which
we refer to as a double V -cycle (or V 2-cycle). In general, a V µ-cycle denotes an
algorithm that uses µ such V -cycles. We note that this scheme makes use of the
MGE as defined by Algorithm 1, which does not update interpolation until it reaches
the finest grid.

The plot in the bottom of the figure outlines our second approach, in which the
approximations produced by the MGE on grid l are used to recompute the hierarchy
at each of the coarser grids, l+1, l+ 2, . . . , L, before advancing to the next finer grid
l − 1. Note that it may not be necessary to recompute the hierarchy at each of the
intermediate grids; in practice we recompute P and update the hierarchy only when
relaxation applied to the interpolated eigenvector approximations significantly reduces
at least one of the Rayleigh quotients (3.5) associated with these approximations by
some prescribed tolerance.
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Algorithm 1. {Multigrid eigensolver}

for l = L, . . . , 1 do

if the current grid is the coarsest grid L then

Take WL = {w
(κ)
L | ALw

(κ)
L = λ

(κ)
L TLw

(κ)
L , κ = 1, . . . , ke}

else

Given Wl+1 and P ll+1 from the initial setup

w
(κ)
l = P ll+1w

(κ)
l+1, λ

(κ)
l = λ

(κ)
l+1 , κ = 1, . . . , ke

for κ = 1, . . . , ke do

Relax on
(

Al − λ
(κ)
l Tl

)

w
(κ)
l = 0

Calculate λ
(κ)
l =

〈Alw
(κ)
l , w

(κ)
l 〉2

〈Tlw
(κ)
l , w

(κ)
l 〉2

end for

end if

end for

Compute W , s.t., Aw = λTw,w ∈ W

Relax on Av = 0, v ∈ V and (A − λT )w = 0, w ∈ WRelax on (A − λT )w = 0, w ∈ W

Relax on Av = 0, v ∈ V

Fig. 3.1. Bootstrap AMG V 2-cycle and W-cycle setup schemes.

3.3. Updating the MG eigendecomposition. Consider the generalized eigen-
value problem

Ajwj = λjTjwj,

on two subsequent grids, j = l, l−1, with λl denoting the Rayleigh quotient of a given
approximation of an eigenvector on the coarser grid and λl−1 denoting the Rayleigh
quotient of the vector obtained by applying relaxation to this vector interpolated to
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the next finer one. Define the eigenvalue approximation measure τ
(l,l−1)
λ by

(3.7) τ
(l,l−1)
λ =

|λl − λl−1 |

|λl−1|
.

At any stage of the MGE iteration, a large value of τ
(l,l−1)
λ indicates that the hier-

archy should be recomputed to incorporate this relaxed eigenvector approximation.
Otherwise, relaxation has not significantly changed this vector, and it is accurately
represented by the existing interpolation operator P l−1

l . In this way, the MGE serves
as a technique for efficiently identifying components that must be interpolated accu-
rately (e.g., the low modes of A) and for determining if the current P approximates
them sufficiently well.

4. Numerical results. In this section, we present numerical tests of our BAMG-
MGE setup algorithm applied to a series of test problems. We consider isotropic
systems defined on two-dimensional (2D) equidistant quadrilateral meshes. Fixing
the coarse grids and the sparsity pattern of interpolation, we study the performance
of the LS and MGE techniques for computing the entries in P . We begin with tests
for the Laplace operator discretized using finite elements (FE Laplace) and finite
differences (FD Laplace). We then transition to a slightly more difficult test problem
of symmetric diagonal scalings of the Laplace operator. Then, we proceed to tests of
our method applied to the gauge Laplacian system (see Appendix A).

In all tests, the sets of coarse variables are defined by full coarsening; that is,
the coarse grids are obtained by doubling the mesh spacing in each spatial dimension
of the related finer mesh; the coarsening is continued until the problem size on the
coarsest grid is 7×7 or 8×8, depending on the size of the problem on the finest mesh.
We limit interpolation to the nearest neighbors (in terms of the graph of the matrix),
and the maximal number of interpolatory points for each i ∈ F is thus bounded by
four for the problems we consider (see Figure 4.1).

We use the weighted LS approach to define the entries of the interpolation oper-
ators, with the weights defined by

(4.1) ωκ =
〈Tlv

(κ), v(κ)〉

〈Alv(κ), v(κ)〉
,

and test the original LS definition of interpolation (LS interpolation) as well as the
approach that applies additional adaptive local relaxations to the test vectors prior to
computing the interpolation operator (LSR interpolation). For the results reported
in Table 4.10, we apply the local relaxation scheme (2.3) to every test vector; for all
other tests we apply local relaxation only to the single test vector with the largest
weight, ωmax, and then only to 20% of the F -points for which the associated value of
the residual is largest in absolute value.

Let kr = |V| denote the number of test vectors computed using relaxation in the
bootstrap cycle, let ke = |W| denote the number of additional eigenvector approxima-
tions computed by the MGE, and let η be the number of Gauss–Seidel (GS) iterations
used in the BAMG cycle and MGE to compute them. The LS and LSR forms of inter-
polation are then computed on each level using the combined sets of k = kr + ke test
vectors. On the finest grid, the vectors, v(1), . . . , v(kr), used to initialize the bootstrap
process are generated randomly with a normal distribution with expectation zero and
variance one, N(0, 1); on all other grids they are defined by restricting the relaxed
test vectors from the related finer grid.
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i ∈ F

i ∈ C

Fig. 4.1. Interpolation relations for our choice of full-coarsening for i ∈ F \ C.

We use a V (2, 2) MG solver with GS relaxation for all tests. The reported esti-
mates of the asymptotic convergence rates are computed as follows:

ρ =
‖eν‖A

‖eν−1‖A
,

where eν is the error after ν MG iterations. The solver terminates if the method
reduces the initial error by a factor 108 or if ν = 100 iterations are applied and the
method fails to converge to this tolerance.

4.1. Laplace’s equation. We start the numerical experiments by applying the
BAMG cycle and MGE to the 2D Laplace equation

−uxx − uyy = 0, (x, y) ∈ (0, 1)
2
,

u(x, y) = 0, (x, y) ∈ Γ,

discretized using bilinear finite elements (see [21]) on an (N − 1) × (N − 1) equidis-
tant quadrilateral mesh. The corresponding discretization yields the symmetric and
positive definite operator A given by the stencil

A = −
1

3





1 1 1
1 − 8 1
1 1 1



 .

For this problem our choices of full coarsening and sparsity pattern of interpolation
yield variational coarse-grid operators with at most nine nonzero entries per row,
implying that the sparsity structure of the finest-grid operator A is preserved on all
grids.

The results reported in Table 4.1 are for the LS- and LSR-based two-grid methods
applied to the FE Laplace system on a 63×63 grid. Overall, we observe that increasing
the number of test vectors, kr, used in defining P and increasing the number of
smoothing iterations, η, used to compute them both improve the performance (reduce
the convergence rates) of the resulting two-grid solvers. Further, the results for the
LSR scheme are consistently better than the results for the LS approach.

In Table 4.2, we report results obtained by applying a two-grid method to the
FE Laplace system for different problem sizes. The solver is constructed using the LS
and LSR formulations for defining P with a fixed numbers of test vectors kr = 8 and
smoothing iterations η = 4 independent of the choice of problem size. Here, we see
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Table 4.1

Asymptotic convergence rate estimates, ρ, of the LS- (LSR)-based two-grid methods applied to
the FE Laplace problem. The solver is constructed using various choices of η and kr .

H
H

H
H

η

kr
6 7 8 10 12

1 .975 (.962) .973 (.958) .971 (.955) .967 (.949) .963 (.944)
2 .934 (.866) .916 (.827) .904 (.806) .878 (.786) .861 (.759)
3 .832 (.679) .803 (.637) .775 (.606) .734 (.566) .709 (.535)
4 .735 (.524) .681 (.453) .648 (.403) .608 (.269) .575 (.316)
5 .625 (.374) .553 (.326) .518 (.287) .484 (.165) .457 (.138)
6 .522 (.294) .451 (.242) .425 (.205) .381 (.154) .305 (.136)

7 .427 (.227) .364 (.186) .346 (.155) .268 (.089) .257 (.098)
8 .372 (.169) .308 (.140) .287 (.123) .238 (.054) .216 (.061)

Table 4.2

Asymptotic convergence rate estimates, ρ, of the LS- (LSR)-based two-grid methods applied to
the FE Laplace problem. The solver is constructed using the LS (LSR) schemes in a V -cycle setup
with η = 4 and kr = 8.

N 31 63 127 255 511
ρ .267 (.075) .648 (.403) .886 (.758) .966 (.917) .990 (.977)

that the convergence rates of both the LS and LSR based two-grid methods increase
as the size of the problem is increased, suggesting that applying a constant number
of relaxation steps to compute a fixed number of test vectors does not produce a
sufficiently accurate local representation of the algebraically smooth error for defining
LS interpolation.

In Table 4.3, we present results for the two-grid method obtained by adding the
constant vector, 1, to V, again for a fixed number of test vectors kr = 7+1 and η = 4
relaxation steps used to compute them. Here, we see that including the constant
vector in V significantly improves the LS- and LSR-based two-grid solvers. In fact,
the method obtained using the LSR approach performs optimally for the problem sizes
considered. This demonstrates the flexibility of the LS formulation and its ability to
incorporate a priori knowledge of the low modes of the problem at hand. It also
motivates the use of the MGE in the BAMG process for computing test vectors, as a
way to improve their approximation of low eigenmodes.

Table 4.3

Asymptotic convergence rate estimates, ρ, of the LS- (LSR)-based two-grid methods applied to
the FE Laplace problem. The solver is constructed using the LS (LSR) schemes using a V -cycle
setup with η = 4 GS iterations to compute the seven initially random test vectors; the additional
test vector is the constant vector chosen a priori.

N 31 63 127 255 511
ρ .089 (.039) .121 (.040) .130 (.042) .148 (.042) .150 (.043)

Next, we consider using the V 2-cycle setup (see Figure 3.1). We apply η = 4
iterations of the smoother to kr = 8 initially random test vectors to generate the MG
hierarchy and η = 4 relaxation steps to the ke = 8 additional test vectors generated
by the MGE. As the results reported in Table 4.4 show, using the MGE to enhance
the test vectors consistently improves the performance of the resulting solvers when
compared to the results reported in Table 4.2, especially for the LSR scheme. Here,
the LSR approach yields an optimal method, whereas for the LS scheme, as the
problem size goes from N = 255 to N = 511, the convergence rate of the solver
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Table 4.4

Asymptotic convergence rate estimates, ρ, of the LS- (LSR)-based two-grid methods applied
to the FE Laplace problem. The solver is constructed using a V 2-cycle setup with η = 4 and
kr = ke = 8.

N 31 63 127 255 511
ρ .041 (.038) .062 (.041) .075 (.043) .125 (.043) .971 (.043)

increases substantially—from ρ ≈ .125 to ρ ≈ .971. These results in turn suggest
that the global weights, ωκ, used in computing interpolation, bias the LS fit to some
inadequate local representations of the algebraically smooth error, ultimately leading
to a poor choice of interpolation for the associated fine-grid variables. The LSR scheme
is, however, able to compensate for this in a very efficient manner. An alternative
approach would be to define the weights used in the LS fit locally (i.e., for each
i ∈ F)—we mention that although we have studied this idea extensively, we have not
yet derived an effective strategy for defining local weights.

To further illustrate the efficacy of the MGE when combined with the LSR form

of P for this problem, we report the eigenvalue approximation measures τ
(L,1)
λ defined

in (3.7), computed using the eight smallest eigenvalues of the coarsest-grid operator
and the associated Rayleigh quotients of the finest-grid test vectors generated using
the V 2-cycle setup algorithm. Additionally, we report the two-norms of the differ-
ences between the eight eigenvectors with the smallest eigenvalues of the coarsest-grid
system interpolated to the finest grid using the composite interpolation operators de-
fined in (3.2) and the eigenvectors of the finest-grid system computed directly. The
results are reported in Table 4.5. Here, we see that the eigenvalue approximation
measures are uniformly small for the ke = 8 computed eigenvector approximations
and further that the eigenvector approximations interpolated form the coarsest grid
to the finest one approximate well the targeted eigenvectors of the finest grid system,
i.e., the eigenvectors associated with the smallest eigenvalues of A. We mention fur-
ther that the eigenvector approximation measures consistently detect the accuracy of
the eigenvector approximations computed using the MGE.

Table 4.5

Relative eigenvalue approximation measures τ
(L,1)
λi

and eigenvector approximation estimates of

the eight smallest eigenvalues for the FE Laplace problem, computed within a V 2-cycle setup with
η = 4 and kr = ke = 8.

i 1 2 3 4 5 6 7 8

τ
(L,1)
λi

.0153 .0296 .0302 .0381 .0792 .0829 .0736 .0762

‖PLvL
i − vi‖2 .0099 .0228 .0225 .0332 .0549 .0544 .0581 .0609

Next, we provide plots of the eigenvector approximations computed using a V -
cycle setup algorithm with η = 4 and kr = ke = 8 and of the associated eigenvectors
of the finest grid operator computed directly. Figure 4.2(a) contains plots of the
eigenvector with the smallest eigenvalue on each level of the MGE computed using
a single V -cycle setup, and Figure 4.2(b) contains a plot of the eigenvector with the
smallest eigenvalue of the system matrix on the finest grid computed directly. The
plots demonstrate the ability of the MGE (built using smoothed random test vectors)
to recover the smallest eigenvector of the finest-grid FE Laplace operator.

In addition, we provide plots comparing the eigenvector approximations on the
finest grid computed using the same V 2-cycle setup and the eigenvectors of the finest-
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(a) Multigrid representation of the coarsest-grid eigenvector

(b) Finest grid

Fig. 4.2. Comparison of the eigenvector corresponding to the smallest eigenvalue in (a) com-
puted in a V -cycle setup with η = 4 and kr = ke = 8 and the associated finest grid eigenvector
in (b) corresponding to the smallest eigenvalue of the FE Laplace problem computed directly.

(a) Finest grid representation of the coarsest-grid eigenvectors

(b) Finest grid

Fig. 4.3. Visualization of the finest-grid eigenvector approximations of the four smallest eigen-
values computed using a V 2-cycle setup with η = 4 and kr = 8 in (a) and the associated exact
finest-grid eigenvectors corresponding to the four smallest eigenvalues in (b).

grid operator computed directly. Figure 4.3(a) contains plots of the finest-grid eigen-
vector approximations for the four smallest eigenvalues computed using a V 2-cycle
setup, and Figure 4.3(b) contains the plots of the eigenvectors of the finest-grid oper-
ator with the four smallest eigenvalues computed directly. Again, the plots illustrate
that the MGE is able to recover the low eigenvectors of the fine-grid system.

We now consider tests of the W -cycle setup, illustrated at the bottom of Fig-
ure 3.1. In Table 4.6, we present results for this scheme again with kr = ke = 8. We
notice a marked improvement in the performance of the LS-based solver constructed
using a W -cycle setup over that of the solver constructed using a V -cycle setup and
note that the LSR scheme again scales optimally with problem size.
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Table 4.6

Asymptotic convergence rate estimates, ρ, of the LS- (LSR)-based MG solvers applied to the
FE Laplace problem. The solver is constructed using a W -cycle setup (see Figure 3.1) with η = 4
and kr = ke = 8.

N 31 63 127 255 511
ρ .042 (.038) .062 (.041) .073 (.043) .130 (.043) .161 (.044)

The last result we present for the FE Laplace system is related to the computa-
tional complexity of the BAMG-MGE setup. In Figure 4.4, we show the time, t, spent
in the setup phase as a function of the number of the finest-grid variables, N2. The
numerical tests were performed using an 2.53GHz Intel Core 2 Duo processor with
4GB 1066MHz DDR3 SDRAM. The results suggest that the computational complex-
ity for both setup cycling strategies is nearly optimal (grows linearly with the problem
size) when applied to this problem.
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Fig. 4.4. Total wall clock times for the V 2- and W -cycle setup algorithms with η = 4 and
kr = ke = 8 applied to the FE Laplace problem versus the problem size N2.

4.2. The gauge Laplacian system. In this section, we consider solving the 2D
gauge Laplacian system [6, 13, 16] with periodic boundary conditions, a problem that
is typically used for testing potential AMG algorithms for solving the Dirac equation in
more general lattice gauge theories, e.g., quantum chromodynamics (QCD). A detailed
discussion of the GL system and its spectral properties is provided in Appendix A.

The 2D GL can be viewed as a stochastic variant of the standard Laplace operator
discretized using central finite differences. Specifically, using stencil notation, the GL
operator is given by

(4.2) A(U) =





−Uzy
−Uz−ex

x 4 +m −Uzx
−U

z−ey
y



 ,

where

U = {Uzµ ∈ U(1), µ = x, y, z ∈ Ω} and m ∈ R.

Here, z denotes a grid point on the computational domain Ω. The off-diagonal en-
tries of the system matrix are often referred to as gauge configurations which vary
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according to a specific probability distribution. In our tests, we consider collections
of constant gauge variables, namely, U ≡ constant, as well as stochastic distributions.
Our labeling of the unknowns and gauge variables is illustrated in Figure A.1, where
eµ denotes the unit vector in the µ-direction; i.e., it describes a shift on the lattice by
one lattice site in the µ-direction.

In all tests, we use the same coarsening and sparsity structure of P as for the
FE Laplace system (see Figure 4.1) and coarsen the equations until the dimension
of the coarsest system is 8 × 8. We note that the GL operator is Hermitian, and
we define m such that λmin = N−2, resulting in positive definite yet ill-conditioned
system matrices.

4.2.1. Numerical results for the GL with constant U . In section 4.1, we
demonstrated the effectiveness of the BAMG-MGE approach for the bilinear FE dis-
cretization of Laplace’s equation. Here, we test the method for the GL system with
various choices of U ≡ constant.

In Table 4.7, we report results for a V 3-cycle setup algorithm applied to the GL
system with U ≡ 1. Taking m = 0, this yields the FD Laplace operator discretized
using central finite differences, up to a scaling by h2.

As the results reported in Table 4.7 show, we obtain a very efficient multigrid
solver for this problem with the LSR approach—it reduces the error by an order of
magnitude at each iteration, whereas the performance of the LS scheme deteriorates
as the problem size is increased.

Table 4.7

Asymptotic convergence rate estimates, ρ, of the MG method obtained by using the LS (LSR)
schemes in a V 3-cycle setup with η = 4 and kr = ke = 8.

N 32 64 128 256 512
ρ .080 (.055) .090 (.056) .094 (.055) .089 (.053) .727 (.052)

As a next test, we apply this same approach for U ≡ −1. This operator results
from applying a symmetric diagonal scaling to the FD Laplace problem, such that
the kernel of the scaled operator alternates between −1 and 1. The results of our
experiments are reported in Table 4.8. Again the results suggest that the LSR scheme
with a V 3-cycle setup is able to solve this problem efficiently.

Table 4.8

Asymptotic convergence rate estimates, ρ, of the MG method obtained by using the LS (LSR)
schemes in a V 3-cycle setup with η = 4 and kr = ke = 8.

N 32 64 128 256 512
ρ .074 (.059) .080 (.057) .095 (.055) .126 (.053) .998 (.052)

Next, in Table 4.9, we report results for the GL operator with U ≡ e−i
π
7 , giving

the stencil

A(U) =





−e−i
π
7

−ei
π
7 (4 +m) −e−i

π
7

−ei
π
7



 .

Again, we use a V 3-cycle setup. We note that the resulting system is not equiva-
lent to a diagonal scaling of the FD Laplace operator (see Appendix A for details).
Nonetheless, the LSR approach with a V 3-cycle setup yields an efficient solver for this
system as well.
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Table 4.9

Asymptotic convergence rate estimates, ρ, of the MG method obtained using the LS (LSR)
schemes in a V 3-cycle setup with η = 4 and kr = ke = 8.

N 32 64 128 256 512

ρ .058 (.056) .054 (.054) .055 (.051) .051 (.049) .056 (.048)

4.2.2. Numerical results for the GL with stochastic distributions of the

gauge variables. We conclude our experiments with tests for the GL operators A(U)
for various realizations of the gauge variables. In interesting cases, they are weakly
correlated among neighboring grid points. In general, their distribution depends on a
parameter β. The case β = ∞ yields Uzµ = 1 for µ = x, y and all z ∈ Ω. As we discuss
in Appendix A, as the gauge variables become less correlated, the support of the low
eigenvectors of A(U) in turn become increasingly local (see Figure A.3). Further, the
number of locally supported low modes of A(U) generally increases as the problem
size is increased, making it difficult to define an effective MG interpolation operator
for the system.

We report asymptotic convergence rates of the stand-alone MG solver and the
number of iterations it takes the associated MG preconditioned conjugate gradient
method to reduce the initial residual by a factor of 108. The results are contained in
Table 4.10.

Table 4.10

Asymptotic convergence rate estimates, ρ, of the MG method obtained using the LS scheme
(on the left) and LSR scheme (on the right) from V 3- and W -cycle setup algorithms with η = 4,
kr = 8, and ke = 16. The provided integer values denote the number of MG preconditioned conjugate
gradient iterations needed to reduce the relative residual by a factor of 108.

β \N 32 64 128 256

1
.284W .242W .416W .286W .648W .478W .658V 3 .493V 3

8 8 9 8 10 9 10 9

5
.275W .284W .264W .225W .576W .389W .672V 3 .469V 3

8 8 8 8 10 10 9 8

10
.137W .120W .225W .223W .586W .349W .433V 3 .423V 3

8 8 7 7 10 9 9 8

An important observation here is that the improved solver performance observed
for the LSR approach over the LS one for the GL system with stochastic distributions
of the gauge variables is far less pronounced than it was for the FE Laplace system and
the GL system with constant gauge variables. Recall that for these tests we apply the
adaptive relaxation scheme to all the test vectors before constructing the LSR form
of P . We note that even when applying the adaptive relaxation technique to all test
vectors, the convergence rates reported for the LSR-based solver are only marginally
better than those reported for the LS-based scheme. Overall, the lack of scaling of
the stand-alone method when going to larger grid sizes can perhaps be explained by
the fact that the coarsest grid is not fine enough to accurately represent all of the
locally supported eigenvectors with small eigenvalues.

Due to the stochastic nature of the configurations used in defining the entries of
the system matrix, it is not clear that a direct comparison of the method for different
problem sizes is relevant. Perhaps a more meaningful observation here is that for the
AMG preconditioned conjugate gradient solver the number of iterations is roughly
constant for all problem sizes and configurations. This in turn suggests that in the
stand-alone multigrid solver only a few error components are not efficiently reduced.
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There are several possible ways to remedy this. First, as we did in the tests, we
could try to capture as many of the components in our BAMG-MGE setup as possible
and then treat the remaining components by recombining successive iterates, for ex-
ample by using the multigrid solver as a preconditioner for a Krylov subspace method
(e.g., the conjugate gradient method). Alternatively, we could treat these locally
supported vectors by a block smoother, an idea closer to the mindset of geometric
multigrid.

As a final illustration, we demonstrate that even for these more challenging tests
the MGE is able to efficiently compute eigenvector approximations of the eigenvectors
of the finest-level system. Figure 4.5 contains plots of the modulus of the eigenvector
approximations with the smallest eigenvalue computed using a V 2-cycle setup. Again,
we observe that the BAMG-MGE cycle efficiently generates an accurate multigrid
representation of the eigenvector with the smallest eigenvalue.

(a) Multigrid representation of the coarsest-grid eigenvector

(b) Finest grid

Fig. 4.5. Comparison of the MGE representation of the eigenvector approximations with the
smallest eigenvalue on each level (a) with the associated finest-grid eigenvector with the smallest
eigenvalue (b).

5. Concluding remarks. In this paper, we developed and tested a bootstrap
approach for computing multigrid interpolation operators. As in any efficient multi-
grid solver, these operators have to be accurate for the lowest eigenvectors of the
problem’s finest-grid operator. Here, this is achieved by defining interpolation to fit,
in an LS sense, a set of test vectors that collectively approximate the algebraically
smooth error. We have shown that using LS interpolation with a BAMG cycle, a
MGE, and adaptive relaxation leads to an efficient AMG setup algorithm and solver
for the scalar test problems considered.

All numerical experiments presented in this paper were for scalar PDEs discretized
on structured grids, using full coarsening and interpolation with a fixed sparsity pat-
tern. This allowed us to concentrate on developing and testing techniques for comput-
ing the interpolation and the impact of the BAMG setup, the MGE, and the adaptive
relaxation on the accuracy of the resulting interpolation operators. Our future re-
search will focus on the use of compatible relaxation as an efficient tool for choosing
coarse-grid variables and the use of algebraic distance to define the sparsity structure
of the corresponding interpolation operator.
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Appendix A. The GL system. The GL operator is a commonly used test
problem in AMG algorithm development for lattice formulations of the Dirac equation
arising in lattice gauge theories. The lattice Dirac operator describes a discretized
system of coupled PDEs. For the sake of definiteness, Wilson’s original discretization
gives the nearest-neighbor coupling of the unknowns which, for a 2D space and a given
U(1) background gauge field, can be written in spin-permuted ordering as

D =

(

A(U) B(U)
−B(U)H A(U)

)

,

where U denotes a discrete realization of the so-called gauge field. The gauge config-
uration U can be understood as a collection of link variables of U(1), i.e., complex
numbers with modulus one:

U = {Uzµ ∈ U(1), µ = x, y, z ∈ Ω}.

As stated earlier, our labeling of the unknowns and gauge links is illustrated in Fig-
ure A.1. Herein, eµ is the unit vector in the µ-direction; i.e., it describes a shift on
the lattice by one lattice site in the µ-direction.

U
z+ey
y U

z+ex+ey
y
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Fig. A.1. Naming convention on the lattice.

The diagonal blocks, A(U), are referred to as GLs. The action of A(U) on a vector

ψ ∈ CN
2

at a lattice site z ∈ Ω reads as

(A(U)ψ)z = (4 +m)ψz − Uz−ex
x ψz−ex

(A.1)

− Uz−ey

y ψz−ey
− Uzxψz+ex

− Uzyψz+ey
,

and the action of B(U) on ψ at site z ∈ Ω is given by

(B(U)ψ)z = Uzxψz+ex
− Uz−ex

x ψz−ex
+ i

(

Uzyψz+ey
− Uz−ey

y ψz−ey

)

.

In our numerical experiments, we consider solving the GL system

A(U)ψ = ϕ
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Fig. A.2. Modulus, real, and imaginary parts of the eigenvector to the smallest eigenvalue for
β = 5 on a 64 × 64 grid.

Fig. A.3. Modulus, real, and imaginary parts of algebraically smooth error after 50 GS itera-
tions applied to a random initial guess for β = 5 on a 64 × 64 grid, which for our choice of simple
pointwise smoother is a linear combination of the low eigenvectors of the fine-grid system.

for different choices of the shift m and configurations of U . In interesting cases, the
off-diagonal entries of A(U) are weakly correlated among neighboring grid points. In
general, their distribution depends on a parameter β. The case β = ∞ yields Uzµ = 1

for µ = x, y and all z ∈ Ω. As β → 0, the gauge variables θzµ in Uzµ := eiθ
z
µ become

less correlated2 and the support of the low eigenvectors becomes increasingly local.

A.1. Spectral properties of the GL. From (A.1), it follows that the GL
matrix is Hermitian. We define the constant, m, so that the resulting matrix A has
as its smallest eigenvalue λmin = N−2, with N denoting the number of grid points
in a given direction of the 2D grid. This choice in turn yields positive definite yet
ill-conditioned system GL systems.

An important issue to consider when developing solvers for the GL is the local
character of its algebraically smooth error. Figure A.2 contains plots of the modulus,
real, and imaginary parts of the eigenvector with the smallest eigenvalue of the system
matrix in (A.1). In Figure A.3, we provide a plot of the error for β = 5 on a 64×64 grid
computed using 50 GS relaxations. Here, we see two main reasons why standard AMG
approaches break down when applied to this problem—the algebraically smooth error
is locally supported, and it is not smooth among neighboring grid points in regions
where it is nonzero.

To further analyze the properties of the GL operator, we consider the notion of a
gauge transformation. A gauge transformation

g : Ω → U(1),

z 7−→ gz

2In the reported results, we use gauge variables generated using a code supplied to us by
R. Brower from Boston University. The gauge data is available in ASCII format online from
http://www.math.psu.edu/brannick/gaugeLS09.
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of a gauge configuration U = {Uzµ} ⊂ U(1) is defined by

Uzµ 7−→ ḡzU
z
µgz+eµ

.

That is, a gauge transformation can be represented as a diagonal matrix:

G = diag(gz), z ∈ Ω.

Thus, the action of the gauge transformation on a gauge covariant operator Z(U) is
given by

(A.2) Z(U) 7−→ GHZ(U)G.

In the case of U ⊂ U(1), we obtain the gauge transformation of U under the gauge
transformation g : z 7−→ eiψz by

(A.3) Uzµ = eiθ
z
µ

g
7−→ e−iψzeiθ

z
µeiψz+eµ .

Note that the U(1) gauge transformation G in (A.2) fulfills

GHG = I and ‖G.,i‖2 = 1, i = 1, . . . , m;

that is, the gauge transformation is a unitary similarity transformation of the ma-
trix Z(U). Hence, if x1, . . . , xm are the eigenvectors of Z(U) corresponding to the
eigenvalues λ1, . . . , λm, then GHx1, . . . , G

Hxm are the eigenvectors of GHZ(U)G cor-
responding to the same eigenvalues. Accordingly, we define an equivalence relation ∼
between two operators Z(U1), Z(U2) with gauge configurations Ui, i = 1, 2, as

Z(U1) ∼ Z(U2) ⇐⇒ there exists G such that Z(U1) = GHZ(U2)G.

Applying this definition, we have that for a given constant configuration (Uzµ ≡

eiθ) on an N ×N equidistant lattice, if θ fulfills

(A.4) θ =
2πk

N

for some k ∈ {0, . . . , N − 1}, then A(U) ∼ A(U0), where U0 denotes the case when
U ≡ 1. Thus, for certain distributions of U , A(U) is simply a diagonally scaled Lapla-
cian, whereas, in others, the system is not equivalent. We note that an effective
AMG algorithm should solve the Laplace-equivalent systems with a performance sim-
ilar to its performance for the standard Laplacian, whereas the performance in the
nonequivalent case is not predictable. A more detailed study of this system can be
found in [14].
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