
MuST: THE MULTILEVEL SINC TRANSFORM

OREN E. LIVNE ∗ AND ACHI E. BRANDT †

Abstract. A fast multilevel algorithm (MuST) for evaluating an n-sample sinc interpolant at
mn points is presented. For uniform grids, its complexity is 25mn log(1/δ) flops for the sinc kernel
and 75mn log(1/δ) for the sincd kernel, where δ is the target evaluation accuracy. MuST is faster than
FFT- and FMM-based evaluations for large n and/or for large δ. It is also applicable to non-uniform
grids and to other kernels. Numerical experiments demonstrating the algorithm’s practicality are
presented.

Key words. Fast multilevel summation algorithm, integral transforms, signal processing, sinc
interpolation, oscillatory kernels, Fast Fourier Transform (FFT), linear scaling.

AMS subject classifications. 65D05, 65D15, 65M55

1. Introduction. Interpolation is a fundamental tool that recovers a continuous
signal V(x) from samples {Uj}j∈Z [14, 26, 28]. The uncertainty principle maintains
that either the interpolation window or its spectrum must be infinitely supported [20].
Common schemes ranging from nearest-neighbor and linear interpolation to Hanning
and Meijering filters use a finite apodization window [24] at the expense of accuracy
loss and aliasing artifacts [28]; conversely, exact recovery of a bandlimited signal from
equidistant samples is achieved by the Whittaker-Shannon sinc interpolation formula
[26, p. 108],[28]

V(x) =
∞∑

j=−∞
Uj sinc

(
π
(x
h
− j

))
, sinc(x) :=

sin(πx)

πx
, (1.1)

where h is discretization meshsize; it is also the limit of Lagrange polynomial inter-
polation at infinite window length [11, 29]. (1.1) is nevertheless shunned due to sinc’s
infinite length, whose truncation cannot be warranted by its slow decay [26, p. 112].

The finite analogue of (1.1) has the discrete convolution form

V(xk) =
n∑

j=1

G(xk − yj)U(yj) , k = 1, . . . ,mn , (1.2)

where G(r) := sinc(r/h), {yj := jh}nj=1, h = 1/(n− 1), U(yj) := Uj , {xk}mn
k=1 ⊂ Ω :=

[0, 1], and m ∈ N is the expansion factor. The approximation error is O(e−Cn/ logn)
if V is smooth [21, 23]. (1.2) also arises in sinc methods for definite and indefinite
integration, and for the solution of initial and boundary-value differential and integral
equations whose solutions have singularities, infinite domains, or boundary layers [22].
Other kernels of interest are sincd(r;h) [28] and sinc2(r/h) [8]. Indeed, a direct sum-
mation of (1.2) requires O(n2) operations, a prohibitively expensive quixotry leading
to the proposition that “optimal reconstruction is possible, but not practical” [11].

∗Associate Vice President for Health Sciences IT, University of Utah, 26 South 2000 East Room
5775 HSEB, Salt Lake City, UT 84112, USA. Tel: +1-801-213-3713. Fax: +1-801-581-4297. Email:
oren.livne@utah.edu

†Department of Mathematics and Computer Science, The Weizmann Institute of Science,
POB 26 Rehovot 76100, Israel. Tel. +972-8-934-3545. Fax: +972-8-934-6023. Email:
abrandt@math.ucla.edu

1

2 O. E. LIVNE AND A. E. BRANDT

Existing evaluation methods of (1.2) are based on either the Fast Fourier Trans-
form (FFT) or on the Fast Multipole Method (FMM), all requiring O(mn logn) oper-
ations.1 FFT methods were traditionally developed for equispaced x-grids (e.g. [28]),
but can now be applied on non-uniform grids at about twice the cost [1, 8]. They
also have the advantage of using standard software packages [16]. FFT evaluations
requires a periodic kernel. FMM can also be applied to both uniform and non-uniform
grids, but depends on the specific form of the kernel [2]; [16, p.99]. See [3, pp. 344–345]
and its bibliography for further literature survey of these methods.

We present an alternative algorithm called Multilevel Sinc Transform (MuST)
based on the approach of [4, §5],[12],[13], with two research questions in mind: (a) Is
it possible to construct an optimal O(mn) evaluation algorithm of (1.2)? As will be
shown in §2, the answer is positive: MuST’s complexity is O(mn log(1/δ)), where δ is
the desired evaluation accuracy (defined as the l1 relative error in V; see Eq. (2.14)).
(b) Under what conditions is MuST competitive with FFT/FMM methods? For
uniform {xk}k, its hidden constant can be reduced via tabulated local corrections
(§2.1.1). MuST becomes faster than FFT when n ' 0.67δ−0.65 (§3.2), and is therefore
practical only for sufficiently large δ (i.e. low accuracy) and/or large n. For non-
uniform grids, the cross-over happens at a much larger n.

This is not a dramatic improvement; FFT and FMM remain as practical for
evaluating the sinc transform. Notwithstanding, MuST provides an improvement
for uniform grids at moderate desired accuracies. The multilevel approach offers
additional benefits because it is based on the kernel’s asymptotic smoothness (revealed
after separating its oscillatory part) rather than on its specific form, periodicity, rate
of decay or grid uniformity. It is immediately applicable to a wide range of kernels, and
in particular to all aforementioned sinc-variants (§4.1). MuST can also be extended
to non-uniform grids in O(mn log(1/δ)) operations using local refinements or non-
uniform coarse grids (§4.2). Finally, while the presented approach is one-dimensional,
there exists a (non-trivial) higher-dimensional generalization (see [4, §5.3] and 4.3).

2. Fast Sinc Transform. In this section we consider the case

G(r) = sinc
(r

h

)
=

1

ωr
sin(ωr) , ω :=

π

h
, (2.1)

and as in [28] assume a uniform target grid xk := (k+α)h/m, k = 1, . . . ,mn for some
0 ≤ α < 1. Similarly to the “direction splitting” of [4, §5.1], we utilize the identity

sin (ω (xk − yj)) = sin (ωxk) cos (ωyj)− cos (ωxk) sin (ωyj) (2.2)

to split (1.2) into three terms – diagonal, even and odd:

1Unless a base is specified, log x refers to the base-10 logarithm of x.

MuST: THE MULTILEVEL SINC TRANSFORM 3

V(xk) = vd(xk) + sin (ωxk) ve(xk)− cos (ωxk) vo(xk) , (2.3)

vd(xk) :=
∑

j:|yj−xk|≤ηh

G(xk − yj)u(yj) , (2.4)

ve(xk) :=
n∑

j=1

G(xk − yj)ue(yj) , ue(yj) := cos (ωyj)U(yj) ,

vo(xk) :=

n∑
j=1

G(xk − yj)uo(yj) , uo(yj) := sin (ωyj)U(yj) ,

G(r) :=

{
1/(ωr) , |r| > ηh ,

0 , |r| ≤ ηh .
(2.5)

Here η = 0.5 is a small cutoff amount in y-meshsizes around y = x to ensure that vd,e,o
all have finite limits as α→ 0 (because sinc(0) = 1, even though 1/(ωr) is singular at
r = 0). vd(xk) consists of O(m) terms and is therefore directly evaluated in O(mn)
operations. Furthermore, for yj = jh we have uo(yj) ≡ 0, hence vo(xk) ≡ 0. It thus
remains to evaluate the middle term, from which we shall omit the e-subscripts to
simplify notation. We focus on the fast computation of

v(xk) :=

n∑
j=1

G(xk − yj)u(yj) , k = 1, . . . ,mn (2.6)

given the values u(yj) := (−1)jU(yj), j = 1, . . . , n using the multilevel algorithm
developed in [4, §4],[6],[13]. The separation (2.3) was also utilized by [2], which
however chose to evaluate (2.6) using FMM.

2.1. Two-level Evaluation. The algorithm utilizes G’s asymptotic smoothness
(increasing smoothness as r →∞) to approximate (2.6) by summations at increasingly
coarser levels. Let us first describe a single coarsening step.

Level 1 consists of the original data G, y := {yj}j , x := {xk}k and u := {u(yj)}j .
Level 2 is twice-coarser, namely,

Y :=

{
YJ := y0 + JH : J = −p

2
+ 1, . . . , ⌊n− 1

2
⌋+ p

2

}
X :=

{
XK := x0 +K

H

m
: K = −p

2
+ 1, . . . , ⌊mn− 1

2
⌋+ p

2

}
where H = 2h and p is some even parameter. Y,X are padded to allow a central
pth-order polynomial interpolation of coarse-level functions to y and x, respectively
[4] [13, App. A]:

f(yj) =
∑
J∈σj

ωjJf(YJ) + Cpf
(p)(ξ)Hp , Cp ≈

2

p!

(p

2e

)p

(2.7a)

f(xk) =
∑

K∈σk

ωkKf(XK) + Cpf
(p)

(ξ)Hp (2.7b)

with weights {ωjJ}J , {ωkK}K ; ξ, ξ lie in the convex hull of the interpolation stencils

4 O. E. LIVNE AND A. E. BRANDT

σj , σk, respectively. Applying (2.7a) and (2.7b) to G yields

G(xk − yj) ≈ G̃(xk − yj) :=
∑

K∈σk

ωkK

∑
J∈σj

ωjJG(XK − YJ) , (2.8)

which is only a good approximation for |yj − xk| ≥ O(h) due to the singularity at
yj = xk. Using (2.8),

v(xk) =
∑
j

G̃(xk − yj)u(yj) +

∑
j

(G− G̃)(xk − yj)u(yj)

=

∑
K∈σk

ωkK

∑
J

G(XK − YJ)
∑

j:J∈σj

ωjJu(yj) + (vlocal(xk) + e(xk))

= ṽ(xk) + vlocal(xk) + e(xk) , (2.9)

ṽ(xk) :=
∑

K∈σk

ωkKV (XK) (2.10a)

V (XK) :=
∑
J

G(XK − YJ)U(YJ) (2.10b)

U(YJ) :=
∑

j:J∈σj

ωjJu(yj) (2.10c)

vlocal(xk) :=
∑

j:|yj−x|≤(s+1)H

[
G(xk − yj)− G̃(xk − yj)

]
u(yj) (2.10d)

e(xk) :=
∑

j:|yj−x|>(s+1)H

[
G(xk − yj)− G̃(xk − yj)

]
u(yj) . (2.10e)

These term rearrangements suggest the following algorithm: anterpolate (aggregate)
u to Y using (2.10c), evaluate the coarse-level summation (2.10b), interpolate V to x
via (2.10a) and add the correction (2.10d). The fine-level task (2.6) is thereby reduced
to the fast evaluation of coarse-level task (2.10b). Here s ≥ 0 is the local correction
region size in coarse meshsizes; the optimal choice of p and s is discussed in §2.1.3.

2.1.1. Tabulated Corrections. Computing vlocal comprises a significant por-
tion of the evaluation cost. Superficially, each term requires O(p) operations, totalling
to O(psmn) for the entire (2.10d). However, as noted in [4, p. 30], there are only
4(s+1)m+1 distinct G− G̃ values in all vlocal sums thanks to x’s and y’s uniformity:

xk − yj = ((k − jm) + α)
h

m

vlocal(xk) =
∑

j:|k−jm+α|≤t

dk−jmu(yj) =
∑

j:|k−jm|≤t

dk−jmu(yj) ,

dκ := (G− G̃)

(
(κ+ α)

h

m

)
, |κ| ≤ t (2.11)

with t := 2(s + 1)m. Once {dκ}tκ=−t are pre-computed and stored in a table of
size O(sm), the complexity of evaluating (2.10d) is reduced to 2smn operations (one
addition and one multiplication per summand).

MuST: THE MULTILEVEL SINC TRANSFORM 5

2.1.2. Error Estimate. Let ṽ be the result of the two-level algorithm, i.e. e =
ṽ − v. Substituting the error bound in (2.7a) into (2.8), we obtain

∣∣∣(G− G̃)(xk − yj)
∣∣∣ = ∣∣∣∣∣G(xk − yj)−

∑
K∈σk

ωkK

[
G(XK − yj) + CpH

pG(p)(xk − ξ)
]∣∣∣∣∣

=

∣∣∣∣∣G(xk − yj)−
∑

K∈σk

ωkKG(XK − yj)− CpH
pG(p)(xk − ξ)

∣∣∣∣∣
= Cp

∣∣∣∣(H

m

)p

G(p)(ξ − yj) +HpG(p)(xk − ξ)

∣∣∣∣ ≤ 2CpH
m

∣∣∣∣G(p)

(
|xk − yj | −

H

2

)∣∣∣∣
≈ 4

ω

(
pH

2e

)p (
|xk − yj | −

H

2

)−p−1

≤ 8

(
pH

2e

)p

(|xk − yj | −H)
−p |G (xk − yj)| .

Consequently we can bound (2.10e) by

|e(x)| ≤

 max
j:|yj−x|>(s+1)H

∣∣∣G(x− yj)− G̃(x− yj)
∣∣∣

|G(x− yj)|

∑
j

|G(x− yj)| |u(yj)|

. 8C
(p

2es

)p

, C := max
x

∑
j

|G(x− yj)| |u(yj)| . (2.12)

The sinc interpolation formula (1.1) is a conditionally-convergent sum. It is also
absolutely convergent under minimal smoothness assumptions on the signal being
interpolated, e.g. [14, §IV.A],[25] ∑

j

|Uj |
j

<∞ , (2.13)

when C is bounded as n→∞, which will hereafter be assumed unless noted. (2.13)
includes all lq(Ω) functions for 1 < q <∞, and may be relaxed to include stochastic
processes that satisfy the Wiener-Khinchin-Einstein Theorem conditions [10, p. 390].
Even if we assume that U ∈ l∞(Ω), C increases as

∑
j h/(x−yj) = O(logn) at worst,

e.g. when Uj = (−1)j ⇐⇒ u(yj) ≡ 1.
Although it is possible that ∥V∥∞ ≪ ∥U∥∞ in special cases (for example, Uj =

(−1)j , m = 1 and set xk to the root of V(x) lying between kh and (k + 1)h; or
a similar setup so that {xk}k are equidistant), ∥V∥∞ is typically comparable with
∥U∥∞. Therefore we define the relative evaluation error as

ε :=
∥ṽ − v∥1
∥U∥1

, ε . 8C
(p

2es

)p

. (2.14)

This error definition can easily be replaced by a user-input norm to serve the needs
of different applications.

2.1.3. Parameter Optimization. The optimal p and s minimize the compu-
tational work for a fixed relative evaluation error δ. The total cost of anterpolation,
interpolation and correction is W = O(pn+ pmn+ smn) = O((p+ s)mn); denote by

6 O. E. LIVNE AND A. E. BRANDT

Wc the coarse-level summation’s cost that is constant in p and s. Omitting constants,
the constrained minimization problem becomes{

W ∝ (p+As)mn+Wc −→ min

ε ∝ (p/(2es))p ≤ δ
(2.15)

where A is implementation-dependent. This problem was already solved in [13, §2.4.1];
the optimal values scale as

popt = popt(δ) = K1 log
1

δ
, sopt = sopt(δ) = K2 log

1

δ
(2.16)

for sufficiently small δ and large mn. In our implementation, K1 ≈ 1.1,K2 ≈ 1.1 (see
Fig. 3.1). Using these values, the computational work of the two-level algorithm is

W ∝ mn (K1 +AK2) log
1

δ
+Wc =: Kmn log

1

δ
+Wc. (2.17)

2.2. Multilevel Evaluation. Directly evaluating (2.10b) is still expensive –
about O(mn2/4) operations. Instead, the two-level algorithm is invoked recursively:
U is anterpolated to y3, followed by a summation at the next-coarser Level 3, an
interpolation of the result v3 back to x2 and a local correction at Level 2. Denote by
yl,xl, ul, vl the data structures at a general level l. The recursion is repeated until
Level L = ⌊log2 n/2⌋ is reached, whose grids sizes are O(

√
n) and O(m

√
n); vL is

directly summed in O(mn) operations. Algorithm 1 summarizes the entire multilevel
procedure; the main call to evaluate (2.6) to accuracy δ is MultilevelEvaluation(1, δ, u).

Algorithm 1 vl = MultilevelEvaluation(l, δ, ul)

1: if l = L then
2: Directly sum {vl(xk)}k – Eq. (2.10b)
3: else
4: c← l + 1, p← popt(

δ
2), s← sopt(

δ
2) – Eq. (2.16)

5: If table not yet stored for these (p, s), calculate and store (2.11)
6: uc ← Anterpolation(p, ul) – Eq. (2.10c)
7: vc ← MultilevelEvaluation(c, δ

2 , u
c)

8: vl ← Interpolation(p, vc) – Eq. (2.10a)
9: Compute vllocal – Eq. (2.10d); vl ← vl + vllocal

10: end if

Different coarsening steps may employ different p,s values. Let pl be the order of
anterpolation/interpolation from Level l+1 to Level l, and sl the corresponding local
correction size, l = 1, . . . , L− 1. The total work of evaluating (2.6) is (see (2.17))

W =

L−1∑
l=1

(
m2−l−1

) (
n2−l−1

)
(pl +Asl) = mn

L−1∑
l=1

4−l−1 (pl +Asl) (2.18)

and the total evaluation error satisfies (Eq. (2.14)

ε . 8C
L−1∑
l=1

(
pl
2esl

)pl

. (2.19)

MuST: THE MULTILEVEL SINC TRANSFORM 7

If pl = popt(δ) and sl = sopt(δ) for all l, ε = (L− 1)δ. Instead, we use in Algorithm 1

pl = popt(2
−lδ), sl = popt(2

−lδ), l = 1, . . . , L− 1 (2.20)

so that

ε =
L−1∑
l=1

2−lδ < δ

and

W = Kmn

L−1∑
l=1

4−l−1 log

(
2−l

δ

)
<

4

3
Kmn

(
log

1

δ
+

4

3
log 2

)
. (2.21)

A separate local correction table (2.11) is stored for each l = 1, . . . , L− 1; a table
need only be calculated once per each (pl, sl) combination, and then cached for all
subsequent invocations of MultilevelEvaluation.

2.3. The MuST Algorithm. Putting it all together, the Multilevel Sinc Trans-
form (MuST) algorithm transforms the data {U(yj)}j into {u(yj)}j , calls Algorithm 1
to compute v, directly evaluates the diagonal term vd, and finally merges the two to
recover {V(xk)}k using (2.3). If necessary, v and vd can be computed in parallel, yet
the gain is small because v comprises the majority of computing time. Because a rela-
tive error ε in v causes the same size error in V, the desired evaluation accuracy δ in V
is passed to MultilevelEvaluation without change. Also note that C and thenceforth
the error bound (2.14) is independent of η (for sufficiently large s), therefore η = 0.5
minimizes the diagonal term work (2.4) with no error increase. Both the diagonal
term and the coarsest-level direct summations were efficiently implemented using the
tabulation method of §2.1.1.

Algorithm 2 V = MuST(δ, U)
1: Directly sum vd using (2.4)
2: u(yj)← (−1)jU(yj) , j = 1, . . . , n
3: v ← MultilevelEvaluation(1, δ, u)
4: V(xk)← vd(xk) + sin(xk/h)v(xk) , k = 1, . . . ,mn – Eq. (2.3)

Algorithm 2’s cost is dominated by Step 3, thus W = O(mn log(1/δ)) as long
as C is bounded. In the extreme case of C = O(logn), ε is increased by a factor
of O(log n), requiring p and s to be O(log(1/δ) + log log n); this easily follows by
substituting δ/ log n for δ in (2.15). While this makes the work theoretically bounded
by O(mn(log(1/δ) + log log n)), the log log n term can be neglected unless n is huge

(e.g. n ≥ 1010
8

for δ = 10−8). See also Table 3.3.

3. Results.

3.1. Parameter Optimization. Algorithm 2 was implemented in Object-Ori-
ented Matlab 7.9.0. To obtain a machine-agnostic work estimate, W was computed
in all experiments using manual flop count facilitated by the Lightspeed library [15].

We first sought to verify (2.16) and determine the values of K1,2. Because (2.16)
is independent of n, m and u, it is sufficient to carry out a brute-force minimization
of (2.15) once for several small n values, for which it is also computationally feasible.

8 O. E. LIVNE AND A. E. BRANDT

Thus the two-level algorithm was run with fixed n and m = 1 for all even
p = 2, . . . , 14 and all s = 1, . . . , 64. The work W (p, s) and evaluation error ε(p, s)
(Eq. (2.14)) were tabulated vs. p and s. ε(p, s) was averaged over 5 experiments with
u(y) = rand[−1, 1].

Due to the discreteness of p and s, the optimal parameters were expected to fluc-
tuate around the continuous approximation (2.16). These fluctuations were damped
by regularization. Namely,

(popt(δ), sopt(δ)) = argmin
ε(p,s)≤δ

[W (p, s) + α1p+ α2s] ,

were computed for different δ values and stored. The values α1 = 0.2, α2 = 0.6
were experimentally chosen to achieve the best tradeoff between the increase in
W (p, s) and popt’s and sopt’s smoothness. Figs. 3.1(a-b) depict popt(δ)/ log(1/δ) and
sopt(δ)/ log(1/δ), both of which indeed tend to constants as δ → 0, and quickly con-
verge to a limit as n → ∞. In practice, we refined (2.16) by fitting general linear
functions to the plots (RMSE = 0.15) and rounding up:

popt(δ) = 2⌈(1.05 log 1

δ
)/2⌉, sopt(δ) = ⌈1.3 log

1

δ
− 1.7⌉ . (3.1)

This choice was used in all multilevel experiments of §3.2. The corresponding two-level
work approached W ≈ 34mn log(1/δ) +Wc for large n (RMSE = 0.1, Figs. 3.1(c-d)).
We note that W was not sensitive to the precise choice of p and s.

0 2 4 6 8 10 12 14

0.5

1

1.5

2

2.5

log
10

(1/δ)

p op
t/lo

g 10
(1

/ε
)

n = 65
n = 129
n = 257
n = 513

0 2 4 6 8 10 12 14

0.5

1

1.5

2

2.5

log
10

(1/δ)

s op
t/lo

g 10
(1

/ε
)

n = 65
n = 129
n = 257
n = 513

(a) (b)

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

log
10

(1/δ)

w
m

in
/n

n = 65
n = 129
n = 257
n = 513

0 2 4 6 8 10 12 14
20

25

30

35

40

45

50

55

60

65

log
10

(1/δ)

w
m

in
/(

n
lo

g 10
(1

/δ
))

n = 65
n = 129
n = 257
n = 513

(c) (d)

Fig. 3.1. Two-level optimal parameters and work vs. δ for n = 129, 257 and 513. (a)
popt(δ)/ log(1/δ); (b) sopt(δ)/ log(1/δ); (c) The minimum work W (popt(δ), sopt(δ)) (plus symbols)
and its linear regression line. (d) W (popt(δ), sopt(δ))/(mn log(1/δ)) and its average value.

MuST: THE MULTILEVEL SINC TRANSFORM 9

3.2. Multilevel Complexity. Next, we compared three algorithms of evaluat-
ing (1.1) for U(y) = rand[−1, 1], α = 0.2 and m = 2:

(i) Direct summation whose cost is ≈ 30mn.
(ii) Yaroslavsky’s FFT method [28]. Its total cost is roughly 2m FFT’s; because

it is only applicable when n is a power of 2, padding is required for all other values
of n, increasing the total cost to ≈ 12mn log2 n ≈ 40mn log n. (Boyd’s FMM method
[2] has the same complexity with a larger constant, and is therefore less competitive.)

(iii) MuST with target accuracies δ = 10−d, d = 1, . . . , 12. The coarsest grid in
all experiments always had at least 160 y-points.

Fig. 3.2(a) depicts the actual (log(1/ε)) versus desired (log(1/δ)) number of sig-
nificant digits in V in MuST runs. The graph is at or slightly above the line ε = δ,
i.e. the target accuracy was exactly achieved by the parameter settings (3.1).

Fig. 3.2(b) compares the cost of the different algorithms. The MuST complexity
is ≈ 25mn log(1/δ) for all δ ≤ 10−4 – slightly better than the two-level prediction for
m = 1. The hidden constant is tabulated vs. n and m for δ = 10−8 in Table. 3.1.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

log
10

(1/δ)

lo
g 10

(1
/ε

)

Target
n = 640
n = 2560
n = 10240
n = 40960

10
3

10
4

10
5

10
6

10
7

n

W
or

k
[fl

op
s]

Direct
FFT

δ=10−2

δ=10−5

δ=10−8

δ=10−11

(a) (b)

Fig. 3.2. Multi-level actual accuracy versus target accuracy. (b) Complexity comparison of
direct evaluation, FFT and MuST.

n m = 1 m = 2 m = 4 m = 8

128 37.1 29.4 28.0 27.8
256 42.8 34.3 33.0 33.0
512 39.3 30.8 29.7 29.6
1024 36.3 28.3 27.2 27.1
2048 34.3 26.6 25.6 25.5
4096 33.1 25.7 24.7 24.6

Table 3.1
Hidden constant values W (popt(δ), sopt(δ))/(mn log(1/δ)) versus n and m for δ = 10−8.

MuST quickly becomes faster than direct summation (asymptotically, for all n '
23 log(1/δ)), as well as faster than FFT when n ' 0.67δ−0.65. Table. 3.2 demonstrates
different cross-over values. Generally, if the MuST hidden constant is K, the cross-
over occurs at n ' 0.67δ−K/40; consequently, decreasing K can significantly reduce
the cross-over point.

This implies that MuST is superior to its competitors on uniform-grid problems
of moderate size or larger, provided that a fixed target accuracy is sought. On the

10 O. E. LIVNE AND A. E. BRANDT

other hand, in applications where (1.1) arises as a discretized linear system approx-
imating a continuous integral operator, the desired accuracy δ is comparable with
the discretization error, which is typically hq ∼ n−q where q is the discretization or-
der. In this case, MuST’s complexity is 25qn log n – comparable with FFT, and only
marginally better for a first-order discretization.

δ 10−2 10−5 10−8 10−11 10−16

Direct 160 160 160 250 368
FFT 600 2500 40, 000 5.3× 106 7.2× 109

Table 3.2
Cross-over n-values at which MuST becomes faster than its competitors for different target

accuracies. Starred values were estimated by extrapolation from Fig. 3.2.

Finally, we compared the MuST performance for smooth and non smooth U
inputs to verify (2.14). Table 3.3 depicts the obtained relative error for a target error
of δ = 10−8, increasing problem size and (a) Uj = eiβj with β = 0, π/2, π; (b) Runge’s
function Uj = (1 + 25(2yj − 1)2)−1 [18]. The results were practically independent of
both U and n even when u was highly oscillatory (β = π) or when the Runge–Gibbs
phenomenon was present. All the results reported in this section remained the same
when m was varied, indicating that MuST also scaled linearly with m.

n β = 0 β = π/2 β = π Runge

1280 4.8× 10−9 1.07× 10−8 5.3× 10−9 4.8× 10−9

2560 4.8× 10−9 1.08× 10−8 5.4× 10−9 4.7× 10−9

5120 4.7× 10−9 1.09× 10−8 5.3× 10−9 4.7× 10−9

Table 3.3
Actual relative errors for δ = 10−8 and different {Uj}j choices.

4. Extensions.

4.1. Other Kernels. The MuST algorithm immediately applies to all real- and
complex-valued oscillatory kernels of the form

G(r) = G(r)eiωr, G(r) – asymptotically smooth . (4.1)

This includes G(r) = sincl(r) for all l > 0 as well as other kernels arising in acoustics,
wave propagation and electromagnetic scattering problems [4, §5],[12].

More generally, G = G(x, y) may not be a function of the distance r = x− y and
may not have an analytical form; for example, (1.2) may be an image de-noising for-
mula with a spatially-dependent numerical point-spread-function G whose local behav-
ior is erratic, yet is known (either theoretically or experimentally) to have an asymp-
totically smooth amplitude G(x, y). MuST can still be applied to this general case,
however tabulated local corrections can no longer be used because (2.10d) contains
different G-terms for different xk’s. The work consequently rises to O(mn log2(1/δ)).

4.1.1. Fast Sincd Transform. Another commonly-encountered sinc variant is
the sincd kernel [28, Eq. (2)]

G(r) =
h sin(πrh)

sin(πr)
= G(r) sin(ωr) , G(r) :=

h

sin(πr)
, ω :=

h

π
. (4.2)

This does not fall under the category of (4.1), because G has three singularities at
r1,2,3 := −π, 0, π instead of one. We suggest two alternative solutions:

MuST: THE MULTILEVEL SINC TRANSFORM 11

(A) Modify the local correction sum (2.10d) to extend over the region

3∪
l=1

{j : |yj − x− rl| ≤ (s+ 1)H} .

The local correction tables accordingly become three times larger.
(B) Break the kernel into three kernels with a single singularity each using a

partial fraction decomposition. Namely, rewrite

G(r) =
ϕ(r)

(r + 1)r(r − 1)
= ϕ(r)

(
0.5

r + 1
− 1

r
+

0.5

r − 1

)
, (4.3)

where ϕ(r) := h(r + 1)r(r − 1)/ sin(πr) is smooth (Fig. 4.1). Each of the three
summands has the form ϕ(r)/(r− rl), hence MuST can be applied to it by modifying
the local corrections to extend over {j : |yj − x− rl| ≤ (s+ 1)H}.

−1 −0.5 0 0.5 1
−10

−5

0

5

10

r
−1 −0.5 0 0.5 1

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

r

Fig. 4.1. Left: 1/ sin(πr). Right: ϕ(r) for h = 1.

(4.3) contains simple singularities only, therefore the Heaviside Cover-Up Method
Case 1 [19] can be applied to form the decomposition. This can be generalized to q
algebraic singularities with multiplicities {νl}ql=1 using the general decomposition [27]

G(r) =
ϕ(r)∏q

l=1(r − rl)νl
= ϕ(r)

q̃∑
l=1

Al

(r − rl)ν̃l

for some q̃, {ν̃l}l. Similar decompositions can be developed for other singularity types.
We recommend using method A for sincd, which is faster than B because the anter-
polation and interpolation steps are not repeated three times. The cost is therefore
less than three sinc transforms, or 75mn log(1/δ) flops. On the other hand, Method
B allows using separate coarse grids for different terms in the decomposition, which
may prove more flexible for other kernels.

4.2. Non-uniform Grids. First, consider the case where y and x are non-
uniform grids with a uniform density γ, i.e. it is possible to place a uniform grid
Y = {YJ}J with meshsize H = O(γ) over Ω so that there lies a uniformly bounded
number (O(H/γ)) of yj ’s within grid cell [YJ , YJ+1]. Similarly define X over x. Define
Level 2 as the grids Y and X, and subsequent coarsening as in §2. The only change to
Algorithm 1 is at the finest level: the anterpolation from y to Y and the interpolation
from x to X require spatially-varying interpolation weights, each of which can be

12 O. E. LIVNE AND A. E. BRANDT

computed using barycentric interpolation [9] in 11mn log(1/δ). Furthermore, vo no
longer vanishes, thus Algorithm 2 invokes Algorithm 1 twice to compute (2.3).

If y’s density (similarly x’s) varies over the domain, e.g. when using Chebyshev
nodes to minimize the Runge-Gibbs phenomenon in the interpolation (1.1), multilevel
efficiency is maintained by introducing local refinements [7],[13, §4.1]: starting from
the global uniform gridY, finer “patches” are introduced only over the areas of locally-
high density. Patches are recursively nested until there are only a bounded number
of yj ’s within a cell, organized in a multilevel patch tree. Importantly, all patches are
uniform grids to keep inter-level interpolations simple and efficient. Here tabulated
local corrections should be replaced with the sliding-window technique described in
[13]; the overall work should then amount to about 85mn log(1/δ) flops.

An simpler alternative approach is to use a non-uniform coarse grids (X =

{x2k}[mn/2]
k=1 , Y = {y2k}[n/2]k=1 , appropriately padded as explained in §2). A differ-

ent error analysis would be required here, as the local correction region size varies
over the domain.

4.3. Higher Dimensions. Whilst this paper presents a one-dimensional algo-
rithm, it can be generalized to higher dimensions. An O(mn logn) multi-level evalu-
ation of integral transforms with oscillatory kernels in d dimensions, d ≥ 2 was first
described in [4, §5] and subsequently implemented for d = 2 in [17]. Instead of the
directional separation (2.3), the general algorithm separates directions at all levels,
where the number of directions increases on increasingly coarser levels.

The 1-D MuST can be applied along one dimension at a time to evaluating the
separable d-dimensional sinc and sinc2 kernels considered by [8]. Note that the method
of [8] cannot be applied to the full 2-D sinc kernel sinc(∥x−y∥2), because the analytical
form of the kernel’s Fourier transform no longer holds (Eq. (8) and the first equation
in §2.2 therein).

4.4. Other Applications. The multilevel evaluation can be efficiently paral-
lelized to multiple processors. Anterpolation, interpolation and local corrections at
each level require O(log(1/δ)) operations per data point, each of which can be in-
dependently processed. Because there are O(logn) levels, the parallel efficiency is
O(log(1/δ) log n).

When convenient, the coarsest-level direct summation can be replaced by a faster
FFT evaluation. This owes to the flexibility of choosing coarse grids: the coarsest y-
and x-grids can always be padded to contain 2N points at a negligible cost.

The multilevel evaluation can be naturally embedded to compute residuals within
an iterative solution of integral equations [5]: the coarse levels are reused by the
multilevel solution cycle; δ is matched to the estimated accuracy of the current iterant.

5. Conclusion. A fast multilevel sinc transform (MuST) algorithm was pre-
sented. It utilizes the asymptotic smoothness associated with the sinc kernel, there-
fore its performance is independent of the given samples {Uj}j . With a complexity of
25mn log(1/δ) for sinc and 75mn log(1/δ) for sincd, MuST is competitive with FFT-
and FMM-based methods on uniform grids for moderate evaluation accuracies, and
can be applied to a wider variety of kernels. Numerical experiments were performed
in Matlab ; a next natural step left for the future is an optimized parallel software
implementation for integration into practical applications.

6. Acknowledgements. This paper is dedicated to J. Brahms’ Piano Concerto
No. 2 in B-flat major, Op. 83.

MuST: THE MULTILEVEL SINC TRANSFORM 13

REFERENCES

[1] J. P. Boyd, A fast algorithm for Chebyshev and Fourier interpolation onto an irregular grid,
J. Comp. Phys., 103 (1992), pp. 243–257.

[2] , Multipole expansions and pseudospectral cardinal functions: A new generalization of
the Fast Fourier Transform, J. Comp. Phys., 102 (1992), pp. 184–186.

[3] , Chebyshev and Fourier Spectral Methods, Dover, Mineola, New York, second ed., 2000.
[4] A. Brandt, Multilevel computations of integral transforms and particle interactions with os-

cillatory kernels, Computer Physics Communications, 65 (1991), pp. 24–38.
[5] A. Brandt and A. A. Lubrecht, Multilevel matrix multiplication and fast solution of integral

equations, J. Comput. Phys., 90 (1990), pp. 348–370.
[6] A. Brandt and C. H. Venner, Multilevel evaluation of integral transforms with asymptotically

smooth kernels, SIAM J. Sci. Comput., 19 (1998), pp. 468–492.
[7] The Carl, F. Gauss, Minerva Center, For Scientific Computation, Achi Brandt, Kees

Venner, A. Brandt, and C. H. Venner, Multilevel evaluation of integral transforms on
adaptive grids, 1996.

[8] L. Greengard, J. Lee, and Souheil Inati, Fast sinc transform and image reconstruction from
nonuniform samples in k-space, Comm. App. Math. Comp. Sci., 1 (2006), pp. 121–131.

[9] N. J. Higham, The numerical stability of barycentric lagrange interpolation, IMA J. Numer.
Anal, 24 (2004), pp. 547–556.

[10] K. Iniewski, Wireless Technologies: Circuits, Systems, and Devices, CRC Press, 2008.
[11] O. Kreylos, Sampling theory 101. http://idav.ucdavis.edu/~okreylos/PhDStudies/

Winter2000/SamplingTheory.html, 2009.
[12] O. Livne, A. Brandt, and A. Boag, Multigrid analysis of scattering by large planar structures,

Micro. Opt. Tech. Lett., 32 (2002), pp. 454–458.
[13] O. E. Livne and A. Brandt, N roots of the secular equation in O(N) operations, SIAM J.

Mat. Anal., 24 (2002), pp. 439–453.
[14] Erik Meijering, A chronology of interpolation: From ancient astronomy to modern signal

and image processing, in Proceedings of the IEEE, 2002, pp. 319–342.
[15] T. Minka, The Lightspeed MATLAB toolbox. http://research.microsoft.com/en-us/um/

people/minka/software/lightspeed/, 2010. [Online; accessed August 10, 2010].
[16] D. Potts, G. Steidl, and A. Nieslony, Fast convolution with radial kernels at nonequispaced

knots, Numer. Math., 98 (2004), pp. 329–351.
[17] I. H. Ramirez, Multilevel Multi-Integration for Acoustics, PhD thesis, University of Twente,

Enschede, The Netherlands, 2005.
[18] C. Runge, Über empirische funktionen und die interpolation zwischen quidistanten ordinaten,

Zeitschrift fr Mathematik und Physik, 46 (1901), pp. 224–243.
[19] J. Senning, Heaviside “cover-up” method for partial fractions. http://www.math-cs.gordon.

edu/courses/ma225/handouts/heavyside.pdf, 2009. [Online; accessed August 10, 2010].
[20] A. Sitaram, Encyclopaedia of Mathematics, Springer, 2002, ch. Uncertainty principle.
[21] F. Stenger, Numerical methods based on Sinc and analytic functions, vol. 20 of Springer Series

in Computational Mathematics, 1993.
[22] F. Stenger, Handbook of Sinc Numerical Methods, Numerical Analysis and Scientific Compu-

tation Series, CRC Press, December 2010.
[23] M. Sugihara and T. Matsuo, Recent developments of the sinc numerical methods, J. Comput.

Appl. Math., 164-165 (2004), pp. 673–689.
[24] P. Thévenaz, T. Blu, and M. Unser, Interpolation revisited, IEEE Trans. Med. Imaging, 19

(2000), pp. 739–758.
[25] A. Y. Trynin, Tests for pointwise and uniform convergence of sinc approximations of contin-

uous functions on aclosed interval, Sbornik: Mathematics, 198 (2007), p. 1517.
[26] M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and

SPECT, Academic Press, San Diego, CA, December 2004.
[27] Wikipedia, Partial fraction. http://en.wikipedia.org/wiki/Partial_fraction, 2010. [On-

line; accessed August 10, 2010].
[28] L. P. Yaroslavsky, Signal sinc-interpolation: a fast computer algorithm, Bioimaging, 4 (1996),

pp. 225–231.
[29] M. M. J. Yekta, Equivalence of the lagrange interpolator for uniformly sampled signals and the

scaled binomially windowed shifted sinc function, Dig. Sig. Proc., 19 (2009), pp. 838–842.

